
LOW AND MID-LEVEL SHAPE PRIORS FOR IMAGE SEGMENTATION

by

Alex Levinshtein

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright c© 2010 by Alex Levinshtein



Abstract

Low and Mid-Level Shape Priors For Image Segmentation

Alex Levinshtein

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2010

Perceptual grouping is essential to manage the complexity of real world scenes. We explore

bottom-up grouping at three different levels. Starting from low-level grouping, we propose a

novel method for oversegmenting an image into compact superpixels, reducing the complexity

of many high-level tasks. Unlike most low-level segmentation techniques, our geometric flow

formulation enables us to impose additional compactness constraints, resulting in a fast method

with minimal undersegmentation. Our subsequent work utilizes compact superpixels to detect

two important mid-level shape regularities, closure and symmetry. Unlike the majority of clo-

sure detection approaches, we transform the closure detection problem into one of finding a

subset of superpixels whose collective boundary has strong edge support in the image. Build-

ing on superpixels, we define a closure cost which is a ratio of a novel learned boundary gap

measure to area, and show how it can be globally minimized to recover a small set of promising

shape hypotheses. In our final contribution, motivated by the success of shape skeletons, we

recover and group symmetric parts without assuming prior figure-ground segmentation. Fur-

ther exploiting superpixel compactness, superpixels are this time used as an approximation to

deformable maximal discs that comprise a medial axis. A learned measure of affinity between

neighboring superpixels and between symmetric parts enables the purely bottom-up recovery

of a skeleton-like structure, facilitating indexing and generic object recognition in complex real

images.

ii



Acknowledgements

First and foremost I would like to express my gratitude to my two supervisors, Sven Dickin-

son and Cristian Sminchisescu. They are not only great supervisors, but good people. Their

combined knowledge and experience served to help me keep my mind on the big picture while

not neglecting important practical details. Having worked with Cristian since my Masters and

even longer with Sven, our interactions and brainstorming have become an important part of

my academic career and my life. Despite having finished my PhD, I hope that we will continue

to have similar interesting discussions in the future.

During my 4 years of PhD I have collaborated with many interesting people. I would

like to thank Kaleem Siddiqi, who visited UofT in 2007, for a very thorough introduction to

geometric flows and level set methods, resulting in our joint Turbopixels work. I also thank

Kyros Kutulakos, David Fleet and Allan Jepson. Kyros and Allan have been an important

presence throughout my studies, starting from introductory computer vision courses that I took

way back during my Bachelors. David has not only given me a lot of great advice about my

work throughout the years, but is also the funniest professor I know. I also thank James Elder,

my external examiner. He was very knowledgeable and provided many useful comments for

my thesis.

I extend my gratitude to Suzanne Stevenson, for piquing my interest in research and intro-

ducing me to Sven. I also thank the faculty and students with whom I have interacted during

my academic career: Rich Zemel, Sam Roweis, Ilya Sutskever, Pablo Sala, Diego Macrini,

Francisco Estrada, Anatoliy Kats, Marcus Brubaker, Sam Hasinoff, and many others. I also

acknowledge NSERC for financial support.

Finally I thank my family and those close to me: my parents, my sister Maya, Natasha and

my dear Yulia. There have been some hard times along the way and I could not have done it

without you.

iii



Contents

1 Introduction 1

1.1 The Need For Perceptual Grouping . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Computing compact superpixels . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Finding closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Recovering and grouping symmetric parts . . . . . . . . . . . . . . . . 9

1.2.4 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Related Work 14

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Perceptual Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Low-level grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Region segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Edge detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Mid-level grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.2 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Turbopixels: Fast Superpixels Using Geometric Flows 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

iv



3.2 Superpixels from Geometric Flows . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 The TurboPixel Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Level-Set Boundary Representation . . . . . . . . . . . . . . . . . . . 52

3.3.2 Initial Seed Placement . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.3 Numerical Level Set Evolution . . . . . . . . . . . . . . . . . . . . . . 53

3.3.4 Proximity-Based Boundary Velocity . . . . . . . . . . . . . . . . . . . 54

3.3.5 Image-Based Boundary Velocity . . . . . . . . . . . . . . . . . . . . . 54

3.3.6 Speed Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.7 Termination Conditions & Final Segmentation . . . . . . . . . . . . . 58

3.3.8 Algorithm Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.1 Under-segmentation Error . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.2 Boundary Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.3 Timing Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.4 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Optimal Contour Closure by Superpixel Grouping 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Learning the Gap Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Optimization framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6.1 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6.2 Qualitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

v



4.7.1 Using internal homogeneity . . . . . . . . . . . . . . . . . . . . . . . 89

4.7.2 Multiple superpixel scales . . . . . . . . . . . . . . . . . . . . . . . . 90

4.7.3 Spatiotemporal Closure . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.8 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5 Multiscale Symmetric Parts Detection and Grouping 111

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3 Medial Part Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.1 Hypothesizing Medial Points . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.2 Clustering Medial Points . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4 Assembling the Medial Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4.1 Medial Part Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4.2 Medial Part Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.6 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6 Conclusions 145

6.1 Review of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Bibliography 151

vi



Chapter 1

Introduction

1.1 The Need For Perceptual Grouping

From our very birth we are able to parse visual scenes into meaningful components. Even

before we are taught what are the particular objects in our world, we already have an inher-

ent concept of what is an “object”. Take, for example, the image in Figure 1.1a. Arguably,

without ever seeing zebras before humans have little trouble in recognizing them as coherent

objects in this image. This uncanny human ability to organize image components into coherent

collections without relying on object-specific knowledge is referred to as perceptual grouping

[105, 74].

Perceptual grouping is an essential human ability that facilitates fast scene analysis and

object recognition. Our world contains a vast collection of objects of varying appearance and

shape. It is made up of countless scenes, each composed of different components. Perceptual

grouping is the compass that allows us to navigate in this sea of potential scenes, quickly

parsing it into its constituents which we can then recognize. In computer vision, perceptual

grouping is also of the utmost importance. We deal with images that are the result of taking

photographs of the real world with a camera. The contents of the images are a product of

the imaging conditions and the scene composition. Some types of images can be parsed more

1



CHAPTER 1. INTRODUCTION 2

(a) (b)

Figure 1.1: Perceptual grouping in action. Even without employing object level knowledge,

perceptual grouping is used to group scene features into coherent components. While the

original image (a) contains color, it often serves as a distractor due to heterogeneous internal

appearance; image contours alone (b) may be sufficient for grouping.

easily than others due to restricted imaging conditions and scenes. For example, imaging

mechanical parts on a conveyor belt in a factory is a constrained task. In this case, we know a

priori that the scene is composed of a small number of very distinctive objects on a uniform,

known background. However, in general, there is a prohibitive number of images that can be

created when the imaging conditions and the scenes are unconstrained. Testing for the presence

of all possible objects under all possible imaging conditions is intractable. Perceptual grouping

is needed to deal with this complexity.

Having established the importance of perceptual grouping, let us now analyze this process

applied to our example scene. First, note that while a real scene contains color (Figure 1.1a),

shape alone (Figure 1.1b) is often sufficient and preferable for scene analysis. In fact, object

appearance may be a distractor in cases of heterogeneous appearance, such as the zebra. More-

over, while appearance-based grouping is undoubtedly important, the appearance of objects

within a given category may vary much more than their shape, making shape-based regulari-

ties more generic.

Let us examine the scene more closely. Zooming in on the zebra, we see that it is bounded



CHAPTER 1. INTRODUCTION 3

(a) (b)

Figure 1.2: Using Closure and Symmetry for bottom-up grouping.

by strong continuous image edges. The whole object, with the exception of internal features

and markings, can be represented by a single closed contour that is well supported by image

edges (Figure 1.2a). This perceptual cue of closure helps us group image contours into larger,

more meaningful components. Notice that the zebra is not just a single unordered blob, but is

composed of parts. The head, the body, its legs and arms - all are coherent parts (Figure 1.2b).

Besides being attached to the other parts at sharp contour concavities, the parts form elongated

components that exhibit strong bilateral symmetry. Symmetry and parallelism, although not

always present at the scale of the whole object, are often present at the scale of object parts

[6, 77, 4]. Together with closure, these cues also help us parse the scene.

While humans successfully use closure and symmetry for grouping, as demonstrated by

Gestalt phychologists, our goal is to employ these rules in computer vision. But how can we

apply these large-scope grouping cues to find order in the sea of image contours in Figure 1.1b?

To that end, we zoom in on the zebra and examine more local cues. First, while the appear-

ance of a zebra, which is comprised of black and white stripes, is heterogeneous at an object

scale, it is locally homogeneous within each stripe. Moreover, with the exception of a few

concavities mainly between zebra parts, the bounding contour is mostly locally convex within

a part (see zebra’s back, belly, and neck, for example). Similar to the human visual system,

that undoubtedly detects these regularities (local homogeneity and convexity) for grouping, we



CHAPTER 1. INTRODUCTION 4

Figure 1.3: Superpixels as a basis for grouping.

can detect them using superpixels (Figure 1.3), with each superpixel capturing a local, homo-

geneous, compact patch. Being the product of local perceptual grouping, superpixels provide

an ideal local scope for appearance and shape analysis. Using superpixels allows us to build

algorithms that can efficiently recover closure and find symmetric parts in difficult scenes that

are a challenge for even the human visual system (such as Figure 1.1a). Note that we do not

claim that superpixels are a natural image representation, such as image contours. Instead,

Chapters 4 and 5 show that choosing to use superpixels over image contours can aid many per-

ceptual grouping tasks. In fact, most of the symmetric parts in Figure 1.2b can be automatically

recovered by the system presented in Chapter 5, while Figure 1.2a is an actual output from the

system in Chapter 4. The next section provides an overview of the thesis, describing a method

for recovering compact superpixels and their use for closure and symmetry detection.

1.2 Thesis Overview

This thesis explores perceptual grouping at different scales. Chapter 2 starts with a review of

perceptual grouping literature in computer vision. In the main body of the thesis, we start with

local grouping and show how low-level cues can be used for important tasks such as superpixel



CHAPTER 1. INTRODUCTION 5

segmentation (Chapter 3). Building on superpixels, we perform higher-level grouping tasks

using cues such as closure and symmetry (Chapters 4 and 5, respectively), in an attempt to

extract coherent objects in a bottom-up fashion. While the methods in Chapters 3–5 differ in

the level of the perceptual grouping rules that they use, they are unified in their global goal

of grouping with no prior scene or object knowledge. The overall work pushes the state-of-

the-art in perceptual grouping and provides some insight into the mechanisms behind it. The

thesis concludes with some discussion and ideas for extending the work (Chapter 6). Next we

overview the work presented in this thesis and provide a summary of its contributions.

1.2.1 Computing compact superpixels

Similarity of appearance and proximity are perhaps two of the lowest-level perceptual grouping

rules. Throughout the years, they have been used to design generic segmentation algorithms

that can segment an image into disjoint regions based on appearance cues. Recently, some

standard segmentation algorithms have been used to generate an oversegmentation of the image

into superpixels, helping to alleviate the complexity of many high-level vision tasks. This relief

in complexity comes at a price, since using superpixels instead of pixels is counterproductive if

undersegmentation errors result. Most standard segmentation algorithms, while being very fast,

do not constrain the superpixels to be compact or regular in size. Compactness and regularity

impose a bound on superpixel size. In the absence of such constraints superpixels can grow

to become quite large and can therefore result in a significant amount of undersegmentation

(Figure 1.4c-e). One segmentation algorithm constrains the superpixels to be compact, but is

very memory and time intensive (Figure 1.4b). The first contribution of this thesis (Chapter 3)

is a new superpixel segmentation algorithm that reduces undersegmentation while being both

fast and memory efficient (Figure 1.4a).

Building on the principles of curve evolution, multiple superpixel seeds are placed in a

regular grid and are evolved in parallel until their boundaries collide. The speed of the evolution

is partially governed by underlying image edges, producing superpixels that are homogeneous



CHAPTER 1. INTRODUCTION 6

(a) (b) (c) (d) (e)

Figure 1.4: Over-segmentations obtained with five algorithms: (a) TurboPixels (b) N-Cuts[111]

(c) Local variation [31] (d) Mean-shift [19] (e) Watershed [102]. Each segmentation has (ap-

proximately) the same number of segments. The second row zooms in on the regions of interest

defined by the white boxes.

in appearance. Our initial grid-like seed placement implicitly ensures that superpixels are

compact and regular in size. However, to further minimize undersegmentation, the speed of

seed evolution explicitly pushes the superpixels to be compact, thereby making use of another

low-level perceptual grouping prior. We show that the resulting algorithm compares favorably

to the competition in terms of speed and accuracy. The next two chapters of the thesis build

on superpixels, but instead of object-specific segmentation tasks, superpixels are used to build

generic perceptual grouping algorithms. To the best of our knowledge, using superpixels in

this manner is novel.

1.2.2 Finding closure

Moving further up the scale of prior information, we make use of closure for grouping (Chap-

ter 4). Finding closure in images in a bottom-up fashion is one of the key challenges in percep-



CHAPTER 1. INTRODUCTION 7

Figure 1.5: Finding contour cycles to recover closure. Recovering closure is commonly posed

as a problem of finding cycles of contours that have good continuity and little overall gap

between the contour fragments. In a real world image, the number of possible contour cycles

is prohibitive, making a brute force approach to the problem intractable.

tual grouping. A successful solution to this important problem would significantly simplify the

complexity of some high-level vision tasks. For instance, standard object recognition methods

use a sliding window approach, where an object detector is tested on many image windows

at different positions and scales. Instead, if a small number of image regions that are likely

to correspond to objects could be obtained bottom-up using a closure finding method, such

regions could be used as hypotheses for object recognition.

The problem of recovering closure is commonly posed as linking together a set of frag-

mented contours into a cycle that separates an object from its background. What makes the

problem particularly hard is the intractable number of cycles that may exist in the contours

extracted from an image of a real scene (Figure 1.5). Testing all possible cycles of contours

is intractable without somehow reducing the complexity of the problem. Closure finding tech-

niques commonly solve this complexity issue by either employing heuristics to prune the search

space [44, 87, 29, 30] or finding a globally optimal solution using a restricted model of closure



CHAPTER 1. INTRODUCTION 8

[103, 99]. Instead, we try to avoid using heuristics to detect closures, while minimizing the

amount of restrictions on our closure model. Thus, the second contribution of the thesis is a

globally optimal method for detecting closure in images.

(a) (b) (c) (d)

Figure 1.6: Overview of our closure detection approach: (a) contour image – while we take as

input only this contour image, we will overlay the original image in the subsequent figures to

ease visualization; (b) superpixel segmentation of contour image, in which superpixel resolu-

tion is chosen to ensure that target boundaries are reasonably well approximated by superpixel

boundaries; (c) a novel, learned measure of gap reflects the extent to which the superpixel

boundary is supported by evidence of a real image contour (line thickness corresponds to the

amount of agreement between superpixel edges and image contours); (d) our cost function can

be globally optimized to yield the largest set of superpixels bounded by contours that have the

least gaps. In this case the solutions, in increasing cost (decreasing quality), are organized left

to right, top to bottom.

Given an image of extracted contours, we begin by restricting contour closures to pass along

boundaries of superpixels computed over the contour image, thereby reformulating the problem

of searching for cycles of contours as the problem of searching for subsets of superpixels whose

collective boundary defines an appropriate cycle of contours (Figure 1.6a-b). We build a cost

function over subsets of superpixels that measures the gap (a measure of missing image edges)



CHAPTER 1. INTRODUCTION 9

of the region’s boundary relative to its area. We learn the gap measure (Figure 1.6c) and finally

show how to optimize the proposed closure cost in a globally optimal manner, returning a small

number of solutions representing subsets of superpixels that have good closure (Figure 1.6d).

In an extension to this work, we show how the same technique can be used to detect closure in

spatiotemporal domains. We show that our closure detection method achieves state-of-the-art

results.

1.2.3 Recovering and grouping symmetric parts

Recall that the underlying goal of this thesis is to perceptually group image features to ease the

complexity of scene analysis. The more grouping we can do bottom-up, the less we rely on

strong prior scene knowledge, which may be unavailable. However, bottom-up grouping that

is performed with no prior scene knowledge can only take us so far. In the case of superpixels,

the complexity of subsequent grouping or search may be diminished, but there are still a great

number of superpixel groups that need to be considered. In the case of closure, we extend the

grouping to recover entire objects. However, without any additional constraints, there is still

a significant number of accidental groups that have good closure. Moreover, objects that have

weak bounding contours are hard to detect using only the closure cue. The question is whether

we can employ a stronger bottom-up prior for grouping, without using any prior object or scene

information?

Stopping short of using object priors, we can use prior information at the part level. The

underlying premise is that an object can be described using a small vocabulary of parts. Early

computer vision researchers explored this idea [5] and focused particularly on parts that are

based on symmetry. While symmetric parts cannot be used to describe all objects, a large

subset of objects can be described in terms of concatenations of symmetric parts. But what is

perhaps most significant is that exploiting local symmetry facilitates perceptual grouping under

some very challenging conditions.

Existing approaches that attempt to extract and group symmetric parts can be divided into



CHAPTER 1. INTRODUCTION 10

(a) (b)

(c) (d)

Figure 1.7: Approaches for symmetry detection. (a) Filter-based approaches analyze multiscale

filter responses, (b) Contour-based approaches group contour fragments, (c) Skeleton-based

methods analyze shape symmetry by using the figure-ground segmentation, (d) Our approach

efficiently detects and groups symmetric parts bottom-up.

filter-based, contour-based, and skeleton-based. Filter-based approaches (Figure 1.7a) detect

parts by analyzing different low-level filter responses. However, simply detecting parts as

local maxima in a set of multiscale filter responses leads to many false positives and false

negatives, suggesting that successful part extraction requires paying closer attention to image

contours. Contour-based methods (Figure 1.7b) do just that, but are faced with the prohibitive

complexity of selecting subsets of contours that exhibit symmetry. Skeleton-based approaches

(Figure 1.7c) assume that the figure-ground segmentation task is solved, and analyze the sym-

metry of the figure, resulting in very powerful symmetric description. In our work, we try to



CHAPTER 1. INTRODUCTION 11

improve on the above approaches. We use superpixels to detect parts that closely follow image

evidence without the overwhelming complexity of grouping contours. As a result, we extract a

skeleton-like part structure, but do so bottom-up, without requiring figure-ground segmentation

(Figure 1.7d).

(a) (b) (c)

Figure 1.8: Our symmetric part detection and grouping. (a) An input image; (b) Once super-

pixels are extracted, we try to form chains of superpixels to detect parts; (c) The result is a

skeleton-like representation, where the parts were detected and grouped bottom-up.

Drawing on the principle that a skeleton is defined as the locus of medial points, i.e., cen-

ters of maximally inscribed disks, our key idea is to hypothesize a sparse set of medial points

at multiple scales by segmenting the image into compact superpixels at different superpixel

resolutions, making object parts naturally correspond to chains of superpixels (Figure 1.8b).

Superpixels are adequate for this task, balancing a data-driven component that is attracted to

shape boundaries while maintaining a high degree of compactness. The superpixels (medial

point hypotheses) at each scale are linked into a graph, with edges adjoining adjacent superpix-

els. Each edge is assigned an affinity that reflects the probability of two adjacent superpixels

belonging to the same symmetric part (medial branch). A standard graph-based segmentation



CHAPTER 1. INTRODUCTION 12

algorithm applied to each scale yields a set of superpixel clusters which, in turn, yield a set of

regularized symmetric parts. In the second phase of our approach, we address the problem of

perceptually grouping symmetric parts arising in the first phase. Like any grouping problem,

our goal is to identify sets of parts that are causally related, i.e., unlikely to co-occur by acci-

dent. Again, we adopt a graph-based approach in which the symmetric parts across all scales

are connected in a graph, with edges adjoining parts in close spatial proximity. Similar to the

first phase, each edge is assigned an affinity, this time reflecting the degree to which two nearby

parts are believed to be physically attached, and the same graph-based segmentation algorithm

is applied to yield part clusters, each representing a set of regularized symmetric elements

and their hypothesized attachments. The end result is a method that, starting from an image

(Figure 1.8a), is able to detect and group symmetric parts in a bottom up fashion (Figure 1.8c).

1.2.4 Summary of Contributions

This thesis explores perceptual grouping using shape priors of different degrees, thereby mak-

ing the following contributions:

• Chapter 3 introduces a new superpixel extraction algorithm.

– Unlike most previous approaches, our method is geared towards extracting compact

superpixels, thereby minimizing bleeding and undersegmentation.

– Compared to an approach that does enforce superpixel compactness (Ncuts [93]),

our algorithm is based on local cues and is therefore orders of magnitude faster

achieving comparable performance for dense superpixels segmentations.

– Our curve evolution framework for superpixel extraction is flexible enough to be

extended to include additional shape priors besides compactness in the future.

• Chapter 4 introduces a new closure detection algorithm.



CHAPTER 1. INTRODUCTION 13

– Instead of finding cycles of contours, we formulate the problem as finding subsets

of superpixels, thereby significantly reducing the complexity of finding closures.

– Unlike previous methods, the new closure detection approach minimizes a standard

closure cost in a globally optimal fashion without resorting to the use of heuristics

or simplification of the closure model.

– Compared to competing approaches, which focus on returning a single best so-

lution, we return a small set of promising shape hypotheses and outperform the

competition, better serving high-level vision tasks.

• Chapter 5 introduces a new method for bottom-up recovery and grouping of symmetric

parts.

– Our main contribution is the new idea of approximating the maximal discs of a

medial axis using compact superpixels.

– A learned measure of superpixel and part affinity, trained on a set of noisy images,

together with greedy grouping heuristics, enables us to overcome the prohibitive

complexity of detecting and grouping symmetric parts in real images.

– In contrast to competing approaches, our method does not require prior figure-

ground segmentation and recovers precise symmetric parts, closely supported by

underlying image contours.

– Our resulting approach is able to efficiently recover a full skeleton-like structure in

a purely bottom-up fashion, facilitating indexing and generic object recognition.



Chapter 2

Related Work

2.1 Introduction

Over the past 40 years, object recognition in computer vision progressed from restricted scenes

imaged under restricted conditions to complex scenes captured under realistic conditions. One

reason for this progression is the advancement in modelling techniques that now mostly rely on

new machine learning techniques, which make models more robust and suitable to real world

conditions. Another reason lies in the development of new highly distinctive local features

that robustly encode the appearance of image patches, such as SIFT (Lowe [59]), giving rise

to patch-based object recognition methods. As opposed to earlier recognition techniques, the

dimensionality and robustness of these features allows modern recognition techniques to use

small collections of such features for object recognition in real world scenarios. The features

are particularly suitable for recognizing specific exemplars of objects, as they capture distinc-

tive local appearance. In such exemplar recognition scenarios, it is even possible to cope with

large databases of exemplars, since the presence of even a single feature is sometimes suffi-

cient to recognize an exemplar object. However, while the distinctiveness of local appearance

features enables the robust recognition of particular exemplars, the same distinctiveness makes

it hard to create models for object categories, thereby hindering more generic recognition. As

14



CHAPTER 2. RELATED WORK 15

a result, until recently, most patch-based techniques focused on recognizing restricted cate-

gories where members of a category share a common set of distinctive local features; examples

include faces, motorcycles, or the backs or sides of cars.

Recently, the community recognized the need for more generic object recognition and at-

tempted to push these appearance-based methods to datasets with a significant number of ob-

jects which undergo significant viewpoint and appearance changes1. While the current state-

of-the-art is continually advancing, performance still greatly lags human performance. An

important question to ask is whether such models of local distinctive features can be extended

to be used for more complex recognition tasks, and whether they have the potential to achieve

human performance.

In [5], Biederman mentions that a typical adult human being is able to recognize roughly

30, 000 objects. In addition to the large number of possible object categories, there are ad-

ditional challenges. First, one has to deal with the potential transformations of an object:

location, orientation, size, and possibly non-linear deformations such as articulation or bend-

ing if the object is not rigid. Secondly, even if the exact location of the object is known, the

object’s appearance can vary due to illumination and occlusion effects. Lastly, even more sig-

nificant appearance and shape variability can be present within a given category of objects. The

above transformations pose great challenges to finding objects in images. Attempting to recog-

nize objects under these conditions using highly distinctive local features will require creating

many separate models per object category that depend on the selected exemplar, the view, and

the other potential transformations mentioned above, creating a prohibitive number of models.

It would be infeasible to directly match every one of these models to an image. Instead, one

needs to first narrow down the number of candidate objects to a reasonable number and only

then test those candidates.

Going back to the early 1980s, the computer vision community has already recognized the

1For datasets and related publications visit the Pascal Visual Object Classes homepage at http://
pascallin.ecs.soton.ac.uk/challenges/VOC/.



CHAPTER 2. RELATED WORK 16

need for perceptual grouping to handle the overwhelming complexity of object recognition.

Lowe [58] introduced various view-point invariant 2D relations over line segments, such as

curve co-termination, allowing to make a partial inference about their 3D relations. As it is

very unlikely that two arbitrary image curves would co-terminate, co-termination of curves

in 2D suggests that they are likely to be related in 3D. Brooks [11] used similar relations

over ribbons to provide constraints for object recognition. It was precisely such perceptual

grouping that allowed these authors to sufficiently lower the complexity of object recognition

by reducing the number of candidate groups that are matched with object models.

Narrowing down the number of potential candidate objects requires the ability to form large

abstract groups of low-level image primitives in a bottom-up fashion. Bottom-up grouping can

range from the formation of small local components to the extraction of whole objects. While

the latter completely eliminates the need to account for external object transformations, such

as an object’s location and orientation, even local grouping eases the complexity of accounting

for all possible transformations. In turn, the abstraction of the recovered groups introduces

robustness to changes in imaging conditions and within-class object variability, further easing

the complexity of generic object recognition. Obviously, further bottom-up processing will re-

sult in fewer object candidates, and decreases the computational burden on object recognition.

Therefore, with the hope of extracting whole objects bottom-up, one may start by applying

simple grouping cues such as local appearance similarity [102, 19, 31, 93, 104]. However,

with the exception of a small number of objects that have a purely homogeneous appearance,

most real world objects are unlikely to be extracted through the application of purely local

low-level grouping cues. In order to extract large meaningful groups of image primitives, one

therefore needs to impose stronger grouping constraints.

Stopping short of applying object-level models, as this would deflate the role of perceptual

grouping, perhaps the strongest of grouping constraints amounts to abstract part models and

their attachments. Using a small set of abstract parts facilitates concise modeling of a wide

variety of objects under different transformations. In the early days of computer vision, several



CHAPTER 2. RELATED WORK 17

researchers proposed various vocabularies of such parts, like geons [4], superquadrics [77] and

generalized cylinders [6]. Indeed, the use of such parts not only enables one to model a lot of

object categories but also allows one to model significant within-class variability. Such concise

representations are not only biologically motivated [5], but their simplicity (low numbers of

parts and relations) enables us to cope with the complexity of having a large database of objects.

However, recovering and grouping abstract parts from an image in a bottom-up fashion is a dif-

ficult problem and it suffers from some of the same complexity issues that plague object recog-

nition. Moreover, while constraining objects to be part-based helps us to advance bottom-up

grouping, overly restricting the set of parts limits the number of objects representable by such

parts and hinders generic recognition. Backing away from abstract part-based object represen-

tations, but without going as far as using only local grouping rules, one can find middle ground

by representing objects using smooth, closed curves [103, 27, 44, 47, 99, 29, 30, 107, 46].

Such a representation is more flexible than representing objects using abstract parts. However,

being the less constrained model, it is more likely to fail in extracting whole objects due to a

multitude of accidental groups of image contours well-captured by smooth closed curves.

In summary, perceptual grouping approaches in computer vision differ in the scope and the

complexity of grouping rules that they employ. There is a clear tradeoff between the strength of

the grouping rules vs. the flexibility in scene description and the complexity of applying such

rules. The next section introduces the origins of perceptual grouping and reviews it at its dif-

ferent levels. Starting from the grouping of low-level primitives, we review methods that group

image pixels into larger regions relying on appearance similarity. Proceeding to higher-level

grouping, we show how primitives such as contour fragments can be extracted and grouped

using principles of continuity and proximity. While the application of such low-level group-

ing significantly reduces the complexity of high-level tasks, it usually proves insufficient for

generic object recognition scenarios. Thus, our review concludes with more complex mid-level

perceptual grouping, such as parametric curve extraction, closure detection, and recovering

symmetry, facilitating complex object categorization.



CHAPTER 2. RELATED WORK 18

2.2 Perceptual Grouping

Perceptual grouping refers to the human ability to detect statistically significant relations be-

tween image primitives and group low-level image features into higher level structures without

the (or with limited) a priori knowledge of the scene. In Section 2.1, we motivated the need

for perceptual grouping, answering the question of why it is important to be able to group

low-level image features bottom-up. This section will focus on a second question of how such

grouping can be done without (or with limited) scene knowledge.

