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We present an algorithm for automatically constructing a decompositional shape model from

examples. Unlike current approaches to structural model acquisition, in which one-to-one

correspondences among appearance-based features are usedto construct an exemplar-based

model, we search for many-to-many correspondences among qualitative shape features (multi-

scale ridges and blobs) to construct a generic shape model. Since such features are highly

ambiguous, their structural context must be exploited in computing correspondences, which

are often many-to-many. The result is a Marr-like abstraction hierarchy, in which a shape

feature at a coarser scale can be decomposed into a collection of attached shape features at

a finer scale. We systematically evaluate all components of our algorithm, and demonstrate

it on the task of recovering a decompositional model of a human torso from example images

containing different subjects with dissimilar local appearance.
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Chapter 1

Introduction

The early generic object models proposed by researchers such as Marr and Nishihara [12]

and Brooks [13] not only decomposed a 3-D object into a set of volumetric parts and their

attachments, but supported the representation of objects at multiple scales, using an abstraction

hierarchy (Figure 1.1). Marr’s classical example of a humanconsists of a single cylindrical part

at the highest level, a torso, head, and arms appearing at thenext level, an upper arm and lower

arm appearing at the next level, etc. Modeling an object at different levels of abstraction is a

powerful paradigm, offering a mechanism for coarse-to-fineobject recognition. Unfortunately,

such models were constructed manually, and the feature extraction and abstraction machinery

required to effectively recover volumetric parts, much less their abstractions, was not available

at the time.

The recognition community has recently returned to the problem of modeling objects as

configurations of parts and relations, with the goal of automatically recovering (or learning)

such descriptions from examples. For example, collectionsof interest points [1, 9] or affine-

invariant image patches [2], forming a “constellation” of features, capture the “parts” and their

geometric relations that define a view-based object category. Armed with powerful new ma-

chine learning techniques, complex configuration models can be automatically recovered from

image collections or image sequences. For example, one can extract models based on mo-
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: Hierarchical models proposed by Marr for the purpose of categorical modeling

(taken from [12]).

tion and persistent appearance [5, 6, 15, 3, 4]. Global detectors that combine both motion and

appearance have also been successfully applied to pedestrian tracking tasks [19].

As powerful as these part-based techniques are, they all rely on computing a one-to-one cor-

respondence between low-level, appearance-based features. However, two exemplars belong-

ing to the same class may not share a single appearance-basedfeature. Yet at some higher level

of abstraction, the two exemplars may share the same coarse part structure. Local, appearance-

based features simply do not lend themselves to the types of abstract object representations

proposed by Marr and his peers – abstractions in which a single part may cover an entire

subcollection of local, appearance-based features. One approach might be to try and group

the appearance-based features into local collections eachof which defines an abstract part.

However, appearance-based features are texture encodingsof neighbourhoods centered at in-

terest points, and do not reflect the underlying shape structure required for perceptual grouping.

Granted, the analysis of moving interest point-based features can support their partitioning into



CHAPTER 1. INTRODUCTION 3

groups. But again, this requires the tracking of an exemplar, for which one-to-one feature cor-

respondence is assured. Moreover, it is not clear how to abstract a coarse part model from a

sparse set of local features.

In this paper, we address the problem of recovering a Marr-like abstraction hierarchy from

a set of examples. Note that a hierarchy can arise for different reasons. In Marr’s work,

such a hierarchy arises from examining the same object at different levels of abstraction. In

our experiments, a hierarchy arises due to object articulation. Though the causes are slightly

different, the end result is the same – the same part of the object can be represented by different

numbers of features.

We begin by applying a multi-scale blob and ridge detector [27] to a set of images contain-

ing exemplars drawn from the same class. The extracted features become the nodes in ablob

graphwhose edges reflect nonaccidental proximity relations between pairs of features. Blobs

and ridges capture the coarse part structure of an object, and represent low-order projections

of restricted classes of volumetric part models, includinggeneralized cylinders, superquadric

ellipsoids, and geons. Unfortunately, as feature complexity increases, so does its reliability

decrease, as seen in Figure 1.2, showing the extracted blob graphs from a set of images of dif-

ferent humans with varying appearance and arm articulations. Some parts are over-segmented,

some are under-segmented, some are missing, and some are spurious (possibly representing

background clutter). These segmentation errors all pose a significant challenge to a matching

algorithm whose goal is to find common structure in a set of images. Whereas one-to-one

matching of local appearance-based features can exploit the high dimensionality of the fea-

tures to ensure robust matching, one-to-one matching of noisy blobs and ridges is ripe with

ambiguity, and structural relations and context must be exploited for successful matching.

Still, there is an even more challenging problem to be solvedhere. In Figure 1.2, sometimes

an arm may appear as a single, elongated ridge (when the arm isextended), while at other times,

an arm is broken into two smaller ridges (due to articulationat the elbow). Any matching

algorithm that assumes a one-to-one correspondence between features cannot match these two
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Figure 1.2: Blob graphs extracted from a set of images, each containing the upper body of

a different person (with different clothing). The high level of feature abstraction comes at

the cost of increased segmentation errors in the form of under- and over-segmentation, missing

features, and spurious features (including background clutter). Notice also that features may be

extracted at different levels of abstraction, such as a straight arm (single ridge) or bent arm (two

smaller ridges). Edges between blobs reflect a commitment tononaccidental proximity-based

grouping (see text) with edge width reflecting strength of grouping.

descriptions, therefore failing to capture the notion thata coarser feature can be decomposed

(at a finer level of abstraction) into two smaller features. Detecting these decompositional

or abstraction relations between features requires a matching strategy that can match features

many-to-many. Only then can we recover the multi-scale abstraction models that support true

generic object recognition or categorization.

In this paper, we propose a framework for learning a shape abstraction hierarchy from a

set of examples with dissimilar local appearance. From a setof noisy, poorly-segmented blob

graphs, capturing the articulated part structure of objects at different levels of abstraction, we

construct an abstraction hierarchy, in the form of a graph, that contains both coarse-to-fine

decompositional (abstraction) relations as well as attachment relations. Relaxing the one-to-
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one feature correspondence assumption common to most structure learning frameworks, we

draw on recent results in graph matching to match blob graphsmany-to-many, allowing the

matching of two exemplars whose parts may appearat different levels of abstraction. An

analysis of the many-to-many matching results over all pairs of input exemplars ultimately

yields the nodes and edges (both abstraction and attachment) in the final model.

We begin with a summary of related work (Chapter 2) and an overview of our system

(Chapter 3). We proceed to present our graph construction computed over a multi-scale blob

and ridge decomposition (Chapter 4). We then describe our many-to-many graph matching

technique (Chapter 5), our technique for identifying persistent parts (Chapter 6.1), and our

technique for defining both attachment and abstraction relations (and their probabilities) (Chap-

ter 6.2). We evaluate each stage of the pipeline using groundtruth data, and explore the sensi-

tivity of each step to changes in parameters (Chapter 7). Finally, we offer some limitations and

conclusions as well as directions for future research (Chapters 8,9).



Chapter 2

Related Work

Object recognition contains several subproblems, including modelling, indexing and identi-

fication. Though some researchers address all these issues in a recognition framework, we

will concentrate only on automatic model acquisition. Object recognition can be roughly di-

vided into two tasks: identification (or low-level recognition) and categorization (or high-level

recognition). The first involves recognizing specific objects. The second involves recognizing

an object from a large category, such as people or animals. Weare trying to learn an appro-

priate model for an object category. During categorical model acquisition, it is important to

construct a sufficiently general model to accomodate all theobjects in a given category, yet a

sufficiently restrictive model to reject outliers from other categories. As mentioned in Chap-

ter 1, Marr and his peers proposed generic, hierarchical models; however, the tools to build

such models automatically did not exist then. Although today, with the help of new machine

learning techniques, there is growing research in automatic model acquisition, most acquired

models are appearance-based and are not geared toward categorical recognition. In this paper,

our focus will be on recovering decompositional generic shape models.

Model acquisition is only part of the object recognition problem. As mentioned previously,

some authors attempt to address all components in an integrated framework. Though our model

will eventually be used for recognition in the real world, where indexing and matching are

6
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important, we leave such concerns for future research. In terms of model construction, some

integrated systems learn models dynamically (on-line). For example, given region segmented

scenes as input, Xu et al. [38] group regions based on the quality of the template matching

results, forming composite nodes. The model evolves by updating the composite nodes as new

templates become available. Segen [44] provides a way of constructing graph-based models by

representing feature relations (and not features) as nodes. The modeled relations can be n-ary,

and are not restricted to be pairwise. An efficient algorithmis provided to dynamically learn

such models as new input graphs become available. On the other hand, our goal during model

construction is to obtain natural high-level parts and relations between them. Our model will be

built off-line with pairwise decomposition and attachmentrelations. Thus, we will concentrate

only on model recovery, with no concern for issues such as dynamic model acquisition or

modeling more complex relations.

The main choices facing the model acquisition community arethe type of the model and the

features used in its construction. A model can be part- or non-part-based. Non-part-based, or

global models, try to represent an object as a whole, either modelling its appearance or shape.

Part-based, or local models, try to model the object as a collection of parts, which again can be

appearance- or shape-based.

A lot of early work in modeling relates to global models. Suchwork includes PCA models,

such as eigenfaces [17], which are based on the appearance ofthe object, and active shape

models, originally proposed by Cootes et al. [18], which model the contour of the object.

