
Spatiotemporal Closure

Alex Levinshtein1, Cristian Sminchisescu2, and Sven Dickinson1

1 University of Toronto
{babalex,sven}@cs.toronto.edu

2 University of Bonn
cristian.sminchisescu@ins.uni-bonn.de

Abstract. Spatiotemporal segmentation is an essential task for video
analysis. The strong interconnection between finding an object’s spa-
tial support and finding its motion characteristics makes the problem
particularly challenging. Motivated by closure detection techniques in
2D images, this paper introduces the concept of spatiotemporal closure.
Treating the spatiotemporal volume as a single entity, we extract con-
tiguous “tubes” whose overall surface is supported by strong appearance
and motion discontinuties. Formulating our closure cost over a graph of
spatiotemporal superpixels, we show how it can be globally minimized
using the parametric maxflow framework in an efficient manner. The
resulting approach automatically recovers coherent spatiotemporal com-
ponents, corresponding to objects, object parts, and object unions, pro-
viding a good set of multiscale spatiotemporal hypotheses for high-level
video analysis.

1 Introduction

Spatiotemporal segmentation refers to the task of partitioning a video sequence
into coherently moving objects. While such partitioning does not correspond to
a full video interpretation, it can prove to be an essential component for higher-
level tasks, including tracking, object recognition, video retrieval, or activity
recognition. What makes spatiotemporal segmentation challenging is the strong
coupling that exists between the estimation of an object’s spatial support and
the estimation of its motion parameters. On one hand, local motion estimates
may be unreliable, especially in untextured regions, and larger spatial support is
needed for accurate motion estimation. On the other hand, appearance alone may
not be enough to recover the object’s spatial support in cases of heterogeneous
object appearance or low contrast with the background, and we may need to
rely on motion to define the correct spatial support for objects. This chicken
and egg problem forces most spatiotemporal segmentation techniques to resort
to restrictive modeling assumptions or suboptimal solutions to the problem.

This paper introduces a novel spatiotemporal grouping approach with min-
imal modeling assumptions and a globally optimal algorithm for segmentation.
Similar to prior methods, we represent the whole video stack using a graph with
node affinities encoding appearance and motion similarity. In this manner, our

2 Alex Levinshtein, Cristian Sminchisescu, Sven Dickinson

(a) (b) (c) (d)

(e)

Fig. 1: Overview of our approach illustrated on the flower garden sequence. (a) Spa-
tiotemporal volume; (b) Spatiotemporal superpixels; (c) Superpixel graph with edges
encoding appearance and motion affinity; (d) Optimizing our spatiotemporal closure
corresponds to finding a closed surface cutting low affinity graph edges; (e) Our opti-
mization framework results in multiple multiscale hypotheses, corresponding to objects,
object unions, and object parts.

segmentation approach encodes global information without making overly re-
strictive modeling assumptions. A number of methods approach the problem in
a similar manner. However, they commonly employ greedy clustering algorithms
[1–5], resort to approximate methods for optimizing global NP-hard costs [6–8],
assume a known number of objects [6, 7, 9, 8], or work with pixels whose small
spatial support results in unreliable motion or appearance features [9, 5].

We propose to solve the video segmentation problem by extending the con-
cept of 2D image closure into the spatiotemporal domain, where the perception
of closure would correspond to 3D “tubes” whose overall boundary is strongly
supported by appearance and motion discontinuities. Fig. 1 illustrates the main
steps of our approach. Building on our 2D closure detection framework [10],
we formulate spatiotemporal closure detection inside a spatiotemporal volume
(Fig. 1a) as selecting a subset of spatiotemporal superpixels whose collective
boundary falls on such discontinuities (Fig. 1b). Our spatiotemporal superpix-
els, based on the framework of [11], provide good spatiotemporal support regions
for the extraction of appearance and motion features, while limiting the under-
segmentation effects that plague other superpixel extraction techniques due to
their lack of compactness and temporal stability. We proceed by forming a su-
perpixel graph whose edges encode appearance and motion similarity of adjacent
superpixels (Fig. 1c). Closure detection is posed as the optimization of a global,
unbalanced normalized cuts (Ncuts) cost over the superpixel graph (Fig. 1d).
Similar to [12], we optimize our unbalanced Ncuts cost with the parametric
maxflow approach [13] that is not only able to efficiently find a globally optimal
closure solution, but returns multiple closure hypotheses (Fig. 1e). This not only
eliminates the need for estimating the number of objects in a video sequence, as
all objects exhibiting sufficient closure are extracted, but can result in hypotheses