The research in this area began in the 1920’s by the Gestalt psychologists [105]. The

Gestaltists believed that object perception results from the overall structure of the visual infor-

mation. Max Wertheimer, one of the founding fathers of perceptual organization, categorized

the perceptual rules [105] based on a series of psychological experiments. Wertheimer used

images of simple geometric primitives (dots and curves) to demonstrate his laws. Here are

some of the commonly accepted perceptual grouping laws (see Fig. 2.1 for examples) :

• proximity - elements that are close together tend to be grouped

• similarity - elements that are similar in some properties (such as color, orientation or

size) tend to be grouped

• common fate - all else being equal, items moving in the same direction are grouped

There were also additional rules that apply to line-like elements:

• continuity - edges that form smooth continuations of one another are grouped

• symmetry - symmetric edges are grouped

• parallelism - parallel edges are grouped

• closure - elements forming a closed figure are grouped

Some additional rules were proposed more recently by Palmer et al. (see [74]):



CHAPTER 2. RELATED WORK 19

Figure 2.1: Examples of perceptual grouping rules

• synchrony - synchronously moving elements are grouped

• common region - elements in a common region of space are grouped

• element connectedness - elements that are connected by other elements tend to be grouped

The above laws are coordinated by the law of Pragnanz: “of several geometrically possible

organizations that one will occur which possesses the best, simplest and most stable shape”.

While this law is intuitively true, the Gestaltists provide no mathematical theory for the appli-

cation of this law. What is a good, simple and stable shape? In computer vision, this question

is sometimes answered through the application of heuristics. There are, however, two per-

ceptual organization principles with a precise computational framework that are used in the

literature [113]. One is the likelihood principle, first introduced by Helmholtz [38] and known

in computer vision as the non-accidentalness principle [108, 57]. This principle assigns a

high probability of grouping elements whose arrangement was unlikely to have occured acci-

dentally. The second principle is the minimum description length (MDL) principle, giving a

higher significance to simpler groupings of elements [83].

The principle of non-accidentalness was initially introduced into computer vision by Lowe

[57], as well as Witkin and Tenenbaum [108]. Its goal is to find groups of features that are



CHAPTER 2. RELATED WORK 20

unlikely to occur by accident. This principle is the outcome of a simple application of Bayes’

rule. Let Causality denote the event that a set of features are part of (or caused by) the same

object and let Organization denote the event that the features have some organization among

themselves. Then we are interested in the probability that the features come from the same

underlying cause, given that we have found some organization among them. Using Bayes’

rule, we obtain:

P (Causality|Organization) =
P (Organization|Causality)P (Causality)

P (Organization)
(2.1)

Thus a particular grouping is more likely to be non-accidental if:

• It is not likely to occur arbitrarily (P (Organization) is low)

• It is likely to occur if it is a result of a common cause - the features belong to the same

object (P (Organization|Causality) is high)

• Scenes have order (contain objects) - there is a significant number of feature groupings

having a common cause (P (Causality) is high)

The principle of finding non-accidental perceptually salient groups was heavily applied

in the 80’s and 90’s. Lowe [57] applies the above principle for finding non-accidental line

groups, facilitating the task of 3D object recognition. Mohan and Nevatia [67] use this principle

on a larger scale and apply it to extracting and grouping different image primitives such as

curves, symmetric curve pairs and closed ribbons. Many other approaches also incorporate this

principle, but do so in a less explicit way, without explicitly modeling the above probabilities

but simply providing a measure of goodness for a group. Jacobs [44], for example, uses the

principle for grouping lines into convex groups, and while he does not measure the above

probabilities explicitly, he proves that low values of his grouping cost function correspond to

highly non-accidental convex line arrangements.

The second principle is the minimum description length (MDL) principle, giving higher

significance to simpler groupings of elements [83]. This principle can be thought of as a sci-

entific application of the Occam’s Razor principle - the simplest explanation is the best. The



CHAPTER 2. RELATED WORK 21

goal in MDL is to select the best model of the data in terms of the length of its encoding. More

concretely, we are first given a set of discretely defined models M = {M1,M2, . . . ,Mn} or a

family of models M defined by some continuous parameter vector θ, as well as our data X .

Dealing with the continuous case, for example, the goal would then be to find the best param-

eters θ̂ that minimize the description length of the data under the chosen model M(θ̂), as well

as the description length of M itself (i.e., the description length of θ̂). Under a Bayesian inter-

pretation of the MDL principle (see [35]), this reduces to the Maximum A Posteriori (MAP)

estimate to the likelihood. Specifically, we aim to find θ̂ = argmaxθP (θ|X), which is equiva-

lent to θ̂ = argmaxθP (X|θ)P (θ).

In perceptual grouping, and in computer vision in general, the MAP principle is used in

many approaches that involve some statistical modeling of the problem. It is worth noting that

there are other interpretations to MDL that yield better bounds for the description length, such

as the Normalized Maximum Likelihood (NML) interpretation [83, 35]. While MDL can be

thought of as an application of the MAP model selection principle, to the best of our knowledge

its more rigorous formulation was first used in computer vision by Leclerc [51], who applied

it to segmenting the image into piecewise smooth intensity regions. A more high-level task

for which this principle was used was in the work of Pentland [78], who used MDL to select

the simplest set of projections of volumetric parts. Nowadays, many approaches that include

statistical modeling use the MAP principle, thereby implicitly employing MDL.

Comparing the MAP formulation of the MDL principle to that of the non-accidentalness

principle illuminates some apparent similarities. Both techniques try to select the best set of

elements by using Bayes’ law. We argue that the two principles are in fact two approaches to

the same idea. Take, for example, the problem of finding lines in an image by grouping image

edgels. P (Causality) would then measure the a priori probability of lines (perhaps vertical or

horizontal lines are more frequent than others), which is exactly the same term as the model

probability P (θ) in MDL. Given a particular line model, P (Organization|Causality) as well

as P (X|θ) measure the probability of the observed image edgels (how well the edgels fit a



CHAPTER 2. RELATED WORK 22

given line), while P (Organization) and P (X) in MDL measure the a priori probability of the

edgel distribution in the image. The only difference is that the MDL principle has information-

theoretic roots, while the principle of non-accidentalness has its roots in psychological human

tests.

Combining perceptual grouping found by the Gestaltists with the above grouping frame-

works opens the way for computational solutions to perceptual grouping. Early computer

vision work, some of which is discussed in the above paragraphs, has already started to explore

perceptual grouping. However, we will now take a more organized approach and review the

work systematically. Sarkar and Boyer have a nice overview of perceptual grouping work in

their 1999 editorial [9]. They categorize perceptual grouping work according to two dimen-

sions: the complexity of features that are being grouped (points, edgels, regions, etc.) and

the dimensionality of the space in which the features live (2D, 3D, or one of these with an

additional motion dimension). We will mainly concentrate on work with 2D images without

motion, though some work in 3D is also relevant.

Basing our categorization on the work of Sarkar and Boyer [9], we break our upcoming

review into low- and mid-level perceptual grouping. The categories’ boundaries are somewhat

vague, but in general terms, low-level grouping corresponds to grouping pixels and edge points

into larger components, such as regions and edge fragments. This level corresponds to the sig-

nal level from Table 1 in [9]. We also choose to include more complex primitives at this level,

such as longer contour fragments composed of image edgels (primitive level in [9]). Mid-level

grouping (structural level in [9]) corresponds to recovering higher-level components, such as

closed regions corresponding to objects or object parts, or high-level geometric primitives such

as smooth curves or ribbons. The input features for this level commonly consist of edge frag-

ments and regions extracted with lower-level methods. The next sections will systematically

review perceptual grouping work in these two categories, illustrating the perceptual grouping

rules employed, as well as the applications for using the recovered groups.



CHAPTER 2. RELATED WORK 23

2.3 Low-level grouping

Following the taxonomy of perceptual grouping work in [9], low-level perceptual grouping

refers to grouping low-level image features, like pixels or edgels, using local cues, such as

appearance similarity and continuity. The resulting groups correspond either to image regions

or to edge chains and can provide a good starting point for object recognition. The ideal

situation would be for the extracted regions or contours to correspond to whole objects, but it

is unrealistic to hope to obtain these in a purely bottom-up fashion2. Therefore, the resulting

low-level primitives are mainly used in the following two ways:

• Grouping - Working with low-level primitives instead of pixels simplifies the complexity

of high-level vision tasks.

• Feature extraction - Low-level primitives provide a better scope for feature extraction

and support the extraction of higher-level image features.

In the following sections, we review the work in region segmentation and edge detection, and

show how they can be applied for further segmentation and object recognition.

2.3.1 Region segmentation

The goal behind region segmentation is to be able to group pixels into meaningful regions

without the a priori knowledge about the scene. Such a task is very difficult even in the case of

grouping points in range images [3], let alone grouping pixels in 2D images. Given the absence

of high-level knowledge, most low-level region segmentation techniques resort to defining a

local appearance-based pixel affinity for neighboring pairs of pixels and cluster the pixels based

on this affinity. The segmentation methods mainly differ in the way this affinity is defined, as

well as in the methods used for clustering.

2Note that while obtaining a single correct object segmentation bottom-up is still considered unrealistic, recent
developments in figure/ground segmentation provide methods to obtain a small number of object hypotheses that
capture all the objects in the image with high probability [14].



CHAPTER 2. RELATED WORK 24

The simplest and fastest approaches define a very local affinity (usually just in the 4- or

8-connected neighborhood of a pixel) that is based squarely on the difference in local pixel

appearance. Greedy or local clustering algorithms are then used to obtain the regions using

this affinity. Due to their locality and lack of top-down regularization, the methods in this

category are quite sensitive to local appearance changes. They work well for objects with

homogeneous appearance, but can result in significant undersegmentation (bleeding) if this is

not the case. The watershed algorithm [102] is one of the first examples of such a method. The

authors provide a fast algorithm for image segmentation, where a grayscale image is treated

as a surface that is slowly immersed in water. Under such a definition, the “dams” separating

the minima of the image would correspond to region boundaries between the resulting regions.

Even though this method is extremely fast, it suffers from the aforementioned bleeding effects.

Moreover, in its original form it is applicable only to grayscale images, though it is possible to

extend it to work with other image modalities.

Comaniciu and Meer [19] describe a mean-shift clustering approach to image segmentation.

Image pixels are clustered using the mean-shift algorithm, where the neighborhood for mean-

shift is defined both in terms of the local spatial neighborhood of each pixel and its color

similarity to other pixels. Finally, Felzenszwalb and Huttenlocher [31] describe a simple greedy

graph clustering algorithm that is popular due to its simplicity, speed, and competitive results.

The pixels are grouped in a hierarchical manner using a local color affinity defined over the

4-connected neighbors of each pixel. A smartly chosen heuristic is used to determine whether

to group the segments in question based on the degree of their internal similarity compared to

the degree of their between-segment similarity. It is this condition that allows the authors to

employ a greedy grouping technique and thus provide an efficient solution to the segmentation

problem.

To cope with the limitations of greedy segmentation algorithms, there was a move to intro-

duce more global solutions to the problem. Wu and Leahy [109] were the first to pose image

segmentation as optimization of a global cost defined on undirected graphs. However, the tech-



CHAPTER 2. RELATED WORK 25

nique had the undesirable effect of producing many small isolated homogeneous segments.

This was one of the motivating factors for one of the most popular segmentation techniques

today - the Normalized Cuts framework of Shi and Malik [93]. The authors pose the segmen-

tation problem as the minimization of the normalized cuts cost that pushes the segments to be

balanced and thus minimizes bleeding effects. While the affinity between the neighboring pix-

els is still a simple local function of appearance similarity, the authors resort to global methods

for optimizing their NP-hard cost and provide a spectral clustering-based approximation to the

global optimum. Though the resulting regions are shown to be more robust to bleeding, such

balanced regions may not be suitable for all domains, since often the objects in the image are

of different sizes. Moreover, the spectral clustering method is computationally expensive and

cannot run on very large images. Finally, since it is still based on purely local pixel affini-

ties, it cannot be expected to extract objects bottom-up based purely on this low-level grouping

criterion. A different global method based on ratio cuts is introduced in [104]. Similar to

normalized cuts, the normalization in ratio cuts enables the method to recover large connected

regions with minimal amount of bleeding. For general graphs, finding a ratio cut is NP-hard

problem. In this case, however, the graph is defined over regions and the edges are naturally

defined based on region adjacency. Since the resulting graph is planar, the authors provide a

polynomial algorithm for solving the problem. However, they still report running times that

are on the order of minutes or hours per image.

Whereas the techniques in the previous paragraph employ more sophisticated clustering

algorithms, they still use simple pixel affinities. In [111], Yu and Shi not only provide a more

principled approach for solving the Normalized Cuts problem, but also employ a more sophisti-

cated pixel affinity function based on “intervening contours”. It allows the assignment of better

affinities to pixels in large neighborhoods based on the presence or absence of edges between

them. In [33], Fowlkes et al. further improve the pixel affinity by using several features to

compute it, as well as learning it by training a logistic classifier over a set of images.

These examples illustrate the evolution of low-level region segmentation techniques from



CHAPTER 2. RELATED WORK 26

greedy clustering algorithms using simple grayscale affinities to global clustering algorithms

using elaborate affinities that are based on multiple image cues. Region segmentation is the

subject of current research, with ongoing work on new cost functions, better optimization

methods and stronger affinities. Despite the advances in low-level region segmentation, the

methods in this category are united in their reliance on purely local appearance. This property

makes it unlikely that, barring cases of homogeneous appearance, large semantically meaning-

ful segments can be extracted using such approaches. Nevertheless, region segmentation is of

the utmost importance and proves to be essential as a preprocessing step for many higher-level

vision tasks.

Instead of having to deal with millions of pixels, it is now common practice to use small

local regions as atomic primitives. Images are typically preprocessed with region segmentation

tuned towards oversegmentation. The result is a much smaller number of primitives, typically

numbering in the hundreds of regions. Further perceptual grouping rules are applied to group

these elements bottom-up, or scene knowledge is used at this stage to detect objects or cate-

gories. In [80], Ren and Malik coined the term superpixels for such region oversegmentation.

Instead of grouping pixels, they grouped superpixels in an attempt to find “good” segments,

where goodness was a learned function of perceptual grouping features (such as homogeneity

in appearance and closure). Employing superpixels not only significantly reduced the complex-

ity of their task, but also provided an ideal scope for computing the features used to evaluate

goodness. Later, superpixels started to become popular for image labeling problems. In such

problems, the task of segmenting the image into K categories was defined as assigning a label

to every superpixel. For example, He et al. [36] used superpixels to segment the image into a

number of categories, such as vegetation, sky, and buildings. Such methods start by computing

robust appearance features for superpixels and analyze the correlation between superpixel fea-

tures and labels. Though superpixel appearance features can be as simple as color histograms,

they can go as far as encoding appearance using robust local descriptors, such as SIFT [59].

Once such correlation is learned, superpixel labels are determined based on superpixel features



CHAPTER 2. RELATED WORK 27

and context.

Nowadays, many researchers make use of region segmentation in their work. Some frame-

works [40] go beyond the use of single scale superpixels, relying on multiscale region seg-

mentation for scene analysis. However, the underlying principle of using region segmentation

remains constant across all approaches, restricting the use of low-level region segmentation to

preprocessing stages rather than considering it a goal in itself.

2.3.2 Edge detection

Instead of grouping pixels, an alternative approach to finding coherent regions in an image is

to trace their boundaries. Starting with the detection of image edges, representing locations of

strong change in color or texture, one would attempt to link them together into closed contours.

Not all edge detection systems attempt to group edges into closed contours. Most approaches

limit themselves to the extraction of long continuous image curves (edgels), leaving their fur-

ther grouping to higher-level processing stages. Similar to region segmentation, edge detection

relies on the computation of local appearance similarity with edges being detected at locations

of heterogeneous appearance, followed by grouping them into chains. The methods differ in

the complexity of their similarity measures and in the scope of the grouping of individual edge

points.

Though edge detection has been a part of the vision community since its infancy, Canny’s

[13] edge detection approach is perhaps the most enduring edge detection algorithm. Though

the basic principle of edge detection lies in thresholding the pixels based on a function of

image gradient, Canny’s detector adds additional components to the pipeline. Through noise

reduction, non-maxima suppression and edge following using hysteresis thresholding, Canny’s

edge detection algorithm outperforms its predecessors.

Canny’s original algorithm detects edges at a single scale. However, in the image, edges

occur at various scales. They can be very sharp, for in-focus objects with clear boundaries, or

they can be blurry, for edges of shadows under multiple light sources, for example. Several



CHAPTER 2. RELATED WORK 28

authors have attempted to tackle this issue. Among them, Jeong and Kim [45] pose the edge

detection problem of finding the scale that results in the best reconstruction of an image, while

assuming that scale changes smoothly across the image. Other approaches for automatic scale

selection of edges include Lindeberg [53] and Elder and Zucker [28].

Finally, just as the pixel affinity in region segmentation methods did not have to be only a

function of color, edges can also be based on additional features. In [63], Martin et al. combine

brightness, color and texture measures into a probability of boundary (Pb) measure. Pb is

computed by training a logistic classifier over the aforementioned features. It significantly

outperforms techniques that are based solely on image intensity. We would argue that this

method and its extensions [61] are currently the standard approaches for obtaining image edges.

Having identified image edge points and locally grouped them into short edgels, the results

can be used as a basis for extracting longer parametric curves, finding closures and building

better larger-scoped features for object recognition. Many approaches start with edgels as

the basis for detecting true occluding contours, attempting to fill gaps and remove edgels that

do not correspond to object contours. Shashua and Ullman [92], for example, extract long,

smooth image curves. It is precisely the use of edgels that enables the authors to employ the

perceptual grouping cues of continuity and curvilinearity. One counter example that starts with

plain edge pixels and nevertheless presents astounding results is the work of Williams and

Jacobs [106]. Unlike [92], the authors use a more principled approach to fill gaps, computing

a distribution over illusory contours. However, the system is tested on artificial images rather

than exemplifying if it can correctly fill in the gaps in a real image. Some researchers attempt to

extract larger-scope semantically meaningful edge chains. For example, Nelson and Selinger

[71] group edgels into parametric curves, which are then used for object recognition. To be able

to operate in more realistic imaging scenarios, edge grouping can employ additional grouping

rules and better computational frameworks. Ren and Malik [82] also use edgels as a starting

point for more complete contour extraction, but add higher order constraints such as T-junctions

and object-level priors, formulating their problem as inference in a Conditional Random Field



CHAPTER 2. RELATED WORK 29

(CRF) network. In Ren et al. [81], both superpixels and the edges between them are used as

nodes in a CRF, providing even more constraints and context for contour detection. Finally,

similar to spectral clustering approaches for region segmentation, Zhu et al. [112] propose

to solve this hard grouping problem by embedding the edge fragments into polar coordinates

such that closed contours correspond to circles in that space. Furthermore, the authors show

that their approach is not restricted to the extraction of closed contours and results in a state-

of-the-art method for generic contour detection.

Grouping short edge fragments or individual edge pixels instead of working with all im-

age pixels decreases problem complexity and simplifies the application of some shape-based

perceptual grouping rules. However, there are other advantages of using edges. Ever since the

seminal paper by Lowe [59], SIFT and other variations of keypoint features [65] were heavily

used for object recognition. These features encode the appearance in a local patch and can be

used for robust matching. Similar constructions can also be used to encode local shape, which

is where image edges come into play. For example, Mori et al. [69] use the shape context fea-

ture for object recognition. Originally coined by Belongie and Malik [2] for matching shapes,

shape context in [69] is constructed by sampling image edge points. Instead of using individ-

ual edge points, Ferrari et al. [32] construct a higher-order feature and use edgels to compute

their kAS descriptor. The descriptor robustly encodes the relative position and orientation of a

group of k straight edgels, making it useful for more generic object recognition tasks. Finally,

Nelson et al. [71] use even higher-level primitives (image curves) in their object recognition

framework, though they resort to working with somewhat simplistic images in order to extract

such features bottom-up.

Similar to region segmentation, the state-of-the-art is continuously being extended, result-

ing in approaches like [61] for edge detection or [112] for contour grouping. But the image

primitives and the grouping rules used in both region segmentation and edge detection methods

usually prove to be insufficient for the kind of grouping needed for generic object recognition.

Building up on the primitives extracted at this level, we need to employ stronger grouping



CHAPTER 2. RELATED WORK 30

rules, giving us larger-scope, more meaningful groups. This brings us to the subject of mid-

level grouping.

2.4 Mid-level grouping

Unlike most current recognition methods that work with real world scenes but constrain the

recognition problem, early vision researchers set their sights on very generic object recogni-

tion [72, 11, 58]. This level of recognition typically modeled objects as compositions of more

abstract image features. The models ranged from a collection of smooth surfaces or long para-

metric curves used for representing scene surfaces, to representing objects using closed con-

tours or with a small set of abstract parts. However, extracting such features bottom-up from

a real world image proved to be a significant challenge, forcing most methods to bridge this

representational gap by working with simplified images. But even simplified images present

a challenge for the extraction of these primitives. Nevertheless, the early vision community

illustrated that using higher level image primitives and employing stronger, mid-level grouping

rules and models for scene analysis is essential for generic object recognition. Understanding

these mid-level rules and models, together with new algorithms and machine learning tech-

niques would help us push perceptual grouping into the realm of real world imagery.

One of the most general models assumed for mid-level grouping is that the image is a

projection of a scene made up of piecewise smooth surfaces [12]. Such a model is flexible

enough for most scenes, but is hard to extract even from range images [3] where one has

to distinguish perturbations in surfaces from surface discontinuities. The situation is much

more complex in the case of 2D images, where appearance is not only a function of surface

geometry but also depends on illumination and albedo. With the exception of a small number

of approaches, such as Hoeim et al. [41] who address a constrained version of this problem,

the majority of the community has tended to avoid this difficult problem. More constrained

models need to be defined if we hope to extract meaningful components bottom-up, without



CHAPTER 2. RELATED WORK 31

relying on object-level knowledge. Two of the most prominent mid-level grouping rules fitting

this bill are closure and symmetry. In this section, we will mainly concentrate on these rules

and their application to object recognition.

2.4.1 Symmetry

Following the recognition-by-components insight of Biederman [5], symmetry can serve as a

powerful basis for defining object parts. While not all objects can be represented using a small

set of symmetric parts, various symmetry-based part vocabularies were shown to be sufficient

to represent a large enough subset of objects. Restricting objects to be modeled using such

vocabularies facilitates generic recognition by providing not only a necessary abstraction for

object representation, but also the ability to extract object parts bottom-up.

In 3D, symmetry has served as a basis for a rich body of object recognition, with work

applied to various recognition domains and experimenting with different part vocabularies.

For instance, Binford [6] used generalized cylinders to represent object parts. Generalized

cylinders can be defined with a space curve that acts as the axis and a cross section that is

swept along the axis. As the name suggests, it is a generalization of a right circular cylinder

(commonly refered to as cylinder) for which the space curve will be a straight line segment

and the cross section will be a circle normal to the axis at any point. Other examples of

symmetry-based parts employ more restrictive vocabularies, such as superquadrics [77] and

geons [4]. These examples show that symmetric parts can provide a powerful representation for

a significant collection of objects. We will stop here and not detail the methods for extraction of

these volumetric parts from range images, as we are interested in work in 2D image domains.

In 2D, symmetry has been present in the vision community even longer. Blum’s medial

axis transform (MAT) [7] computed the skeleton of an object given its silhouette. The skeleton

produced by the MAT is the set of all center points of the maximally inscribed discs of the

given shape. The natural way to compute such skeletons is to compute the distance transform

of the shape and find the locus of local maxima in the distance transform. Skeletons have been



CHAPTER 2. RELATED WORK 32

widely used in the recognition community. For example, Siddiqi et al. [97] computed the

singularities (shocks) in the skeleton formation and organized them into a shock graph. Shock

graphs for objects were then matched using a new graph matching algorithm comparing two

different objects. Shock graphs have been used by others using different matching techniques.

Some examples include Pellilo et al. [76] who matched shock graphs using association graphs,

and Sebastian et al. [89] who computed a graph-edit distance-based measure between a pair of

shock graphs.

One issue with skeletonization techniques is that the resulting skeleton is sensitive to small

perturbations in the shape of the object. Some skeleton extraction algorithms ignore this prob-

lem, while others try to address the issue by smoothing either the original contour or the re-

sulting medial axis. Recently, Macrini et al. [60] proposed a more principled approach for

the regularization and abstraction of a skeleton by analyzing its ligature structure. While it is

a significant step toward ultimate generic object recognition using part-based skeleton repre-

sentations, an even more serious weakness of skeleton-based approaches is that a silhouette of

an object is required as input, effectively requiring the object to be segmented ahead of time.

Segmenting out objects bottom-up in a purely unconstrained fashion is, in general, an unsolved

problem, and we will therefore continue this section by reviewing symmetric part extraction

that does not require objects to be segmented a priori. Such approaches can be grouped into

these three categories:

• Filter-based part extraction

• Contour-based part extraction

• Model-based part extraction

The remainder of this section reviews part extraction in each of these categories.

The filter-based category refers to methods that attack the problem by passing the image

through a bank of low-level filters and analyzing the filter response to find symmetric regions.

These regions, referred to as blobs or ridges, provide a crude segmentation of an image and



CHAPTER 2. RELATED WORK 33

could signal the presence of objects or parts of objects in the image domain with application

to object recognition and/or object tracking. In other domains, such as histogram analysis,

blob descriptors can also be used for peak detection with application to segmentation. Another

common use of blob descriptors is as primitives for texture analysis and texture recognition.

In more recent work, blob descriptors have found increasingly popular use as interest points

for wide baseline stereo matching and to signal the presence of informative image features for

appearance-based object recognition based on local image statistics.

The use of filter-based symmetry detection for multiscale abstract part extraction was pro-

posed by Crowley [24], who detected peaks (rotational symmetries) and ridges (elongated sym-

metries) as local maxima in a Laplacian pyramid, linked together by spatial overlap to form

a tree structure. Object matching was then formulated as comparing paths through two trees.

Shokoufandeh et al. [94] proposed a more elaborate matching framework based on Lindeberg’s

multiscale blob model [54] (an extension of Lindeberg’s older work [53]). Finally, Levinshtein

et al. [52] demonstrate that multiscale blobs and ridges can serve as a powerful basis for auto-

matically learning part-based generic shape models.

A more recent application of filter-based symmetric regions is as a basis for defining robust

feature descriptors for keypoint features for stereo matching or exemplar object recognition.

The original keypoint approach, still very popular today due to its robustness and applicability

to many problems, is the approach of Lowe [59]. Motivated by the work of Lindeberg [53]

where blobs are detected as the maxima of the scale-normalized Laplacian of the image, Lowe

uses a difference of Gaussians (DoG) to recover the position and scale of his SIFT features.

DoG is a good approximation to the Laplacian of an image and can be computed more effi-

ciently. In [66], Mikolajczyk et al. compare a number of these and other region extractors.

Alternatives to using a Laplacian or a difference of Gaussians include the determinant of the

Hessian or the Harris operator for blob detection. The last detector uses the second moment

matrix instead of the Hessian for blob detection. All of the aforementioned blob detectors can

be adapted to detect ridges using a procedure described by Mikolajczyk and Schmid [64].



CHAPTER 2. RELATED WORK 34

The latter is arguably the more successful application of filter-based symmetric regions.

Current approaches employing interest points serve as a good example of a domain where an

accurate delineation of local symmetric regions may not be necessary. In addition to being

very efficient, coarse filter-based symmetry detection proves sufficient for the robust extraction

and scope representation of stable image points in such domains. The same is not true for

generic object recognition, where large parts with possibly heterogeneous appearance need to

be extracted. Simply detecting parts as local maxima in a set of multiscale filter responses leads

to many false positives and false negatives, suggesting that successful part extraction requires

paying closer attention to image contours.

The second category of symmetry detection approaches is comprised of methods that find

symmetry by grouping image contours. Most of the techniques in this category are similar in

that they start with detecting edges and then group them into one or more symmetric regions.

Unlike the approaches in the previous category that overcome the complexity of finding sym-

metric regions through the application of coarse filters, all contour-based approaches are faced

with the task of finding symmetry in a vast collection of image contours. Coping with the over-

whelming complexity of such a task forces contour-grouping techniques to consider a variety

of grouping approaches and impose additional constraints on symmetry.