In PCA models, the objects are linearly projected to a lower dimensional space. The model

consists of several basis objects that represent the largest eigenvectors of the space of all the

training exemplars. In active shape models, the contour of the object is modeled with a snake

(a sequence of points) in case of 2D modeling; or with a mesh inthe 3D case. The model is

obtained by registering the points from each exemplar together. A mean shape for the snake

or the mesh is obtained together with information about potential variability in the position of

each point.
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Several extensions to the original active shape models wereproposed. Duta et al. [39]

focus on the robust registration of the exemplars, and obtain an average contour of an object.

Maurel and Sapiro [37] extend active shape models to deal with video sequences as input. This

adds an additional problem of temporal alignment. Ueda and Suzuki [42] provide a multiscale

representation for contour description and match contoursat different scales. If a portion of

one contour contains more detailed information than another contour, the final model contour

will contain the coarser representation. Though global models are a highly researched field,

they do not handle occlusion or noise very well. Such models require that only the modeled

object be present in the training images. Therefore, we willconcentrate on part-based models

in our work.

Part-based models have been shown to contain many advantages over global models. Part-

based models store the object’s description as a collectionof several components, and recogni-

tion is possible even if some parts are occluded or missing. The parts themselves often contain

statistical information about their parameters, allowingfor robust recognition. The number of

parts can range from hunderds to tens or less. Some part-based models also contain the rela-

tions between parts, such as distance or orientation. Moreover, the topic of finding the best

relational structure for the model has gained considerableattention, as it restricts the recog-

nition stage even further and provides a solution for dealing with the exponential number of

matches of a new exemplar to the model. The work in part based-modeling can be divided into

several areas of interest.

2.1 Type of input

A lot of part-based model acquisition work goes hand in hand with the tracking field. There is a

dual advantage in using part-based models for tracking purposes. On the one hand, part-based

models provide more robust tracking that can handle occlusion and missing parts. One the other

hand, since tracking deals with video sequences of moving exemplars as its input, it provides a
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simpler way of correctly matching the images and thus simplifying part correspondence. The

latter consequence gives a significant advantage to the use of tracking for automatic model

acquisition.

The area of human tracking has gained particular attention in the part-based modelling field

[4, 5, 6, 15]. Ramanan and Forsyth [4, 5] provide a full framework for learning a part-based

model together with building a robust tracker, and apply their method to tracking articulated

objects such as humans and animals. They learn both the average appearance of each part,

and relations between parts which can encode either distance or articulation. Their framework

can be used both as a tracker without any prior knowledge of the object in question, and as an

object recognition system that uses the model obtained through the tracking process.

Ioffe and Forsyth [6] emphasize the fact that due to occlusion, missing parts and other

factors, the same object may consist of different parts in different images. If each such config-

uration is a tree, the final model is a mixture of trees. The authors propose an efficient way to

store and search such a mixture. Jepson et al. [15] deal with the occlusion of parts by adding a

notion of depth (a numbered layer based on the distance from the camera) to each part, which

is not present in other methods where only the location is modeled in most cases. The num-

ber of parts is adjusted automatically based on visibility and motion data. Moving parts that

are visible for sufficient time are included in the model. Though motion data is very useful,

it generally consists of a specific moving object. Part-based shape models can be constructed

given a motion sequence of a particular exemplar. However, we try to solve the harder problem

of obtaining such a model from different exemplars from the same category whose appearance

may be dissimilar.

Though part-based models have received considerable attention in the tracking commu-

nity, their use is not restricted to tracking. Based on the work of Weber, Welling and Perona

[7, 8], Fergus et al. [9] obtain a constellation model (part-based model with pairwise relations

between parts) from several training images, where both appearance and shape (pairwise rela-

tions between parts) are being learned. Since the authors still use appearance-based features,
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they can robustly match features from each exemplar withoutmotion information. They use

the framework to recognize objects such as cars and motorcycles. Fei-Fei et al. [1] extend

the work to be able to learn a new category from a single or a fewtraining images, relying

on statistical information from the already learned categories. Felzenszwalb and Huttenlocher

[10] show how to efficiently match such constellation structures to image data. Given that the

model is a tree, the authors propose an efficient dynamic programming algorithm to match the

model with the image. The field of constellation models seemscloser to our goal. However,

all of the above work relies on the ability to match image features independently. Though it is

possible for appearance-based features, it is not possiblefor the types of shape features we are

using, since blobs are much more ambiguous than appearance-based features.

2.2 Parts of the model

All part-based models try to cluster image features into coherent model parts. Features that

are used for the model can range from generalized cylinders [12] proposed in the early days

of computer vision (Figure 2.1) at one end, to appearance-based patches, such as the ones

proposed by David Lowe [16], at the other end of the spectrum.Today, appearance-based

features are a very popular choice since they are robust to many deformations and are relatively

easy to match. Moreover, such features can be matched independently without the need for

examining the context of each feature.

Some appearance-based modeling papers exploit this last fact and emphasize the feature

extraction stage. Lazebnik et al. [2, 36] identify regions that are affinely invariant throughout

the training set. Each such region becomes a part in the final model, consisting of several affine

invariant appearance descriptors that are rigidly arranged. Dorko and Schmid [35] not only

cluster features into parts but concentrate on finding suitable parts for best recognition results

based on a measure of the classification rate for each part. Appearance-based features restrict

the matching to objects with similar appearance. This restriction is non-problematic for mod-



CHAPTER 2. RELATED WORK 11

Figure 2.1: Geons. Generic features proposed in the early computer vision days [14].

eling of a single object or a category of objects with similarappearance, but many categories

have no appearance similarity among their members. Whereasthe automatic recovery of volu-

metric parts is still very ambitious, other descriptions for categorization are becoming popular.

Such descriptions include segmented regions, an object’s silhouette, and its decomposition into

blobs (circles and ellipses encompasing different regionsof the object). In our work, we choose

to represent an object’s parts by blobs and ridges ([27]). Though such features allow for a more

generic description, the matching becomes far more ambiguous.
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2.3 Model structure

Most part-based models contain spatial relations between parts. The final models usually have

parts as nodes of a graph and relations as edges. Constellation models do not restrict the final

graphs to be trees, but since many objects (such as humans, for example) exhibit independent

behaviour among their parts, such independence is usually modeled. This modeling of inde-

pendence greatly helps during recognition time, since it prunes out the exponential number of

potential matchings.

In 1969, Chow and Liu [11] showed that a tree-based approximation to an arbitrary distri-

bution represented as a graph could be obtained optimally using a Minimum Weight Spanning

Tree algorithm. This is a remarkable fact due to the exponential number of possible trees. This

method is very useful for recovering part dependencies during object modelling. For example,

taking an articulated object such as a human, a given part is conditionally independent of other

parts given the information about the parts that are connected to it by a joint. Taycher et al.

[34] use this method to obtain a tree structure given featurecorrespondences from the different

frames of a video sequence. Anguelov et al. [33] have severalmeshes with point-wise corre-

spondences. As opposed to the previously mentioned work that deals with mutual information

among parts, they recover the dependence structure in a different manner. First, they partition

the points into rigid parts. Since all the points belonging to a given rigid part undergo the same

rigid transformation, points that agree on their transformation get assigned to the same part.

Secondly, they recover the skeleton without the tree-like structure assumption that was used

before. Points that agree with several transformations arelikely to be on the boundary between

parts and are used to compute the skeleton.

In our work, feature matching is only possible through the initial commitment to a percep-

tual grouping stage. Unlike the previously mentioned methods that recover relations only after

the parts are extracted, we impose a relational structure onthe parts of individual exemplars

to facilitate our exemplar matching stage. Since such a commitment has already been made,

relations in the final model can be found by collecting relational statistics among the different
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exemplars in the training set.

2.4 Hierarchical models

In most part-based models, the relations among parts are spatial, such as articulation of parts or

distance between them. All the features composing the partsof the model have been observed

in one image or another in such a case, and the parts are not ordered in any way. However, the

original models proposed by Marr [12] contained hierarchical relations. Parts may be ordered

in a hierarchy based on their scale or generality. A parent part may be an abstraction of its

children. In the early days of computer vision, hierarchical models were constructed manually.

Since then, however, some researchers have attempted to recover such models automatically.

Connell and Brady [43] proposed learning such models automatically using semantic nets.

Nishida and Mori [45] build a structural model for recognizing hand-written digits. Strokes

are grouped based on the quality of the matching, making the final digit model into a hierar-

chy, where the leaves correspond to indiviual strokes and the inner nodes correspond to stroke

groupings. After recent advances in machine learning, manyauthors began approaching the

problem from a Bayesian network perspective. Bouchard and Triggs [31] use a constellation

model; however, they add a hidden layer of parts above the layer of parts extracted from the

model. Such hidden variables correspond to meaningful collections of image parts and provide

an abstraction layer over the parts that were actually observed in an image. These high-level

parts were not observed in the image, yet they represent an important abstraction that is useful

during learning and recognition. Utans [32] also tries to learn a hidden layer in his model.

The low-level variables correspond to the observed features, whereas the higher levels of the

Bayesian network represent conditionally independent groupings of the image parts. Utans

applies his work to digit modeling.