Spatiotemporal Closure 3

that oversegment objects into parts or merge adjacent objects. The use of such
multiscale hypotheses was shown to facilitate state-of-the-art object recognition
in images [14]. Similarly, multiple spatiotemporal segmentation hypotheses can
serve tasks such as action recognition, video synopsis and indexing [15].

In the following sections, we begin by reviewing related work on spatiotem-
poral segmentation (Section 2). Next, in Section 3, we introduce our problem
formulation. It is here that our cost function is described. Section 4 details all
the steps of our algorithm. In Section 5, we evaluate our framework, comparing
different superpixel affinities and evaluating against an alternative optimization
framework. Finally, in Section 6, we draw conclusions and outline our plans for
future work.

2 Related Work

A full interpretation of a dynamic scene is a great challenge in computer vision.
Tracking methods often adopt a high-level probabilistic scene representation,
where objects are modeled with low-dimensional state vectors whose probability
at any given instance is a function of the observed data and the temporal dy-
namics. Inferring object states in real world motion sequences is a difficult task
in the face of occlusion, camera motion, and variability in object appearance,
dynamics, and shape. As a result, tracking techniques are forced to restrict their
models of observed data likelihood and motion [16, 17], or resort to approximate
techniques to infer object states [18, 19]. In contrast, our focus in this paper is
on spatiotemporal segmentation. Unlike tracking, where objects are represented
at a high level, spatiotemporal segmentation is a low-level task that aims to au-
tomatically extract precise object boundaries given generic perceptual grouping
regularities, such as similarity, proximity and common fate.

Spatiotemporal segmentation methods can be divided into two categories,
layer-based approaches and generic segmentation techniques (a good review is
provided in Megret and Dementhon [20]). In the first category, a scene is repre-
sented using overlapping layers, with each layer capturing a coherently moving
object or part [21–25]. Most such approaches are limited by either assuming a
fixed number of layers, assuming a restricted motion model per layer, or resort-
ing to suboptimal techniques that iteratively estimate the spatial extent and the
motion of each layer. Nevertheless, this strong global model of a scene enables
layer-based methods to successfully segment objects in video sequences in the
presence of occlusion, appearance changes, and other effects. In this work, how-
ever, we will focus on more generic, less restrictive models for spatiotemporal
segmentation.

The second category of approaches does not enforce strong models and at-
tempts to segment a video based on generic spatiotemporal information. Meth-
ods mainly differ in their segmentation algorithms and their treatment of the
spatiotemporal volume, with some methods analyzing the volume in a framewise
manner and others treating it as a single 3D entity. One set of techniques models
moving objects with active contours. In Bascle and Deriche [26], motion is mod-

4 Alex Levinshtein, Cristian Sminchisescu, Sven Dickinson

eled with a global warp which is found by correlating internal region appearance
in successive frames. After the warp, however, only appearance information is
used to update the region’s contour. Paragios and Deriche [27] propose a more
elegant geodesic active contour formulation. Unlike [26], both motion and ap-
pearance information are used in active contour evolution and their level-set
framework enables them to easily handle the splitting and merging of contours.
However, they assume a static background model to facilitate automatic contour
initialization and better tracking. A similar method is proposed by Chung et al.
[28], who employ the EM framework to iterate between region motion estima-
tion and segmentation using active contours, but unlike [27] do not rely on a
static background. Cremers and Soatto [29] propose a more holistic approach
and treat the spatiotemporal volume as a single entity instead of working with
pairs of frames. However, their approach provides no automatic initialization
and does not estimate the number of objects in a scene.