Early contour-grouping approaches, motivated by the early work in skeletonization, attempt

to extract skeleton-like representations from real images. An early example of such a technique

is the work of Brady and Asada [10], showing how smooth local symmetries (SLS) can be de-

tected. Unlike the MAT-based skeletons that are composed of centers of maximally inscribed

discs, SLS skeletons are made of midpoints of line segments forming the same angle with both

sides of the bounding contour. However, while the definition of a skeleton differs between the

two approaches, they are visually and conceptually very similar. In contrast to skeletoniza-

tion approaches that assume the availability of an object’s contour, Brady and Asada extract

closed contours using the Canny edge detector. As their technique depends on precise contour

tangents, they represent the extracted contour using circular arcs and straight line fragments,



CHAPTER 2. RELATED WORK 35

instead of working with the raw edges. Nevertheless, the final set of local symmetries can be

quite noisy and fragmented. Connell and Brady [20] describe not only how to “clean” up this

noisy set of symmetries by eliminating some and grouping others, but also introduce a system

that uses the resulting symmetric groups to model objects. To group the local symmetries, they

use a set of perceptual grouping rules including proximity of local symmetries, their continu-

ation, change in cross-section length, and various other heuristics, some of which are similar

to the principles used for skeleton analysis in [97]. In a further extension, Ponce’s [79] the-

oretical paper analyzes various skeleton formulations and shows, for example, that the MAT

skeletons are a more constrained set than the SLS skeletons of Brady and Asada. Ponce’s anal-

ysis also results in yet another skeleton definition, accounting for skewed symmetries that can

arise from 3D projection. However, despite the improvement of this and Connell’s approach on

the original technique of Brady and Asada, all three methods avoid the complexity of grouping

image edges arising from real scenes by working with simplified imagery. Working with more

realistic scenarios would introduce significantly more edgels, making the extraction of closed

contours, as well as the detection and grouping of symmetric regions, far more difficult.

Diving more into the realm of real world imagery, Saint-Marc et al. [84] show how sym-

metries can be extracted by building on a B-spline representation of image contours. They

first illustrate how B-splines can be extracted by starting with standard edge detection (such as

Canny), performing edge linking, and concluding with fitting splines to edge chains. Given this

simplified image representation, they show how a variety of symmetries can be extracted by

imposing constraints over pairs of B-splines. Unlike previous approaches, restricted to the de-

tection of local symmetries, Cham and Cipolla [18] employ a similar B-spline representation,

and provide a very fast and simple method for global skewed symmetry axis extraction. The

Hough transform is first used to efficiently hypothesize groups of points that form local skewed

symmetries. Once such groups are available, the hypotheses are checked using a global sym-

metry criterion proposed by the authors. In [17], the same authors describe a different approach

for solving the same problem, this time using their measure of “geometric saliency”. In [55],



CHAPTER 2. RELATED WORK 36

Liu et al. propose a more principled approach to symmetry axis extraction. They formulate

the symmetry axis finding problem as finding the best sequence of pairs of points in the image

and solve the problem using Dijkstra’s algorithm. Their method does not require the contour

to be available a priori, but it does require an initialization with an initial pair of points and

produces an open boundary. Moreover, no preprocessing into image curves is performed as

done in some of the other methods. Therefore, to cope with the complexity of finding the best

sequence among all pairs of points in the image, the authors resort to using hashing techniques.

Note that all the approaches described so far extract global unbounded symmetry axes, or

extract symmetric sections by analyzing closed contours or pairs of image curves. The global

symmetry recovered by the first set of approaches is useful for scene analysis but is insufficient

for generic object representation. On the other hand, the kind of symmetries extracted by the

second set of approaches are ideal for object representation, but are shown to operate on a very

restrictive set of images, usually containing a single object with homogeneous appearance.

In real images containing multiple objects with heterogeneous appearance imaged against a

complex background, it is unlikely that meaningful closed contours could be recovered bottom-

up by the suggested approaches or that objects (or their parts) would be bounded by a pair of

extracted image curves. The more likely scenario is that an object’s contour would correspond

to far more than a single closed image contour or a pair of image curves, requiring more

elaborate grouping strategies.

Ylä-Jääski and Ade [110] provide such a method by finding partial symmetries between

straight edge segments and then grouping them together into complete axial descriptions. In

[98], Stahl and Wang take a similar approach but use a much more principled grouping algo-

rithm based on ratio cuts to obtain their symmetries. The authors start by extracting linear edge

segments and construct symmetric quadrilaterals which are then used for grouping. The algo-

rithm finds the best sequence of quadrilaterals that minimizes the gap in boundary edges, while

maintaining a smooth symmetry axis as well as a compact internal region for the resulting sym-

metric part. Even though grouping is polynomial in the number of graph edges, the number of



CHAPTER 2. RELATED WORK 37

quadrilaterals, as well as the possible ways of filling the gaps between them, are prohibitive.

This forces the authors to resort to heuristics to reduce the complexity of the problem. They

also provide an iterative approach for extracting multiple symmetric regions, by finding the

best region and repeating the process after removing all the quadrilaterals associated with that

region. Still, quadrilaterals typically number in the thousands and the running time is on the

order of several minutes per image.

Although great advances were made in contour-based symmetry detection, the complexity

of contour grouping remains the main difficulty faced by all methods. Early work reduced this

complexity by constraining the symmetry representation or working with simplified images,

while recent approaches work under less constrained scenarios but have to rely on suboptimal

grouping algorithms and/or grouping heuristics. Nonetheless, being very data-driven in nature,

such approaches prove to be much more suitable for object analysis than top-down coarse

filtering techniques, despite their problematic complexity.

The third category for bottom-up symmetry detection, called model-based grouping, refers

to methods that employ a top-down deformable shape model during the extraction process. In

fact, any filter-based technique can be seen as a model-based approach, as it detects parts by

employing a top-down coarse shape model. Unlike the case of filter-based techniques, where

model detection is approximated by analysing low-level filter responses, the models here are

matched against image contours. Moreover, the notion of having a model is made much more

explicit, with models ranging from complex parametric symmetric shapes to going beyond

symmetry, and representing arbitrary shape. While most techniques under this category go as

far as using specific object shape models, some address the domain of perceptual grouping.

That said, even the more specific object detection approaches can sometimes be modified to

work with more generic shape models, and thus provide useful insight into perceptual grouping.

Work with deformable shape models has its roots in Kass et al. [47]. Their model restricts

the shape to have a smooth boundary with strong underlying image edge support. Given such

a weak shape model, the method is more suitable to be used as a low-level grouping approach



CHAPTER 2. RELATED WORK 38

described in a previous section. Moreover, the method requires a rough global initialization

of the model prior to image alignment. Unlike [47], Cootes et al. [21] use object specific

deformable models in their work. However, the model still needs to be initialized close to

the object for the approach to work. Examples of more practical techniques, attempting to

find multiple instances of a deformable shape models automatically, are [78, 85, 88]. Pentland

[78] solves the problem using a filter-like approach. Representing object parts using 3D su-

perquadrics, part templates are constructed a priori for different part projections and different

settings of the deformation parameters. The algorithm proceeds by accumulating evidence for

each of the templates at different image locations. High-scoring templates, and consequently

object parts, are selected using a global optimization procedure. Recently, Sala and Dickin-

son [85] employed a similar approach for symmetric part detection. They too represent 2D

parts as projections of a small set of deformable 3D part vocabulary, but unlike Pentland who

worked with range images, avoiding the additional complexity of dealing with heterogeneous

object appearance, Sala and Dickinson are able to extract symmetric parts from real 2D im-

ages. In contrast to previous approaches, Sclaroff and Liu [88] define their shape model as a

deformable polygon, and while they use it for segmenting specific objects, the model can be

easily adapted for symmetric part extraction. They pose the grouping problem as finding a

subset of oversegmented image regions that satisfy their shape model. However, the authors

show that despite pruning the search space using various heuristics, a brute force approach still

exhibits a prohibitive grouping complexity, forcing an approximate solution of the problem by

using a greedy algorithm. There are many other approaches that employ deformable shape

priors, but similar to contour grouping techniques, all such methods are faced with prohibitive

algorithm complexity, this time arising from matching models to image data. Overcoming this

issue, while accurately detecting symmetric regions, is the subject of ongoing research.

In summary, we reviewed three categories of symmetry detection approaches that illustrate

the tradeoff between fast but inaccurate methods that rely on low-level filter responses, to

high-complexity contour grouping or model-based approaches that are much more data driven.



CHAPTER 2. RELATED WORK 39

Besides the individual weaknesses and strengths of the aforementioned techniques, most of

them share another recurring weakness. With few exceptions, symmetric parts are usually not

grouped together. For example, in skeleton-based approaches, a skeleton already corresponds

to a whole object. However, in order to use it for efficient object recognition, it needs to be

parsed into stable branches that correspond to object parts - a challenging task as skeletons

are sensitive to small shape perturbations. Unlike the case of skeletons, bottom-up symmetry

extraction techniques result in a disconnected set of symmetric parts. While grouping them

together is perhaps easier than grouping low-level features, such as pixels, into whole objects,

it is still the subject of ongoing research and not commonly addressed. Whole object skeletons

or collections of unrelated symmetric parts undoubtedly simplify generic scene analysis, but

symmetry alone is not enough. Objects parts need to be related and/or grouped together, calling

for additional perceptual grouping rules to be used. One such rule is described in the next

section.

2.4.2 Closure

The law of closure is another strong perceptual grouping rule, enabling us to form large-scope

semantically meaningful components without the use of an object model. Unlike continuity and

curvilinearity, that facilitate the extraction of smooth curves with strong edge support, closure

is a more global constraint which results in finding closed contours in an image. A famous

example of closure is shown in Figure 2.2, where we perceive a “hidden” triangle despite the

absence of supporting image edges. In addition to relying on continuity and curvilinearity, the

triangle is perceived because it corresponds to a single closed contour. Given such an intuitive

concept of closure, let us now move on to a more precise mathematical definition.

There is no consensus on the exact definition of closure in the computer vision community.

Most agree on two important properties for any closure cost: 1) the cost should be monotonic

to the amount of contour gap (the lack of image edge support), and 2) the cost should not

overly penalize larger regions or longer contours (the absolute amount of contour gap is likely



CHAPTER 2. RELATED WORK 40

Figure 2.2: Kanisza Triangle. Despite contradictory information, the law of closure forces a

perception of a closed object (triangle in the middle).

to increase with increase in region size or contour length). These two basic properties induce

the closure cost of a closed contour to be a ratio of contour gap to a measure of contour size.

However, using gap alone to evaluate closure is insufficient in the presence of many distracting

contours. Real occluding contours exhibit additional properties, such as being smooth and con-

tinuous. Therefore, most closure formulations incorporate at least these additional properties.

Other differences in cost formulations arise through different definitions of gaps and various

measures of contour size. For instance, Elder and Zucker [26] show that a cost based purely

on the total boundary gap is insufficient for perceptual closure. Though objects with smaller

gap on their boundary are more easily detected by human subjects, this is not the only factor

contributing to a successful perception of whole objects. They show that the distribution of

gaps along the contour is also very important. Instead of a sum of the length of all gaps, they

show that a Euclidean norm is a much better measure. Under such a measure, a single large

gap would be significantly worse than many small gaps amounting to the same total length. In

addition to different measures of gap, there is also the question of what is contour size? Most

techniques resort to normalizing contour gap by its length, while some show that normalization



CHAPTER 2. RELATED WORK 41

by area instead of length results in better performance [99]. While area normalization helps

to incorporate another important perceptual grouping cue, i.e., compactness, into the closure

cost, not all objects are compact, in which case a cost based on length normalization could

work better. Similar arguments could be made for other terms of the cost function, making the

search for the “true” closure cost a subject of current research.

In conjunction with the issue of a precise closure definition, there is also the issue of find-

ing closed contours by minimizing a closure cost. Since closure is a global property, the main

problem associated with its use is being able to overcome the high computational complexity

arising from considering a multitude of all possible closed contours in an image. Most ap-

proaches simplify the problem by starting from short edge fragments instead of raw pixels.

Despite this simplification, a brute force approach for computing closure would have to con-

sider all possible subsets of these edgels, resulting in exponential complexity. This forces most

methods to impose further constraints on their closure cost or resort to the use of heuristics

and/or greedy optimization approaches. In [44], Jacobs attempts to extract closed convex con-

tours by grouping straight line segments. The grouping problem is formulated as a brute force

search for subsets of line segments. Various heuristics are introduced to prune the search tree,

the main one being a hard threshold on the measure of closure that the author proposes, not

only for the final subsets but for all intermediate ones as well. The resulting search algorithm

is still exponential in the number of line segments in the worst case, but is shown to have a

reasonable average time performance in realistic scenarios. A less restrictive constraint is that

of compactness, which can be attained by normalizing the gap by area (Estrada and Jepson

[29, 30]), where the authors perform a brute force depth first search for the solution in a sea

of edgels, constrained by several heuristics to make the search feasible. Elder and Zucker [27]

provide a graph-theoretic solution, modeling the pairwise affinity between two adjacent con-

tour fragments and reducing the problem of finding closed contours to finding shortest paths

in a graph using Dijkstra’s algorithm. Williams and Hanson [107] addressed the problem of

perceptual completion of occluded surfaces, formulated as the problem of computing a labeled



CHAPTER 2. RELATED WORK 42

knot-diagram representing a set of occluded surfaces from observed image contours. While

formulated as an elegant combinatorial optimization problem, for which an optimal solution

was available, the approach was not tested on real scenes.

The above approaches all face the prohibitive complexity of grouping edgels into closed

contours, forcing methods to impose additional constraints on the closure cost or use subop-

timal grouping algorithms. Zhu et al. [112] propose a more general solution, providing not

only a more global approach, but also the option to extract long image curves as well as con-

tour cycles. The method works by embedding the edge fragments into polar coordinates such

that closed contours would correspond to circles in that space. Computing several complex

eigenvectors of the embedded edgels allows the authors to find multiple cycles in a principled

way (one cycle per eigenvector). Jermyn and Ishikawa [46] show how closed contours can be

extracted by optimizing a ratio cut cost. While in general, optimizing ratio cuts is NP-hard,

working with a 4-connected planar graph over image pixels allows the authors to find closures

in polynomial time. Wang et al. [103] take a similar approach, but define their graph over

contour fragments, facilitating the computation of a better gap measure. Restricting closures

to be alternating gap/non-gap cycles of fragments results in a globally optimal, polynomial

algorithm. Finally, since normalization by area instead of contour length promotes compact-

ness, which is often a desirable property, Stahl and Wang [99] modify the approach in [103],

measuring area through the application of Green’s theorem.

Working with edge fragments, instead of pixels, undoubtedly decreases the complexity

of finding closures. However, the requirement of finding not simply long chains of contours,

but closed cycles, puts an additional burden on contour-based grouping approaches. This added

complexity can be avoided if closure finding is reformulated as the problem of grouping regions

or fitting a top-down deformable shape model to an image. While such techniques are common

when object-level knowledge is employed, such as labeling images using superpixels or using

active shape models, they are seldom encountered in perceptual grouping literature. The work

of Kass et al. [47] is one example of fitting a generic deformable shape to an image, however the



CHAPTER 2. RELATED WORK 43

cost in [47] contains many local minima corresponding to undesirable solutions and requires

the manual initialization of the model close to real object boundaries. As an example of region-

grouping techniques, one can take the work of Sclaroff and Liu [88], already reviewed in the

previous section. Though the models in [88] employ object-level knowledge, it is conceivable

that the same shape representation and algorithm could be used to recover more generic shapes.

In perceptual grouping, one of the few region-grouping methods whose goal is to find closure

is the work of Jermyn and Ishikawa [46]. However, the authors work with the most basic of

region primitives, pixels, hindering their ability to compute a robust gap measure and to employ

useful perceptual grouping rules such as continuity and curvilinearity. One of the most recent

advances in this domain is our own work in Chapter 4, illustrating the benefits of working with

small regions (superpixels) instead of edge fragments. Nevertheless, region grouping has its

own downfalls, especially when the underlying regions are undersegmented. Whether or not

this is a good alternative to contour-based closure extraction is arguable at this point, with the

winning technique being the one that is able to extract most objects in the scene in a reliable

fashion.

2.5 Conclusions

Perceptual grouping is an astounding human ability. In this review we have illustrated the high-

level principles behind this ability and motivated the need for perceptual grouping in computer

vision. We reviewed approaches starting from local grouping rules, such as proximity and

continuity, operating on low-level image primitives, to more global rules, such as closure and

symmetry. Low-level grouping techniques, while usually being fast and efficient, result in very

local image components which are insufficient for generic recognition. On the other hand,

mid-level grouping is shown to contribute towards the extraction of meaningful, large-scope

components, facilitating generic recognition. However, methods employing these rules suffer

from the prohibitive complexity of assembling low-level primitives into larger groups.



CHAPTER 2. RELATED WORK 44

Between low and mid-level grouping the latter is more useful for generic object recogni-

tion; however, low-level primitives, such as superpixels or edge fragments are shown to be

instrumental for many vision tasks. In fact, most successful mid-level grouping approaches

rely on low-level primitives instead of operating on raw pixels, suggesting that continuing ad-

vances in all levels of grouping are essential. Moreover, even the mid-level grouping results

achieved by current approaches are usually insufficient for the amount of grouping required

for generic object recognition. Most current approaches focus on a single cue, such as closure

or symmetry, but not both, providing promising results but failing to operate in a variety of

different scenarios. Ultimate success in perceptual grouping lies in the integration of many

perceptual grouping cues. Hierarchically building on local image primitives obtained through

the application of low-level grouping rules, employing multiple mid-level constraints would

propel perceptual grouping in computer vision to human capabilities.



Chapter 3

Turbopixels: Fast Superpixels Using

Geometric Flows

3.1 Introduction

Superpixels [80] represent a restricted form of region segmentation, balancing the conflicting

goals of reducing image complexity through pixel grouping while avoiding under-segmentation.

They have been adopted primarily by those attempting to segment, classify or label images

from labelled training data [37, 40, 41, 70, 80]. The computational cost of the underlying

grouping processes, whether deterministic or stochastic, is greatly reduced by contracting the

pixel graph to a superpixel graph. For many such problems, it is far easier to merge super-

pixels than to split them, implying that superpixels should aim to over-segment the image.

Region segmentation algorithms which lack some form of compactness constraint, e.g., local

variation [31], mean-shift [19], or watershed [102], can lead to under-segmentation in the ab-

sence of boundary cues in the image. This can occur, for example, when there is poor contrast

or shadows. Algorithms that do encode a compactness constraint, including N-Cuts[111] and

TurboPixels (the framework we propose), offer an important mechanism for coping with under-

segmentation. Figure 3.1 shows the over-segmentations obtained using these five algorithms;

45



CHAPTER 3. TURBOPIXELS: FAST SUPERPIXELS USING GEOMETRIC FLOWS 46

(a) (b) (c)

(d) (e)

Figure 3.1: Over-segmentations obtained with five algorithms: (a) TurboPixels (b) N-Cuts[111]

(c) Local variation [31] (d) Mean-shift [19] (e) Watershed [102]. Each segmentation has (ap-

proximately) the same number of segments. The second row zooms in on the regions of interest

defined by the white boxes.



CHAPTER 3. TURBOPIXELS: FAST SUPERPIXELS USING GEOMETRIC FLOWS 47

the effect of a compactness constraint in limiting under-segmentation can be clearly observed

in the results produced by TurboPixels and N-Cuts.

The superpixel algorithm of Ren and Malik [80] is a restricted graph cut algorithm, con-

strained to yield a large number of small, compact, quasi-uniform regions. Graph cut segmen-

tation algorithms operate on graphs whose nodes are pixel values and whose edges represent

affinities between between pixel pairs. They seek a set of recursive bi-partitions that globally

minimize a cost function based on the nodes in a segment and/or the edges between segments.

Wu and Leahy [109] were the first to segment images using graph cuts, minimizing the sum

of the edge weights across cut boundaries. However, their algorithm is biased toward short

boundaries, leading to the creation of small regions. To mitigate this bias, the graph cut cost

can be normalized using the edge weights being cut and/or properties of the resulting regions.

Although many cost functions have been proposed (e.g., [23, 46, 86, 104]), the most popular

normalized cut formulation, referred to widely as N-Cuts, is due to Shi and Malik [93], and

was the basis for the original superpixel algorithm of [80].

The cost of finding globally optimal solutions is high. Since the normalized cut problem

is NP-hard for non-planar graphs, Shi and Malik proposed a spectral approximation method

with (approximate) complexityO(N3/2), whereN is the number of pixels. Space and run-time

complexity also depend on the number of segments, and become prohibitive with large numbers

of segments. In [91] a further reduction in complexity by a factor of
√
N is achieved, based

on a recursive coarsening of the segmentation problem. However, the number of superpixels

is no longer directly controlled, nor is the algorithm designed to ensure the quasi-uniformity

of segment size and shape. Cour et al. [22] also proposed a linear time algorithm by solving

a constrained multi-scale N-Cuts problem, but this complexity does not take the number of

superpixels into account. In practice, this method remains computationally expensive and thus

unsuitable for large images with many superpixels.

There are fast segmentation algorithms with indirect control over the number of segments.

Three examples include the local variation graph-based algorithm of Felzenszwalb and Hut-



CHAPTER 3. TURBOPIXELS: FAST SUPERPIXELS USING GEOMETRIC FLOWS 48

tenlocher [31], the mean-shift algorithm of Comaniciu and Meer [19], and Vincent and Soille’s

watershed segmentation [102]. However, as mentioned earlier, since they lack a compactness

constraint, such algorithms typically produce regions of irregular shapes and sizes.

The above techniques are some of the more recent examples of region growing approaches,

some of which date back to the 1970s (a good overview is provided in [114]). Typically, re-

gions start growing from single pixel seeds, where the seeds are provided manually (through

user input) or defined automatically (by considering every pixel a seed, for example). Re-

gions are grown greedily by iterative addition of pixels and/or other regions based on various

grouping heuristics, with some studies considering region splitting as well [42]. Grouping

heuristics range from merging regions based on appearance similarity to merging regions that

can be approximated by a small number of low-order polynomials [75]. Similar to the more re-

cent approaches, early region growing methods have also struggled to incorporate more global

knowledge into the segmentation framework through the use of better heuristics and merging

methods.

The TurboPixel algorithm introduced in this chapter segments an image into a lattice-like

structure of compact regions (superpixels) by dilating seeds so as to adapt to local image struc-

ture. It is similar in spirit to region growing approaches, but focuses on region boundary and

uses level-sets for curve evolution. Computationally, the approach is rooted in the early curve

evolution techniques in computer vision (e.g., [15, 49, 62]). In an approach that is similar in

philosophy to the one we develop in this chapter, in [90] properties of the medial axis are used

to modify the evolution of two simultaneously evolving contours, in application to carpal bone

segmentation. In the reaction-diffusion space of [49], a constant motion (reaction) term was

played off against a curvature term (diffusion) for shape analysis. This flow was subsequently

adapted to the problem of segmentation in [62] and [15], via the inclusion of a multiplicative

image gradient stopping term. These methods led to active contour models that could handle

changes in topology in a natural way. Formal theoretical justification, as the gradient flows as-

sociated with particular weighted length or area functionals, followed [16, 48, 95]. A reaction-



CHAPTER 3. TURBOPIXELS: FAST SUPERPIXELS USING GEOMETRIC FLOWS 49

diffusion space of bubbles was further developed in [101], where instead of a single contour,

multiple bubbles were simultaneously placed and grown from homogeneous regions of the im-

age. The latter is perhaps the closest to the approach proposed here, however, we introduce a

new skeleton-based stopping criteria to prevent seeds from merging due to our regularity and

compactness requirements. Moreover, our seeds are initialized to avoid image edges (rather

than using random initialization) and we employ a more advanced reaction-diffusion evolution

strategy, making it possible to better capture object edges.

While there are many variations on the theme of dilating seeds using geometric flows (e.g.,

this idea has been used for segmenting vasculature in medical imaging [56]), none of these

methods have been applied thus far to superpixel segmentation. Below we develop such a

technique by combining a curve evolution model for dilation with a skeletonization process

on the background region to prevent the expanding seeds from merging. We demonstrate that

this technique advances the state of the art in compact superpixel computation by 1) being

applicable to megapixel size images, with very high superpixel densities, and 2) providing

comparable accuracy to N-Cuts, but with significantly lower run times.

3.2 Superpixels from Geometric Flows

The key idea in our approach is to reduce superpixel computation to an efficiently-solvable

geometric flow problem. Our approach is guided by five basic principles:

• Uniform size and coverage: Superpixel segmentation should partition an image into

regions that are approximately uniform in size and shape (compactness), minimizing

region under-segmentation, provided that superpixel size is comparable to the size of

the smallest target region. We achieve this by designing a geometric flow that dilates an

initial set of uniformly-distributed seeds, where each seed corresponds to one superpixel.

The seeds behave initially like reaction-diffusion bubbles [101].

• Connectivity: Each superpixel should represent a simply-connected set of pixels. Our



CHAPTER 3. TURBOPIXELS: FAST SUPERPIXELS USING GEOMETRIC FLOWS 50

dilation-based flow combined with its level-set implementation, ensures that this con-

straint is always satisfied.

• Compactness: In the absence of local edge information, superpixels should remain com-

pact. Our flow begins from circular seeds and assumes no prior bias on the location of

superpixel boundaries. To maximize compactness, we include a term that produces con-

stant motion in the direction of the outward normal in regions of uniform intensity. This

term maximizes the rate of area growth, while retaining the minimum possible isoperi-

metric ratio, which is 4π for a circular region.

• Smooth, edge-preserving flow: When growth stops, superpixel boundaries should coin-

cide with image edges. This requires a geometric flow formulation with three properties:

(1) it should slow down boundary growth in the vicinity of edges; (2) it should be at-

tracted to edges; and (3) it should produce smooth boundaries. To do this, we borrow

ideas from work on geometric active contours [15, 16, 48, 49, 62]. Such formulations

provide an easy way to incorporate image-based controls on boundary growth, and in-

clude both a “doublet” term for attraction and a curvature term for shape regularization.

• No superpixel overlap: A superpixel segmentation should assign every pixel to a single

superpixel. Therefore, boundary evolution should stop when two distinct dilating seeds

are about to collide. To achieve this we incorporate a simple skeleton-based mechanism

for collision detection in the background.

These considerations lead to a geometric flow-based algorithm, that we call TurboPixels,

whose goal is to maintain and evolve the boundary between the assigned region, which contains

all pixels that are already inside some superpixel, and the unassigned region, which contains all

other pixels. At a conceptual level, the algorithm consists of the following steps, as illustrated

in Fig. 3.2:

1. place initial seeds

2. iterate over the following basic steps until no further evolution is possible, i.e., when the



CHAPTER 3. TURBOPIXELS: FAST SUPERPIXELS USING GEOMETRIC FLOWS 51

Step 1

Section 3.3.2

Place K seeds

Repeat until no evolution possible (Section 3.7)

Step 2

Section 3.3.3

Evolve T time-steps

Step 3

Section 3.3.4

Update skeleton

Step 4a

Section 3.3.5

Update velocities

Step 4b

Section 3.3.6

Extend velocities

Figure 3.2: Steps of the TurboPixel algorithm. In Step 4a the vectors depict the current

velocities at seed boundaries. Where edges have been reached the velocities are small. In Step

4b the magnitude of velocities within the narrow band is proportional to brightness.



CHAPTER 3. TURBOPIXELS: FAST SUPERPIXELS USING GEOMETRIC FLOWS 52

speed at all boundary pixels is close to zero.

(a) evolve this boundary for T time steps;

(b) estimate the skeleton of the unassigned region;

(c) update the speed of each pixel on the boundary and of unassigned pixels in the

boundary’s immediate vicinity.

See Algorithm 1 for a pseudocode summary of these steps, each of which is discussed in detail

below.

3.3 The TurboPixel Algorithm

3.3.1 Level-Set Boundary Representation

Geometric flows of the type associated with the TurboPixel algorithm are commonly imple-

mented using level-set methods [73]. The basic idea is to devise a flow by which curves evolve

to obtain superpixel boundaries. Let C be a vector of curve coordinates parameterized by p,

a parameter which runs along the curve, and t, a parameter to denote evolution in time. Let

N represent its outward normal and let each point move with speed S by a curve evolution

equation ∂C
∂t

= SN. This curve evolution equation is implemented by first embedding C as

a level set of a smooth and continuous function Ψ : R2 × [0, τ) → R and then evolving this

embedding function according to:

Ψt = −S ||∇Ψ|| . (3.1)

In practice we define Ψ over the image plane as the signed Euclidean distance of each im-

age pixel to the closest point on the boundary between assigned and unassigned (background)

regions. A pixel’s distance is positive if it is in the unassigned region and negative if it is not,

with the boundary represented implicitly as the zero level set of Ψ. Since we are only interested

in the zero level set of Ψ, we maintain an accurate representation of Ψ only in a narrow band



CHAPTER 3. TURBOPIXELS: FAST SUPERPIXELS USING GEOMETRIC FLOWS 53

around its current zero level set (typically 4 pixels wide on each side of the boundary). This nar-

row band is computed using the Fast Marching implementation in LMSLIB1. The superpixel

boundaries can be computed at sub-pixel resolution by interpolation.

3.3.2 Initial Seed Placement

One of our key objectives is to compute superpixels that are evenly distributed over the image

plane. Given a user-specified valueK of superpixels, we placeK circular seeds in a lattice for-

mation so that distances between lattice neighbors are all approximately equal to
√

N
K

, where

N is the total number of pixels in the image. This distance completely determines the seed

lattice, since it can be readily converted into a distance across lattice rows and columns. In our

implementation the initial seed radius is 1 pixel.

The above strategy ensures that superpixels in a uniform-intensity image will satisfy the

uniform distribution objective exactly. In practice, of course, images are not uniform and this

deterministic placement may cause some seeds to accidentally fall on or close to a strong edge,

inhibiting their early growth. To avoid this we perturb the position of each seed by moving it

in the direction of the image gradient as a function of the gradient magnitude (see Sec. 3.3.5),

with the maximum perturbation determined by the seed density.