Others approach the problem from a graph matching perspective. Keselman and Dickin-

son [25] compute the largest common abstraction of several exemplars represented as graphs



CHAPTER 2. RELATED WORK 14

through a process of merging nodes. Each part (region) in thefinal model represents a subset of

connected regions in each exemplar whose merging together yields a set of qualitatively similar

shapes. Jiang et al. [26] introduce the notion of a median graph, which is graph whose sum

of squared distances to a set of input graphs is minimal, where graph distance can be defined

as graph-edit distance or any other graph distance measure.They propose an algorithm for

efficiently computing median graphs based on graph-edit distance. In our work, we will also

concentrate on modeling hierarchical relations. As mentioned previously, we commit to a re-

lational structure for each individual exemplar. Therefore, since each of our input exemplars is

a graph, we also approach the problem of hierarchical model recovery from a graph matching

perspective.

2.5 Summary

There are three critical differences between our approach and the above frameworks. The first

is our use of generic shape features, as opposed to specific appearance-based features, as used

by most part-based models these days. Using appearance-based features not only constrains

the training set to the same object exemplars, but yields a simple correspondence problem.

Our generic features, in the form of ridges and blobs, are highly ambiguous, and cannot be

tracked across training examples on the basis of their properties alone. This gives rise to the

second major difference, whereby the context of a feature, i.e., the nature of its structural

connections to nearby blobs, is critical to computing blob/ridge correspondence across training

examples. The use of perceptual grouping (grouping features based on nonaccidental relations)

to commit to this necessary structureprior to matching is in contrast to approaches in which

the use of robust, local feature correspondences allows structural relations to be computed

followingmatching. The final, and perhaps most critical difference, is our recovery of decom-

positional relations between features, allowing us to capture a coarse-to-fine representation of

an object. Recovering such relations hinges on being able tomatch features many-to-many, as
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opposed to assuming a one-to-one feature correspondence. Without motion (of a single exem-

plar), appearance-based features cannot be matched many-to-many, due to their lack of generic

structure.



Chapter 3

Overview

The main objective of this work is to construct a decompositional shape model from exemplar

objects of a given category. For example, consider the task of constructing a model of a human

torso given exemplar images of torsos of different people, as shown in Figure 3.1(a). This

section provides an overview of our approach to recovering such a model.

Most authors in the appearance-based modelling community describe the parts of their

models as clusters of appearance based features. In previous chapters, we have argued that such

an approach is unsuitable for generic modelling as appearance is not necessarily a persistent

cue among different exemplars from the same category. Shapeseems to be a more persistent

cue in categorical model acquisition. We therefore choose features, specifically blobs, that en-

code only shape information. The final parts of our model willbe clusters of such features from

the different exemplars provided during the training stage. The final model will also contain

relational links between the parts. As opposed to most previous work, our system supports two

types of relations: attachment and decompositional relations. Attachment relations will indi-

cate a spatial attachment between pairs of parts that were frequently observed to be attached.

Decompositional links will indicate a relation where one part may be split into several others.

Such a relation means that a given part of the object was observed at different levels of gran-

ularity among the different exemplars. An example of an ideal final decompositional shape

16
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(a)

(b)

Figure 3.1: (a) Sample input images for constructing the torso model. (b) Extracted blobs from

sample exemplar images. Green edges indicate attachment based on our perceptual grouping

rules. The width of the edges indicates the strength of attachment.

model for the human torso images (from Figure 3.1(a)) is shown in Figure 3.2.

Our system is a pipeline of four primary steps, as shown in Figure 3.3. Initially, blobs are

detected in every exemplar image. Since blobs cannot be matched in isolation, as was argued

in previous chapters, we construct a graph for every input exemplar. The nodes in the graph

correspond to the recovered blobs and the edges encode perceptual grouping relations, which

capture non accidental attachment relations between blobs. Next, given an input blob graph

for each exemplar, each pair of exemplars is matched many-to-many. These many-to-many

matching results are used in the final two stages to constructa decompositional shape model.
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Head
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Left Arm

UL Arm

Figure 3.2: Ideal decompositional torso shape model.

During the part extraction stage, the matching results are used to group consistently matching

features into clusters which will be the parts of the model. The final stage adds attachment and

decomposition links to the model. Attachment links are added based on statistical informa-

tion about blob attachment for each pair of parts. Decompositional links are added based on

statistical information about many-to-many matching results between pairs of exemplars.

During the feature detection stage, we use the approach of Lindeberg and Bretzner [27] to

efficiently recover blobs and ridges through filter responses at different scales. The results of

the blob detector are post-processed, resulting in the elimination of fully included blobs and

blobs with weak support. Extracted blobs from a few sample images of human torsos can

be seen in Figure 3.1(b). Since many-to-many graph matchingis intractable, we transform

the problem into a weighted point matching problem (known asEarth Mover’s Distance, or

EMD), where the goal is to match two sets of weighted points lying in the same Euclidean

space. The result of the EMD algorithm consists of mass flows from features of one exemplar

to the features of another exemplar that indicate the many-to-many matching results. The

flows store the portion of each feature in the first exemplar that matches a feature in the second

exemplar. For the EMD algorithm, for every exemplar, each blob is assigned a mass and each
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Extract Blob
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Match Blob graphs
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Extract parts
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Model parts

Final Decompositional Hierarchy 

Part decomposition
relations
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relations

Figure 3.3: Different stages in our system.
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pair of blobs is assigned an edge weight (the motivation behind this choice will be explained

in Chapter 4). The mass assignment corresponds to the area ofthe blob, which intuitively

describes the size of the corresponding part. The edges between blobs are formed based on

joint connectivity, with large weights assigned to blobs that were deemed disconnected by the

perceptual grouping stage. Sample results of this stage applied to human torso images can be

seen in Figure 3.1(b).

The feature matching stage uses the masses and the edge weights to embed the features in a

Euclidean space and match them many-to-many using an EMD under transformation algorithm

[21]. Each pair of exemplars is matched, resulting in
(

N
2

)

matching results, whereN is the

number of training exemplars (see Figure 3.4). Each matching result contains the flows from

the first set of features to the second set, where the flows store a real valued assignment of each

feature from the first set to each feature in the second set.

...Matching...

Figure 3.4: Matching each pair of training exemplars many-to-many.

The matching results are used in the part extraction stage tocluster the blobs into parts. A

group of features that match strongly among themselves forms a part. Salient parts (or blob

clusters) are supported by consistent one-to-one matchingresults (Figure 3.5 shows sample

clusters for right, upper right, and lower right arm parts).The more features that match consis-

tently, the more evidence there is for the existence of a partin the final model. Once the parts
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Part extraction Extracting relations

Decomposition

Attachment

Figure 3.5: Model construction stages. On the left, three parts are formed by clustering blobs

from individual exemplars. On the top, the cluster for the right arm is shown. On the bottom,

the upper right and the lower right arm clusters are shown. The right portion of the figure

shows the relations recovery stage. The right arm is relatedto the two half-arm parts through a

decompositional relation. The two half-arms are connectedby an attachment relation.
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are formed, decomposition and attachment connections between the parts are recovered based

on individual matching and attachment results from the features represented by the extracted

model parts (Figure 3.5 shows the relations between the right, upper right, and lower right arm

parts in the human torso model). The final result is a part-based decompositional model.



Chapter 4

Representing Qualitative Image Structure

We seek a decomposition of an image into a set of qualitative parts and attachment rela-

tions, and adopt the multi-scale blob and ridge decomposition proposed in [27]. Accordingly,

the input signalf is convolved with Gaussian kernelsg(·; t) of different variancet, giving

L(·; t) = g(·; t) ∗ f(·). To detect compact parts (blobs), we search for scale-spacelocal

maxima in the square of the normalized Laplacian operator,

∇2
normL = t (Lxx + Lyy). (4.1)

Similarly, elongated parts (ridges) are located at scale-space local maxima in:

RnormL = t3/2 |Lpp − Lqq|
2

= t3/2 ((Lxx − Lyy)
2 + 4L2

xy)

(4.2)

where the (p,q) space is obtained by aligning the space to theeigendirections of the Hessian

matrix of the brightness function (see [27] for more detailson the derivation).

To represent the spatial extent of a detected image structure, a windowed second moment

matrix

Σ =

∫

η∈IR2







L2
x LxLy

LxLy L2
y






g(η; tint) dη (4.3)

is computed at the detected feature position and at an integration scaletint proportional to the

scale of the detected image feature. There are two parameters of the directional statistics that

23
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we make use of here: theorientationand theanisotropy, given from the eigenvaluesλ1 and

λ2 (λ1 > λ2) and their corresponding eigenvectors~eλ1
and~eλ2

of Σ. The anisotropy is defined

asQ̃ = 1−λ2/λ1

1+λ2/λ1

, while the orientation is given by the direction of~eλ1
. We found the results of

the blob detector to be quite noisy even on relatively simpleimages. To reduce the effect of

noise on further system components we “clean” the blob results. We remove the non-salient

blobs (by thresholding the saliency parameter), large blobs (the size of the image or larger),

and blobs that are mostly included in others.

Since blobs are generic features, they encode no appearance-specific information. Conse-

quently, matching a blob in one image to a blob in another cannot be done solely on the basis

of a blob’s parameters, which include only a blob vs. ridge feature type, position (not transla-

tion or articulation invariant), orientation (not rotation invariant), ridge extent (not viewpoint

invariant), and saliency (strength of the blob’s response,i.e., the size of the detected minimum

of the Laplacian in a given scale). To overcome this tremendous ambiguity during matching,

we need to draw on a blob’s context, i.e., the structure of nearby blobs thought to be part of

the same object. Specifically, we seek a set of edges that spanfeatures that are unlikely to be

in close proximity by chance. Given our desire to describe objects at multiple levels of ab-

straction, spatial coherence and continuity dictate that,for example, when a coarse, elongated

shape is decomposed into a set of smaller, elongated shapes,the latter will likely be attached

end-to-end.