A different set of techniques opts for a more bottom-up approach, and finds
spatially and temporally coherent clusters. Similar to methods based on active
contours, some of these approaches handle the spatiotemporal volume in a frame-
wise fashion [2, 1, 4, 3, 30]. While such techniques are more applicable to realtime
segmentation, some opt to treat the video stack as a single entity facilitating
more global constraints. Dementhon [5] and Greenspan et al. [9] are examples
of two techniques that represent videos with distributions in a low-dimensional
feature space (7D in [5] and 6D in [9]). While it enables them to efficiently
segment videos by employing non-parametric (a mean-shift-based technique in
[5]) or parametric (GMM in [9]) clustering, such low-dimensional models may
prove too restrictive for many motion sequences. Instead of explicitly modeling
video sequences in some Euclidean space, segmentation can be formulated as
an optimization of a global cost that is based on pairwise similarities between
neighboring points in the spatiotemporal stack. For example, in [6, 7], video
segmentation is formulated as a normalized cuts problem, further extended by
Huang et al. [8] to handle more global interactions. Our approach falls under this
category and is closely related to Ncuts as it also defines a global cost function.
However, unlike Ncuts-based techniques that are forced to resort to approximate
solutions, we are able to find an exact global optimum of our cost. Moreover, the
number of clusters does not have to be specified a priori, as we automatically
detect a multiscale set of spatiotemporal clusters.

3 Problem formulation

We formulate the detection of spatiotemporal segments as a superpixel selection
problem. To that end, we define our closure cost to be the unbalanced normalized
cuts cost over a superpixel graph. Out of an exponential number of superpixel
subsets we will efficiently select subsets corresponding to coherent spatiotempo-
ral segments.

Given a superpixel segmentation of every frame in a video, we start by build-
ing a superpixel graph with spatial and temporal connections. Let X be an

Spatiotemporal Closure 5

indicator vector for all the superpixels across all frames, with each element be-
ing in the set {0, 1}. We connect each superpixel to its spatial and temporal
neighbors and define an affinity Wij for each pair of neighboring superpixels i
and j, encoding the similarity of the two superpixels. Setting Di =

∑
jWij , we

optimize the following closure cost:

C(X) =
cut(X)

volume(X)
=

∑
ij Xi(1−Xj)Wij∑

iDiXi
=

∑
iDiXi − 2

∑
i<j XiXjWij∑

iDiXi

(1)

where cut(X) is the sum of the affinities of all the edges between selected and
unselected superpixels, and volume(X) is the sum of all the affinities originating
from the selected superpixels. Minimizing the ratio C(X) is equivalent to min-
imizing the numerator cut(X) while maximizing the denominator volume(X).
The cut between selected and unselected superpixels is small when selected su-
perpixels are strongly separated from the rest in terms of their appearance and
motion. Normalization by volume pushes the solution towards large and com-
pact subsets of superpixels that are homogeneous in terms of appearance and
motion.

The above is called the unbalanced normalized cuts cost. It is similar to our
2D closure cost in [10], with the exception that the numerator measures the cut
instead of the gap and is normalized by affinity volume instead of area. That said,
we will show that the affinities Wij can also include the length of the boundary
between superpixels or their area to give larger superpixels a greater influence.

Unlike the standard normalized cuts cost, which is NP-hard to optimize, our
closure cost can be minimized efficiently using parametric maxflow [13]. In para-
metric maxflow, the problem of ratio minimization is converted to minimizing a
parametrized difference of the numerator and the denominator. For the cost in
Eqn. 1, the parametric maxflow cost is:

C(X, λ) = cut(X)− λ · volume(X) (2)

=
∑
i

DiXi − 2
∑
i<j

XiXjWij − λ
∑
i

DiXi

Different λ’s correspond to different weights of the cut against the affinity vol-
ume. Parametric maxflow can optimize the above parametrized cost, efficiently
finding all the different breakpoints (interval boundaries) of λ between which the
optimal solution X is fixed, resulting in an increasing sequence of breakpoints
λ0, λ1, λ2, Kolmogorov et al. [13] show that while the solution X∗ in range
0 ≤ λ ≤ λ0 corresponds to the global minimum of C(X), consecutively larger
breakpoints λ1, λ2, . . . are also related to ratio optimization. In fact, the opti-
mal solution Xi of C(X, λ) in the interval [λi, λi+1], is also an optimal solution
of minvolume(X)≥T C(X), where T = volume(Xi). Therefore, employing para-
metric maxflow results in several solutions where optimal cuts are found with
increasing affinity volume constraints. We refer the reader to [13] for more details
on the parametric maxflow method.