3.3.3 Numerical Level Set Evolution

We use the following first-order discretization in time of Eq. (3.1):

Ψn+1 = Ψn − SISB ‖∇Ψn ‖ ∆t . (3.2)

Each application of Eq. (3.2) corresponds to one “time step” ∆t in the evolution of the bound-

ary. We apply this equation until any point on the evolving boundary reaches the edge of

the narrow band. The key term controlling the evolution is the product of two speeds SISB,

1LSMLIB is a library of level set routines written by K. Chu (http://www.princeton.edu/
˜ktchu/software/lsmlib/).



CHAPTER 3. TURBOPIXELS: FAST SUPERPIXELS USING GEOMETRIC FLOWS 54

which lie at the heart of our TurboPixel algorithm. The first term (SI) depends on local image

structure and superpixel geometry at each boundary point, and the second (SB) depends on the

boundary point’s proximity to other superpixels. We detail the computation of these velocities

in Sections 3.3.5 and 3.3.4, respectively.

In theory, the velocities in Eq. (3.2) are defined at every point on the zero level set. In

practice, we compute this term for a small band of pixels in the vicinity of the zero level set

at iteration n. We discuss this process in Sec. 3.3.6. For notational simplicity, we omit the

parameter n from Ψn in the following sections, except where it is explicitly needed.

3.3.4 Proximity-Based Boundary Velocity

The proximity-based velocity term ensures that the boundaries of nearby superpixels never

cross each other. To do this, we use a binary stopping term that is equal to 0 on the 2D homo-

topic skeleton of the unassigned region and is is equal to 1 everywhere else, i.e., SB(x, y) = 0 if

and only if (x, y) is on the skeleton. This formulation allows the boundary of each superpixel

to be guided entirely by the underlying image, until it gets very close to another superpixel

boundary.

Since the regions between evolving curves change at each iteration of our algorithm, the

skeleton must be updated as well. We do this efficiently by marking all pixels in these unas-

signed regions (i.e., those with Ψ(x, y) > 0) and then applying a homotopy preserving thinning

algorithm [96] on them to compute the skeleton. The thinning algorithm removes pixels or-

dered by their distance to the boundary of the region with the constraint that all digital points

that can be removed without altering the topology are removed.

3.3.5 Image-Based Boundary Velocity

Our image-based speed term combines the reaction-diffusion based shape segmentation model

of [15, 62, 101] with an additional “doublet” term provided by the geodesic active contour



CHAPTER 3. TURBOPIXELS: FAST SUPERPIXELS USING GEOMETRIC FLOWS 55

Algorithm 1: TurboPixel Algorithm
Input: Image I , number of seeds K

Output: Superpixel boundaries B

Place K seeds on a rectangular grid in image I;1

Perturb the seed positions away from high gradient regions;2

Set all seed pixels to “assigned”;3

Set Ψ0 to be the signed Euclidean distance from the “assigned” regions;4

assigned pixels←
∑

x,y [Ψ0(x, y) >= 0];5

Compute the pixel affinity φ(x, y);6

n← 0;7

while Change in assigned pixels is large do8

Compute the image velocity SI ;9

Compute the boundary velocity SB;10

S ← SISB;11

Extend the speed S in a narrow band near the zero level-set of Ψn;12

Compute Ψn+1 by evolving Ψn within the narrow band;13

n← n+ 1;14

assigned pixels←
∑

x,y [Ψn(x, y) >= 0];15

B ← homotopic skeleton of Ψn;16

return B17

[16, 48] to attract the flow to edges:

SI(x, y) = [ 1− ακ(x, y) ]φ(x, y)︸ ︷︷ ︸
reaction-diffusion term

− β [ N(x, y) · ∇φ(x, y) ]︸ ︷︷ ︸
“doublet” term

. (3.3)

The reaction-diffusion term ensures that the boundary’s evolution slows down when it gets

close to a high-gradient region in the image. It is controlled by three quantities: (1) a “local

affinity” function φ(x, y), computed for every pixel on the image plane, that is low near edges

and high elsewhere; (2) a curvature function κ(x, y) that expresses the curvature of the bound-



CHAPTER 3. TURBOPIXELS: FAST SUPERPIXELS USING GEOMETRIC FLOWS 56

ary at point (x, y) and smoothes the evolving boundary; and (3) a “balancing” parameter α that

weighs the contribution of the curvature term.

Intuitively, the doublet term ensures that the boundary is attracted to image edges, i.e., pix-

els where the affinity is low. Specifically, when a point (x, y) on the boundary evolves toward

a region of decreasing affinity (an image edge), its normal N(x, y) will coincide with the neg-

ative gradient direction of φ, and the term acts as an attractive force. If the boundary crosses

over an edge these two vectors will point in the same direction and cause a reversal in the

boundary’s direction of motion.

Local affinity function Our algorithm does not depend on a specific definition of the function

φ, as long as it is low on edges and is high elsewhere. For almost all the experiments in this

chapter, we used a simple affinity measure based on the grayscale intensity gradient:

φ(x, y) = e−E(x,y)/ν , E(x, y) =
‖∇I‖

Gσ∗‖∇I‖+ γ
. (3.4)

Our affinity function φ produces high velocities in areas with low gradients, with an upper

bound of 1. Dividing the gradient magnitude in E(x, y) by a local weighted sum of gradi-

ent magnitudes provides a simple form of contrast normalization. The support width of the

normalization, controlled by σ, is proportional to the expected initial distance between seeds.

This normalization allows weak but isolated edges to have a significant effect on speed, while

suppressing edge strength in dense texture. The constant γ ensures that the effect of insignif-

icant signal gradients remains small. We note that whereas our E(x, y) is a simple measure

of grayscale image gradient, the implementation of N-Cuts we use for comparison ([111]) in

our experiments in Section 3.4 employs a more complex measure of intervening contours com-

puted using a texture-based edge map.

Normal and curvature functions The outward normal of the zero level set of Ψ at a point

(x, y) is given by the derivatives of Ψ, i.e., N = ∇Ψ/‖∇Ψ ‖. The curvature of the zero level



CHAPTER 3. TURBOPIXELS: FAST SUPERPIXELS USING GEOMETRIC FLOWS 57

set, at a point (x, y), is given by [73]:

κ =
ΨxxΨ

2
y − 2ΨxΨyΨxy + ΨyyΨ

2
x

(Ψ2
x + Ψ2

y)
3
2

. (3.5)

As is standard for diffusive terms, the derivatives of Ψ used for κ are computed using central

difference approximations. Central difference approximations are also used for all other cal-

culations with the exception of ‖∇Ψn ‖ in the level set form for the reaction term (φ(x, y)) in

Eq. 3.2, for which upwind derivatives [73] must be used since it is a hyperbolic term.

Balancing parameters The balancing parameters α and β in Eq. 3.3 control the relative

contributions of the reaction-diffusion and doublet terms. Higher values of α prevent “leakage”

through narrow edge gaps, but also prevent sharp superpixel boundaries that may be sometimes

desirable. High values of β cause better stopping behavior of seeds on weak edges, but also

slow down the evolution of seeds elsewhere.2

3.3.6 Speed Extension

The velocity terms SI and SB have meaning only on the current superpixel boundaries, i.e., the

zero level set of Ψ. This leads to two technical difficulties. First, the zero level set is defined

implicitly and, hence, it lies “in between” the discrete image pixels. Second, each time we

invoke a level set update iteration (Eq. 3.2), the boundary must move by a finite amount (i.e.,

at least a sizeable fraction of a pixel).

Speed extension gives a way to solve both problems and is common in existing curve evo-

lution implementations [62]. Here, we extend φ and ∇φ, the only image-dependent terms, in

the same narrow band we use to maintain an accurate estimate of Ψ (see Sec. 3.3.3). To each

pixel (x, y) in this narrow band, we simply assign the φ and ∇φ values of its closest pixel on

2Based on empirical observation, the values α = 0.3 and β = 1 were chosen. These values limit the amount
of leakage during seed evolution, without slowing down the evolution in other regions. In the future, we intend to
learn the optimal values for these parameters automatically by evaluating the performance of the algorithm on a
training set of images.



CHAPTER 3. TURBOPIXELS: FAST SUPERPIXELS USING GEOMETRIC FLOWS 58

the boundary3.

3.3.7 Termination Conditions & Final Segmentation

The algorithm terminates when the boundaries stop evolving. Since in theory the boundaries

can evolve indefinitely with ever-decreasing velocities, the algorithm terminates when the rela-

tive increase of the total area covered by superpixels falls below a threshold. We used a relative

area threshold of 10−4 in all our experiments.

After termination, the evolution results are post-processed so that the superpixel boundaries

are exactly one pixel in width. This is done in three steps. First, any remaining large unassigned

connected regions are treated as superpixels. Next, very small superpixels are removed, making

their corresponding pixels unassigned. Finally, these unassigned regions are thinned, as in

Sec. 3.3.4, according to the algorithm in [96]. The thinning is ordered by a combination of

Euclidean distance to the boundary and a φ-based term, in order to obtain smooth superpixel

contours that are close to edges.

3.3.8 Algorithm Complexity

The complexity of our algorithm is roughly linear in the total number of image pixels N for

a fixed superpixel density. At each time step, all elements of the distance function Ψ are

updated (see Eq. 3.2). Each update requires the computation of the partial derivatives of Ψ and

evaluation of SISB. Thus each update takes O(N) operations.

The speed extension and homotopic skeleton computations are not linear in image size.

Both actions are O(N logN) but can be made faster in practice. If b is the number of pixels

in the narrow band (which is linear in the number of pixels that lie on zero-crossings), then

the complexity of speed extension is O(N) + O(b log b). The term O(b log b) arises from the

computation of the distance function Ψ in the narrow band. While b can approach N in theory,

3The algorithm that efficiently computes Ψ for all pixels within the narrow band provides their closest bound-
ary pixel as a byproduct, so no extra computations are necessary.



CHAPTER 3. TURBOPIXELS: FAST SUPERPIXELS USING GEOMETRIC FLOWS 59

it is usually much smaller in practice.

The homotopic skeleton computation is O(N) + O(k log k) [96], where k is the number

of unassigned pixels. Again, O(k log k) is the complexity of distance function computation

inside the unassigned region. In practice, k � N , especially toward the end of the evolution

when few unassigned pixels remain.

It now remains to take into account the number of iterations of the algorithm. Under ideal

conditions, all the curves evolve with maximal speed until they meet or reach an edge. Since the

expected distance between seeds is Dn initially (see Sec. 3.3.2), it will take O(
√

N
K

) iterations

for the algorithm to converge. Hence, the algorithm converges more slowly for larger images,

and more quickly as the superpixel density increases. Thus for a fixed superpixel density

(keepingDn constant), the number of iterations will be constant, making the overall complexity

roughly O(N).

3.4 Experimental Results

We evaluate the performance of the TurboPixel algorithm (both with gradient-based and Pb-

based affinity) by comparing its accuracy and running time to four other algorithms: Normal-

ized Cuts (Ncuts), Superpixel Lattice (Lattice)4 and square blocks (Sb), all of which encode a

compactness constraint, and Felzenszwalb and Huttenlocher (Felz), which does not. The Tur-

boPixel algorithm was implemented in Matlab with several C extensions5. For Ncuts, we use

the 2004 Ncut implementation based on [111]6, while for Sb, we simply divide the image into

even rectangular blocks, providing a naive but efficient benchmark for accuracy (other algo-

rithms are expected to do better). All experiments were performed on a quad-core Xeon 3.6

4The Superpixel Lattice algorithm of Moore et al. [68] was developed in parallel to this work and thus was
not thoroughly evaluated against in this study.

5A beta-version of our code is available at http://www.cs.toronto.edu/˜babalex/
turbopixels_supplementary.tar.gz; the default parameter values are the same as those used
for the experiments in this article.

6We use Version 7 from Jianbo Shi’s website http://www.cis.upenn.edu/˜jshi/software/
files/NcutImage_7_1.zip



CHAPTER 3. TURBOPIXELS: FAST SUPERPIXELS USING GEOMETRIC FLOWS 60

Ghz computer. We use the Berkeley database, which contains 300 (481×321 or 321×481) im-

ages. In our experiments, the image size is defined as the fraction of the area of the full image

size of 154401 pixels. In all experiments, performance/accuracy is averaged over at least 25

images and in most cases over a larger number.7 Finally, the gradient-based affinity function

of a grayscale image (Eq. 3.4) was used for the TurboPixel algorithm, a Pb affinity based on

brightness and texture was used for TurboPixel Pb as well as for Lattice, a difference in image

intensity was used as affinity in Felz, and a more elaborate (intervening contours) affinity was

used for Ncuts.

3.4.1 Under-segmentation Error

As stated in Section 3.1, algorithms that do not enforce a compactness constraint risk a greater

degree of under-segmentation. Given a ground-truth segmentation into segments g1, . . . , gK

and a superpixel segmentation into superpixels s1, . . . , sL, we quantify the under-segmentation

error for segment gi with the fraction[∑
{sj | sj∩gi 6=∅}Area(sj)

]
− Area(gi)

Area(gi)
. (3.6)

Intuitively, this fraction measures the total amount of “bleeding” caused by superpixels that

overlap a given ground-truth segment, normalized by the segment’s area.

To evaluate the under-segmentation performance of a given algorithm, we simply average

the above fraction across all ground-truth segments and all images. Figure 3.3(a) compares the

algorithms using this metric, with under-segmentation error plotted as a function of superpixel

density. The inability of Felz to stem the bleeding is reflected in the significantly higher under-

segmentation error over all three algorithms that encode a compactness constraint. Note that

Lattice also suffers from bleeding, but it is possible to change the parameters of this method

to force stronger conformity with a grid structure, thereby improving the undersegmentation

7Due to the long running time and large memory requirements of Ncuts, using the entire database was pro-
hibitively expensive.



CHAPTER 3. TURBOPIXELS: FAST SUPERPIXELS USING GEOMETRIC FLOWS 61

100 150 200 250 300 350 400 450 500

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of superpixels

U
nd

er
se

gm
en

ta
tio

n 
E

rr
or

 

 
Turbo

Turbo Pb

Lattice

Felz

SB

Ncuts

150 200 250 300 350 400 450 500 550
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of superpixels

B
ou

nd
ar

y 
re

ca
ll

 

 

Turbo

Turbo Pb

Lattice

Felz

SB

Ncuts

(a) (b)

Figure 3.3: Under-segmentation error (a) and accuracy (boundary recall) (b) as a function of

superpixel density.

error at the expense of boundary recall. Of these methods, the TurboPixel and TurboPixel Pb

algorithms achieve the least under-segmentation error, where the improved performance of the

latter is due to the more powerful affinity function.

3.4.2 Boundary Recall

Since precise boundary shape might be necessary for some applications, we adopt a standard

measure of boundary recall (what fraction of the ground truth edges fall within a small dis-

tance threshold (2 pixels in this experiment) from at least 1 superpixel boundary. As shown

in Fig. 3.3(b), Felz offers better recall at lower superpixel densities, while at higher superpixel

densities, Felz and TurboPixel are comparable, with both outperforming Ncuts and Sb. The

fact that Felz does not constrain its superpixels to be compact means that it can better capture

the boundaries of thin, non-compact regions at lower superpixel densities.

3.4.3 Timing Evaluation

With the exception of the naive and clearly inferior Sb algorithm, the cost of enforcing a com-

pactness constraint (Ncuts, TurboPixel) is significant; for example, Felz is, on average, 10



CHAPTER 3. TURBOPIXELS: FAST SUPERPIXELS USING GEOMETRIC FLOWS 62

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

Image size (normalized # of pixels)

T
im

e 
(m

in
)

 

 
TurboPixels
N−Cuts

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

Image size (normalized # of pixels)

T
im

e 
(s

ec
)

(a) (b)

1 2 3 4 5
0

5

10

15

20

25

Number of superpixels (100s)

T
im

e 
(m

in
)

 

 
TurboPixels
N−Cuts

1 2 3 4 5
0

1

2

3

4

5

6

7

Number of superpixels (100s)

T
im

e 
(s

ec
)

(c) (d)

Figure 3.4: Timing evaluation. (a) Running time vs. image size. (b) An expanded version (a)

to show the behavior of the TurboPixel algorithm. (c) Running time vs. superpixel density. (d)

An expanded version of (c) showing the behavior of the TurboPixel algorithm.

times faster than TurboPixel. Lattice is even faster than Felz when affinity function computa-

tion is excluded. For our timing analysis, we restrict our comparison to TurboPixel and Ncuts,

the two primary competitors in the class of algorithms with a compactness constraint. For any

superpixel algorithm, it is appropriate to increase the number of superpixels as the image size

increases, so that the expected area (in pixels) of each superpixel remains constant. Fig. 3.4 (a

and b) shows the running time of the two algorithms as a function of increased image size. The

expected size of a superpixel is kept fixed at about 10×10 pixels.



CHAPTER 3. TURBOPIXELS: FAST SUPERPIXELS USING GEOMETRIC FLOWS 63

The TurboPixel algorithm is several orders of magnitude faster. It is almost linear in image

size compared to Ncuts, whose running time increases non-linearly. Due to “out of memory”

errors, we were unable to run Ncuts for all of the parameter settings used for the TurboPixel

results. Fig. 3.4 (c and d) show running time as a function of superpixel density, with the image

size fixed at 240×160 (one quarter of the original size). The running time of Ncuts increases

in a non-linear fashion whereas the running time of the TurboPixel algorithm decreases as the

density of the superpixels increases. This is due to the fact that the seeds evolve over a smaller

spatial extent on average and thus converge faster.

3.4.4 Qualitative Results

Fig. 3.5 gives a qualitative feel for the superpixels obtained by the TurboPixel algorithm for a

variety of images from the Berkeley database. Observe that the superpixel boundaries respect

the salient edges in each image, while remaining compact and uniform in size.8 Obtaining

superpixels under such conditions using Ncuts is prohibitively expensive. Fig. 3.6 provides

a qualitative comparison against the results obtained using Ncuts. The TurboPixel algorithm

obtains superpixels that are more regularly shaped and uniform in size than those of Ncuts.

The TurboPixel algorithm is of course not restricted to work with affinity functions that

are based strictly on image gradient, as discussed in Section 3.3.5, and hence more refined

measures can be used for superpixel boundary velocity. Fig. 3.7 shows the performance of

the algorithm when the boundary velocity incorporates the Pb edge detector [63]. Note how

the edge between the leopard and the background is captured much better when a Pb-based

affinity is used. Moreover, the shapes of the superpixels inside the leopard are more regular for

the latter case.

8Supplementary material (http://www.cs.toronto.edu/˜babalex/turbopixels_
supplementary.tar.gz) contains additional results of the TurboPixel algorithm on megapixel sized
images with superpixel densities in the thousands.



CHAPTER 3. TURBOPIXELS: FAST SUPERPIXELS USING GEOMETRIC FLOWS 64

Figure 3.5: TurboPixel results on a variety of images from the Berkeley database, with a zoom-

in on selected regions in the middle and right columns.

3.5 Limitations and Future Work

Our current system suffers from a number of limitations. First, note that in case of textured

images, our current Pb-based affinity enables us to obtain better superpixels, but is just a first

stab at better handling texture. We see that the leopard’s top boundary in Figure 3.7, for exam-

ple, is not being captured as well as the object boundaries we have shown before, where our

original, gradient-based affinity was used. Handling texture is not the only issue faced by a

superpixel algorithm. Edges in an image can also be present at multiple scales. In Figure 3.8,



CHAPTER 3. TURBOPIXELS: FAST SUPERPIXELS USING GEOMETRIC FLOWS 65

Ncuts TurboPixels

Ncuts TurboPixels

Figure 3.6: A qualitative comparison of TurboPixel results with gray-level gradient-based affin-

ity compared to results with Ncuts.

Figure 3.7: Qualitative results of the TurboPixel algorithm using gradient-based (middle) and

Pb-based (right) affinity functions.

unlike the sharp boundaries of the deer, the edge separating the field from the trees is blurry

as it is out of focus. Running our algorithm on the original resolution with our gradient-based

affinity results in bleeding (Figure 3.8 middle). However, subsampling the image and detecting

edges at a coarse scale (lowering the superpixel density accordingly), results in a significant



CHAPTER 3. TURBOPIXELS: FAST SUPERPIXELS USING GEOMETRIC FLOWS 66

Figure 3.8: Effect of multiple edge scales on performance. Running TurboPixels on the original

image (middle) fails to capture strong, but blurry edges. Running on a subsampled image

(right) results in better recall of blurry edges.

improvement (Figure 3.8 right). To summarize the pixel affinity issue, our system provides a

black-box for fast superpixel recovery and the quality of the results directly depends on the

provided pixel affinity. While we have illustrated that the system works reasonably well with

two example affinities, there is room for significant improvement in that regard, which we leave

for future work.

Figure 3.9: Running TurboPixels at different superpixel resolutions. High density superpixel

resolution (middle), in addition with compactness constraints, is often enough to prevent bleed-

ing. Running TurboPixels at coarse superpixel resolution (right) often causes undersegmenta-

tion.

The strongest points of our approach, i.e., the use of a local segmentation technique and

enforcing superpixel compactness, are also its main downfalls. Like any local segmentation

technique, our method can also suffer from bleeding effects in regions of low contrast. Enforc-

ing compactness and maintaining high superpixel density helps to minimize bleeding, but is



CHAPTER 3. TURBOPIXELS: FAST SUPERPIXELS USING GEOMETRIC FLOWS 67

far from being a complete solution for undersegmentation. Given the same affinities, a global

approach, such as Ncuts, is expected to do better, especially at coarser superpixel resolutions.

The effects of weak contrast were apparent in previous examples. Notice the bleeding on the

bottom part of the cross and the elephant tusk in Figure 3.5. The situations worsen at coarser

superpixel resolutions. Figure 3.9 illustrates that, while the top boundary of the bird is captured

well at a fine resolution (middle), our greedy approach may not be suitable for coarser super-

pixel resolutions (right). Finally, while compactness helps to avoid bleeding, especially when

using a local segmentation approach, it may negatively affect performance when thin, non-

compact shapes are present (such as the stick in Figure 3.10). Our regular seeding not only

makes it challenging to place a sufficient number of superpixel seeds inside thin structures, but

even seeded correctly such seeds are likely to bleed through object boundaries. In future work,

we will explore other seeding procedures, placing more seeds in regions of high importance or

inside thin structures, while using coarser resolutions inside homogeneous regions like the sky.

Moreover, our framework could potentially be extended to encode additional shape constraints

besides compactness. For instance, we could enforce superpixels to be elliptical inside narrow

structures and thereby further minimize bleeding in such cases.

3.6 Conclusions

The task of efficiently computing a highly regular over-segmentation of an image can be effec-

tively formulated as a set of locally interacting region growing problems, and as such avoids

the high cost of computing globally optimal over-segmentations (or their approximations),

such as N-Cuts. Combining the power of a data-driven curve evolution process with a set

of skeletal-based external constraints represents a novel, highly efficient framework for super-

pixel segmentation. The results clearly indicate that while superpixel quality is comparable to

the benchmark algorithm, our algorithm is several orders of magnitude faster, allowing it to be

applied to large megapixel images with very large superpixel densities.



CHAPTER 3. TURBOPIXELS: FAST SUPERPIXELS USING GEOMETRIC FLOWS 68

Figure 3.10: Negative effect of superpixel compactness on capturing thin objects.

The framework is general and, like any region segmentation algorithm, is based on a user-

defined measure of affinity between pixels. While our experiments have demonstrated the

use of intensity gradient-based and Pb-based affinities, other more complex affinity measures,

perhaps incorporating information from multiple scales, are possible. Selecting the appropriate

affinity measure is entirely task dependent. We offer no prescription, but rather offer a general

framework into which a domain-dependent affinity measure can be incorporated.

It is also important to note that we have intentionally skirted several important domain-

dependent problems. One global issue is the fact that our framework allows the user to control

the superpixel shape and density. On the issue of density, our approach is very generic, and

one could imagine that with domain knowledge, seeds could be placed much more judiciously.

And depending on the task, seeds could be placed with varying density at the cost of lower

superpixel uniformity. In some domains, varying seed density may be more desirable. In tex-

tured images, for example, seeds could be placed to capture the individual texture elements

better (like the spots of the leopard in Figure 3.6). Moreover, our framework allows us to

guide superpixels to have a certain shape. Currently, in the absence of edges, the superpix-



CHAPTER 3. TURBOPIXELS: FAST SUPERPIXELS USING GEOMETRIC FLOWS 69

els would grow in a circular manner. However, one could imagine growing superpixels to be

elliptical instead. Both of the above extensions should prove useful in cases of narrow struc-

tures (Figure 3.10). Still, as shown in the experiments, the use of a compactness constraint

clearly minimizes under-segmentation at a significantly higher computational cost. If both

under-segmentation and irregularly shaped superpixel boundaries can be tolerated, the Felzen-

szwalb algorithm is clearly the better choice, offering a tenfold speed-up as well as improved

boundary recall at lower superpixel densities.

(a) (b)

(c) (d)

Figure 3.11: Image representation using superpixels. Each superpixel from the original image

(a) is colored with: (b) The average color of the original pixels in it. (c) The best linear fit to

the color of the original pixels in it. (d) The best quadratic fit to the color of the original pixels

in it.



CHAPTER 3. TURBOPIXELS: FAST SUPERPIXELS USING GEOMETRIC FLOWS 70

Perhaps the most important issue is what to do with the resulting superpixels. Currently,

superpixels are mainly used for image labeling problems to avoid the complexity of having

to label many more pixels. In the same manner, superpixels can be used as the basis for

image segmentation. In the graph cuts segmentation algorithm, the affinity can be defined over

superpixels instead of over pixels, resulting in a much smaller graph. Superpixels can also

be considered as a compact image representation. To illustrate this idea, in Figure 3.11 each

superpixel’s color is approximated by three polynomials (one per channel). Note that whereas

the mean and the linear approximations seem poor, the quadratic approximation approaches

the quality of the original image. In the next two chapters, we use compact superpixels as a

basis for perceptual grouping. In Chapter 4, we group compact superpixels to separate figure

from ground. In Chapter 5, we use them to approximate the maximal discs of a skeletal branch

and group them to form symmetric parts.



Chapter 4

Optimal Contour Closure by Superpixel

Grouping

4.1 Introduction

One of the key challenges in perceptual grouping is computing contour closure, i.e., linking

together a set of fragmented contours into a cycle that separates an object from its back-

ground. What makes the problem particularly hard is the intractable number of cycles that

may exist in the contours extracted from an image of a real scene. Early perceptual grouping

researchers [105] identified a set of nonaccidental contour relations, such as symmetry, par-

allelism, collinearity, co-curvilinearity, etc., that can be used to link together causally related

contours. Such nonaccidental grouping rules can serve as powerful heuristics to help manage

the complexity of greedily searching for a contour closure that is unlikely to have arisen by

chance [29, 30]. However, the space of possible closures is still overwhelming, particularly

when one allows larger and larger boundary gaps in a closure. Finding an optimal solution is

intractable without somehow reducing the complexity of the problem.

In this chapter, we introduce a novel framework for efficiently searching for an optimal

closure. Figure 4.1 illustrates an overview of our approach. Given an image of extracted

71



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 72

contours (Figure 4.1(a)), we begin by restricting contour closures to pass along boundaries of

superpixels computed over the contour image (Figure 4.1(b)). In this way, our first contribution

is to reformulate the problem of searching for cycles of contours as the problem of searching

for a subset of superpixels whose border has strong contour support in the contour image; the

assumption we make here is that those salient contours that define the boundary of the object

(our target closure) will align well with superpixel boundaries. However, while a cycle of

contours represents a single contour closure, our reformulation needs a mechanism to prefer

superpixel subsets that are spatially coherent.

Spatial coherence is an inherent property of a cost function that computes the ratio of

perimeter to area. We modify the ratio cost function of Stahl and Wang [99] to operate on

superpixels rather than contours, and extend it to yield a cost function that: 1) promotes spa-

tially coherent selections of superpixels; 2) favors larger closures over smaller closures; and

3) introduces a novel, learned gap function that accounts for how much agreement there is

between the boundary of the selection and the contours in the image. The third property adds

cost as the number and sizes of gaps between contours increase. Given a superpixel boundary

fragment (e.g., a side of a superpixel) representing a hypothesized closure component, we as-

sign a gap cost that’s a function of the proximity of nearby image contours, their strength, their

orientation, and their curvature (Figure 4.1(c)). It is in this third property that our superpixel

reformulation plays a second important role – by providing an appropriate scope of contour

over which our gap analysis can be conducted.