To set the edge weights, we must look ahead slightly to how they will be used at matching

time. The many-to-many graph matching algorithm (to be described in more detail later) first

embeds the nodes of two graphs to be matched into two weightedpoint sets in Euclidean space.

For a given graph, the Euclidean distance between two pointsis proportional to the weight of

the shortest path between their corresponding nodes in the graph, with small distortion. In

this geometric space, a powerful many-to-many weighted point matching algorithm, theEarth

Mover’s Distance (EMD)[20], yields a solution which, in turn, specifies a many-to-many node

correspondence between the original graphs. EMD will map (or “spread”) a point from one
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graph to a collection of points from another graph if the members of the collection are in close

geometric proximity in the embedded space. Therefore, if wewant multiple parts at a finer

scale in one graph to match a single part at a coarser scale in another graph, the edge weights

linking the finer scale parts to be grouped must be relativelysmall.

A connectivity measure is computed for each pair of features, according to:

max{d1/major(A), d2/major(B)}, (4.4)

wheremajor(X) is the length of the major axis of blobX, andd1, d2 are defined in Figure 4.1.

If this measure is greater than a threshold (whose sensitivity we evaluate in Section 7.1), the

blobs are considered disconnected; if the measure is less than the threshold, an edge is inserted

between the blobs whose weight is a function ofd1 and d2, as shown in Figure 4.1. The

connectivity measure is not used for edge computation, since it results in a measure that is far

from a metric and causes bad embedding results. Instead, theedge weights are computed as

follows:

• ridge-ridge: Let p be the intersection point of the major axes of the ridges. Theedge

weight is the sum of the distances of the center of each ridge fromp.

• blob-ridge: Let p be the closest point to the blob center that is on the major axis of the

ridge. The edge weight is the sum of the distances of the center of the ridge and the

center of the blob fromp.

• blob-blob: The edge weight is the distance between blob centers.

Due to scene clutter, the graph may have a number of connectedcomponents, representing

multiple objects. We greedily choose the largest connectedcomponent as a simple method for

figure-ground separation, and discard the other components. Ultimately, a distance matrix over

these chosen features is necessary to construct an embedding of the graph into a geometric

space. To ensure that the distance matrix is invariant to part articulation, the distance between

any two nodes is defined as the shortest path distance (along graph edges) between the nodes.
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d2
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Figure 4.1: Edge construction: (a) ridge-ridge; (b) ridge-blob; and (c) blob-blob. The total

length of the bold lines represents the assigned edge weightbetween the two features in the

graph.

For any two previously disconnected nodes, the edge weight becomes the sum of the edges

along the shortest path between the two nodes. Figure 4.2 shows the embedding resulting with

our choice of distance measure, as opposed to using Euclidian distances between blob centers.

The actual embedding procedure is explained in Chapter 5. Our embedding achieves articu-

lation invariance, whereas using the Euclidean distance during embedding does not achieve

articulation invariance.
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Extracted blobs Euclidean embedding Our embedding

Figure 4.2: Embedding results. The upper row shows one of theexemplars with its embedding

using Euclidean distance and our distance measure. The lower row shows similar information

for an exemplar with similar parts under different articulation. Our distance measure achieves

similar embeddings (similar relative Euclidean positionsfor corresponding points) for both ex-

emplars under different articulations, whereas using Euclidean distance results in significantly

different embeddings.



Chapter 5

Computing Many-to-Many Blob

Correspondences

Many-to-many matching of blob graphs is a form of inexact graph matching. The topic can

be approached from two directions. Either there is a cost formatching graphs in the original

graph space, or the graphs are first embedded and the matchingis done in the embedding space.

Among the works that are in the first group, Pelillo et al. [41]transform the problem of finding

isomorphic subgraphs into the problem of finding maximal cliques. They later extend their

work to deal with many-to-many matching, although salient nodes are still assumed to be in a

one-to-one correspondence. Sebastian et al. [48] approachgraph matching by computing the

shortest path in the transformation space of a graph, where graph transformation is defined over

shock graphs. Transforming the graph results in the modification of the underlying skeleton

that the graph represents. The shortest path corresponds tothe smallest graph-edit distance that

aligns the two graphs. They apply their approach to shock graphs. In the graph embedding

community, Demirci et al. [22] embed the graphs using a novelspherical embedding technique

and then match the embedded graphs using the Earth’s Movers Distance algorithm. Macrini et

al. [49] obtain topological signature vectors based on the sum of the eigenvalues of the graph’s

adjacency matrix. The resulting vectors represent an abstraction of graph structure, and can be

28
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used to compare graphs (or subgraphs) of different size. Kosinov and Caelli [47] project the

graphs onto the first few eigenvectors corresponding to the largest eigenvalues of the graph’s

adjacency matrix. The actual matching consists of clustering the nodes of the two graphs in the

embedding space. One disadvantage in this method (along with some of the aforementioned

methods) is that it does not account for edge weights in the input graphs. Also, the methods that

match graphs in the graph domain (using graph-edit distance, for example) are computationally

expensive, especially when many-to-many matching is needed.

Given an input training set of blob graphs, we compute a many-to-many matching between

each pair of graphs. In the graph domain, this is an intractable problem that would require

matching (perhaps connected) subsets of nodes in one graph to subsets of nodes in another. Our

technique is based on a recent approach to this problem, proposed by Keselman et al. [24] and

Demirci et al. [22], which transforms the many-to-many graph matching problem to a many-

to-many weighted point matching problem, for which an efficient algorithm exists. Given a

shortest-path distance matrix encoding node-to-node distances, the algorithm employs a spher-

ical coding technique to yield a low-distortion embedding of the nodes in a low-dimensional

Euclidean space. Though Demirci et al. deal with affine transformations during matching, ex-

perimental results have shown that some graphs cannot be aligned with an affine transformation

when embedding our shortest path graphs using spherical embedding. Therefore, we adopt a

simpler, spectral embedding technique, similar to [28]. The approach essentially throws out the

original graph edges, and locates the points in space such that the Euclidean distances between

points in the embedded space is close (with low distortion) to path distances between nodes in

the original graph.

The embedded points can now be matched many-to-many using the Earth Mover’s Dis-

tance (EMD) under transformation [21]. If the points corresponding to one graph are viewed

as piles of earth, while the points corresponding to the other graph are viewed as holes, the

EMD algorithm computes the assignment of earth to holes thatminimizes the amount of work

required to move the earth to the holes. If we assume that massis approximately conserved
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through levels of abstraction, then points should be assigned a weight that’s proportional to the

areas of their corresponding blobs. Returning to our “arm” example, the mass of the straight

arm blob should roughly equal the sum of the masses of the broken arm blobs. The EMD under

transformation is an iterative assignment/alignment process that converges to a locally optimal

solution which can be mapped to a many-to-many node correspondence between the original

graphs. In the following subsections, we provide the details on these steps.

5.1 Graph Embedding

A number of techniques are available for embedding a distance matrix (encoding, for example,

shortest path distances between all pairs of nodes) into Euclidean space; examples include

metric tree embedding [23], spherical codes [22], and ISOMAP [28]. In [24], Keselman et

al. first convert each graph into a tree and then use Matous̆ek’s embedding method [23] to

embed the trees into a Euclidean space. However, the two embeddings do not necessarily have

the same dimensionality, and an additional normalization step is needed. In [22], Demirci

et al. extend that work by introducing a method that embeds two trees into the same space.

However, the two point sets are not aligned and an alignment step is necessary in order to

match them. Due to the nature of the embedding, however, it isnot clear how to parameterize

such an alignment. We adopt a simpler spectral embedding of adistance matrix computed in

terms of shortest paths between nodes in a blob graph, similar to [28], which is summarized

in Algorithm 1. Though such an embedding is global and not invariant to local mismatches in

graph structure, our experiments have shown that the resulting points can usually be aligned

using an affine transformation.

Each blob in the graph maps to a point which encodes the blob’sembedded position and

mass (blob area). The matching of two blob graphs can now be formulated as the matching of

their embedded weighted point sets, in which a source point’s mass can flow to multiple target

points and a target point can receive flow from multiple source points. For our experiments,
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Algorithm 1 Embedding of features for EMD
1: Let A be the distance matrix between all the blobs in a given exemplar image.

2: Find theK largest eigenvectors ofA and stack them in columns, forming aN ×K matrix

X, whereN is the number of blobs in a given exemplar.X is a matrix of coordinates for

the embedded blobs in a given exemplar, where itsi-th row gives the coordinates of the

i-th embedded blob.

we embed the graph into a 2-D space, for reasons that will be discussed later.