6 Alex Levinshtein, Cristian Sminchisescu, Sven Dickinson

4 Algorithm details

Our algorithm consists of several stages. We start by extracting the superpix-
els for each frame of the video. Subsequently, we construct a superpixel graph
where each superpixel is connected to its spatial and temporal neighbors. Each
superpixel edge is assigned an affinity that measures the degree of superpixel sim-
ilarity. Once the graph is built, optimal cuts are found using parametric maxflow.
Finally, we post-process the solutions to detect connected components, remove
similar or spurious results, and generate other potentially good solutions. The
following subsections describe each of these stages3.

4.1 Superpixel Extraction

We begin by extracting superpixels from every frame using the TurboPixels
approach of Levinshtein et al. [11]. Instead of using the algorithm in its raw
form, we modify it to obtain more temporally coherent superpixels. We start by
extracting superpixels in the first frame using the original form of the superpixel
algorithm in [11]. Instead of reseeding the superpixels in the next frame on a
regular grid, we use the current frame’s superpixel to drive the seeding procedure.
To that end, we first compute the optical flow using the Lucas-Kanade (LK)
algorithm. The LK algorithm returns the flow for every pixel in every frame,
together with a measure of reliability for each pixel flow. For every superpixel,
we compute a weighted average of the flow over all the reliable pixels, where
pixels that are closer to the superpixel centroid have larger weights. Superpixels
with an insufficient number of reliably flowing pixels get a flow of (0, 0). The
result is a superpixel flow, with motion flow vector Vi for every superpixel i
(Fig. 2).

Taking the superpixel flow for every superpixel, we project the center of
each superpixel to the next frame according to the computed flow. These pro-
jected centers serve as the initial seeds for the superpixel evolution in the next
frame. We repeat this process for all the frames in the video, giving us a much
more temporally stable superpixel segmentation. In addition, we also modify
the superpixel algorithm to use a Pb-based [31] affinity rather than the original
grayscale gradient-based affinity proposed in [11]4.

4.2 Superpixel Affinity

Once the superpixels are extracted, we form spatial and temporal edges in the
superpixel graph. Every edge is assigned an affinity Wij that measures the sim-
ilarity of the two superpixels (Fig. 1c). To form spatial connections, we find the
3 See the Approach Overview section at http://www.cs.toronto.edu/~babalex/

SpatiotemporalClosure/supplementary_material.html for a graphical overview
of the method.

4 See the Superpixel Extraction section at http://www.cs.toronto.edu/~babalex/

SpatiotemporalClosure/supplementary_material.html for a better visualization
of superpixel extraction.

Spatiotemporal Closure 7

Fig. 2: Superpixel flow. The arrow within each superpixel indicates the motion flow vec-
tor of this superpixel. Yellow arrows indicate reliable flows, while red arrows correspond
to unreliable flows.

immediate spatial neighbors of each superpixel in each frame. Spatial neighbors
of superpixel i are defined as superpixels in the same frame that share some
boundary with superpixel i. The formation of temporal connections follows the
same approach as was used in the superpixel extraction technique. Each super-
pixel in frame f (except the superpixels in the last frame) is connected to one
superpixel in frame f+1. The correspondence is determined based on the super-
pixel flow vectors. The center of superpixel i from frame f is projected to frame
f + 1 according to the superpixel flow Vi. We form an edge between superpixels
i and j, where superpixel j is the superpixel in frame f + 1 that contains the
projected center of superpixel i.