In our third and final contribution, the two components of our cost function, i.e., area and

gap, are combined in a simple ratio that can be efficiently optimized using parametric maxflow

[50] to yield the global optimum. The optimal solution yields the largest set of superpixels

bounded by contours that have the least gaps (Figure 4.1(d)). Moreover, parametric maxflow

will yield the top k solutions (see [14], for example). In an object recognition setting, generat-

ing a small set of such solutions can be thought of as generating a small set of promising shape

hypotheses which, through an indexing process, could invoke candidate models that could be



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 73

(a) (b) (c)

(d)

Figure 4.1: Overview of our approach: (a) contour image – while we take as input only this

contour image, we will overlay the original image in the subsequent figures to ease visualiza-

tion; (b) superpixel segmentation of contour image, in which superpixel resolution is chosen to

ensure that target boundaries are reasonably well approximated by superpixel boundaries; (c) a

novel, learned measure of gap reflects the extent to which the superpixel boundary is supported

by evidence of a real image contour (line thickness corresponds to the amount of agreement

between superpixel edges and image contours); (d) our cost function can be globally optimized

to yield the largest set of superpixels bounded by contours that have the least gaps. In this case

the solutions, in increasing cost (decreasing quality), are organized left to right.



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 74

verified (detected).

In the following sections, we begin by reviewing related work on contour closure (Sec-

tion 4.2). Next, in Section 4.3, we introduce our problem formulation that transforms the

problem of finding optimal cycles of contour fragments into the problem of finding an opti-

mal subset of superpixels. It is here that our cost function is described. In Section 4.4, we

describe our process for learning our gap function from training data, and in Section 4.5, we

present an efficient procedure for finding the global minimum of our cost function using para-

metric maxflow. In Section 4.6, we evaluate our framework, comparing it to two competing

approaches for computing closure, and discuss the strengths and weaknesses of our approach.

Section 4.7 illustrates several extensions to the work. First, we show how our grouping frame-

work can easily be augmented to include both contour and region information, thereby em-

phasizing the third important role of our superpixel reformulation of providing an appropriate

scope over which appearance can be analyzed. Secondly, we show how the framework can

benefit from the use of multiscale superpixel segmentation. Finally, we show how it can be

naturally extended to finding closures in spatiotemporal domains. In Section 4.9, we draw

conclusions and outline our plans for future work.

4.2 Related Work

Detecting closed contours in an image has been addressed by many researchers in different

ways. One possible taxonomy for categorizing related work is based on the nature of the prior

information used to constrain the grouping process. We will stop short of reviewing methods

which assume object-level priors, for it is unclear how to make such methods scale up to very

large databases. Instead, we focus on methods that make no assumptions about scene content,

although as we will see, many make assumptions about the nature of parts that make up the

objects in the scene. In fact, some methods incorporate low-, mid-, and high level shape priors,

as exemplified by Ren et al. [82]. We will also stop short of reviewing methods focused solely



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 75

on contour completion, e.g., Ren et al. [81] and Williams and Jacobs [106], although the

regularities exploited by such approaches can clearly play a powerful role in detecting closure.

Many researchers have exploited the classical Gestalt cues of parallelism and symmetry to

group contours. Lowe’s [57] early work on perceptual grouping was one of the first to develop a

computational model for parallelism, collinearity, and proximity. Many computational models

exist for symmetry-based grouping, including Brady and Asada [10], Cham and Cipolla [17],

Saint-Marc et al. [84], Ylä-Jääski and Ade [110], and more recently, Stahl and Wang [98].

One significant challenge faced by these systems is the complexity of pairwise contour group-

ing to detect symmetry-related contour pairs. The work in Chapter 5 attempts to overcome

this computational complexity limitation by constraining the symmetric parts to be collections

of superpixels. This chapter, draws on this idea of grouping superpixels, but will relax the

symmetry constraint and focus on the more generic perceptual grouping rule of closure.

Further down the spectrum of prior knowledge are methods based on weaker shape priors

than parallelism and symmetry. For example, Jacobs [44] uses convexity as well as gap to

extract closed contours by grouping straight line segments. A less restrictive measure is that

of compactness, which can be attained by normalizing the gap by area (Estrada and Jepson

[29, 30], Stahl and Wang [99]). Some measure of internal homogeneity can also be used

(Estrada and Jepson [30], Stahl and Wang [99]), provided that the inside of the region is easily

accessible.

Finally we come to the most general methods that compute closure using only very weak

shape priors, such as continuity and proximity. The most basic closure-based cost function uses

a notion of boundary gap, which is a measure of missing image edges along the closed contour.

Elder and Zucker [27] model the probability of a connection between two adjacent contour

fragments, and find contour cycles using a shortest path algorithm. Wang et al. [103] optimize

a measure of average gap using the ratio cut approach. However, a measure based purely on

the total boundary gap is insufficient for perceptual closure, and Elder and Zucker [26] argue

that the distribution of gaps along the contour is also very important. Williams and Hanson



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 76

[107] addressed the problem of perceptual completion of occluded surfaces, formulated as

the problem of computing a labeled knot-diagram representing a set of occluded surfaces from

observed image contours. While formulated as an elegant combinatorial optimization problem,

for which an optimal solution was available, the approach was not tested on real scenes.

All the above methods suffer from the high complexity of choosing the right closure from a

sea of contour fragments. To cope with this complexity, they either resort to heuristics to prune

the search (e.g., [44]) or constrain the search space by other means (e.g., restricting the closure

to alternating gap/non-gap cycles [99]). Zhu et al. [112] propose to solve this hard grouping

problem by embedding the edge fragments into polar coordinates such that closed contours

correspond to circles in that space; however, their goal is to better detect object contours,

and they stop short of grouping the contours into closed boundaries. The method of Jermyn

and Ishikawa [46] is perhaps the closest to our work. Similar to [103, 99], they minimize

closure costs using ratio cuts, but unlike [103, 99] who operate on contour fragments, [46]

works directly with pixels in a 4-connected image grid. It enables the authors to minimize

many different closure costs (including our own) by globally minimizing ratio cuts in a simply

connected planar graph. However, individual pixels provide poor scope for gap computation.

In contrast, our superpixels not only provide greater scope for gap computation (which in our

case is learned), but provide greater scope for the incorporation of internal appearance-based

affinity. Finally, while their solution is optimal, it does not provide a set of optimal solutions

that capture closures at multiple scales.

In this chapter, our goal is to find closed contour groups in an efficient manner. To that end,

we use superpixels to constrain the search space of the resulting closures. Superpixels also

provide an easy way to access internal region information (such as region area). Moreover,

superpixel boundaries provide better scope for gap computation, as opposed to most previous

methods that linearize the output of an edge detector and fill the gaps with straight line frag-

ments. On the optimization side, we show that parametric maxflow [50] can be used not only to

recover the global optimum of closure costs similar to that of Stahl and Wang [99] and Jermyn



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 77

and Ishikawa [46], but can also be used to recover a multiscale set of closure hypotheses.

4.3 Problem formulation

As mentioned in Section 4.1, our framework reduces grouping complexity by restricting clo-

sure to lie along superpixel boundaries. Given a contour image I(x, y)1, we first segment it

into N superpixels using a modified version of the superpixel segmentation method of Mori et

al. [70] ([70] uses the Pb edge detector [63], while we use globalPb [61]). If we let Xi be a

binary indicator variable for the i-th superpixel, the vector ~X yields a full labeling of the su-

perpixels of I as figure (1) or ground (0). Recall that our goal will be to select a maximal set of

superpixels which have high spatial coherence and whose boundary has strong contour support

in the image. Drawing on Stahl and Wang [99], we define our closure cost to be C( ~X) = G( ~X)

A( ~X)
,

whereG( ~X) is the boundary gap along the perimeter of (the “on” superpixels of) ~X , andA( ~X)

is its area. Boundary gap is a measure of the disagreement between the boundary of ~X and

is defined to be G( ~X) = P ( ~X) − E( ~X), where P ( ~X) is the perimeter of ~X and E( ~X) is

the “edginess” of the boundary of ~X . Out of the total number of pixels along the boundary of

~X , P ( ~X), edginess is the number of edge pixels, with the edginess of image boundary pixels

defined to be 0.

In order to facilitate the optimization of this cost using an optimal graph cut-based approach

(see Section 4.5), we must decompose the cost function into unary and pairwise terms of the

variables in X . Let Pi be the perimeter length of superpixel i and let Pij be the length of

the shared edge between superpixels i and j. Similarly, let Ei be the edginess of superpixel

i’s boundary, and Eij be the edginess for the shared boundary between superpixels. Let the

superpixel and shared superpixel edge gaps be Gi = Pi−Ei and Gij = Pij −Eij respectively.

1The contour image takes the form of a globalPb image [61].



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 78

Figure 4.2: Boundary gap computation over superpixel graph. S1, S2, S3, and S4 correspond to

superpixels that were selected. Gi and Gij are the boundary gap of superpixel i and the gap on

the edge between superpixels i and j respectively . The gap along the boundary of the selection

(red) is then G1234 = G1 +G2 +G3 +G4 − 2 (G12 +G13 +G14 +G23 +G34).

Finally, let Ai be the area of superpixel i. Our closure cost becomes:

C( ~X) =

∑
iGiXi − 2

∑
i<j GijXiXj∑

iAiXi

(4.1)

The denominator in the above ratio simply adds the individual areas of all the superpixels

that were selected. Normalization by area not only promotes spatial coherence2 but also pro-

motes compactness; as we shall see in Section 4.6, given two possible paths (with strong edge

support) a closure may take, it will prefer a compact path over one with deep concavities. The

numerator in the above cost is more complicated. To compute the gap along the perimeter, we

first add the individual gaps of all the selected superpixels. However, for selected superpix-

els that share boundaries, adding individual superpixel gaps would add gaps that are not on the

boundary of the selection. For every internal boundary, the gap over that boundary was counted

twice (once for each of the superpixels that share the boundary). Therefore, we subtract the gap

2While spatial coherence is promoted, it is not guaranteed. Since minimizing Eqn. 4.1 can occasionally result
in disconnected sets of superpixels, we further guarantee connectedness by selecting the largest-area connected
component of ~X .



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 79

twice for all internal boundaries. Note that if two superpixels do not have a shared boundary,

then both Pij and Eij (and thus Gij) will be 0. Figure 4.2 gives an example of gap computation

over a simple superpixel graph. In the next section, we introduce our gap measure, and show

how it can be learned from training data.

4.4 Learning the Gap Measure

Most approaches to detecting contour closure (e.g., [99]) typically define gap as simply the

length of the missing contour fragments, i.e., the length of that portion of the closure for which

no image edges exist. In order to ground our gap measure using image evidence, as well as

incorporate multiple contour features for gap computation, we choose to learn the gap from

ground truth. Remember from Section 4.3 that for a pair of superpixels i and j, the gap on the

edge between them isGij = Pij−Eij . Specifically, if ~EPij is the set of pixels on the superpixel

edge (i, j), then Pij = | ~EPij| and Eij =
∑

p∈ ~EPij
Ep
ij , where Ep

ij =
[
P ( ~fp) > Te

]
is an edge

indicator for pixel p (P (·) is a logistic regressor and ~fp is a feature vector for the pixel p).

Notice that we threshold the edginess measure instead of using it directly. Te is a necessary

threshold on the edginess measure. Since the distribution of edges in the training set is not

necessarily the same as that for test images, this parameter controls the contribution of weak

edges. Moreover, Te lets us control the relative (to the area) effect of the gap on the closure

cost (similar to α in [99]). Decreasing it results in many smaller structures being detected and

causes more potential solutions to be generated. We analyze the performance of our method as

a function of this parameter in Section 4.6.

Given a pixel p on the superpixel boundary, the feature vector ~fp is a function of both

the local geometry of the superpixel boundary and the detected image edge evidence in the

neighborhood of the superpixel boundary pixel. This feature vector consists of four features

(see Figure 4.3):

1. Distance to the nearest image edge; closer edges provide stronger evidence.



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 80

Figure 4.3: Contour features for learning the gap measure. Black curves correspond to su-

perpixel boundaries, while the red curve corresponds to detected image edges. The features

that are used for edge weight computation at superpixel boundary pixel p are: 1) distance d

between p and q, where q is the closest point to p among the detected image edges; 2) image

edge strength at q; 3) the alignment, computed as the absolute value of the cosine of the angle

between v and w; and 4) the smoothness, computed as the squared curvature at p.

2. Strength of the nearest image edge; stronger edges provide stronger evidence.

3. Alignment between the tangent to the superpixel boundary pixel and the tangent to the

nearest image edge; aligned edges provide stronger evidence.

4. Squared curvature of the superpixel edge at a point p.

Given a dataset of images with manually labeled figure/ground, we map the ground truth

onto superpixels. Our training set is composed of all the pixels falling on superpixel boundaries

and is used to train a logistic classifier over a feature vector ~fp. In addition to learning from all

four of the above features, we tried learning from subsets of the features. Figure 4.4 illustrates

the effect of incrementally adding more features; the thickness of each superpixel edge in

Figure 4.4(b) corresponds to the average edge probability of its superpixel boundary pixels.



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 81

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Edginess analysis

Precision

R
ec

al
l

 

 

D

D+S

D+S+A

D+S+A+C

(a)

Only distance + strength

+ alignment + curvature

(b)

Figure 4.4: Effect of different features on gap. (a) Quantitative evaluation - precision/recall

of contour points using different features (D - Distance, S - Strength, A - Alignment, C -

Curvature); (b) Qualitative evaluation (ordered left to right, top to bottom). For example, the

superpixel edges that cross the legs become weaker as alignment is added and the shadow edge

on the body becomes weaker as strength is added (red ellipses mark edges where the change is

particularly visible).



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 82

Using all four features results in the best performance3, in terms of retaining object boundary

edges while suppressing other edges.

4.5 Optimization framework

It has been known for some time that ratios of real variables that adhere to certain constraints

can be minimized globally [25]. Instead of minimizing the ratio R(x) = P (x)
Q(x)

directly, one

can minimize a parametrized difference E(x, λ) = P (x) − λQ(x). It can be shown that the

optimal λ corresponds to the optimal ratio P (x)
Q(x)

. The constraints on the ratio guarantee that the

resulting difference is concave and thus can be minimized globally.

In the case of binary variables, ratio minimization can be reduced to solving a parametric

maxflow problem. Kolmogorov et al. [50] showed that under certain constraints on the ratio

R(x), the energyE(x, λ) is submodular and can thus be minimized globally in polynomial time

using min-cuts. Converting our closure cost C( ~X) in Equation 4.1 to a parametrized difference

results in a submodular cost C( ~X, λ), making the method in [50] applicable for minimizing

the ratio C( ~X).

In fact, the method in [50] does not simply optimize the ratio R(x), but finds all intervals

of λ (and the corresponding x) for which the solution x remains constant. The interval bound-

aries are called breakpoints, and while the smallest breakpoint λ0 corresponds to the optimal

ratio R(x), consecutively larger breakpoints λ1, λ2, . . . are also related to ratio optimization.

Kolmogorov et al. show that the optimal solution x∗ of E(x, λ) in the interval [λi, λi+1], is also

an optimal solution of minQ(x)≥T R(x), where T = Q(x∗). In case of optimizing the closure

cost in Equation 4.1, using parametric maxflow results in a multiscale set of optimal closure

solutions under increasing area thresholds.

In general, the method in [50] can be exponential if the number of breakpoints is expo-

nential, but is polynomial for obtaining a global optimum. For monotonic parametric maxflow

3Adding the curvature feature has a very marginal effect as can be seen both in Figure 4.4(a) and Figure 4.4(b).



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 83

[50], as is the case with the closure cost function in Equation 4.1, the number of breakpoints is

at most N + 1, where N is the number of superpixels. Thus in our case finding all the break-

points is polynomial in the number of superpixels. Moreover, the solutions exhibit nestedness,

such that solutions for larger λs contain the solutions for smaller λs, resulting in hierarchical

closure hypotheses. In our experiments, a solution is obtained in a fraction of a second for a

superpixel graph of 200 superpixels4, as there are typically less than 20 breakpoints. In Sec-

tion 4.6 we analyze the number of breakpoints as a function of superpixel density and edginess

thresholds.

4.6 Results

We compare our work, which we refer to as superpixel closure5 (SC), to two other contour

grouping methods: Estrada and Jepson (EJ) [30] and a version of ratio contours (RRC) from

Stahl and Wang [99]. We provide a qualitative evaluation on various images (see Figure 4.7),

as well as quantitative evaluation on two datasets, including the Weizmann Horse Database

(WHD) [8] and the Weizmann Segmentation Database (WSD) [1]. Learning the gap mea-

sure (Section 4.4) is accomplished on the first 30 images from WHD. For testing, we use 170

additional images from WHD and all 100 images from WSD.

4.6.1 Quantitative Evaluation

For a quantitative evaluation of the results, we use the F-measure, F = 2RP
R+P

, where R and P

are recall and precision, respectively, of the solution relative to the ground truth. Specifically, if

A is the set of pixels corresponding to the solution andAgt is the ground truth, thenR = |A∩Agt|
|Agt|

and P = |A∩Agt|
|A| . Given K solutions, we select the solution with the best F-measure relative to

4In case of tens of thousands of superpixels, as is the case for spatiotemporal closure detection in Section 4.7.3,
a solution can still be obtained in a matter of seconds.

5Matlab code for our method is available at http://www.cs.toronto.edu/˜babalex/closure_
code.tgz.



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 84

0 2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
F measure

Number of output solutions

A
ve

ra
ge

 b
es

t s
co

re

 

 

RRC

EJ

SC

0 2 4 6 8 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F measure

Number of output solutions

A
ve

ra
ge

 b
es

t s
co

re

 

 

RRC

EJ

SC

WHD WSD

Figure 4.5: Quantitative results. We compare our results (SC) to two other algorithms: Estrada

and Jepson [30] (EJ) and Ratio Contours [99] (RRC).

the ground truth. We average the “per-image” F-measure for all the images (and three ground

truth segmentations in WSD) in a dataset and report the result.

Figure 4.5 shows the results of the three methods for increasing values of K. We chose

the parameters that lead to the best performance for K = 10 for all three algorithms and fixed

them for the entire experiment. For EJ, we used a Normalized Affinity Threshold (τaffty) of

0.01, with the line segments generated by fitting the globalPb output. For RRC, we used λ = 0

and α = 1. Here, we could not give the algorithm globalPb-based line segments, and thus

use the method’s own line segments generated from a Canny edge response. For our method,

we fixed the number of superpixels to 200 and set Te = 0.05, giving us best performance at

the high range of K. Since the resulting solutions can be thought of as shape hypotheses for

object recognition, we believe that the performance for some reasonably small value of K > 1

is more important than aiming to obtain a single best contour (K = 1)6. For K = 10, SC

6SC can be tuned (see Figure 4.6) to perform better for K = 1 at a small expense of performance for higher
K’s.



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 85

(EJ, RRC) obtains an average F-measure of 79.72% (79.44%, 68.13%) on WHD and 87.19%7

(78.44%, 77.82%) on WSD.

We outperform the competing approaches on both datasets for a setting of K = 10 (obtain-

ing a comparable performance to EJ on the horses dataset), which we attribute to the superpixel

formulation, as well as the optimal closure finding method in our framework. On the WHD,

both SC and RRC perform significantly worse than on WSD, while EJ performs the same. This

is likely due to the lower compactness of objects in the horse dataset (average isoperimetric ra-

tio of 0.15, compared to 0.4 in WSD). Moreover, in many images there is a more compact path

that includes the gap between the horse’s legs due to shadow or ground edges. In addition, a

significant number of images in the horse dataset have a picture frame boundary around the

image. These boundaries provide the largest and most compact solutions, and are therefore

found by SC instead of finding the horse. Finally, an interesting fact is that EJ still performs

well on the horse dataset (unlike SC and RRC). This is most likely due to its reliance on inter-

nal appearance, which is definitely homogeneous in the case of horses. Since Te is set so low

(Te = 0.05), we detect many small structures, capturing texture elements or object parts whose

closure cost is lower than that of the actual figure object. As a result, our performance is poor

for low values of K, but it is better at the high range of K.

Figure 4.6 shows the change in performance of our algorithm as we change the number of

superpixels and vary Te. Note that our dataset contains mostly large objects with a relatively

strong boundary support. Therefore, coarse superpixel resolutions, which prevent the detection

of small structures, lead to good performance for low values of K (Figure 4.6(a)). In general,

higher superpixel density results in a very marginal performance gain for large values of K.

Similar effect can be observed when changing the threshold Te, since objects in our dataset

typically have stronger edge support compared to other structures. Increasing the threshold

Te (Figure 4.6(b)) reduces the detection of small objects and improves performance at the

7For WSD, there are three ground truth segmentations per image. If we instead choose the closest of the three
ground truth segmentations per image (as opposed to taking the average), our score on WSD improves to 88.76%.



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 86

0 2 4 6 8 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F measure

Number of output solutions

A
ve

ra
ge

 b
es

t s
co

re

 

 

50 superpixels

100 superpixels

200 superpixels

0 2 4 6 8 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F measure

Number of output solutions

A
ve

ra
ge

 b
es

t s
co

re

 

 

T
e
 = 0.05

T
e
 = 0.1

T
e
 = 0.2

0 50 100 150 200
4

6

8

10

12

14

16

18

20
Number of breakpoints in parametric maxflow

Number of superpixels

A
ve

ra
ge

 n
um

be
r 

of
 b

re
ak

po
in

ts

 

 

T
e
 = 0.05

T
e
 = 0.2

(a) (b) (c)

Figure 4.6: Varying the parameters of our method (evaluation on WSD). (a) Varying the number

of superpixels for a fixed edge threshold Te = 0.05. (b) Varying the edge threshold Te for a

fixed number of superpixels (200). (c) Number of breakpoints as a function of superpixel

density and edge threshold Te.

low range of K, but also hurts the detection of objects with weak edges and thus results in

slightly poorer performance at the high range of K. Nevertheless, in cases of large figure

objects with strong boundary edges, coarser superpixel resolutions and higher edge thresholds

are preferable.

The complexity of our approach is directly proportional to the number of breakpoints re-

turned by parametric maxflow. Figure 4.6(c) shows how the number of breakpoints varies as

a function of superpixel resolution and edge threshold. We also compare the running times of

the three methods on WSD (average image size of 300× 290 pixels). On a 2.6GHz Dual Core

Intel CPU with 4GB of memory, setting the methods to retrieve K = 10 best contours, the av-

erage running times per image are: SC (not including globalPb edge detection and superpixel

segmentation) – 1.3 sec, EJ (not including globalPb edge detection) – 23 sec, RRC – 59 sec.

4.6.2 Qualitative Evaluation

In addition to the quantitative evaluation, we also provide a qualitative evaluation of our method

by testing it on images from the two datasets, as well as other images obtained from the in-



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 87

SC EJ RRC

Figure 4.7: Qualitative results. We compare our results (left) to two other algorithms: Estrada

and Jepson [30] (middle) and Ratio Contours [99] (right).



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 88

SC EJ RRC

Figure 4.7



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 89

ternet. Figure 4.7 illustrates the performance of our method compared to the two competing

approaches8. We manually select the best of 10 solutions for each method. Notice that the

detected contours in our framework lie closer to the true object contours since the superpixel

edges, even in the presence of a gap, lie closer to object edges than the linearized contours de-

tected by the other algorithms. We pleasantly observed that our framework is not constrained

to obtain compact solutions as is usually the case when one is normalizing perimeter by area.

This is clearly visible in the image of a spider, where very thin legs are segmented since that

represents the best closure solution. However, this is not always the case, for if there is a more

compact contour that is not losing on gap, it will be preferred. This is the reason for the filled

gap between the horse’s legs or the filled gap between the carriage’s wheels in the first two

images. Note that for the horse image, EJ obtains a better solution by relying on the homoge-

neous appearance inside the horse. Finally, our method relies on superpixels to oversegment

the object, which might not be the case for thin structures or when weak object contours are

present. We still detect thin structures, such as the spider’s legs, if good superpixels were found

due to strong image edges. For weaker edges, however, thin structures are harder to capture

(the bat of the baseball player, for example). Weak edges are also the cause for bleeding seen

in the elephant example, where the upper portion of the front leg has a weak edge w.r.t. the

background.

4.7 Extensions

4.7.1 Using internal homogeneity

As mentioned in Section 4.1, our superpixel formulation also facilitates the incorporation of

appearance information, when it is both available and appropriate. The cost function in Equa-

tion 4.1 can be easily modified to incorporate a term which reflects the degree to which adjacent

8Supplementary material (http://www.cs.toronto.edu/˜babalex/closure_
supplementary.tgz) contains the results of our algorithm for all the images in both datasets.



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 90

Figure 4.8: Using internal appearance homogeneity. For objects with strong internal homo-

geneity of appearance, optimizing the cost in Eqn. 4.2 results in better performance (right)

than optimizing the cost in Eqn. 4.1 (left). Note that the gap between the horse’s legs was not

included on the right due to its heterogeneous appearance w.r.t. the rest of the horse.

superpixels inside the superpixel selection, i.e., inside the closed contour, have high affinity.

Assuming that we are given an affinity matrix W , such that Wij is the affinity between two

superpixels i and j, we modify our closure cost to be:

Caffty( ~X) =

∑
iGiXi − 2

∑
i<j GijXiXj∑

i<jWijXiXj

(4.2)

Compared to the cost in Equation 4.1, the numerator remains the same while the denominator

changes to an internal homogeneity measure instead of the total object area. Minimizing this

ratio results in minimizing the gap while maximizing the total affinity between the selected

superpixels. Figure 4.8 shows an example where better results were achieved by exploiting

appearance homogeneity.

4.7.2 Multiple superpixel scales

Though it might seem that the more superpixels we use, the better our method will perform, it

is not always so. As seen in Figure 4.6(a), coarser superpixel scales constrain the solution more

and thus perform better for low values of K. However, there is one additional advantage of

using coarser superpixel scales. Since our superpixel algorithm does not produce hierarchical

superpixels (since new superpixel boundaries may be introduced from finer to coarser scales), it



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 91

Figure 4.9: Multiscale results. Choosing the K = 2 top solutions yields better results in the

case of 50 superpixels (top) than in the case of 200 superpixels (bottom).

is possible to occasionally have less undersegmentation at coarser scales. Figure 4.9 illustrates

a situation where an object was segmented better at a coarser scale and consequently detected

by our algorithm.

We tried a simple multiscale version of our algorithm where we merge the results from all

scales. Specifically, we run our algorithm at four superpixel scales, obtaining 25, 50, 100, and

200 superpixels for each image. Setting K = 10 for each scale results in 40 solutions once the

results are merged together. Since the performance of our method for a given scale does not

significantly vary for K > 10, we do not select 10 of 40 solutions for the multiscale version,

but instead retain all 40. Using the multiscale version increases the performance on WSD from

87.19% to 89.53%.



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 92

4.7.3 Spatiotemporal Closure

Introduction

Finding closures bottom up in 2D images is of the utmost importance, as doing so facilitates

the implementation of higher-level vision tasks. The same is true for detecting closures in

spatiotemporal domains, where closure hypotheses can serve object or action recognition in

videos. This section extends our 2D closure detection approach to the spatiotemporal domain.

The most straightforward extension of our approach to 3D would have been to extract

3D superpixels (supervoxels) and define a 3D version of the closure cost in Equation 4.1.

This would correspond to minimizing a measure of gap of a closed surface relative to the

volume of that surface. However, such an approach requires the extraction of supervoxels.

Unlike superpixels, the use of supervoxels is not popular in computer vision and we know

of no robust approaches for extracting them. Moreover, a straightforward extension to 3D

assumes a single measure of gap for all surface points. This assumption may not hold for

spatiotemporal volumes, as one may require different measures of gap in space and time. For

the above reasons, we extract superpixels for every frame and form a spatiotemporal graph

where edges between superpixels encode superpixel affinity. This way, affinity can be thought

of as a coarse approximation to the “edginess” measure defined for the 2D case, and low

affinity would correspond to large gaps. Instead of minimizing Equation 4.1, we minimize

the unbalanced normalized cuts cost, making the spatiotemporal closure detection closer to the

method of Carreira and Sminchisescu [14].

Similar to the 2D closure extraction, our final goal in this extension is to obtain a small

number of figure hypotheses, where each hypothesis corresponds to a coherent segment in

space-time (Figure 4.10). To that end, we first segment each video frame using a modified

superpixel framework presented in Chapter 3, taking special measures to make the superpixels

more temporally coherent. We form a superpixel graph, where each superpixel is connected to

its spatial neighbors within a frame as well as superpixels in temporally neighboring frames.



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 93

→

Figure 4.10: Generating multiple space-time figure/ground segmentations from a video.

We define affinities between adjacent superpixels in space and in time, incorporating both

appearance and motion cues. We then use the parametric maxflow framework to obtain several

unbalanced normalized cuts of this graph. We run our method on several test videos and show

that it obtains a small number of figure/ground “tubes” that usually contain the objects of

interest. We conclude with an analysis of the results and ideas for future work.

Problem formulation

Our goal is to find coherent space-time segments in a video. We formulate the segment-finding

problem as a superpixel selection problem. Out of an exponential number of superpixel sub-

sets we will select subsets with small unbalanced normalized cuts costs and show that they

correspond to coherent spatiotemporal segments.