5.2 Weighted Point Matching

The Earth Mover’s Distance (EMD) algorithm under transformation [21] allows us to compute

a many-to-many matching of the embedded points which, in turn, specifies a many-to-many

node correspondence between the original graphs. Computing the EMD is based on a so-

lution to the well-knowntransportation problem, whose optimal value determines the min-

imum amount of “work” required to transform one distribution into the other. More for-

mally, let P = {(p1, wp1
), . . . , (pm, wpm

)} be the first distribution withm points, and let

Q = {(q1, wq1
), . . . , (qn, wqn

)} be the second distribution withn points. LetD = [dij] be

the ground distance matrix, wheredij is the ground distance between pointspi andqj . Our

objective is to find a flow matrixF = [fij ], with fij being the flow between pointspi andqj ,

that minimizes the overall cost:

Work(P, Q, F ) =
∑m

i=1

∑n
j=1 fijdij

subject to the following list of constraints:
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fij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n

∑n
j=1 fij ≤ wpi

, 1 ≤ i ≤ m

∑m
i=1 fij ≤ wqj

, 1 ≤ j ≤ n

∑m
i=1

∑n
j=1 fij = min

(

∑m
i=1 wpi

,
∑n

j=1 wqj

)

The optimal value of the objective function Work(P, Q, F ) defines the Earth Mover’s Distance

between the two distributions, and is recovered using a standard linear programming algorithm.

The original EMD formulation assumes that the total masses of the two graphs are the same.

However, with noise, occlusion, and clutter, this assumption is violated, and we must modify

the EMD algorithm to take a more local approach. Specifically, the mass of each feature in the

first image is distributed among its nearby features in the second image in a greedy fashion,

with both small flows and flows over large distances eliminated (Algorithm 2). If we compute

the flows in the opposite direction, i.e., from the second image to the first image, the flows may

be different, due to our greedy approximation. Augmenting the EMD cost function (the amount

of work required to redistribute the mass) with terms that penalize for unmatched masses in the

two images, we select the direction with minimum cost. Note that in our greedy version of

EMD there is a parameterǫ which controls the percentage of the remaining mass in source

blobs that is distributed. If it is less than1, then not all the remaining mass would flow to its

closest neighbour (even if it could all fit). This gives each feature the opportunity to match

other features instead of matching only the closest one, thus trying to counter the negative

effects of the greedy solution. The lower this parameter is,the more many-to-many matches

will result. During the actual runs of the EMD code, we sampleǫ from 0.5 to 1 and choose

the solution with the best cost. A few iterations from the greedy EMD algorithm are shown in

Figure 5.1.

The flows associated with a given direction are used to compute an affine transformation

between the corresponding point sets using a least-squaresminimization of the sum of squared

differences between the locations of points in one set and weighted (by the flows) average
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Algorithm 2 Greedy EMD
1: Let M1, M2 be the vectors containing the masses of the two exemplars, containingN1, N2

features respectively.

2: Let MR = M1, MU = M2 be the remaining masses in the first exemplar and the unfilled

masses in the second exemplar.

3: Sort the distance matrixd in increasing order, obtaining the index vectorsS1, S2 of the

sorted results, such thatd(S1(1), S2(1)) = mini,j{d(i, j)}.

4: Let F lows be theN1 × N2 flow matrix that is intialized with zeros.

5: for i = 1 to N1 × N2 do

6: Let MT = min{ǫ · MR(S1(i)), MU(S2(i))} be the transfered mass between features

S1(i), S2(i), thereby selecting the minimum between the mass remaining in featureS1(i)

and the unfilled mass in featureS2(i).

7: MR(S1(i)) = MR(S1(i)) − MT , removing the transferred mass from the first set.

8: MU(S2(i)) = MU(S2(i)) − MT , adding the transferred mass to the second set (thus

decreasing the remaining mass in the second set).

9: F lows(S1(i), S2(i)) = MT , storing the amount of mass transferred between features

S1(i), S2(i).

10: end for

11: Flows below a certain threshold and flows over distances above a certain threshold are

zeroed out.

12: Let Cost =
∑N1,N2

i=1,j=1 (F lows(i, j) × d(i, j)) +
∑N1

i=1 MR(i) +
∑N2

j=1 MU (j) be the cost

of the computed flows, including the original EMD cost in the first term and additional

penalty costs for remaining and unfilled masses in the other terms.

13: Normalize the flows by dividing each row inF lows by the sum of that row.

14: ReturnF lows andCost.
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Figure 5.1: Greedy EMD computation between two exemplars given their best alignment. The

aligned features, as well as the results after iterations 2,5,7,8,10 are displayed. Blue and red

discs indicate features from the two point sets. The area of adisc corresponds to blob mass.

Green lines indicate flows from the red to the blue points. Notice that the shortest flows are

recovered first, followed by flows over longer distances until the mass from all the red features

has been moved or until the blue features have no more capacity for incoming mass.

locations of matched points in the other set:

∑

i

‖(P1i
− T (

∑

j F lows(i, j) × P2j
∑

j F lows(i, j)
))‖2, (5.1)

whereT is aD−dimensional affine transformation.D is a parameter of our algorithm. Higher

values ofD result in a lower distortion during embedding and result in amore accurate many-

to-many matching result using our algorithm. However, for the alignment computation not to

be underconstrained, there needs to be at leastD + 1 point correspondences between the two

point sets each time the alignment is computed. Though some of our exemplar pairs satisfy

this restriction for higher values ofD, most only satisfy it for low values such as2 or 3. We

therefore choose a 2D embedding and affine transformation inour experiments. It is possible
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Figure 5.2: 1st,2nd and 3rd iterations from the EMD under Transformation algorithm. The

corresponding features become aligned while weak correspondences get pruned.

to adapt the dimensionality of the embedding space for each particular matching, the subject

of future work.

Algorithm 3 formalizes the alignment computation. We have tested our system on human

torso figures. Human torso figures have an inherent right-left symmetry. Since our embedding

disregards the actual Euclidean positions of blobs, our matching algorithm cannot distinguish

between the right and the left sides of the human torso. Without a good initial alignment for

the algorithm, the recovered local solution would be far from the optimal one. For this reason,

we first roughly align the blobs from the two exemplars based on their horizontal positions

to account for right-left ambiguity. The remaining alignment procedure is described by the

alignment algorithm.

In this approximation to the iterativeFT (an optimalFlow and an optimalTransformation)

algorithm [21], which alternates between computing the EMDflows and computing the affine

transformation, the algorithm typically converges in 3-4 iterations. The final flow matrix com-

puted by the algorithm (Algorithm 4) defines a direction of minimum cost. This matrix can

be “inverted” to yield a consistent flow matrix for the opposite direction. IfF lows12 was the

normalizedN1 × N2 flow matrix from pointsP1 to pointsP2, then the “inverted” flow matrix

F lows21 is computed by following these steps:

1. Multiply the rows ofF lows12 by the corresponding entries ofM1 (the mass of features
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Algorithm 3 Alignment of points for EMD
1: Let F lows be the theN1 × N2 normalized flow matrix. LetP1, P2 beN1 × D, N2 × D matrices of points whereN1, N2 indicate

the number of points in the two point sets respectively andD is the dimensionality of the embedding space.

2: Let P = {i ∈ 1..N1|(
PN2

j=1
F lows(i, j)) > 0}, indicating a set of matched points from the first exemplar. LetN = |P |.

3: for i = 1..N (for every matched point of the first set)do

4: V Pi =
P

j F lows(P (i), j) × P2j
, computing the flow-weighted average of points from the second set.

5: end for

6: Let A =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

V P1,1, V P1,2, · · · , V P1,D , 1 0, · · · , 0 · · · 0, · · · , 0

0, · · · , 0 V P1,1, V P1,2, .., V P1,D , 1 · · · 0, · · · , 0

. . .

0, · · · , 0 · · · 0, · · · , 0 V P1,1, V P1,2, .., V P1,D , 1

V P2,1, V P2,2, · · · , V P2,D , 1 0, · · · , 0 · · · 0, · · · , 0

0, · · · , 0 V P2,1, V P2,2, .., V P2,D , 1 · · · 0, · · · , 0

. . .

0, · · · , 0 · · · 0, · · · , 0 V P2,1, V P2,2, .., V P2,D , 1

V PN,1, V PN,2, · · · , V PN,D , 1 0, · · · , 0 · · · 0, · · · , 0

0, · · · , 0 V PN,1, V PN,2, .., V PN,D, 1 · · · 0, · · · , 0

. . .

0, · · · , 0 · · · 0, · · · , 0 V PN,1, V PN,2, .., V PN,D, 1

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
,

be a(N · D) × (D · (D + 1)) matrix,x be the(D · (D + 1)) × 1 vector representing the unknowns of the affine transfortmation T

(D × (D + 1) matrix) written in a row-wise order, and

b =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBB�
P1P (1),1

P1P (1),2

...

P1P (1),D

...

...

P1P(N),1

P1P(N),2

...

P1P (N),D

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
, storing the coordinates of each point from the first set, such thatAx = b becomes an overdetermined system of

linear equations. Flow weighted points from set2 that are stored inA undergo a linear transformation (the same for each point), stored

in x, to become the points from set1 that are stored inb.

7: x = (AT A)−1AT b. Solve the overdetermined system using normal equations.

8: Let T be the resultingD × (D + 1) affine transformation, such that rowi of T is x(((i − 1)(D + 1) + 1) . . . i(D + 1)) (storing the

D + 1 linear coefficients that produce thei-th coordinate in the transformed set of points).
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from the first set), thus making the flows unnormalized again.

2. Transpose the resulting matrix.

3. Normalize the resulting matrix by dividing each element by the sum of its row entries.

These two matrices will play a key role in our procedure for extracting the parts in the final

decompositional model. Figure 5.2 shows a few iterations from the EMD under transformation

algorithm, and Figure 5.3 shows pairs of blob graphs and the final matching between them, as

computed by the algorithm.