Motivated by [8], our superpixel affinity Wij for a spatial edge (i, j) is defined
as the combination of appearance (W a

ij) and motion (Wm
ij) affinities. Appearance

affinity is obtained by computing the histogram intersection of the grayscale
(or color, if available) histograms of the two superpixel regions (we use 30 bin
histograms for grayscale and 4 × 4 × 4 histograms for RGB). Motion affinity
is computed by comparing the flow vectors of the two superpixels, Vi and Vj ,
and is equal to Wm

ij = 1 − ‖Vi−Vj‖
max{‖Vi‖,‖Vj‖} capped to the range (0, 1). Since our

superpixel graph construction incorporates superpixel flow already, we include
the motion affinity only for spatial edges. Finally, to give larger superpixels more
influence, we augment the affinity by weighting it with the product of areas of
the two superpixels (Ai and Aj). Combining that with the goal of not grouping
two superpixels if either their appearance or motion is dissimilar results in the
following superpixel affinity:

Wij =

{
AiAj min

(
W a
ij ,W

m
ij

)
, (i, j) are in the same frame

AiAjW
a
ij , (i, j) are in different frames

(3)

Since our graph has edges for only a small spatial neighborhood of superpixels
with edge affinities encoding both appearance and motion, we will refer to it
as S-AM. In Section 5 we will compare this graph construction to other graphs
with modified spatial connectivity and different superpixel affinities.

8 Alex Levinshtein, Cristian Sminchisescu, Sven Dickinson

4.3 Optimal Cuts for Each Shot

At this point, we have a superpixel graph and thus can apply the parametric
maxflow framework to optimize the cost in Eqn. 1. However, prior to running the
optimization framework, we first detect the shot boundaries in the video with
the goal of independently finding closures for each shot.

→ →

0 10 20 30 40 50 60 70 80 90 100

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame #

A
ffi

ni
ty

 to
 \n

 th
e

ne
xt

 fr
am

e

Fig. 3: Shot detection by finding minima in consecutive frame affinities. The top row
shows a video containing 3 shots. The shot changes from people to car at frame 11 and
back to people at frame 78. The bottom row shows a corresponding drop in consecutive
frame affinity for these frames. These minima are detected in order to find the shot
boundaries.

Temporal superpixel edges across shot boundaries are unreliable. Thus if a
video is composed of multiple shots, running the optimization on the whole video
results in undesirable solutions. Since this is not the focus of this work, we take a
very simplistic approach to shot boundary detection. Similar to the appearance
affinity between superpixels, we compute an appearance affinity between consec-
utive frames by comparing the grayscale histograms of whole frames using the
histogram intersection kernel. This results in a F − 1 dimensional vector of con-
secutive frame affinities (where F is the number of frames). The shot boundaries
correspond to the detected minima in this vector (Fig. 3). Given the detected
shots, we build a subgraph for every shot by selecting the superpixels and the
edges that are contained in the shot. We optimize the cost in Eqn. 1 for all the
subgraphs and concatenate the results.

Note that optimizing the cost in Eqn. 1 directly results in a trivial solution
where all the superpixels are selected for which cut(X) = 0 and volume(X) > 0,
resulting in C(X) = 0. Moreover, we want to be able to weaken affinities in order
to handle the cases of potential bleeding between foreground and background due
to appearance or motion similarity. We solve the first problem by introducing
infinite penalties for a subset of superpixels in the graph, preventing the trivial
solution. Specifically, we run the optimization six times for each shot. In the first
four runs, all the superpixels on the left, right, top, and bottom frame boundary

Spatiotemporal Closure 9

respectively, are assigned an infinite penalty. In the two additional runs, we
assign infinite penalties first to all top and bottom superpixels, and then to all
left and right superpixels. To handle the second issue, we augment the closure
affinity in Eqn. 3 to :

W ′ij =

{
AiAj

(
min

(
W a
ij ,W

m
ij

))α
, (i, j) are in the same frame

AiAj
(
W a
ij

)α
, (i, j) are in different frames

(4)

The exponent α controls the contribution of weak affinities. Increasing the expo-
nent effectively lowers all the affinities towards 0, thereby preventing bleeding,
but also increases the relative difference between weak and strong affinities. In
the results section, we will analyze the effect of changing α on performance and
suggest an optimal value for α.