Given a superpixel segmentation of every frame in a video, we start by building a superpixel

graph with spatial and temporal connections. Let ~X be an indicator vector for all the superpix-

els across all frames, with each element being in the set {0, 1}. We connect each superpixel

to its spatial and temporal neighbors and define an affinity Wij for each pair of neighboring

superpixels i and j, encoding the similarity of the two superpixels. Setting Di =
∑

jWij , we



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 94

optimize the following closure cost:

C(X) =
cut( ~X)

volume( ~X)
=

∑
ij Xi(1−Xj)Wij∑

iDiXi

=

∑
iDiXi − 2

∑
i<j XiXjWij∑

iDiXi

(4.3)

The above is called the unbalanced normalized cuts cost and, unlike the standard normalized

cuts cost, can be minimized efficiently using parametric maxflow [50]. This cost is very similar

to the 2D closure cost (Eqn. 4.1), with the exception that the numerator measures the cut instead

of the gap and is normalized by affinity volume instead of by area. That said, we will show that

the affinities Wij can also include the length of the boundary between superpixels or their area

to give larger superpixels a greater influence.

Algorithm details

Our algorithm consists of several stages. We start by extracting the superpixels for each frame

of the video. Afterwards, we construct a superpixel graph where each superpixel is connected

to its spatial and temporal neighbors. Each superpixel edge is assigned an affinity that mea-

sure the degree of superpixel similarity. Once the graph is built, we find optimal cuts using

parametric maxflow. Finally, we post-process the solutions to detect connected components,

remove similar or spurious results, and generate other potentially good solutions. The follow-

ing subsections describe each of these stages9.

Superpixel Extraction

We begin by extracting superpixels from every frame using the TurboPixels approach in Chap-

ter 3. Instead of using the algorithm in its raw form, we modify it to obtain more temporally

coherent superpixels. We start by extracting superpixels in the first frame using the original

form of the superpixel algorithm in Chapter 3. Instead of reseeding the superpixels in the next

frame on a regular grid, we use the current frame’s superpixel to drive the seeding procedure.

9See the Approach Overview section at http://www.cs.toronto.edu/˜babalex/
SpatiotemporalClosure/supplementary_material.html for a graphical overview of the
method.



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 95

Figure 4.11: Superpixel flow. The arrow within each superpixel indicates the motion flow

vector of this superpixel. Yellow arrows indicate reliable flows, while red arrows correspond

to unreliable flows.

To that end, we first compute the optical flow using the Lucas-Kanade (LK) algorithm. The LK

algorithm returns the flow for every pixel in every frame, together with a measure of reliability

for each pixel flow. For every superpixel, we compute a weighted average of the flow over all

the reliable pixels, where pixels that are closer to the superpixel centroid have larger weights.

Superpixels with an insufficient number of reliably flowing pixels get a flow of (0, 0). The

result is a superpixel flow, with motion flow vector ~Vi for every superpixel i (Figure 4.11).

Taking the superpixel flow for every superpixel, we project the center of each superpixel

to the next frame according to the computed flow. These projected centers serve as the initial

seeds for the superpixel evolution in the next frame. We repeat this process for all the frames

in the video, giving us a much more temporally stable superpixel segmentation. In addition,

we also modify the superpixel algorithm to use a Pb-based [63] affinity rather than the original

grayscale gradient-based affinity proposed in Chapter 3. Figure 4.12 shows the extracted su-

perpixels for two temporally adjacent frames of the flower garden sequence using this modified

approach and compares it to independent superpixel extraction at every frame using the orig-

inal algorithm. Note that using the modified superpixel algorithm results in more temporally



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 96

(a) (b)

Figure 4.12: Superpixel extraction. We apply two different versions of the TurboPixels al-

gorithm to two temporally adjacent frames (frame 1 and 3) in the flower garden sequence.

Superpixel boundaries in frame 1 are marked in red and superpixel boundaries in frame 3 are

marked in green. The modified superpixel algorithm (b) results in more accurate and tempo-

rally stable superpixels than the original superpixel algorithm (a). This is particularly visible

on background regions where the scene motion is relatively small.

stable superpixels that better capture object boundaries10.

Superpixel Affinity

Once the superpixels are extracted, we form spatial and temporal edges in the superpixel graph.

Every edge is assigned an affinity Wij that measures the similarity of the two superpixels

(Figure 4.13).

To form spatial connections, we find the immediate spatial neighbors of each superpixel in

each frame. Spatial neighbors of superpixel i are defined as superpixels in the same frame that

share some boundary with superpixel i. The formation of temporal connections follows the

same approach as was used in the superpixel extraction technique. Each superpixel in frame f

10See the Superpixel Extraction section at http://www.cs.toronto.edu/˜babalex/
SpatiotemporalClosure/supplementary_material.html for a better visualization of super-
pixel extraction.



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 97

Figure 4.13: Superpixel graph construction, illustrating the typical connectivity for one super-

pixel. Every superpixel in each frame is connected to its immediate spatial neighbors in that

frame. For every two consecutive frames, every superpixel in the first frame is connected to

one superpixel in the second frame based on the superpixel flow vectors.

(except the superpixels in the last frame) is connected to one superpixel in frame f + 1. The

correspondence is determined based on the superpixel flow vectors. The center of superpixel i

from frame f is projected to frame f + 1 according to the superpixel flow ~Vi. We form an edge

between superpixels i and j, where superpixel j is the superpixel in frame f + 1 that contains

the projected center of superpixel i.

Motivated by [43], our superpixel affinity Wij for a spatial edge (i, j) is defined as the

combination of appearance (W a
ij) and motion (Wm

ij ) affinities. Appearance affinity is obtained

by computing the histogram intersection distance of the grayscale (or color, if available) his-

tograms of the two superpixel regions (we use 30 bin histograms for grayscale and 4 × 4 × 4



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 98

histograms for RGB). For two N -dimensional normalized (summing to 1) histograms ~H1 and

~H2, their histogram intersection distance is equal to
∑N

i=1 min
(
~H1

i, ~H2
i

)
. Motion affinity

is computed by comparing the flow vectors of the two superpixels, ~Vi and ~Vj , and is equal to

Wm
ij = 1 − ‖ ~Vi− ~Vj‖

max{‖ ~Vi‖,‖ ~Vj‖}
capped to the range (0, 1). Since our superpixel graph construction

incorporates superpixel flow already, we include the motion affinity only for spatial edges. Fi-

nally, to give larger superpixels more influence, we augment the affinity by weighting it with

the product of areas of the two superpixels (Ai and Aj). Combining that with the goal of

not grouping two superpixels if either their appearance or motion is dissimilar results in the

following superpixel affinity:

Wij =


AiAj min

(
W a
ij,W

m
ij

)
, (i, j) are in the same frame

AiAjW
a
ij, (i, j) are in different frames

(4.4)

Optimal Cuts for Each Shot

At this point, we have a superpixel graph and thus can use the parametric maxflow framework

to optimize the cost in Eqn. 4.3. However, prior to running the optimization framework, we

first detect the shot boundaries in the video with the goal of independently finding closures for

each shot.

Temporal superpixel edges across shot boundaries are unreliable. Thus if a video is com-

posed of multiple shots, running the optimization on the whole video results in undesirable

solutions. Since this is not the focus of this work, we take a very simplistic approach to shot

boundary detection. Similar to the appearance affinity between superpixels, we compute an ap-

pearance affinity between consecutive frames by comparing the grayscale histograms of whole

frames using the histogram intersection kernel. This results in a F − 1 dimensional vector of

consecutive frame affinities (where F is the number of frames). The shot boundaries corre-

spond to the detected minima in this vector (Figure 4.14). Given the detected shots, we build

a subgraph for every shot by selecting the superpixels and the edges that are contained in the

shot. We optimize the cost in Eqn. 4.3 for all the subgraphs and concatenate the results.



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 99

→ →

0 10 20 30 40 50 60 70 80 90 100

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame #

A
ffi

ni
ty

 to
 \n

 th
e 

ne
xt

 fr
am

e

Figure 4.14: Shot detection by finding minima in consecutive frame affinities. The top row

shows a video containing 3 shots. The shot changes from people to car at frame 11 and back to

people at frame 78. The bottom row shows a corresponding drop in consecutive frame affinity

for these frames. These minima are detected in order to find the shot boundaries.

Note that optimizing the cost in Eqn. 4.3 directly results in a trivial solution where all the

superpixels are selected. Moreover, just as the edge threshold Te was used in the 2D case in

the computation of gap, we want to give the user the ability to weaken affinities in order to

handle the cases of potential bleeding between foreground and background due to appearance

or motion similarity. We solve the first problem by introducing large penalties for a subset of

superpixels in the graph. Specifically, we run the optimization 6 times for each shot. In the

first 4 runs all the superpixels on the left, right, top, and bottom frame boundary respectively

are assigned a large penalty. In the 2 additional runs, we assign large penalties first to all top

and bottom superpixels, and then to all left and right superpixels. To handle the second issue,

we augment the closure affinity in Eqn. 4.4 to :

W ′
ij =


AiAj

(
min

(
W a
ij,W

m
ij

))α
, (i, j) are in the same frame

AiAj
(
W a
ij

)α
, (i, j) are in different frames

(4.5)

The exponent α controls the contribution of weak affinities. Increasing the exponent effectively

lowers all the affinities towards 0, thereby preventing bleeding, but also increases the relative



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 100

difference between weak and strong affinities. In the results section, we will analyze the effect

of changing α on performance.

Post-processing

Running parametric maxflow on the spatiotemporal superpixel graph results in hundreds and

sometimes thousands of breakpoints. Some of the solutions differ by a very minor increase

in area, while others contain multiple connected components. Furthermore, some desirable

solutions are missed. We post-process the results to narrow down the number of solutions to a

more manageable number and in the process generate additional good solutions.

Post-processing consists of the following 3 stages:

1. Filtering solutions and generating new ones by analyzing the area change: As pre-

viously stated, parametric maxflow results in solutions that minimize the cut with in-

creasing area constraints. Some consecutive solutions differ by a very small increase in

area. We filter out the solutions where such an increase is insignificant (less then 1% of

relative area increase). Conversely, for all other solutions we detect consecutive solution

pairs where the relative area increase is above a threshold (more than 5%) and generate

a new solution subtracting the one superpixel subset from another.

2. Selecting connected components and removing small solutions: Some solutions up to

this point contain only a few superpixels or select superpixels in a very small number of

frames. We filter out these solutions by keeping only the solutions with at least 2 super-

pixels, with total area that is at least 1% of the frame area, and that participate in at least

5 frames. We run a connected component analysis for all the remaining solutions. Each

solution that contains multiple connected components in space-time is split, generating

one solution for each connected component.

3. Removing duplicate solutions: The above post-processing steps can result in the gen-

eration of duplicate solutions. In this final step we remove duplicate solutions.



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 101

For our test videos, this post-processing step reduces the number of solutions of a single run of

parametric maxflow from several hundreds to an average of 20− 80 solutions.

Results

We perform a qualitative analysis of our approach on several short video sequences. Some

sequences (such as the flower garden sequence) are grayscale, while others contain color. In

the case of color sequences, we make use of this additional information, comparing color his-

tograms instead of grayscale when computing superpixel affinities. The frame size for each

video is on the order of 300 × 300 pixels, with the length of a video ranging from around 10

frames to 250 frames (hippo sequence). Based on quantitative evaluation (described in latter

paragraphs), we set α = 6 for our qualitative experiments. We also perform a quantitative

evaluation on two datasets [100, 34], comparing different graph constructions and affinity vari-

ations, as well as evaluating our approach against standard normalized cuts on the same graphs.

Timewise, the bottlenecks of the approach are the preprocessing steps: Pb edge detection, su-

perpixel extraction, and optical flow computation, each taking several seconds per frame. Once

a superpixel graph is built, each run of the optimization using parametric maxflow finishes in

less than 5 seconds on the whole video, followed by all the postprocessing steps taking approx-

imately 1 second.

Figure 4.15 shows our qualitative results. For each sequence we show 3 frames and visual-

ize several interesting solutions for the chosen frames11. Note that in the first sequence (car +

people) there are three shots, first of people, then of the car, and then returning back to people.

Each of the three columns in the figure displays a single frame from each of these shots. In the

car sequence, several objects of interest were successfully recovered, such as the car and the

heads of the people. Moreover, a part of the car (windshield) is also recovered in one of the

solutions, indicating that our method can be used for part based object recognition in videos or

11See the Results section at http://www.cs.toronto.edu/˜babalex/
SpatiotemporalClosure/supplementary_material.html for a video visualization of the
results.



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 102

Figure 4.15: Qualitative video figure/ground segmentation results. First row displays 3 frames

from a sequence, followed by several rows displaying interesting solutions.



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 103

Figure 4.15



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 104

Figure 4.15



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 105

Figure 4.15



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 106

for action recognition that require the tracking of parts. In the galloping horse sequence, the

horse was recovered well in the middle of the sequence. In the beginning and the end of the

sequence only part of the horse is recovered due to poor superpixel boundaries and affinities

between the horse and the background, which is also the reason for the incomplete solution in

the Pepsi sequence. The horse example also illustrates that our framework works best when

given large objects, as small objects usually have higher closure cost and tend to be underseg-

mented by superpixels. The table sequence and the flower garden sequence illustrate that our

framework can detect most objects in the scene. The results are affected by significant abrupt

motion, due to the inability to form good temporal connections in such cases. This can be seen

in the hippo sequence. While this sequence illustrates how an additional solution (dog) can be

generated by subtracting one solution (hippo) from another (hippo and dog), the dog is only

recovered in the first half of the sequence, as it moves abruptly.

For quantitative evaluation of our method we use 27 sequences from the dataset of Stein

et al. [100] (SD) and 20 sequences from the Weizmann action recognition dataset (WD) of

Gorelick et al. [34]. Each sequence has a ground truth video segmentation mask, marking one

foreground object. Given a set of detected spatiotemporal figures for a sequence, we choose the

solution with the maximal F measure relative to the ground truth. For each dataset, we report

the average F measure across all sequences.

We compare different variations of our algorithm, as well as replace our parametric maxflow

minimization of the unbalanced normalized cuts cost with standard normalized cuts. Unlike our

method, normalized cuts requires a user specified number of clusters. Therefore, to compare

with our approach we run normalized cuts with 5, 10, 15, 20, and 25 clusters and concatenate

all the results. Recall that our previously described graph construction (S-AM) includes only

the immediate spatial neighbors and adds the motion affinity Wm
ij for spatial edges. We define

additional variations over this construction:

• S-A - Same graph as S-AM, but with affinity only including appearance

Wij = AiAj
(
W a
ij

)α



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 107

• L-AM - Same as S-AM but with larger spatial connectivity. In addition to the edges in

S-AM we add edges between all superpixels in the same frame whose centroids are less

than R apart, where R is five times the radius of an average superpixel.

• L-A - Same as L-AM, but with affinity only including appearance Wij = AiAj
(
W a
ij

)α

2 4 6 8 10 12 14 16
0.74

0.76

0.78

0.8

0.82

0.84

Affinity Exponent α

F
 M

ea
su

re

 

 

SC S−AM

SC S−A

SC L−AM

SC L−A

2 4 6 8 10 12 14 16
0.1

0.2

0.3

0.4

0.5

Affinity Exponent α

F
 M

ea
su

re

 

 

SC S−AM

SC S−A

SC L−AM

SC L−A

SC

2 4 6 8 10 12 14 16

0.65

0.7

0.75

0.8

Affinity Exponent α

F
 M

ea
su

re

 

 
NCuts S−AM
NCuts S−A
NCuts L−AM
NCuts L−A

2 4 6 8 10 12 14 16
0.1

0.2

0.3

0.4

0.5

0.6

Affinity Exponent α

F
 M

ea
su

re

 

 

NCuts S−AM

NCuts S−A

NCuts L−AM

NCuts L−A

NCuts

Figure 4.16: Quantitative evaluation of spatiotemporal closure detection. Top row shows the

results of our method (SC) on SD (left) and WD (right). Bottom row shows the results of

running normalized cuts on the same graphs and datasets.



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 108

We compare our method (SC) to normalized cuts (NCuts) for all the above graph construc-

tions on both datasets. While we are able to solve the unbalanced normalized cuts problem in

a globally optimal fashion, normalized cuts cost is NP-hard to optimize and therefore only an

approximation is provided. Despite that, the cut balancing in NCuts further constrains the so-

lutions to be balanced and compact and helps to avoid bleeding, while our closure cost pushes

the solutions to contain more superpixels which can result in bleeding. Figure 4.16 illustrates

the performance as we vary α. Note that WD provides more challenge for both SC and NCuts

as the foreground objects in this dataset are much smaller than in SD. We also observe that our

method achieves comparable results using S-AM and L-AM, indicating that our increase of

spatial connectivity has only a marginal effect on the results. Finally, we illustrate the tradeoff

between the higher bleeding robustness of NCuts vs. the suboptimality of its solution. This

is particularly visible in the performance on WD where the objects are small and bleeding is

more of an issue, while in SD they are large and it is more important to obtain an accurate

result. That is why SC achieves better performance on SD, while NCuts has the advantage on

the other dataset.

4.8 Limitations and Future Work

We have presented a closure detection method in 2D images as well as spatiotemporal domains.

Relying on compactness allowed us to use closure to group large subsets of superpixels in a

purely bottom-up fashion. However, while our closure cost is shown to be effective, it is

by no means “correct” in the sense that its minima must correspond to real objects. Since

it uses a purely bottom-up closure cue for grouping, it should be thought of as a guideline

rather than a rule, and top-down approaches would potentially perform much better. Some

limitations of our cost can be seen in performance on non-compact objects, such as a horse

or fast-moving objects that are non-compact in time. Moreover, both the image cost and the

spatiotemporal cost give preference to objects with larger area. This feature enables us to



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 109

effectively form very large groups of superpixels bottom-up, but hinders performance for small

objects. Finally, our spatiotemporal cost includes only local constraints for temporal coherence.

Tracking approaches that maintain a global shape and/or appearance model of the target are

expected to do better. That said, both our 2D and spatiotemporal costs could be augmented

to include global shape or appearance constraints. It would enable us to handle more global

effects, and segment objects in the presence of occlusion, for example. We plan to explore this

extension in the future.

Perhaps our most significant contribution is the use of superpixels and redefining closure

detection as finding groups of superpixels instead of grouping edgels. This reformulation de-

creases the complexity of the problem and provides an ideal scope for feature extraction. Un-

fortunately, errors in superpixel segmentation propagate throughout our framework. Superpixel

bleeding prevents the accurate segmentation of figure from ground, but an even larger issue is

that it provides incorrect scope for feature extraction, thereby weakening gaps or strengthening

affinities between figure and ground. In future work, we plan to explore additional cues for gap

and affinity computation to strengthen the robustness of our approach to weak object edges or

similar foreground/background motion. For example, we plan to use superpixel junctions to

learn an affinity measure between pairs of superpixels that are both inside and adjacent to the

boundary. Such an affinity measure can encode a learned measure of continuity and T-junction,

and could significantly strengthen our cost function. Ultimately, our goal is to detect closure in

cases such as the Kanizsa triangle (Figure 2.2 in Chapter 2) or detect spatiotemporal closures

in presence of large occlusions. Currently this is beyond the capabilities of our framework and

only objects with a relatively small amount of gap, whether spatial or temporal, can be detected.

However, we believe that we can partially approach this goal through the use of more global

shape cues in our closure cost and multiscale superpixel segmentations, as coarser superpixels

will be more suitable for capturing large gaps.



CHAPTER 4. OPTIMAL CONTOUR CLOSURE BY SUPERPIXEL GROUPING 110

4.9 Conclusions

Our reformulation of the problem of finding cycles of contours in images as the problem of

finding spatially coherent subsets of superpixels, whose collective boundary has strong image

edge evidence yields an optimal framework for closure detection that compares favorably with

two leading prior approaches. In contrast to competing approaches that focus on the detec-

tion of a single, best, closed contour, our optimization framework generates a small number

of solutions that can be though of as promising shape hypotheses, better serving high-level

recognition tasks. While superpixels provide an ideal scope for learning a gap measure from

training data, they offer a number of additional advantages that we are currently exploring. In

an extension to the main approach, we show that superpixels also provide a convenient mecha-

nism for incorporating appearance information, if appropriate and if available. For example, if

the object was known to be homogeneous in appearance, our modified cost function can eas-

ily incorporate such a prior, as discussed in Section 4.7.1. We also provide a crude approach

for using multiscale superpixel information, with the plan of pursuing a more elegant coarse-

to-fine framework for finding contour closure using multiple superpixel scales. In our last

extension, we describe how a slightly modified cost (Eqn. 4.3) can be used for spatiotemporal

closure detection. To conclude, our closure detection method efficiently recovers a small num-

ber of 2D and spatiotemporal figure/ground hypotheses and opens the way for better solutions

of high-level vision problems.



Chapter 5

Multiscale Symmetric Parts Detection and

Grouping

5.1 Introduction

The medial axis transform [7] decomposes a closed 2-D shape into a set of skeletal parts and

their connections, providing a powerful parts-based decomposition of the shape that’s suitable

for shape matching [97, 89]. While the medial axis-based research community is both ac-

tive and diverse, it has not kept pace with the mainstream object recognition (categorization)

community that seeks to recognize objects from cluttered scenes. The main reason for this dis-

connect is the restrictive assumption that the silhouette of an object is available – that the open

problem of figure-ground segmentation has somehow been solved. Even if it were possible to

segment the figure from the ground, a second source of concern arises around the instability

of the resulting skeleton – the skeletal branches often don’t map one-to-one to the object’s

coarse symmetric parts. However, these limitations should in no way deter us from the goal

of recovering an object’s symmetric part structure from images. We simply need an alterna-

tive approach that doesn’t assume figure-ground segmentation and doesn’t introduce skeletal

instability.

111



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 112

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.1: Overview of our approach for multiscale symmetric part detection and grouping: (a) orig-

inal image; (b) set of multiscale superpixel segmentations (different superpixel resolutions); (c) the

graph of affinities shown for one scale (superpixel resolution); (d) the set of regularized symmetric parts

extracted from all scales through a standard graph-based segmentation algorithm; (e) the graph of affini-

ties between nearby symmetric parts (all scales); (f) the most prominent part clusters extracted from

a standard graph-based segmentation algorithm, with abstracted symmetry axes overlaid onto the ab-

stracted parts; (g) in contrast, a Laplacian-based multiscale blob and ridge decomposition, such as that

computed by [54], shown, yields many false positive and false negative parts; (h) in contrast, classical

skeletonization algorithms require a closed contour which, for real images, must be approximated by a

region boundary. In this case, the parameters of the N-cuts algorithm [93] were tuned to give the best

region (maximal size without region undersegmentation) for the swimmer. A standard medial axis ex-

traction algorithm applied to the smoothed silhouette produces a skeleton (shown in blue) that contains

spurious branches, branch instability, and poor part delineation.



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 113

In this chapter, we introduce a novel approach to recovering the symmetric part structure

of an object from a cluttered image, as outlined in Fig. 5.1. Drawing on the principle that a

skeleton is defined as the locus of medial points, i.e., centers of maximally inscribed disks,

we first hypothesize a sparse set of medial points at multiple scales by segmenting the image

(Fig. 5.1(a)) into compact superpixels at different superpixel resolutions (Fig. 5.1(b)). Super-

pixels are adequate for this task, balancing a data-driven component that’s attracted to shape

boundaries while maintaining a high degree of compactness. The superpixels (medial point

hypotheses) at each scale are linked into a graph, with edges adjoining adjacent superpixels.

Each edge is assigned an affinity that reflects the degree to which two adjacent superpixels rep-

resent medial points belonging to the same symmetric part (medial branch) (Fig. 5.1(c)). The

affinities are learned from a set of training images whose symmetric parts have been manually

identified. A standard graph-based segmentation algorithm applied to each scale yields a set of

superpixel clusters which, in turn, yield a set of regularized symmetric parts (Fig. 5.1(d)).

In the second phase of our approach, we address the problem of perceptually grouping

symmetric parts arising in the first phase. Like in any grouping problem, our goal is to identify

sets of parts that are causally related, i.e., unlikely to co-occur by accident. Again, we adopt a

graph-based approach in which the set of symmetric parts across all scales are connected in a

graph, with edges adjoining parts in close spatial proximity (Fig. 5.1(e)). Each edge is assigned

an affinity, this time reflecting the degree to which two nearby parts are believed to be physi-

cally attached. Like in the first phase, the associated, higher granularity affinities are learned

from the regularities of attached symmetric parts identified in training data. Consequently,

we explore two graph-based methods for grouping the detected parts. The first method is the

same greedy approach that was used to cluster superpixels into parts. The second method is

motivated by the optimization technique in Chapter 4 and uses parametric maxflow to globally

minimize an unbalanced normalized cuts criterion over the part graph. Both methods yield

part clusters, each representing a set of regularized symmetric elements and their hypothesized

attachments (Fig. 5.1(f)).



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 114

Our approach offers clear advantages over competing approaches. For example, classical

multiscale blob and ridge detectors, such as [54] (Fig. 5.1(g)), yield many spurious parts, a

challenging form of noise for any graph-based indexing or matching strategy. And even if

an opportunistic setting of a region segmenter’s parameters yields a decent object silhouette

(Fig. 5.1(h)), the resulting skeleton may exhibit spurious branches and may fail to clearly de-

lineate the part structure. From a cluttered image, our two-phase approach recovers, abstracts,

and groups a set of medial branches into an approximation to an object’s skeletal part structure,

enabling the application of skeleton-based categorization systems to more realistic imagery.

5.2 Related Work

The use of symmetry as a basis for part extraction has a long history in computer vision, includ-

ing Blum’s medial axis transform (MAT) [7], Binford’s generalized cylinders [6], Pentland’s

superquadric ellipsoids [77], and Biederman’s geons [4], to name just a few examples. The

literature is vast, and space permits us to highlight only a small subset of approaches that as-

sume a 2-D symmetry-based, part-based shape prior without assuming an object prior. Thus,

approaches that learn to segment particular categories of objects or scenes, often referred to as

image labeling or knowledge-based segmentation, are excluded for they assume knowledge of

object or scene content. Likewise, the rich body of skeletonization literature that assumes that

a closed curve is provided is also not reviewed here, for it assumes figure-ground segmentation.

We thus review only approaches that attempt to extract and group a set of 2-D symmetric parts

from a cluttered image.

The use of symmetry as a basis for multiscale abstract part extraction was proposed by

Crowley [24], who detected peaks (rotational symmetries) and ridges (elongated symmetries)

as local maxima in a Laplacian pyramid, linked together by spatial overlap to form a tree

structure. Object matching was then formulated as comparing paths through two trees. Shok-

oufandeh et al. [94] proposed a more elaborate matching framework based on Lindeberg’s



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 115

multiscale blob model [54]. This family of approaches can be characterized as imposing a

strong part-based symmetry prior, detecting parts at multiple scales, and grouping them based

on a simple model of spatial proximity. However, simply detecting parts as local maxima in a

set of multiscale filter responses leads to many false positives and false negatives, suggesting

that successful part extraction requires paying closer attention to image contours.

Symmetry has long been a foundational non-accidental feature in the perceptual grouping

community. Many computational models exist for symmetry-based grouping, including Brady

and Asada [10], Cham and Cipolla [17], Saint-Marc et al. [84], Ylä-Jääski and Ade [110] and,

more recently, Stahl and Wang [98], among others. Such systems face one or more important

limitations: 1) the complexity of pairwise contour grouping to detect symmetry-related con-

tour pairs; 2) the requirements of contour smoothness and precise pointwise correspondence

dictated by the geometric emphasis of many such approaches; and 3) that such approaches

typically stop short of grouping the detected symmetries (parts) into objects.

Our methodology addresses each of these limitations. On the complexity issue, by adopting

a region-based approach, our superpixels (medial point hypotheses) effectively group together

nearby contours that enclose a region of homogeneous appearance. Drawing on the concept

of extracting blobs at multiple scales, symmetric parts will map to “chains” of medial points

sampled at their appropriate scale. Our goal will be to group together the members of such

chains, ignoring those superpixels (the vast majority) that don’t represent good medial point

hypotheses. On the smoothness and precision issue, we will learn from noisy training data the

probability that two adjacent superpixels represent medial point approximations that belong

to the same symmetric part; this probability forms the basis for our affinity function used to

cluster medial points into chains. Finally, on the issue of part grouping, we will also learn from

noisy training data the affinity function that will form the basis of part attachment. Addressing

these three issues yields a novel framework that aims to narrow the gap between work in the

segmentation and medial axis extraction communities.



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 116

5.3 Medial Part Detection

The first phase of our algorithm detects medial parts by hypothesizing a sparse set of multi-

scale medial hypotheses and grouping those that are non-accidentally related. In the following

subsections, we detail the two components.

5.3.1 Hypothesizing Medial Points

Medial point hypotheses are generated by compact superpixels which, on one hand, adapt to

boundary structure, while on the other hand, enforce a weak compactness shape constraint.