Due to the limitations in embedding and noise present in the input graphs in the locations

and sizes of the input blobs (which affects our perceptual grouping and matching stage), our

matching algorithm has some drawbacks. The first problem arises due to the fact that we

discard the Euclidean positions of the blobs in the images and store only a shortest path distance

between them as computed by our perceptual grouping stage. Two blobs with similar global

relations to the rest of the blobs in the image get embedded similarly. For example, a head blob

in one image can match a noisy blob in another image that is located on the side or underneath

the body. Shortest path distance does not maintain node ordering, e.g., outgoing edges of a

node. Therefore, since the distributions of shortest path distances of these two blobs relative to

the other blobs in their exemplars are the same, they get embedded similarly.

The second problem arises due to noisy input. Since EMD relies on the mass conserva-

tion principle, our algorithm assumes that a given part on anobject will have the same mass,

whether it is detected as one or as several features. Though our algorithm is somewhat robust to

mass mismatches, due to its greedy nature nearby features will get filled first. If, for example,

a part that is detected as one feature in the first exemplar is much smaller in mass than the total

mass of features that represent it in another exemplar, thenonly a portion of the features from

the second exemplar will match the feature from the first exemplar. Figure 5.4 illustrates these

two problems.
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Algorithm 4 EMD Under Transformation for Many-to-Many Matching of Two Weighted Point

Sets
1: Compute the distance matrixd(i, j) = ‖P1i

− P2j
‖.

2: Compute theFlows matrix using the above distance matrixd.

3: repeat

4: Compute the transformationT that minimizes
∑

i ‖(P1i
− T (

∑

j Flows(i, j) × P2j
))‖2.

5: Transform each pointP2j
from the second set with the computed transformationT .

6: Compute a new distance matrixd(i, j) = ‖P1i
− P2j

‖.

7: Compute a newFlows matrix using the new distance matrixd.

8: until the change in theFlows matrix is small

9: Assign a cost to the computedFlows matrix.

10: Return computed flow matrixFlows and its cost.
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Figure 5.3: Many-to-many matching of blob graphs using Earth Mover’s Distance under trans-

formation in embedded (Euclidean) space. Left two images show the detected blobs with

green lines indicating blob connections and line width indicating edge strength (nonaccidental,

proximity-based grouping strength). The right figures showthe embedded features (red for left

images, blue for right images) after alignment, using the modified EMD under transformation.

The flows are shown in green, with line width indicating amount of flow. Note that since the

blobs are well aligned, the flow distances are very small. Thesizes of the circles correspond to

the point masses (blob areas). Note that some blobs are nearly unseen in the right column due

to their small mass and proximity to other bigger blobs. Also, the2nd image in the final row

has a second small connected componnent which was removed prior to the embedding.
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Figure 5.4: Failures in matching show where our algorithm fails. Note that the head in the

center figure is embedded (top blue blob in the right figure) approximately the same way as

the noisy blob in the left figure (on the left side of the torso -the red blob in the top of the

right figure). Moreover, the left arm is detected as two features in the left image and as a single

feature in the center image. The mass of the upper arm in the left figure (right red blob) is

larger than the mass of the full arm in the center figure, preventing a 2-to-1 match (the forearm

matches a full arm 1-to-1 as shown on the right side of the right figure). The red blobs in the

left image match the blue blobs in the right image (they also correspond to two of the the red

and blue points in the embedding figure).



Chapter 6

Model Construction

Using the above feature matching framework, each pair of theP input exemplars is matched,

resulting inO(P 2) pairs of mass flow matrices (one per direction). Furthermore, each pair of

flow matrices can be row normalized to1, with each row entry indicating the fraction of mass

flowing from the feature specified by the row to the feature specified by the column. These

matrices are combined to form a singleN × N matching matrix,M , whereN is the total

number of blobs in all of the exemplar images.M is a block matrix, where the(i, j)-th block

stores the flows from features in imagei to features in imagej; diagonal blocks are identity

matrices, reflecting the perfect one-to-one matching that would result from matching an image

to itself.

The final decompositional model is derived from the matchingmatrix M and the original

blob graphs. First, the one-to-one flows are analyzed to yield consistently appearing parts,

i.e., parts that match one-to-one across many pairs of inputimages. Next, the many-to-many

flows inM are analyzed to yield the decompositional relations among parts detected in the first

step. Finally, the input blob graphs are analyzed to yield the attachment edges. The detected

parts and their relations are used to construct the final decompositional model. The following

subsections outline these steps in more detail.

41
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6.1 Extracting Parts

Our goal in populating the final model is to select parts that occur frequently across many input

exemplars, i.e., parts that match one-to-one. Recall that entry (p, q) in the matching matrix

M contains the computed flow from blobp (in the image in which it was detected) to blobq

(in the image it was detected) when the two images were matched; (q, p) contains the flow in

the other direction. If both flows are close to1.0, then the blobs are said to be in one-to-one

correspondence. However, if partp or q is involved in a many-to-one decompositional relation,

the flow in one direction will be less than 1.0.

By redefining both entries to be the minimum of the two flows, the entries representing

one-to-one correspondences will retain their high values (close to 1.0) and the matrix becomes

symmetric. Subtracting the entry from 1.0 turns the symmetric flow matrix into a symmetric

distance matrix, setting up a clustering problem where clusters represent collections of nodes,

pairs of which are in one-to-one correspondence. Again, we draw on spectral techniques to em-

bed the distance matrix into a low-dimensional space, and use the k-means1 algorithm for clus-

tering [29]. The quality of the cluster is in range[0, 1] and it is proportional to the “cliqueness”

of the one-to-one matches among the members of the cluster, where the quality is computed by

averaging the pairwise one-to-one matching results for allpairs of blobs in a given cluster. If a

cluster is of sufficient size and quality, it becomes a node inthe final decompositional model.

The algorithm is formalized below. Figure 6.1 shows four exemplar images and the distance

between every pair of blobs. Black indicates a small distance (i.e., a good match).

1We first run k-means with a large value of k, resulting in over-segmented clusters. In a post-processing step,
we reassign some blobs to more compatible clusters, remove noisy blobs from clusters, remove weak clusters, and
merge similar clusters. The resulting procedure yields stable clusters that are less sensitive to the initial choice of
k.
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Algorithm 5 Spectral Clustering Algorithm (taken from Ng, Jordan and Weiss [29])
1: LetA be the distance matrix between all the blobs in a given graph.

2: LetD be the diagonal matrix whose(i, i)-element is the sum of A’s i-th row, and letL = D− 1
2 AD− 1

2 .

3: Find theK largest eigenvectors ofL and stack them in columns, forming aN ×K matrixX , whereN is the

total number of blobs andK is the number of clusters.

4: Form the matrixY by normalizing each row ofX to have unit length.

5: Cluster the rows ofY into K clusters using the k-means clustering algorithm, treatingeach row as a point in

RK

6: Blob i is assigned to clusterk if and only if row i of Y is in clusterk.

6.2 Extracting Relations

Two types of edges are used to link together the extracted parts (nodes). Decompositional edges

are directed from one part to multiple parts, and capture thenotion that a feature can appear

alternatively as a set of component features, due to finer scale or articulation (or, in the reverse

direction, a set of features can be abstracted to form a single feature). Attachment relations

are the same nonaccidental proximity relations found in theblob graphs computed from the

training images. An attachment edge is undirected, and implies that the blobs spanning the

edge are connected. The many-to-many matching results (flows) between the extracted parts

will be analyzed to extract the decompositional edges, while the attachment relations (in the

original blob graphs) between the extracted parts will be analyzed to extract the attachment

relations.

TheK extracted parts represent clusters of matching blobs in thematrixM . For attachment

relations, we compute the likelihood with which any two suchparts not only co-appear in the

images in which they were found, but are attached as well. If this likelihood of attachment

exceeds a threshold, we define an attachment relation between the two extracted parts. The

likelihood [0, 1] of attachment between partsi andj is defined by theK × K matrix PA (part

attachment) as:
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PA(i, j) =

∑P
p=1

∑B(p)
k=1

∑B(p)
l=1 [Cp(k) = i][Cp(l) = j]connp(k, l)

∑P
p=1

∑B(p)
k=1

∑B(p)
l=1 [Cp(k) = i][Cp(l) = j]

(6.1)

whereP is the number of training images,B(p) is the number of blobs in training imagep,

Cp(k) is the cluster that blobk in imagep is assigned to,[Cp(k) = i] is an indicator function

whose value is1 whenCp(k) = i and0 otherwise, andconnp(k, l) has value1 if there is an

attachment between blobsk andl in imagep (and0 otherwise). The expression captures the

number of times blobs drawn from the two clusters were attached, normalized by the number

of times blobs from the two clusters co-appeared in an image.Part attachment relations above a

thresholdTattach are inserted into the final model. We found thatTattach = 0.6 worked well for

our complete set of experiments, representing the condition that co-occurring blobs belonging

to two different parts are connected in at least 60% of the input images.