4.4 Post-processing

Running parametric maxflow on the spatiotemporal superpixel graph results
in hundreds and sometimes thousands of breakpoints. Some of the solutions
differ by a very minor increase in area, while others contain multiple connected
components. Furthermore, some desirable solutions are missed. Since our goal is
to yield a small number of spatiotemporal hypotheses that capture coherently
moving objects in the scene, we post-process the results to narrow down the
number of solutions to a more manageable number and in the process generate
additional good solutions. While such post-processing no longer guarantees the
optimality of the solutions according to Eqn. 1, the resulting solutions still have a
low closure cost and empirically yield a better set of hypotheses than the original
solutions from parametric maxflow. Post-processing consists of the following 3
stages:

1. Filtering solutions and generating new ones by analyzing the area
change: As previously stated, parametric maxflow results in solutions that
minimize the cut with increasing area constraints. Some solutions corre-
sponding to consecutive breakpoints (λi, λi+1) are almost equivalent in their
superpixel selections and differ by a very small increase in area. We filter out
the solutions where such an increase is insignificant (less then 1% of relative
area increase). Conversely, for all other solutions we detect consecutive so-
lution pairs where the relative area increase is above a threshold (more than
5%) and generate a new solution subtracting one superpixel subset from
another.

2. Selecting connected components and removing small solutions:
Some solutions up to this point contain only a few superpixels or select
superpixels in a very small number of frames. We filter out these solutions
by keeping only the solutions with at least 2 superpixels, with total area that
is at least 1% of the frame area, and that participate in at least 5 frames.
We run a connected component analysis for all the remaining solutions. Each
solution that contains multiple connected components in space-time is split,
generating one solution for each connected component.

10 Alex Levinshtein, Cristian Sminchisescu, Sven Dickinson

3. Removing duplicate solutions: The above post-processing steps can re-
sult in the generation of duplicate solutions. In this final step we remove
duplicate solutions.

For our test videos, this post-processing step reduces the number of solutions
of a single run of parametric maxflow from several hundreds to an average of
20− 80 solutions.

5 Evaluation

We first perform a qualitative analysis of our approach on several short video
sequences. Some sequences (such as the flower garden sequence) are grayscale,
while others contain color. In the case of color sequences, we make use of this
additional information, comparing color histograms instead of grayscale when
computing superpixel affinities. The frame size for each video is on the order
of 300 × 300 pixels, with the length of a video ranging from around 10 frames
to 250 frames (hippo sequence). Based on quantitative evaluation (described in
later paragraphs), we set α = 6 for our qualitative experiments. We also per-
form a quantitative evaluation on a test dataset [32], comparing different graph
constructions and affinity variations, as well as evaluating our approach against
standard normalized cuts on the same graphs. The computational bottlenecks
of the approach are the preprocessing steps: Pb edge detection, superpixel ex-
traction, and optical flow computation, each taking several seconds per frame.
Once a superpixel graph is built, each run of the optimization using parametric
maxflow finishes in less than 5 seconds on the whole video, followed by all the
postprocessing steps taking approximately 1 second.

Fig. 4 shows our qualitative results. For each sequence we show a frame
from the original video and visualize several interesting solutions5. In the car
sequence, several objects of interest were successfully recovered, such as the car
and the heads of the people. Moreover, a part of the car (windshield) is also
recovered in one of the solutions, indicating that our method can be used for
part-based object recognition in videos or for action recognition that requires
the tracking of parts. In the galloping horse sequence, the horse was correctly
recovered in the middle of the sequence. A fence is also discovered as one of the
solutions. However, in the beginning of the sequence it is partially merged with
the horse due to poor superpixel boundaries and affinities between the horse
and the background, which is also the reason for the incomplete solution in the
Pepsi sequence. The horse example also illustrates that our framework works best
when with large objects, as small objects usually have higher closure cost and
tend to be undersegmented by superpixels. The table sequence illustrates that
our framework can detect most objects in the scene. Finally, the hippo sequence

5 See the Results at http://www.cs.toronto.edu/~babalex/

SpatiotemporalClosure/supplementary_material.html for a video visualiza-
tion of the results.

Spatiotemporal Closure 11

Fig. 4: Qualitative video figure/ground segmentation results. We display one sample
frame from a sequence, followed by several interesting solutions.

12 Alex Levinshtein, Cristian Sminchisescu, Sven Dickinson

illustrates how an additional solution (dog) can be generated by subtracting one
solution (hippo) from another (hippo and dog).