In this way, superpixels whose scale is comparable to the width of a part can be seen as de-

formable maximal disks, “pushing out” toward part boundaries while maintaining compact-

ness. If the superpixels are sampled too finely or too coarsely for a given part, they will not

relate together the opposing boundaries of a symmetric part, and represent poor medial point

hypotheses. Thus, we generate compact superpixels at a number of resolutions corresponding

to the different scales at which we expect parts to occur; as can be seen in Fig. 5.1(b), we seg-

ment an image into 25, 50, 100 and 200 superpixels. To generate superpixels at each scale, we

employ a modified version [70] of the normalized cuts algorithm [93] since it yields compact

superpixels.

Each superpixel segmentation yields a superpixel graph, where nodes represent superpixels

and edges represent superpixel adjacencies. If a superpixel represents a good medial point hy-

pothesis, it will extend to (and follow) the opposing boundaries of a symmetric part, effectively

coupling the two boundaries through two key forms of perceptual grouping: 1) continuity,

where the intervening region must be locally homogeneous in appearance; and 2) symmetry,

in that the notion of maximal disk bitangency translates to two opposing sections of a su-

perpixel’s boundary. Fig. 5.2(b) illustrates a symmetry section (blow-up of the subimage in

Fig. 5.2(a) containing the athlete’s leg) whose medial point hypotheses are too large (under-

sampled), while in Fig. 5.2(c), the medial point hypotheses are too small (oversampled). When



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 117

they are correctly sampled, as in Fig. 5.2(d), they can be viewed as a sparse approximation to

the locus of medial points making up a skeletal branch, as seen in Fig. 5.2(e).

(a) (b) (c) (d) (e)

Figure 5.2: Superpixels as medial point samples: (a) a region of interest focusing on the ath-

lete’s leg (b) superpixels undersample the scale of the symmetric part; (c) superpixels over-

sample the scale of the symmetric part; (d) superpixels appropriately sample the scale of the

symmetric part, non-accidentally relating, through continuity and symmetry, the two opposing

contours of the part; (e) the medial point hypotheses that effectively capture the scale of the

part represent a sparse approximation to the locus of medial points that comprise the traditional

skeleton.

5.3.2 Clustering Medial Points

If two adjacent superpixels represent two medial points belonging to the same symmetric sec-

tion, they can be combined to extend the symmetry. This is the basis for defining the edge

weights in the superpixel graph corresponding to each resolution. Specifically, the affinity be-

tween two adjacent superpixels represents the probability that their corresponding medial point

hypotheses not only capture non-accidental relations between the two boundaries, but that they

represent medial points that belong to the same skeletal branch. Given these affinities, a stan-

dard graph-based clustering algorithm applied independently to each scale yields clusters of



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 118

medial points, each representing a medial branch at that scale. In Section 5.4, we group nonac-

cidentally related medial branches by object, yielding an approximation to an object’s skeletal

part structure.

The affinity As(i, j) between two adjacent superpixels Ri and Rj at a given scale has both

shape Ashape and appearance components Aappearance. We learn the components and how to

combine them from training data. To generate training examples, we segment an image into

superpixels at multiple scales, and identify adjacent superpixels that represent medial points

that belong to the same medial branch as positive evidence; negative pairs are samples in which

one or both medial point hypotheses are incorrect or, if both are valid medial points, belong

to different but adjacent parts. The boundary of the union of each superpixel pair defines a

hypothesized boundary in the image (which may or may not have local gradient support).

To compute the shape-based affinity, we fit an ellipse to the union of two adjacent super-

pixels (we find an ellipse with the same second moments as the superpixel union region). We

assign an edge strength to each boundary pixel equal to its Pb score [63] in the original image.

Each boundary pixel is mapped to a normalized coordinate system by projecting its coordinates

onto the major and minor axes of the fitted ellipse, yielding a scale- and orientation-invariant

representation of the region boundary. We split our normalized coodinate system into rectan-

gular bins of size 0.3a× 0.3b, where a and b are half the length of the major and minor ellipse

axes, respectively. Using these bins, we compute a 2-D histogram on the normalized boundary

coordinates weighted by the edge strength of each boundary pixel. Focusing on the superpixel

pair union and its local neighborhood, we only consider bins in the range [−1.5a, 1.5a] and

[−1.5b, 1.5b], resulting in a 10 × 10 histogram. This yields a shape context-like feature that

reflects the distribution of edges along the presumed boundary of adjacent superpixels. Fig. 5.3

illustrates the shape feature computed for the superpixel pair from Fig. 5.1(c), corresponding

to the thigh of the swimmer.

We train a classifier on this 100-dimensional feature using our manually labeled superpixel

pairs. The margin from the classifier (an SVM with RBF kernel) is fed into a logistic regressor



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 119

(a) (b) (c) (d)

Figure 5.3: Superpixel shape feature: (a) boundary of two adjacent superpixels representing

two medial point hypotheses; (b) a blow-up of the two superpixels, in which the boundary of

their union (green) defines a section of a hypothesized symmetric part which may or may not

have underlying image edge support (red); (c) the normalized scale- and orientation-invariant

coordinate system (grid in white) based on the ellipse (red) fitted to the superpixel union; (d)

the shape-context-like feature that projects image edgels, weighted by edge strength, into this

coordinate system.

in order to obtain the shape affinity Ashape(R1, R2) whose range is [0, 1]. Table 5.1 compares

various approaches for computing the shape affinity; the SVM with RBF kernel and the SVM

with a histogram intersection kernel yield the highest performance.

For the appearance component of the affinity, we compute the absolute difference in mean

RGB color, absolute difference in mean HSV color, RGB and HSV color variances of both

regions, and histogram distance in HSV space, yielding a 27-dimensional appearance fea-

ture. To improve classification, we compute quadratic kernel features, resulting in a 406-

dimensional appearance feature. We train a logistic regressor with L1-regularization to pre-

vent overfitting on our relatively small training dataset while emphasizing the weights of the

more important features. This yields an appearance affinity measure between two regions

(Aappearance(R1, R2)). Training the appearance affinity is easier than training the shape affin-

ity. For positive examples, we choose pairs of adjacent superpixels that are contained inside a

figure in the figure-ground segmentation, whereas for negative examples, we choose pairs of



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 120

SVM-R SVM-H CC HI

Fmeasure 0.75 0.75 0.42 0.44

Mean Precision 0.79 0.79 0.29 0.31

Table 5.1: Shape affinity comparison according to two measures: Fmeasure and mean precision

evaluated on test pairs of superpixels. We evaluate 4 methods: SVM with RBF kernel (SVM-

R), SVM with histogram intersection kernel (SVM-H), as well as cross correlation (CC) and

histogram intersection (HI) against a mean histogram of all positive training pairs.

adjacent superpixels that span figure-ground boundaries.

We combine the shape and appearance affinities using a logistic regressor to obtain the final

pairwise region affinity As(i, j). The resulting graph is used in conjunction with an efficient

agglomerative clustering algorithm based on [31] (complexity: O(|S|), where S is a set of all

superpixels) to obtain medial parts (medial point clusters). As the algorithm relies on having

edge weights that measure the dissimilarity between pairs of elements, we first convert the

superpixel affinity to edge weights as W (i, j) = 1
As(i,j)

. The clustering algorithm initializes

all medial point hypotheses as singletons, and maintains a global priority queue of edges by

increasing edge weight (decreasing affinity As). At each iteration, the edge with the lowest

weight (highest affinity) is removed from the queue, and the two clusters that span the edge

are hypothesized as belonging to the same part. If each of the two clusters is a singleton,

these are merged if the affinity is sufficiently high (the affinity captures the degree to which

the union is symmetric). If one or both clusters contain multiple medial points (superpixels),

the global symmetry As of the union is verified (in the same manner as a pair is verified, i.e.,

based on the same shape feature built over the union and the same logistic regressor) before the

merge is accepted. Thus, while local affinities define the order in which parts are grown, more

global information on part symmetry actually governs their growth. The result is a set of parts

from each scale, where each part defines a set of medial points (superpixels). Combining the



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 121

parts from all scales, we obtain the set Part1, Part2, . . . , Partn. Fig. 5.1(d) shows the parts

extracted at four scales.

5.4 Assembling the Medial Parts

Medial part detection yields a set of skeletal branches at different scales. The goal of group-

ing is to assemble the medial branches that belong to the same object. Drawing on the non-

accidental relation of proximity, we define a single graph over the union of elements computed

at all scales, with nodes representing medial parts and edges linking pairs in close proximity.

Assigned to each edge will be an affinity that reflects the likelihood that the two nearby parts

are not only part of the same object, but attached. Two different graph-based clustering tech-

niques are then explored to detect part clusters. However, since some parts may be redundant

across scales, a final selection step is applied to yield the final cluster of medial branches, repre-

senting an approximation to the object’s skeletal part structure. The following two subsections

describe the two steps.

5.4.1 Medial Part Clustering

A minimal requirement for clustering two parts is their close proximity. While the projections

of two attached parts in 3-D must be adjacent in 2-D (if both are visible), the converse is not

necessarily true, i.e., adjacency in 2-D does not necessarily imply attachment in 3-D (e.g.,

occlusion). Still, the space of possible part attachments can be first pruned to those that may

be attached in 3-D. Two parts are hypothesized as attached if one overlaps a scale-invariant

dilation of the other (the part is dilated by the size of the minor axis of the ellipse fitted to it, in

our implementation).

The edges in the graph can be seen as weak local attachment hypotheses. We seek edge

affinities that better reflect the probability of real attachments. We learn the affinity function

from training data – in this case, a set of ground truth parts and their attachments, labeled in



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 122

an image training set. For each training image, we detect parts at multiple scales, hypothesize

connections (i.e., form the graph), and map detected parts into the image of ground truth parts,

retaining those parts that have good overlap with ground truth. Positive training example pairs

consist of two adjacent detected parts (joined by an edge in the graph) that map to attached

parts in the ground truth. Negative training example pairs consist of two adjacent detected

parts that map to non-attached (while still possibly adjacent in 2-D) parts in the ground truth.

As mentioned earlier, our multiscale part detection algorithm may yield redundant parts,

detected at different scales, but covering the same object entity. One solution would be to

assign low affinities between such parts. However, this would mean that only one part in a

redundant set could be added to any given cluster, making the cluster more sensitive to noisy

part affinities. The decision as to which part in a redundant set survives in a cluster is an

important one that is best made in the context of the entire cluster. Therefore, we assign a high

affinity between redundant parts, and deal with the issue in a separate part selection step.

Formally, our part affinity is defined as:

Ap(i, j) = Pr(i, j) + (1− Pr(i, j))Ap,¬r(i, j) (5.1)

where Pr(i, j) is the probability that parts i and j are redundant, and Ap,¬r(i, j) is the affinity

between the parts given non-redundancy. Pr(i, j) is computed by training a quadratic logistic

classifier over a number of features, including overlap (in area) of the two parts (Oij), defined as

the overlap area normalized by the area of the smaller part, overlap of the two parts’ boundaries

(Bij), and appearance similarity (Aij) of the two parts. The features are defined as follows:

Oij =
|Parti ∩ Partj|

min {|Parti|, |Partj|}
(5.2)

Bij =
|∂(Parti ∩ Partj)|

min {|∂Parti|, |∂Partj|}

Aij = Aappearance(Parti, Partj)

where | · | is the region area and |∂(·)| is the region perimeter.

The affinity Ap,¬r(i, j) between non-redundant parts i and j, like affinities between medial



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 123

points, includes both shape and appearance components. The components are best analyzed

based on how the two parts are attached. Given an elliptical approximation to each part, we first

compute the intersection of their major axes. The location is normalized by half of the length

of the major axis, to yield a scale-invariant attachment position r for each part. We define

three qualitative attachment “regions” to distinguish between four attachment types: inside

(|r| < 0.5) , endpoint (0.5 < |r| < 1.5), or outside (|r| > 1.5). Our four apparent attachment

categories can be specified as follows:

1. end-to-end (Jij = 1) – The intersection lies in the endpoint region of both parts.

2. end-to-side (Jij = 2) – The intersection lies in the inside region of one part and in the

endpoint region of the other part.

3. crossing (Jij = 3) – The intersection lies in the inside region of both parts.

4. non-attached (Jij = 4) – The intersection lies in the outside region of one or both parts.

Fig. 5.4 gives examples of these four attachment types.

Jij = 1 Jij = 2 Jij = 3 Jij = 4

Figure 5.4: Attachment categories. The four different attachment categories of parts (yellow).

The shape component of our affinity is based on the principle that when one part at-

taches to (interpenetrates) another, it introduces a pair of concave discontinuities (Hoffman and



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 124

Richards’ principle of transversality [39]), reflected as a pair of L-junctions marking the attach-

ment. In contrast, when one part occludes another, the L-junctions are replaced by T-junctions,

reflecting an occlusion boundary. This is a heuristic, for there could be an appearance boundary

between two attached parts, misinterpreted as an occlusion boundary.

Since extracting and classifying contour junctions is challenging in the presence of noise,

we will instead focus on the evidence of an occlusion boundary between two parts, based on

image edges (Eij) along the attachment boundary between parts i and j. Once the attachment

boundary is found, evidence is accumulated as the average Pb [63] of the boundary pixels.

Finding the attachment boundary is not trivial since the parts may be sufficiently close but not

touching, due to segmentation errors.

The attachment boundary is computed similarly for all four attachment categories. For a

pair of attached parts, we first select the part P1 with the smaller |r| and find the intersection

of its boundary with the major axis of the other part P2. The attachment boundary is centered

at the intersection and extends along the boundary of P1 in both directions, to an extent equal

to the length of the minor axis (width) of P2. For end-to-side attachments, this is illustrated in

Fig. 5.5.

Given the attachment category Jij , the attachment boundary evidence Eij , and the ap-

pearance similarity Aij , we can define the part affinity Ap,¬r(i, j). One logistic classifier is

trained for end-to-end junctions (A1(i, j)), whereas another is trained for end-to-side junctions

(A2(i, j)). For crossing and non-attached junctions, we set the affinity to 0 because we empir-

ically found that none of the attached part pairs in the training set exhibited such attachment

categories. Our affinity for non-redundant parts becomes:

Ap,¬r(i, j) = [Jij = 1] · A1(i, j) (5.3)

+ [Jij = 2] · A2(i, j)

Having defined all the components of the affinity functionAp(i, j) (Equation 5.1), we use these

affinities to cluster parts that are attached.



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 125

Figure 5.5: Locating the attachment boundary between two parts in the case of an end-to-side

attachment. The attachment boundary (orange) between the two parts P1 and P2 is centered

at the intersection of the major axis of P2 with the boundary of P1, and extends along the

boundary of P1 a total distance equal to the length of the minor axis of P2. Left - illustration of

the attachment boundary. Right - attachment boundary between two parts in a real image.

We explore two graph-based approaches for part clustering. Our first approach is the same

algorithm [31] used to cluster medial points into parts. Since this technique is greedy in nature,

it is susceptible to undersegmentation given noisy part affinities. We therefore explore a second,

globally optimal, technique that is based on the work in Chapter 4. Given the goal of finding

a well-separated part cluster, we formulate the part clustering problem as finding an optimal

unbalanced normalized cut (UNC), which is a measure of cluster dissimilarity to the rest of

the graph relative to its internal similarity. Formally, given the part affinities Ap(i, j), Di =∑
j Ap(i, j), and a binary indicator vector ~X over parts,

UNC( ~X) =
cut( ~X)

volume( ~X)
=

∑
ij Xi(1−Xj)Ap(i, j)∑

iXiDi

, (5.4)

where cut( ~X) is the sum of the affinities of all the edges between selected and unselected

parts, and volume( ~X) is the sum of all the affinities originating from the selected parts. This

cost can be globally minimized using parametric maxflow [50], returning multiple solutions

with minimal cost under increasing volume constraints. As it stands, however, the cost has a

trivial minimizer ~X = 1 that selects all the parts. To avoid this trivial solution, we modify the



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 126

cost and add a small fixed penalty αp for adding parts to the numerator. Moreover, note that

our affinities Ap(i, j) measure part attachment and not similarity in a clustering sense. Two

parts in the graph are similar and should be clustered together if they are attached to the same

object, meaning that there is a high affinity attachment path between them. To that end, we

first compute a shortest path distance Dp(i, j) for all pairs of parts based on their attachment

affinities, and convert it into part similarity Wp(i, j) = e
−Dp(i,j)

σp . Letting D′i =
∑

jWp(i, j),

our final unbalanced Ncuts cost becomes:

UNC( ~X) =
cut( ~X) + penalty( ~X)

volume( ~X)
=

∑
ij Xi(1−Xj)Wp(i, j) + αp

∑
iXi∑

iXiD′i
. (5.5)

In the results section, we will compare the two part clustering approaches, showing that the

second method achieves a slightly better performance.

5.4.2 Medial Part Selection

Our affinity-based grouping yields a set of part clusters, each presumed to correspond to a

set of attached parts belonging to a single object. However, any given cluster may contain

one or more redundant parts. While such parts clearly belong to the same object, we prune

redundancies to produce the final approximation to an object’s skeletal part structure. Our

objective function selects a minimal number of parts from each cluster that cover the largest

amount of image, while at the same time minimizing overlap between the parts. The problem

is formulated as minimizing a quadratic energy over binary variables. Let Xi ∈ {0, 1} be an

indicator variable representing the presence of the ith part in a cluster. We seek the subset of

parts that minimizes the following energy:

E =
∑
i

Xi (K − |Parti|) +
∑
i,j

XiXjOij (5.6)

where K controls the penalty of adding parts. In our experiments, we found that K = 0.1 ·

median {|Parti|} is an effective setting for this parameter. We find the optimal X by solving

a relaxed quadratic programming problem, in which real values are rounded to 0 or 1 [78].



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 127

Figure 5.6: Ground truth used for training: sample image (left), figure/ground segmentation

(middle), and part segmentation (right).

5.5 Results

To evaluate the method, we train the various components using the Weizmann Horse Database

[8], consisting of images of horses together with figure-ground segmentations; in addition,

we manually mark the elongated parts of the horses, together with their attachment relations.

Fig. 5.6 illustrates an example training image and its ground truth segmentations. Once trained,

we first qualitatively evaluate the system on images of objects with well-defined symmetric

parts drawn from different (i.e., non-horse) image domains, reflecting our assumption that both

symmetry and part attachment are highly generic.

Fig. 5.7 shows qualitative results of our algorithm applied to a number of different image

domains1. For all the results in this figure, the greedy technique [31] was used for part clus-

tering. In each case (a-m), the figure shows the input image, the most prominent groupings of

medial branches, as well as the results of intermediate stages in our system. For part cluster

visualization, in order to avoid clutter, the abstractions of the parts in each cluster are shown

as ellipses with their major axes (medial branch regularizations) depicted by dotted lines. All

other parts are shown with faint (grey) elliptical part abstractions (without axes, for clarity),

illustrating the ability of our algorithm to correctly group medial branches.

We organize the results in decreasing order of success, with Figs. 5.7(a-f) corresponding

1Supplementary material (http://www.cs.toronto.edu/˜babalex/symmetry_
supplementary.tgz) contains additional examples.



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 128

to more successful applications of our system and Figs. 5.7(g-m) illustrating some constraints

and failure modes. Examining the results, Fig. 5.7(a) presents an ideal example of our system’s

operation. All the tentacles of the starfish were successfully recovered and grouped, with

the small exception of the center being a part of one of the tentacles. This is a perhaps an

easy example since the tentacles are of the same scale, exhibit strong appearance homogeneity

and similarity, and are contrasted from the background. Thus, paying closer attention to the

superpixels and the affinities, we see that the second scale not only provides perfect medial disc

approximations for all the parts, but the affinities between the superpixels of each tentacle are

strong. We see that in Fig. 5.7(b), our system has successfully extracted the major parts of the

athlete, including the torso, which exhibits heterogeneous appearance, and correctly grouped

them together. Fig. 5.7(c) illustrates not only that the parts of the windmill were successfully

recovered and clustered, but that the person was also recovered as a separate single-part cluster.

The smaller windmills undetected in the background contain parts whose scale was smaller

than our finest sampled scale. Figs. 5.7(d-f) show other examples of our system’s success, in

which the major medial parts of a plane, swan, and statue, respectively, were recovered and

grouped to yield an approximation to an object’s skeletal part structure.

Figs. 5.7(g-m) illustrate some limitations of our approach. Our framework relies on the as-

sumption that good medial disc approximations could be extracted bottom-up, and our greatest

failure mode occurs when this assumption is broken. While Fig. 5.7(g) shows that the bull is

correctly detected as a symmetric object, despite irregularities in its contour, the legs of the

bull, as well as the arms and legs of the human, are not detected due to insufficient superpixel

resolution or low contrast on part boundaries. These are the two main reasons for failing to

extract good medial disc approximations and these failures recur in many of the following test

cases. For example, in Fig. 5.7(h), one of the swan’s wings is not properly detected. Due to

insufficient contrast between the wing and the background, the superpixel boundaries fail to

capture the part at any scale. Still, the remaining part structure of the swan may provide a

sufficiently powerful shape index to select a small set of candidate models, including the swan



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 129

(a)

Figure 5.7: Detected medial parts and their clusters. For each test case, we show the original

image in true color, followed by the output of different stages overlaid on brightened images

for better contrast. The results (ordered left-to-right and top-to-bottom) illustrate the recovered

parts from each superpixel scale, part clusters with axis color indicating cluster membership,

and the most prominent part clusters after the part selection stage (yellow ellipses correspond to

selected parts, while others correspond to either unselected parts or parts from other clusters).

The bottom half of the results shows the extracted superpixels and their affinities at our 4 scales.



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 130

(b)

(c)

Figure 5.7



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 131

(d)

Figure 5.7



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 132

(e)

Figure 5.7



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 133

(f)

Figure 5.7



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 134

(g)

Figure 5.7



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 135

(h)

Figure 5.7



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 136

(i)

(j)

Figure 5.7



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 137

(k)

Figure 5.7



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 138

(l)

Figure 5.7



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 139

(m)

Figure 5.7



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 140

model, which could be used in a top-down manner to overcome such segmentation problems.

A similar effect can be seen in Figs. 5.7(j,k), where the top parts of the statues and the center

of the cross do not have sufficient contrast with their backgrounds. Figs. 5.7(d,l) illustrate the

second cause, where the tail of an airplane and the tail of a lizard are not captured since they

are too thin to be well-represented by even our finest superpixel scale.

Additional issues in part detection arise when parts are tapered or have a curved axis.

Fig. 5.7(l) shows that although the main parts of the lizard are found, the tail is not composed

of a single part since our system assumes parts with straight symmetry axes. Part tapering, and

other deformations from roughly parallel part boundaries, also hinder detection. Figs. 5.7(e,f,i)

illustrate this effect. Tapering can result in wide sections of a part being captured at a coarse

superpixel scale, and thinner sections being captured at a finer scale. Object extremities, such

as the hand of the Jesus statue (Fig. 5.7(e)), the tail of the swan (Fig. 5.7(f)), and the tip of

the tower (Fig. 5.7(i)), are all better represented at a finer scale than the remainder of these

corresponding parts. Even if this effect is overcome and there is a single superpixel scale at

which the whole part is well-captured, superpixel affinities are still negatively affected since

most parts in our training set had more parallel boundaries.

The part grouping stage of our system also suffers from some limitations. Starting the

discussion from our part selection stage, we see that it is not perfect, occasionally resulting

in suboptimal part groups. Figs. 5.7(b,e) show examples where more precise arm parts were

discarded over inferior arm representations. However, our greatest failure mode is part clus-

tering itself. While the affinities at the superpixel level consist of strong appearance and shape

components, our part attachment affinities include weaker constraints and are more susceptible

to low contrast between objects and their background. In combination with our greedy part

clustering approach, this can often lead to bleeding. In Fig. 5.7(k), too many parts are clustered

due to a lack of contrast at their attachment boundaries (symmetric strip of horizon landscape

accidentally grouped with vertical mast). Like Fig. 5.7(h), a candidate model may be required

to resolve such ambiguous part attachments. Finally, while Fig. 5.7(m) shows that most swim-



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 141

mers and/or their parts were successfully detected, the vast number of resulting parts and their

proximity overwhelm our greedy part grouping approach.

To provide a quantitative evaluation of our part detection strategy, we compare its precision

and recall to the method of Lindeberg et al. [54], used to generate the symmetric parts shown

in Fig. 5.1(g). Both methods are evaluated on 61 test images from the Weizmann Horse Dataset

[8]. A ground truth part is considered to be recovered if its normalized overlap (in area) with

one of the detected parts is above a threshold (0.4). Our part detection offers a significant

improvement in both precision and recall (Fig. 5.8). Moreover, in [54], no effort is made to

distinguish part occlusion from part attachment; parts are simply grouped if they overlap. Note

that both methods achieve low precision. This is partially due to the fact that there are other

symmetric parts in the images, besides the horses’ parts, that were not marked in the ground

truth. Moreover, due to our multiscale part detection approach, the same ground truth part

may be recovered at multiple scales, hindering precision in the absence of some redundancy

removal step.

We also provide quantitative evaluation for part grouping. Given a user-specified parameter

setting (k in Eqn. 5 in [31]), our first, greedy, part grouping method groups the parts into

multiple disjoint clusters. Our second, unbalanced Ncuts-based approach, generates potentially

overlapping clusters of parts given parameters αp (which we fix at 1 for this experiment) and

σp (that was used to convert part attachment distance into similarity). Leaving for now the part

selection step, we compare the two part clustering approaches on the tasks of figure/ground

segmentation and part grouping. In the first task, our goal is the same as that in Chapter 4,

aiming to select a set of parts that covers the object as closely as possible. The second task is

motivated by generic object recognition, where correct part groups are needed to index into a

dataset of objects. Here it is less important to achieve a good pixel-wise covering of the object

rather than obtain largest possible groups of parts mapping to parts on the object.

Given an image, both methods return multiple clusters of parts corresponding to part group-



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 142

Figure 5.8: Precision vs recall of part detection. Due to the low precision of [54], we prune

small parts to increase precision: (1) no pruning, (2) prune parts whose major axis is less than

10 pixels, (3) prune parts whose major axis is less than 20 pixels.

ing hypotheses that would be used for high-level tasks. What is important is that at least one of

these clusters corresponds to an object of interest. Thus, for each image we first compute the

F measure (either using figure-ground precision/recall or part precision/recall) and chose the

solution with the best F measure for each image. We average the best per-image F measures

across all images, giving us a mean F measure for each parameter setting for the two methods.

Figure 5.9 shows the performance of both methods as a function of their parameters. Observe

that the unbalanced Ncuts approach is able to achieve slightly better performance.

5.6 Limitations and Future Work

A number of limitations of the current framework will be addressed in future research. We

have shown that successful part recovery strongly depends on our ability to recover good me-

dial disc approximations. To improve the quality of medial point hypotheses, we are exploring

a more powerful superpixel extraction framework that allows greater control over compactness,



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 143

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

log(k)

F
 M

ea
su

re

Part grouping results using greedy clustering

 

 
GT Figure
GT Parts

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

σ
p

F
 M

ea
su

re

Part grouping results using unbalanced Ncuts

 

 
GT Figure
GT Parts

(a) (b)

Figure 5.9: Part grouping performance. (a) Part grouping using the greedy method in [31],

(b) Part grouping by minimizing unbalanced Ncuts using parametric maxflow. In both cases,

performance is measured as a function of method parameters (k in [31] and σp in unbalanced

NCuts). Dotted lines provide the baselines for the corresponding evaluation tasks, measuring

performance when all the detected parts are selected.

along with a multiscale Pb detector. In addition, our current system is restricted to grouping

superpixels independently at each scale. Lifting this constraint would increase grouping com-

plexity and complicate affinity computation, but will also make our part model more flexible

and is therefore a subject of future work. We also intend to relax our linear axis model to in-

clude curved shapes; for example, the ellipse model could easily be replaced by a deformable

superellipse.

The chosen clustering approach proves to be another serious limitation. Both stages of our

framework, part recovery and part grouping, rely on greedy clustering methods. This allows us

to overcome significant computational issues in extracting and grouping parts bottom-up, but

can result in over- or undersegmentation in both part recovery and part clustering. The issue is

of greater concern in the second stage, where affinities provide only a crude guideline to true

part attachments. Exploring global optimization techniques should lead to a better solution of



CHAPTER 5. MULTISCALE SYMMETRIC PARTS DETECTION AND GROUPING 144

this grouping problem. The use of unbalanced Ncuts, instead of our main greedy approach, has

already been shown to be a promising step in this direction. In future work, we plan to further

address this issue through better optimization and the incorporation of more global constraints,

such as closure.

5.7 Conclusions

We have presented a constructive approach to detecting symmetric parts at different scales by

grouping small compact regions that can be interpreted as deformable versions of maximal

disks whose centers make up a skeletal branch. In this way, symmetry is integrated into the

region segmentation process through a compactness constraint, while region merging is driven

by a symmetry-based affinity learned from training data. Detected parts are assembled into

objects by exploiting the regularities of part attachments in supervised training data. The re-

sulting framework can recover a skeletal-like decomposition of an object from real images

without requiring any prior knowledge of scene content and without requiring figure-ground

segmentation.



Chapter 6

Conclusions

6.1 Review of contributions

The path from image pixels to a full semantic understanding of a scene is long and treacherous.