For decompositional relations, we restrict ourselves to one-to-many decompositional rela-

tions. This restriction, compared to having many-to-many relations, was imposed for two main

reasons: (1) Most domains have a hierarchical structure in which one part may decompose into

several, and there are few situations in which two subsets ofmore than one node match; and

(2) Such a simplification makes the matching stage easier andmore stable, allowing the use of

a greedy approach instead of a global optimization. A directed, one-to-many decompositional

relation between one extracted part (parent) and a set of twoor more extracted parts (children)

must satisfy three conditions:

1. Most of the mass of the parent flows to the children.

2. In the reverse (many-to-one) direction, most of the mass of each child flows to the parent.

3. The children form a connected component, implying a spatial coherence constraint.

Testing the first two (flow) conditions requires aK × K part flow matrix,PF (i, j), con-

structed by averaging the normalized flows from all blobs in extracted parti’s cluster to all

blobs in extracted partj’s cluster:
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PF (i, j) =

∑N
k=1

∑N
l=1[C(k) = i][C(l) = j]M(k, l)

(
∑N

k′=1[C(k′) = i]) × (
∑N

l′=1[C(l′) = j])
(6.2)

whereN is the total number of blobs extracted from all images,C(l) is the cluster that blob

l is assigned to, andM is theN × N matching matrix. The expression represents the sum of

all normalized flows from blobs in clusteri to blobs in clusterj, normalized by the number of

flows, yielding a mean flow. The entries in the matrix PF are in the range[0, 1]. Figure 6.2

shows a decomposition under idealized conditions given by thePA and thePF matrices.

Given the part flow (PF ) and part attachment (PA) matrices, Algorithm 6 extracts the part

decomposition relations among the extracted parts in the final model.Tchild (0.6) is determined

Algorithm 6 Extracting Decompositional Relations
1: for i = 1 to K do

2: Find all partsj 6= i, s.t. PF (j, i) ≥ Tchild. Let D be the set of all such parts, representing the potential

children ofi.

3: for all subsetsD′ of D do

4: LetPAD′ be the upper triangular matrix ofPA(k, l), wherek, l ∈ D′.

5: The quality of the decomposition of parti into the set D′ is e−|1−
P

j∈D′ PF (i,j)| ×

min{1,

P
k,l∈D′ PAD′ (k,l)

|D′|−1 } {The first term in the quality measure cost is high when most of the par-

ent’s mass flows to the children (and low otherwise). The second term encourages the children to

form a connected component, where a connected component ofD′ children implies at leastD′ − 1

attachment edges among them.}

6: end for

7: end for

8: Choose decompositions whose quality exceedsTdecomp

empirically and reflects the degree to which a conservation of mass constraint can be imposed

between the children and their parent in a many-to-one mapping. A higher threshold, reflecting

a stronger constraint, implies less blob over- or under-segmentation in the image domain in

which the models are being learned.Tdecomp is also set to 0.6, reflecting the fact that a parent

distributes most of its mass to its children and that the children are attached (the product of the

two terms needs to be larger than 0.6).
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6.3 Assembling the Final Model Graph

The final model is a graph whose nodes represent the extractedparts and whose edges represent

the extracted attachment and decompositional relations. Associated with each node is a quality

value, defined as the average of all the pairwise one-to-one matching results of blobs in a

given cluster (defined in Section 6.1). The attachment relation between partsi andj has an

associated likelihood, defined byPA(i, j). The decompositional relation between a parent

part and its constituent children has both an associated quality, defined by the algorithm above,

and a probability reflecting how likely the decomposition is, i.e., the probability that the set of

children will be observed in an image in lieu of the parent.
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Figure 6.1: Distance matrices between blob graphs. A portion of the distance matrixA that

is used for spectral clustering. Blobs that match well one-to-one are clustered together. For

example, the left arms of the subject, corresponding to blobs 2,3,3,4 in images 1-4 respectively

(where the origin is in the bottom left of the figure), all match well one-to-one. The last column

shows the first 5 dimensions in the embedding space, where therange 0..1 is colour coded from

black to white. Note that blobs corresponding to the same part have similar coordinates. For

example, the torso blobs, coresponding to the first blob in each image, have similar coordinates.
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Figure 6.2: Ideal decomposition. In this example a total of4 parts were recovered. Of the4

recovered parts, the right part of the figure illustrates a portion of the resulting model where a

decomposition of part3 into parts1 and4 is shown. Notice the supporting evidence for such a

decomposition given by thePA andPF matrices. These matrices satisfy the three conditions

for a good decomposition mentioned above.



Chapter 7

Experimental Results

We evaluate our model on a database of 86 torso images containing different individuals with

different arm articulations; the blob graphs extracted from some of these images can be seen

in Figure 1.2. Usually, models are evaluated through recognition performance. We have not

yet developed a recognition component that would use our model. Therefore, ground truth

is provided for each input image in the form of a manual labeling of the extracted blobs in

terms of the parts in an ideal torso decompositional model, shown in Figure 3.2; blobs that

are not deemed (by a human observer) to correspond to a part onthe ideal model are labelled

as noise. Given the ideal model and a user-defined labelling of blobs in an input image ac-

cording to the model, the ground truth attachment edges and pairwise matching correctness

can be induced automatically. This allows us to systematically evaluate each component of the

system, including the detection of the blobs and attachmentrelations forming the input graphs,

the many-to-many matching results, the detection of parts (clustering) that become the nodes

in the final graph1, and the attachment and decompositional relations that link the nodes to-

gether. Moreover, we can evaluate the sensitivity of each step as a function of any underlying

parameters (Table 7.1).

1Since the clustering step is not deterministic (due to the random initialization of clusters), the clustering
experiments, as well as all experiments that rely on the clustering results, were conducted 20 times for each value
of the parameter being evaluated.

49
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Parameter Description

Perceptual grouping threshold The threshold determining the pairwise

connectivity between blobs in the

exemplar images.

Embedding dimensionality during matching The dimensionality of the embedding

space in which every pair of exemplars

is embedded and matched.

Embedding dimensionality during part extractionThe dimensionality of the embedding

space in which all blobs from all

exemplars are embedded and clustered

into parts based on one-to-one matching.

k The maximum number of parts in the

model.

Tattach The threshold for accepting attachment

between parts in the final model, based

on the entries of thePA matrix.

Tchild The threshold for considering a part to

be a potential child of another part,

based on the entries of thePF matrix.

Tdecomp The threshold for accepting a

decomposition based on its quality

measure.

Table 7.1: List of system parameters
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7.1 Evaluation of Input Blob Graphs

As mentioned in Chapter 1, the detection of blobs is a noisy process, resulting in over- and

under-segmentation, spurious blobs, missing blobs, and poorly localized blobs. Given the

ground truth labeling, we can evaluate the blob detection process. According to the part labels

shown in Figure 3.2, the percentage of images in which the designated part was present in the

ground truth data was: head (47%), torso (83%), left arm (50%), right arm (51%), left upper

arm (37%), left lower arm (36%), right upper arm (40%), and right lower arm (37%). These

relatively low percentages reflect the significant degree ofnoise in the detection of blobs (note

that a straight arm and its two components cannot simultaneously appear). The attachment

relations are governed by a single proximity threshold. Large threshold values cause all blobs

to be attached and thus produce false positive attachment relations among parts, whereas small

threshold values create sparse graphs with false negative attachment relations among parts.

Figure 7.1(a) shows the error in individual attachment, representing the sum of the SSD error

in the attachment matrices of all exemplar blob graphs. As can be seen from the figure, there

is a clear minima in the error function for a proximity threshold of about 1.0. Our system is

relatively sensitive to this parameter. Choosing a threshold that is far from the optimal will

result in incorrect matching, and the error will propagate to the other stages of the model

construction process.

7.2 Evaluation of Many-to-Many Matching

The error in the many-to-many matching component is computed by finding the sum of the

SSD errors in the flow matrix of each pair of exemplars. The matching component does have

a number of parameters, such as the mass fractionǫ that is distributed during the greedy EMD

algorithm, and the number of dimensions used for graph embedding. However, in the case

of ǫ, the parameter is automatically sampled and the best value is chosen for each individual

matching. In the case of the number of dimensions, the low number of object features in the
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training set that was used prevents us from using a larger number of dimensions (as explained

in Chapter 5). Given the optimal proximity threshold, our matching algorithm yields a 9%

error based on an element-by-element comparison of the computed matching matrixM to the

ground truth data.

7.3 Evaluation of Part Extraction

The error in the clustering step comprising part extractionis a function of two parameters. The

cluster error is computed by first finding the best cluster forevery part in the ideal model. Given

a labeling of each image in terms of the ideal model, we can then compute both precision and

recall for each model part. The minimum (worst-case) of the precision and recall values is

averaged across all clusters and then inverted to yield a final error measure. Figure 7.1(b) plots

smoothed error as a function of embedding dimension. From the figure, we conclude that the

choice of the embedding dimension is not critical. The second parameter isk, representing an

upper bound on the true number of clusters. Figure 7.1(c) plots smoothed error as a function

of k (max number of clusters). Since the minimum is rather shallow, our algorithm is not very

sensitive to the choice ofk.

7.4 Evaluation of Edge Extraction

Errors in the extraction of part attachment and part decomposition edges are computed by first

finding the correspondence between the ideal model (ground truth) parts and the computed

clusters, from which the SSD errors in the attachment and decomposition edges can be com-

puted. Since the correspondence between ground truth and computed clusters is not necessarily

one-to-one, and since a computed cluster does not necessarily correspond to any ground truth

cluster, an additional error term is added to account for thedissimilarity in the number of edges

between the ground truth model and the final recovered model.Figures 7.1(d) and 7.1(e) show
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the error in attachment edges, as a function of the thresholdTattach, and decomposition edges,

as a function of the thresholds,Tchild andTdecomp. The same clustering results are used through-

out these two experiments. As can be seen from the figures, there is a range of thresholds that

results in good attachments and decomposition edges.