For quantitative evaluation of our method we use 27 sequences from the
dataset of Stein et al. [32]. Each sequence has a ground truth video segmentation
mask, marking one foreground object. Given a set of detected spatiotemporal
figures for a sequence, we choose the solution with the maximal F measure
(2·Precision·Recall
Precision+Recall) relative to the ground truth. We report the average F measure

across all sequences.
We compare different variations of our algorithm, as well as replace our

parametric maxflow minimization of the unbalanced normalized cuts cost with
standard normalized cuts. Unlike our method, normalized cuts requires a user
specified number of clusters. Therefore, to compare with our approach we run
normalized cuts with 5, 10, 15, 20, and 25 clusters and concatenate all the results.
Recall that our previously described graph construction (S-AM) includes only
the immediate spatial neighbors and adds the motion affinity Wm

ij for spatial
edges. We define additional variations over this construction:

– S-A - Same graph as S-AM, but with affinity only including appearance
Wij = AiAj

(
W a
ij

)α
– L-AM - Same as S-AM but with larger spatial connectivity. In addition to

the edges in S-AM we add edges between all superpixels in the same frame
whose centroids are less than R apart, where R is five times the radius of an
average superpixel.

– L-A - Same as L-AM, but with affinity only including appearance Wij =
AiAj

(
W a
ij

)α

2 4 6 8 10 12 14 16
0.74

0.76

0.78

0.8

0.82

0.84

Affinity Exponent α

F
 M

ea
su

re

SC S−AM

SC S−A

SC L−AM

SC L−A

2 4 6 8 10 12 14 16

0.65

0.7

0.75

0.8

Affinity Exponent α

F
 M

ea
su

re

NCuts S−AM

NCuts S−A

NCuts L−AM

NCuts L−A

SC NCuts

Fig. 5: Quantitative evaluation of spatiotemporal closure detection. We compare the
performance of each method (SC on the left and NCuts on the right) on four different
graph constructions.

We compare our method (SC) to normalized cuts (NCuts) for all the above
graph constructions. While we are able to solve the unbalanced normalized cuts

Spatiotemporal Closure 13

problem in a globally optimal fashion, normalized cuts cost is NP-hard to op-
timize and therefore only an approximation is provided. Despite that, the cut
balancing in NCuts further constrains the solutions to be balanced and compact
and helps to avoid bleeding, while our closure cost pushes the solutions to contain
more superpixels which may result in undersegmentation. Fig. 5 illustrates the
performance as we vary α. We also observe that our method achieves comparable
results using S-AM and L-AM, indicating that our increase of spatial connec-
tivity has only a marginal effect on the results. Note that the video sequences
in the test dataset mostly contain large objects. Thus undersegmentation as a
result of incorrect superpixels or our unbalanced normalized cuts closure cost is
less of a concern, resulting in SC outperfoming the standard NCuts.

6 Conclusions

We began by motivating the problem of bottom-up spatiotemporal segmenta-
tion. We proceeded by extending work in bottom-up 2D closure detection to
spatiotemporal closure detection in videos. Defining our closure cost over spa-
tiotemporal superpixels was shown to facilitate better affinity computation and
lead to more stable solutions. Finally, we employ parametric maxflow not only
to efficiently find a global optimum of our spatiotemporal closure cost, but re-
cover several multiscale segmentations giving a full hierarchical description of
a dynamic scene. The limitations of our framework are particularly apparent
when small, low-contrast objects are present, occasionaly leading to object un-
dersegmentation. Therefore, in future work we will improve our spatiotemporal
superpixel approach to recover larger, more meaningful superpixels, without sac-
rificing speed or accuracy. In addition, we will also explore other graph construc-
tions and will design a better superpixel affinity by learning the best composition
of motion and appearance cues in a supervised manner.