Shortcuts can occasionally be made in case of simplified scenes and object detection scenarios,

but in general, some level of bottom-up perceptual grouping is essential before object-specific

models can be applied. The required amount of grouping is task dependant, with low-level

grouping serving better feature extraction, segmentation, recognition, as well as mid-level per-

ceptual grouping, which is needed for more generic scene analysis. All of the above are impor-

tant goals in computer vision, suggesting that both low and mid-level grouping are necessary

in their own way.

This thesis addressed perceptual grouping at its different levels. With a growing need for

fast and accurate superpixel extraction, we start from employing low-level grouping cues to

obtain compact superpixels, our first contribution. While superpixels are usually obtained by

tuning the parameters of standard segmentation algorithms towards oversegmentation, ours is

a specialized superpixel extraction approach. We show that most of the standard segmentation

techniques are very fast but do not encode any shape constraints, and therefore suffer from

significant undersegmentation. Normalized Cuts, which does encode such constraints, results

145



CHAPTER 6. CONCLUSIONS 146

in much better performance but is very computationally intensive.

Our method takes the best of both worlds, encoding compactness constraints into a local

level-set curve evolution framework. For dense superpixel segmentations, it achieves compara-

ble performance to Normalized Cuts, a global approach that is expected to do better in general,

while being orders of magnitude faster. The framework is flexible and can accommodate addi-

tional shape constraints in the future. However, what is more important is that such compact

superpixels can prove to be of great help to higher level vision tasks, which is the subject of

our next two contributions.

Bottom-up figure/ground segmentation in the absence of a scene prior has received lit-

tle recent attention in the computer vision community. Low-level segmentation approaches,

building on purely local appearance cues, are unlikely to extract whole objects from realistic

images. Recent developments in closure detection showed that globally optimizing a closure

cost computed over short fragments of image edges brings us much closer to the ultimate goal

of bottom-up figure extraction. However, such approaches have to cope with the prohibitive

complexity of grouping a vast number of contour fragments into large and meaningful cycles.

It often leads to the use of heuristics and greedy grouping strategies, or imposes additional

constraints on the closure cost.

In our second contribution, we show that a standard closure cost can be globally optimized

by grouping superpixels instead of finding contour cycles. The boundary of any set of con-

nected superpixels implicitly represents a closed contour. The same is not true for groups

of contour fragments, making closure detection simpler when working with superpixels. In

addition, superpixels not only provide an ideal scope for the computation of boundary shape

features, but give easy access to internal region information, such as area or appearance. This

enables us to formulate two closure costs where a learned measure of contour gap is weighted

against internal region area or internal homogeneity. Using a polynomial minimum cuts ap-

proach, we are able to efficiently recover a small number of figure hypotheses, capturing most

of the objects in a scene. A similar approach can be used to recover closures in the spatiotem-



CHAPTER 6. CONCLUSIONS 147

poral domain, where we efficiently recover a small set coherently moving components from a

video.

In our final contribution, compact superpixels serve an even more important role, helping

us in the extraction and grouping of symmetric parts. Until now, superpixels were used mainly

to reduce complexity. Shape constraints on superpixels were only indirectly important as they

reduce undersegmentation. In our final contribution, however, superpixels are not only essential

to ease the computational burden, but their compactness is used explicitly.

Starting from the observation that abstract part-based representations are essential for generic

recognition, we set out on the quest of recovering such representations bottom-up. Motivated

by the skeletonization literature, we opt for working with symmetric parts. However, skele-

tonization approaches assume a prior figure-ground segmentation, and are sensitive to small

shape perturbations. On the other hand, methods that detect symmetry bottom-up suffer from

poor precision/recall (filter-based approaches) or prohibitive grouping complexity (contour-

based approaches). In contrast to these approaches, we efficiently extract and group symmetric

parts with no figure/ground assumptions. Our key contribution is the observation that at an

appropriate superpixel resolution, superpixels can serve as good data-driven medial disc ap-

proximations, which can be grouped to yield the symmetric parts of an object. Thus, sym-

metric parts correspond to chains of superpixels at the right superpixel scale. Using multiple

superpixel scales enables us to capture most of the parts in an image.

Unlike most symmetry detection approaches that rely on precise geometric relations, we

cluster superpixels based on a pairwise superpixel affinity corresponding to the probability of

a given superpixel pair to be a section of a symmetric part. Building on both appearance and

shape features, our affinity is learned from a set of real training images, making our framework

more applicable to real images. A similar approach is taken to learn a part attachment affinity

and used to cluster symmetric parts, something which most bottom-up symmetry extraction

methods stop short of. Our final results illustrate that while our framework was trained on

images of horses, we learn generic grouping rules and are able to extract full skeleton-like



CHAPTER 6. CONCLUSIONS 148

representations of objects from a variety of challenging images from different domains.

6.2 Discussion and Future Work

Promising results were shown in several important perceptual grouping tasks. Building on

these results opens the path to a great deal of potential future work in perceptual grouping and

object recognition. Moreover, while our methods were shown to push the state-of-the-art in

their respective perceptual grouping domains, they suffer from a number of drawbacks which

should be addressed. We therefore conclude this thesis with a discussion of possible extensions

and improvements.

Starting with TurboPixels, we point the reader to the fact that as any local segmentation

technique, it too suffers from undersegmentation if superpixel resolution is too coarse. We

provide one simple gradient-based pixel affinity and show that our system can work with a more

elaborate Pb-based affinity, but it is a far cry from a complete black-box superpixel extraction

approach sought by the community. A complete black-box system would call for a better pixel

affinity, incorporating both different image cues, as well as information from multiple image

scales. Our uniform superpixel seeding is also not applicable in some scenarios. For example,

handling narrow or small objects would require us to place more seeds in such areas.

Finally, the level-set formulation in TurboPixels allows for some natural extensions. We

have already shown how the original framework can be extended to obtain stable spatiotem-

poral superpixels (see Section 4.7.3). It is possible to further extend the approach towards 3D

domains, such as supervoxel extraction in medical images. In such domains, using superpixels

(or supervoxels) is of even greater importance, as an additional dimension results in a pro-

hibitive number of voxels. Level-sets also enabled us to impose compactness and smoothness

constraints. In future work, additional, more shape-specific constraints could be explored.

Relying on superpixels, our closure detection approach was able to extract a small number

of good closure hypotheses in an efficient manner. However, unlike previous methods that



CHAPTER 6. CONCLUSIONS 149

could globally optimize a measure of gap relative to perimeter, we are not able to do so due

to restrictions of the parametric maxflow framework. Arguably, minimizing gap over area or a

measure of internal homogeneity was shown to be a superior cost, but its minima do not always

serve as good figure hypotheses. It would be interesting to explore additional costs, encoding

stronger grouping constraints that might result in a better set of hypotheses. For example, we

are considering the use of superpixel junctions to add contour smoothness constraints. The

challenge is to incorporate these additional cues, while still maintaining all the constraints that

enable us to efficiently minimize the cost using parametric maxflow. It would be even more

interesting to see if one could train a global closure cost using a set of real images, learning the

optimal combination of different perceptual grouping features. Finally, we could start making

use of the figure hypotheses acquired by our framework for higher-level tasks, such as object

recognition.

In our last contribution, we set our sights even higher, attempting to extract and group

symmetric parts. While using superpixels brought us closer to an ultimate, purely bottom-up

solution of this difficult problem, we still resorted to the use of greedy clustering techniques for

both part detection and grouping stages. As any greedy approach, our method also suffers from

undersegmentation in the presence of weak affinities. This is particularly an issue at the part

grouping stage, where pairwise affinities are weaker than the affinities used to cluster superpix-

els into parts. While future efforts should undoubtedly be spent on the design of better affinities

at both stages, employing a more global clustering technique should lead to better performance.

Moreover, the same complexity that forced us to employ a greedy grouping approach also re-

sulted in breaking the framework into separate part detection and grouping steps. Our ultimate

framework would integrate both of these stages, placing them under a unified mathematical

formulation. Moving away from potential improvements to the realm of utilizing our system’s

output, the final challenge lies in using the extracted symmetric representations for generic

object recognition.

In conclusion, note that the three works described in this thesis were somewhat indepen-



CHAPTER 6. CONCLUSIONS 150

dent in their nature. As humans, we make use of multiple grouping cues at different levels to

better perceive our world. Therefore, we believe that the greatest potential for enhancement

lies in a successful merger of our different frameworks. First, instead of working with compact

superpixels to detect parts, we can extend TurboPixels to detect symmetric parts by encod-

ing symmetric shape constraints directly into superpixel evolution itself. Moreover, Chapters 4

and 5 build on Ncuts-based superpixels rather than our own TurboPixels. Ncuts in combination

with Pb or globalPb produces better results than TurboPixels, especially at coarse superpixel

resolutions which are necessary as part of a multiscale superpixel analysis in Chapter 5. While

we do not believe that TurboPixels can be extended to very coarse superpixel resolutions due

to the local nature of the algorithm, coarse segmentations can be obtained efficiently by us-

ing Ncuts over fine TurboPixels segmentations rather than raw pixels. Second, while our part

grouping stage would benefit from a more global clustering approach, it would gain even more

if a global closure constraint were imposed on the resulting groups. An attentive reader has

probably noticed that work from Chapter 4, that could undoubtedly aid in the extraction and

grouping of symmetric parts, was not used in Chapter 5. The reason for this is that chronolog-

ically the work in Chapter 5 predates that of Chapter 4. As a result, though we are currently

working on extracting skeletons based on the detected shape hypotheses from Chapter 4 or

using closure to detect better object parts, this was not done at the time of writing Chapter 5. In

the long run, adding more grouping cues, improving on the above techniques, and integrating

all of them into a single mathematically elegant framework are the keys to success. Taking

these next steps would allow for a far better and more generic scene analysis.



Bibliography

[1] Sharon Alpert, Meirav Galun, Ronen Basri, and Achi Brandt. Image segmentation by

probabilistic bottom-up aggregation and cue integration. In IEEE International Confer-

ence on Computer Vision and Pattern Recognition, 2007.

[2] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape matching and object recognition

using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence,

24:509–522, 2002.

[3] P.J. Besl and R.C. Jain. Segmentation through variable-order surface fitting. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 10(2):167–192, 1988.

[4] I. Biederman. Human image understanding: Recent research and a theory. Computer

Vision, Graphics and Image Processing, 32:29–73, 1985.

[5] Irving Biederman. Recognition-by-components: A theory of human image understand-

ing. Psychological Review, 94:115–147, 1987.

[6] T. O. Binford. Visual perception by computer. In Proceedings, IEEE Conference on

Systems and Control, Miami, FL, 1971.

[7] H. Blum. A Transformation for Extracting New Descriptors of Shape. In Weiant

Wathen-Dunn, editor, Models for the Perception of Speech and Visual Form, pages 362–

380. MIT Press, Cambridge, 1967.

151



BIBLIOGRAPHY 152

[8] E. Borenstein and S. Ullman. Class-specific, top-down segmentation. In European

Conference on Computer Vision, pages 109–124, 2002.

[9] K.L. Boyer and S. Sarkar. Perceptual organization in computer vision: Status, chal-

lenges, and potential. Computer Vision and Image Understanding, 76(1):1–6, October

1999.

[10] M. Brady and H. Asada. Smoothed local symmetries and their implementation. Inter-

national Journal of Robotics Research, 3(3):36–61, 1984.

[11] R.A. Brooks. Model-based three-dimensional interpretations of two-dimensional im-

ages. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(2):140–149,

March 1983.

[12] Richard J. Campbell and Patrick J. Flynn. A survey of free-form object representation

and recognition techniques. Computer Vision and Image Understanding, 81(2):166–

210, 2001.

[13] J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 8(6):679–698, 1986.

[14] J. Carreira and C. Sminchisescu. Constrained parametric min-cuts for automatic ob-

ject segmentation. In IEEE International Conference on Computer Vision and Pattern

Recognition, 2010.

[15] Vicent Caselles, Francine Catté, Tomeu Coll, and Françoise Dibos. A geometric model

for active contours in image processing. Numerische Mathematik, 66(1):1–31, Decem-

ber 1993.

[16] Vicent Caselles, Ron Kimmel, and Guillermo Sapiro. Geodesic active contours. Inter-

national Journal of Computer Vision, 22:61–79, 1995.



BIBLIOGRAPHY 153

[17] Tat-Jen Cham and R. Cipolla. Geometric saliency of curve correspondences and group-

ing of symmetric contours. In European Conference on Computer Vision, pages 385–

398, 1996.

[18] Tat-Jen Cham and Roberto Cipolla. Symmetry detection through local skewed symme-

tries. Image Vision Comput., 13(5):439–450, 1995.

[19] D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature space analysis.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):603–619, May

2002.

[20] J. H. Connell and M. Brady. Generating and generalizing models of visual objects.

Artificial Intelligence, 31(2):159–183, 1987.

[21] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Active shape models–their train-

ing and application. Computer Vision and Image Understanding, 61(1):38–59, 1995.

[22] Timothee Cour, Florence Benezit, and Jianbo Shi. Spectral segmentation with multi-

scale graph decomposition. In IEEE International Conference on Computer Vision and

Pattern Recognition, pages 1124–1131, Washington, DC, USA, 2005. IEEE Computer

Society.

[23] I. J. Cox, S. B. Rao, and Y. Zhong. ”ratio regions”: A technique for image segmentation.

In IEEE International Conference on Pattern Recognition, page 557, Washington, DC,

USA, 1996. IEEE Computer Society.

[24] J. Crowley and A. Parker. A representation for shape based on peaks and ridges in the

difference of low-pass transform. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 6(2):156–169, March 1984.

[25] W. Dinkelbach. On nonlinear fractional programming. Management Science, 13:492–

498, 1967.



BIBLIOGRAPHY 154

[26] James Elder and Steven Zucker. A measure of closure. Vision Research, 34:3361–3369,

1994.

[27] James H. Elder and Steven W. Zucker. Computing contour closure. In European Con-

ference on Computer Vision, pages 399–412, London, UK, 1996. Springer-Verlag.

[28] J.H. Elder and S.W. Zucker. Local scale control for edge detection and blur estimation.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 20(7):699–716, Jul

1998.

[29] Francisco J. Estrada and Allan D. Jepson. Perceptual grouping for contour extraction.

In IEEE International Conference on Pattern Recognition, pages 32–35, 2004.

[30] Francisco J. Estrada and Allan D. Jepson. Robust boundary detection with adaptive

grouping. In Computer Vision and Pattern Recognition Workshop, page 184, Los Alami-

tos, CA, USA, 2006. IEEE Computer Society.

[31] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient graph-based image segmen-

tation. International Journal of Computer Vision, 59(2):167–181, 2004.

[32] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid. Groups of adjacent contour segments

for object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,

30(1):36–51, Jan. 2008.

[33] C. Fowlkes, D. Martin, and J. Malik. Learning affinity functions for image segmen-

tation: combining patch-based and gradient-based approaches. In IEEE International

Conference on Computer Vision and Pattern Recognition, volume 2, pages 54–61, June

2003.

[34] Lena Gorelick, Moshe Blank, Eli Shechtman, Michal Irani, and Ronen Basri. Actions

as space-time shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence,

29(12):2247–2253, December 2007.



BIBLIOGRAPHY 155

[35] Peter D. Grünwald, In Jae Myung, and Mark A. Pitt. Advances in Minimum Description

Length: Theory and Applications (Neural Information Processing). The MIT Press,

2005.

[36] X. He, R. S. Zemel, and M. Á. Carreira-Perpiñán. Multiscale conditional random fields

for image labeling. In IEEE International Conference on Computer Vision and Pattern

Recognition, pages 695–702, 2004.

[37] Xuming He, Richard S. Zemel, and Debajyoti Ray. Learning and incorporating top-

down cues in image segmentation. In European Conference on Computer Vision, pages

338–351, 2006.

[38] H. Helmholtz. Treatise on Physiological Optics. New York: Dover, 1962 (first published

in 1867).

[39] D. D. Hoffman, Whitman Richards, Alex Pentland, John Rubin, and Joseph Scheuham-

mer. Parts of recognition. Cognition, 18:65–96, 1984.

[40] Derek Hoiem, Alexei A. Efros, and Martial Hebert. Automatic photo pop-up. ACM

Transactions on Graphics, 24(3):577–584, 2005.

[41] Derek Hoiem, Alexei A. Efros, and Martial Hebert. Geometric context from a single

image. In IEEE International Conference on Computer Vision, pages 654–661, Wash-

ington, DC, USA, 2005. IEEE Computer Society.

[42] S.L. Horowitz and T. Pavlidis. Picture segmentation by a directed split and merge proce-

dure. In IEEE International Conference on Pattern Recognition, pages 424–433, 1974.

[43] Yuchi Huang, Qingshan Liu, and D. Metaxas. Video object segmentation by hyper-

graph cut. IEEE International Conference on Computer Vision and Pattern Recognition,

0:1738–1745, 2009.



BIBLIOGRAPHY 156

[44] D.W. Jacobs. Robust and efficient detection of salient convex groups. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 18(1):23–37, Jan 1996.

[45] Hong Jeong and C. I. Kim. Adaptive determination of filter scales for edge detection.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(5):579–585, 1992.

[46] I.H. Jermyn and H. Ishikawa. Globally optimal regions and boundaries as minimum

ratio weight cycles. IEEE Transactions on Pattern Analysis and Machine Intelligence,

23:1075–1088, 2001.

[47] M. Kass, A.P. Witkin, and D. Terzopoulos. Snakes: Active contour models. Interna-

tional Journal of Computer Vision, 1(4):321–331, January 1988.

[48] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi. Gradient flows

and geometric active contour models. In IEEE International Conference on Computer

Vision, page 810, Washington, DC, USA, 1995. IEEE Computer Society.

[49] B. B. Kimia, A. Tannenbaum, and S. W. Zucker. Toward a computational theory of

shape: an overview. In European Conference on Computer Vision, pages 402–407, New

York, NY, USA, 1990. Springer-Verlag New York, Inc.

[50] V. Kolmogorov, Y.Y. Boykov, and C. Rother. Applications of parametric maxflow in

computer vision. In IEEE International Conference on Computer Vision, pages 1–8,

2007.

[51] Yvan G. Leclerc. Constructing simple stable descriptions for image partitioning. Inter-

national Journal of Computer Vision, 3(1):73–102, 1989.

[52] A. Levinshtein, C. Sminchisescu, and S.J. Dickinson. Learning hierarchical shape mod-

els from examples. In International Workshop on Energy Minimization Methods in

Computer Vision and Pattern Recognition, pages 251–267, 2005.



BIBLIOGRAPHY 157

[53] T. Lindeberg. Edge detection and ridge detection with automatic scale selection. In IEEE

International Conference on Computer Vision and Pattern Recognition, pages 465–470,

Jun 1996.

[54] Tony Lindeberg and Lars Bretzner. Real-time scale selection in hybrid multi-scale rep-

resentations. In Scale-Space, volume 2695 of Springer LNCS, pages 148–163, 2003.

[55] T.L. Liu, D. Geiger, and A.L. Yuille. Segmenting by seeking the symmetry axis. In

IEEE International Conference on Pattern Recognition, volume 2, pages 994–998, Aug

1998.

[56] Liana M. Lorigo, W. Eric L. Grimson, Olivier Faugeras, Renaud Keriven, Ron Kikinis,

Arya Nabavi, and Carl-Fredrik Westin. Codimension - two geodesic active contours

for the segmentation of tubular structures. IEEE International Conference on Computer

Vision and Pattern Recognition, 1:1444, 2000.

[57] D. G. Lowe. Perceptual Organization and Visual Recognition. Kluwer Academic Pub-

lishers, Norwell, MA, USA, 1985.

[58] D G Lowe. Three-dimensional object recognition from single two-dimensional images.

Artif. Intell., 31(3):355–395, 1987.

[59] David G. Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 60(2):91–110, 2004.

[60] Diego Macrini, Kaleem Siddiqi, and Sven Dickinson. From skeletons to bone graphs:

Medial abstraction for object recognition. IEEE International Conference on Computer

Vision and Pattern Recognition, 2008.

[61] M. Maire, P. Arbelaez, C. Fowlkes, and J. Malik. Using contours to detect and localize

junctions in natural images. In IEEE International Conference on Computer Vision and

Pattern Recognition, 2008.



BIBLIOGRAPHY 158

[62] Ravikanth Malladi, James A. Sethian, and Baba C. Vemuri. Shape modeling with front

propagation: A level set approach. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 17:158–175, 1995.

[63] David R. Martin, Charless C. Fowlkes, and Jitendra Malik. Learning to detect natural

image boundaries using local brightness, color, and texture cues. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 26:530–549, 2004.

[64] K. Mikolajczyk and C. Schmid. An affine invariant interest point detector. In European

Conference on Computer Vision, pages 128–142, London, UK, 2002. Springer-Verlag.

[65] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 27(10):1615–1630, Oct.

2005.

[66] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky,

T. Kadir, and L. Van Gool. A comparison of affine region detectors. International

Journal of Computer Vision, 65(1-2):43–72, 2005.

[67] R. Mohan and R. Nevatia. Perceptual organization for scene segmentation and descrip-

tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(6):616–635,

1992.

[68] Alastair P. Moore, Simon J. D. Prince, Jonathan Warrell, Umar Mohammed, and Graham

Jones. Superpixel lattices. In IEEE International Conference on Computer Vision and

Pattern Recognition, 2008.

[69] G. Mori, S. Belongie, and J. Malik. Efficient shape matching using shape contexts.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(11):1832–1837,

Nov. 2005.



BIBLIOGRAPHY 159

[70] G. Mori, X. Ren, A. A. Efros, and J. Malik. Recovering human body configurations:

Combining segmentation and recognition. In IEEE International Conference on Com-

puter Vision and Pattern Recognition, pages 326–333, 2004.

[71] Randal C. Nelson and Andrea Selinger. A cubist approach to object recognition. In

IEEE International Conference on Computer Vision, pages 614–621, 1998.

[72] Ramakant Nevatia and Thomas O. Binford. Description and recognition of curved ob-

jects. Artificial Intelligence, 8(1):77 – 98, 1977.

[73] Stanley Osher and James A. Sethian. Fronts propagating with curvature-dependent

speed: algorithms based on hamilton-jacobi formulations. Journal of Computational

Physics, 79(1):12–49, 1988.

[74] S. Palmer. Vision Science: Photons to Phenomenology. MIT Press, 1999.

[75] T. Pavlidis. Segmentation of pictures and maps through functional approximation. Com-

puter Graphics and Image Processing, 1(4):360–372, December 1972.

[76] M. Pelillo, K. Siddiqi, and S.W. Zucker. Matching hierarchical structures using as-

sociation graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence,

21(11):1105–1120, Nov 1999.

[77] A. Pentland. Perceptual organization and the representation of natural form. Artificial

Intelligence, 28:293–331, 1986.

[78] Alex P. Pentland. Automatic extraction of deformable part models. International Jour-

nal of Computer Vision, 4(2):107–126, 1990.

[79] Jean Ponce. On characterizing ribbons and finding skewed symmetries. Computer Vi-

sion, Graphics and Image Processing, 52(3):328–340, 1990.

[80] X. Ren and J. Malik. Learning a classification model for segmentation. In IEEE Inter-

national Conference on Computer Vision, volume 1, pages 10–17, Oct. 2003.



BIBLIOGRAPHY 160

[81] Xiaofeng Ren, Charless C. Fowlkes, and Jitendra Malik. Cue integration in fig-

ure/ground labeling. In Advances in Neural Information Processing Systems, 2005.

[82] Xiaofeng Ren, Charless C. Fowlkes, and Jitendra Malik. Scale-invariant contour com-

pletion using conditional random fields. In IEEE International Conference on Computer

Vision, volume 2, pages 1214–1221, 2005.

[83] Jorma Rissanen. A universal prior for integers and estimation by minimum description

length. The Annals of Statistics, 11(2):416–431, 1983.

[84] P. Saint-Marc, H. Rom, and G. Medioni. B-spline contour representation and sym-

metry detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,

15(11):1191–1197, 1993.

[85] Pablo Sala and Sven Dickinson. Model-based perceptual grouping and shape abstrac-

tion. In Proceedings, Sixth IEEE Computer Society Workshop on Perceptual Organiza-

tion in Computer Vision, 2008.

[86] Sudeep Sarkar and Padmanabhan Soundararajan. Supervised learning of large percep-

tual organization: Graph spectral partitioning and learning automata. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 22(5):504–525, 2000.

[87] Eric Saund. Finding perceptually closed paths in sketches and drawings. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 25:475–491, 2003.

[88] Stan Sclaroff and Lifeng Liu. Deformable shape detection and description via model-

based region grouping. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 23(5):475–489, 2001.

[89] T.B. Sebastian, P.N. Klein, and B.B. Kimia. Recognition of shapes by editing their shock

graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5):550–

571, May 2004.



BIBLIOGRAPHY 161

[90] Thomas B. Sebastian, Hseyin Tek, Joseph J. Crisco, and Benjamin B. Kimia. Seg-

mentation of carpal bones from ct images using skeletally coupled deformable models.

Medical Image Analysis, 7(1):21 – 45, 2003.

[91] Eitan Sharon, Achi Brandt, and Ronen Basri. Fast multiscale image segmentation. In

IEEE International Conference on Computer Vision and Pattern Recognition, pages 70–

77, 2000.

[92] A. Shashua and S. Ullman. Structural saliency: The detection of globally salient struc-

tures using a locally connected network. In IEEE International Conference on Computer

Vision, pages 321–327, 1988.

[93] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

[94] A. Shokoufandeh, L. Bretzner, D. Macrini, M. F. Demirci, C. Jönsson, and S. Dickinson.

The representation and matching of categorical shape. Computer Vision and Image

Understanding, 103(2):139–154, 2006.

[95] K. Siddiqi, Y. B. Lauziere, A. Tannenbaum, and S. W. Zucker. Area and length minimiz-

ing flows for shape segmentation. IEEE Transactions on Image Processing, 7:433–443,

March 1998.

[96] Kaleem Siddiqi, Sylvain Bouix, Allen Tannenbaum, and Steven W. Zucker. Hamilton-

jacobi skeletons. International Journal of Computer Vision, 48(3):215–231, 2002.

[97] Kaleem Siddiqi, Ali Shokoufandeh, Sven J. Dickinson, and Steven W. Zucker Y. Shock

graphs and shape matching. International Journal of Computer Vision, 35:13–32, 1999.

[98] J. Stahl and S. Wang. Globally optimal grouping for symmetric closed boundaries by

combining boundary and region information. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 30(3):395–411, 2008.



BIBLIOGRAPHY 162

[99] J.S. Stahl and Song Wang. Edge grouping combining boundary and region information.

IEEE Transactions on Image Processing, 16(10):2590–2606, Oct. 2007.

[100] A.N. Stein, D. Hoiem, and M. Hebert. Learning to find object boundaries using motion

cues. In IEEE International Conference on Computer Vision, pages 1–8, 2007.

[101] H. Tek and B.B. Kimia. Image segmentation by reaction-diffusion bubbles. IEEE Inter-

national Conference on Computer Vision, 0:156, 1995.

[102] L. Vincent and P. Soille. Watersheds in digital spaces: an efficient algorithm based on

immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 13(6):583–598, Jun 1991.

[103] S. Wang, T. Kubota, J.M. Siskind, and J. Wang. Salient closed boundary extraction

with ratio contour. IEEE Transactions on Pattern Analysis and Machine Intelligence,

27(4):546–561, April 2005.

[104] S. Wang and J.M. Siskind. Image segmentation with ratio cut. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 25(6):675–690, June 2003.

[105] M. Wertheimer. Laws of organization in perceptual forms. In W. Ellis, editor, Source

Book of Gestalt Psychology. Harcourt, Brace, New York, NY, 1938.

[106] L. R. Williams and D. W. Jacobs. Stochastic completion fields: a neural model of

illusory contour shape and salience. In IEEE International Conference on Computer

Vision, page 408, 1995.

[107] Lance R. Williams and Allen R. Hanson. Perceptual completion of occluded surfaces.

Computer Vision and Image Understanding, 64(1):1–20, 1996.

[108] A.P. Witkin and J.M. Tenenbaum. On the role of structure in vision. In HMV, pages

481–543, 1983.



BIBLIOGRAPHY 163

[109] Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering: Theory

and its application to image segmentation. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 15(11):1101–1113, 1993.

[110] Antti Ylä-Jääski and Frank Ade. Grouping symmetrical structures for object segmenta-

tion and description. Computer Vision and Image Understanding, 63(3):399–417, 1996.

[111] Stella X. Yu and Jianbo Shi. Multiclass spectral clustering. In IEEE International Con-

ference on Computer Vision, page 313, Washington, DC, USA, 2003. IEEE Computer

Society.

[112] Qihui Zhu, Gang Song, and Jianbo Shi. Untangling cycles for contour grouping. In

IEEE International Conference on Computer Vision, Oct. 2007.

[113] Song-Chun Zhu. Embedding gestalt laws in markov random fields. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 21(11):1170–1187, 1999.

[114] S.W. Zucker. Region growing: Childhood and adolescence. Computer Graphics and

Image Processing, 5(3):382–399, September 1976.