7.5 Evaluation of the Final Model

From the above experiments, we determined optimal values for the different parameters and

manually entered them into the system. In our final experiment, we evaluate the error of the

final decompositional model as a function of the size of the input training set. The error is de-

fined by averaging the clustering error, the recovered part attachment error, and the recovered

part decomposition error. Figure 7.1(f) shows the smoothedfinal model error and its three com-

ponents as a function of set size. It can be clearly seen that the errors decrease as the number

of training images increases. Figures 7.2–7.4 show correctly generated decompositional shape

models given the full set of the torso images as input. Since the part extraction stage contains a

clustering component that includes a random initialization of clusters, the model acquisition is

non-deterministic. These three figures show the models recovered with different cluster initial-

izations. The models are structurally the same with minor differences in the contents of the part

clusters. Figures 7.8–7.15 show the different parts of the first of these recovered models (Fig-

ure 7.2). The recovered models are isomorphic to the ideal model, reflecting our algorithm’s

ability to correctly recover a decompositional model from examples.

Figures 7.5–7.7 show potential problems during model recovery, which include recovering

extra parts and relations; however, these problems arise mostly due to bad choices of the differ-

ent thresholds that were analyzed in the previous sections.For example, in Figure 7.5, an extra

head was detected. Due to the nature of the exemplar images and our matching algorithm, the

head blob often matches with other blobs connected to the body. This results in a less consis-

tent matching for the head cluster; thus, depending on the initialization of clusters, the head
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may be detected as one or as two clusters.

Figure 7.6 shows a model with an extra attachment between theupper left and upper right

arms. Due to the nature of the detected parts and our perceptual grouping stage, blobs be-

longing to the upper left and upper right arms are sometimes considered attached. In this

experiment, the value ofTattach was lowered from the optimal value of0.6 to 0.4. This re-

sulted in the detection of this extra attachment relation, which is still strongly supported by the

recovered blob graphs.

Figure 7.7 shows several problems. In this experiment, the value of the initial number of

clusters,k, was changed from its optimal value of12 to 20 initial clusters. Although some of

the20 clusters were merged or removed, the resulting model still has13 parts. Some of these

clusters correspond to the same part; for example, clusters1,2 and4 all correspond to the torso.

Moreover, if a part that is a parent in a decomposition is detected as two or more clusters (as

happened with the left arm, detected as clusters11 and12), each of the correponding clusters

will decompose into its constituent parts, resulting in extra decompositional relations.
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Figure 7.1: Evaluating the Model: (a) Input attachment relation error as function of proximity-

based grouping threshold; (b,c,f) The four curves represent clustering error, recovered attach-

ment edge error, recovered decomposition edge error, and final decompositional model error

as a function of dimensionality of embedding, the upper bound k on the number of putative

clusters, and training set size, respectively; (d) Recovered attachment edge error as a function

of Tattach; (e) Recovered decomposition edge error as a function ofTchild andTdecomp.
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Figure 7.2: Correct final decompositional model obtained byour system on 86 input images.

Red edges indicate part attachment, while blue edges indicate part decomposition (or, inversely,

abstraction). The values on the decomposition edges specify the children (square brackets), the

quality of the decomposition, and the probability of the decomposition. The top number inside

a node is its part number, the middle number is its cluster quality, and the bottom number is the

probability of occurrence of the part. At the bottom is one example image for each part (shown

in red), sampled from its cluster. The model not only captures the correct attachments between

parts, but also captures the decompositional relations between each arm and its constituent

subparts.



CHAPTER 7. EXPERIMENTAL RESULTS 57

1
0.86504

32.5581%

4
0.79569

36.0465%

6
0.86165

 94.186%

2
0.80296

36.0465%

3
0.84904

32.5581%

5
0.66955

51.1628%

7
0.87335

56.9767%

8
0.82454

58.1395%

[1  4] - 0.89264
36.3636%

[1  4] - 0.89264
36.3636%

[2  3] - 0.90492
35.8974%

[2  3] - 0.90492
35.8974%

Part 1

Part 2

Part 3

Part 4

Part 5

Part 6

Part 7

Part 8

Figure 7.3: Correct final decompositional model obtained byour system on 86 input images.

This model was obtained with a different part cluster initialization.
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Figure 7.4: Correct final decompositional model obtained byour system on 86 input images.

This model was obtained with a different part cluster initialization.
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Figure 7.5: Incorrect final decompositional model obtainedby our system on 86 input images.

Here, two clusters for the head were found. Both clusters arestrong enough to become parts,

yet not strong enough to be detected as the same part.
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Figure 7.6: Incorrect final decompositional model obtainedby our system on 86 input images.

Here, the left and the right upper arms are attached. In many exemplar images, the correspond-

ing blobs appear closely together and are attached. If enough such exemplars exist, the parts

will become attached.
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Figure 7.7: Incorrect final decompositional model obtainedby our system on 86 input images.

Due to the large initial number of clusters,k, many extra clusters are detected. Notice that not

only are there different clusters representing the same part, such as the torso or the head, but

that the left arm was detected as two clusters, both of which decompose into half-arm parts.
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Figure 7.8: The torso part in the resulting model. Most blobsin the torso cluster, shown in red,

do correspond to a torso. Some noisy blobs or other parts are included as well.
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Figure 7.9: The head part in the resulting model, shown in red.
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Figure 7.10: The right arm part in the resulting model, shownin red.
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Figure 7.11: The left arm part in the resulting model, shown in red.
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Figure 7.12: The upper right arm part in the resulting model,shown in red.
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Figure 7.13: The lower right arm part in the resulting model,shown in red.
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Figure 7.14: The upper left arm part in the resulting model, shown in red.
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Figure 7.15: The lower left arm part in the resulting model, shown in red.



Chapter 8

Limitations

Our system consists of three main components: feature detection, matching, and model con-

struction (includes part extraction and part relation recovery). The most important component

is the matching component, since the quality of the extracted parts depends highly on the qual-

ity of the matching. However, matching two exemplars without relying on appearance is a

difficult task. We have to deal with noise both in the form of spurious or missing parts, as well

as incorrectly segmented parts. We aim to minimize the effects of the noise by removing some

distracting features and choosing the largest connected component in the hope that it contains

the object we are modeling. Though such measures do help, oursystem cannot correctly deal

with large amounts of noise.

Most of the detected features need to correspond to object parts and need to be correctly

segmented (located in appropriate positions for the correctness of the perceptual grouping stage

and having appropriate masses for the EMD matching). Since we are working with a global

connected component embedding and matching, all the selected features (the features in the

largest connected component) are matched. If the majority of such features are noisy, the

matching results will not be sufficiently consistent to recover the parts in the next stage. The

matching algorithm is not scale invariant, since both the blob masses and the distances between

them are functions of the absolute blob parameters. Moreover, since we choose to work with
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a greedy EMD algorithm and not a global optimization EMD algorithm, correct flows are

computed only given a sufficently close alignment of our input graphs in the first place. For

our experiments, a sufficiently good alignment is achieved through the horizontal symmetry

alignment where features from a given side of the people in each exemplar image are aligned

together (i.e., features on the right side of the body in one exemplar are aligned with features on

the right side of the body in another exemplar, and the same for the left side). This step solves

both the initial alignment problem and the problem of ambiguity between the left and right sides

in case of matching humans. However, it can be seen that our system often makes the mistake

of matching a blob corresponding to the head with a blob located on the side or the bottom of

the torso. This result is a direct consequence of the fact that we are not using any information

about the actual Euclidean positions of the features in the images, but using distances from the

perceptual grouping stage instead. Though such a choice provides our system with articulation

invariance, it introduces additional ambiguity.



Chapter 9

Conclusions and Future Work

We have presented an algorithm for automatically recovering a decompositional, generic shape

model from examples; parts of the model can be represented atdifferent levels of abstraction –

an important representational goal originally proposed byMarr. Two important challenges face

this task: 1) the inherent ambiguity in generic shape features, such as ridges and blobs; and 2)

the need, due to articulation, scale, and segmentation error, to match such features many-to-

many. By imposing a graph-based perceptual grouping on the parts, we provide the structural

context necessary to match ambiguous parts many-to-many. Our algorithm requires a number

of parameters, and we have established the relative insensitivity of the results to changes in

the parameters. We have demonstrated the approach on recovering a decompositional torso

model from example images of different subjects. The correctness of the recovered model

as a function of the size of the training set has been evaluated with respect to ground truth.

Preliminary results are very encouraging, and current efforts are aimed at recovering more

complex models.

For future work, we plan to apply machine learning techniques to recover optimal percep-

tual grouping parameters. As mentioned in Chapter 8, incorrect segmentation is a potential

problem for our system since it can cause the mass conservation constraints to be violated.

We plan to explore methods for better feature recovery, for example, using a blob we obtain
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currently to initialize an active contour that better converges on the part’s boundary. Since

matching is the major component of our system, further research into many-to-many matching

techniques is needed, allowing the system to deal with larger amounts of noise. Other tech-

niques for part recovery based on the matching results will be examined, e.g., techniques that

do not rely on the extra step of feature embedding, such as correlation clustering. In the fu-

ture, we plan to apply our method to model recovery in other domains. Our ultimate goal is

to study object recognition techniques adapted to the part-based decompositional models we

have recovered in this work.
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