References

1. Wang, D.: Unsupervised video segmentation based on watersheds and temporal
tracking. CirSysVideo 8 (1998) 539–546

2. Moscheni, F., Bhattacharjee, S., Kunt, M.: Spatiotemporal segmentation based on
region merging. PAMI 20 (1998) 897–915

3. Gelgon, M., Bouthemy, P.: A region-level motion-based graph representation and
labeling for tracking a spatial image partition. Pattern Recognition 33 (2000) 725
– 740

4. Deng, Y., Manjunath, B.: Unsupervised segmentation of color-texture regions in
images and video. PAMI 23 (2001) 800–810

5. DeMenthon, D.: Spatio-temporal segmentation of video by hierarchical mean shift
analysis. In: SMVP. (2002)

6. Shi, J., Malik, J.: Motion segmentation and tracking using normalized cuts. In:
ICCV. (1998) 1154

7. Fowlkes, C., Belongie, S., Malik, J.: Efficient spatiotemporal grouping using the
nyström method. In: CVPR. (2001) 231–238

14 Alex Levinshtein, Cristian Sminchisescu, Sven Dickinson

8. Huang, Y., Liu, Q., Metaxas, D.: Video object segmentation by hypergraph cut.
CVPR (2009) 1738–1745

9. Greenspan, H., Goldberger, J., Mayer, A.: Probabilistic space-time video modeling
via piecewise gmm. PAMI 26 (2004) 384–396

10. Levinshtein, A., Sminchisescu, C., Dickinson, S.: Optimal Contour Closure by
Superpixel Grouping. In: ECCV. (2010)

11. Levinshtein, A., Stere, A., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Siddiqi,
K.: Turbopixels: Fast superpixels using geometric flows. PAMI 31 (2009) 2290–
2297

12. Carreira, J., Sminchisescu, C.: Constrained parametric min-cuts for automatic
object segmentation. In: CVPR. (2010)

13. Kolmogorov, V., Boykov, Y., Rother, C.: Applications of parametric maxflow in
computer vision. In: ICCV. (2007)

14. Li, F., Carreira, J., Sminchisescu, C.: Object Recognition as Ranking Holistic
Figure-Ground Hypotheses. In: CVPR. (2010)

15. Pritch, Y., Rav-Acha, A., Peleg, S.: Nonchronological video synopsis and indexing.
PAMI 30 (2008) 1971–1984

16. Welch, G., Bishop, G.: An introduction to the kalman filter. Technical report
(1995)

17. Black, M., Jepson, A.: Eigentracking: Robust matching and tracking of articulated
objects using a view-based representation. IJCV 26 (1998) 63–84

18. Isard, M., Blake, A.: Condensation - conditional density propagation for visual
tracking. IJCV 29 (1998) 5–28

19. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. PAMI 25
(2003) 564–577

20. Megret, R., DeMenthon, D.: A survey of spatio-temporal grouping techniques.
Technical report, University of Maryland, College Park (2002)

21. Wang, J., Adelson, E.: Representing moving images with layers. TIP 3 (1994)
625–638

22. Weiss, Y., Adelson, E.H.: A unified mixture framework for motion segmentation:
Incorporating spatial coherence and estimating the number of models. In: CVPR.
(1996) 321

23. Weiss, Y.: Smoothness in layers: Motion segmentation using nonparametric mix-
ture estimation. In: CVPR. (1997) 520

24. Jojic, N., Frey, B.J.: Learning flexible sprites in video layers. CVPR 1 (2001) 199
25. Jepson, A.D., Fleet, D.J., Black, M.J.: A layered motion representation with oc-

clusion and compact spatial support. In: ECCV. (2002) 692–706
26. Bascle, B., Deriche, R.: Region tracking through image sequences. ICCV 0 (1995)

302
27. Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection

and tracking of moving objects. PAMI 22 (2000) 266–280
28. Chung, D., MacLean, W., Dickinson, S.: Integrating region and boundary infor-

mation for spatially coherent object tracking. IVC 24 (2006) 680–692
29. Cremers, D., Soatto, S.: Motion competition: A variational approach to piecewise

parametric motion segmentation. IJCV 62 (2005) 249–265
30. Patras, I., Lagendijk, R.L., Hendriks, E.A.: Video segmentation by map labeling

of watershed segments. PAMI 23 (2001) 326–332
31. Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image bound-

aries using local brightness, color, and texture cues. PAMI 26 (2004) 530–549
32. Stein, A., Hoiem, D., Hebert, M.: Learning to find object boundaries using motion

cues. In: ICCV. (2007)

