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We present Bluebell, a program logic for reasoning about probabilistic programs where unary and relational
styles of reasoning come together to create new reasoning tools. Unary-style reasoning is very expressive
and is powered by foundational mechanisms to reason about probabilistic behavior like independence and
conditioning. The relational style of reasoning, on the other hand, naturally shines when the properties
of interest compare the behavior of similar programs (e.g. when proving differential privacy) managing to
avoid having to characterize the output distributions of the individual programs. So far, the two styles of
reasoning have largely remained separate in the many program logics designed for the deductive verification
of probabilistic programs. In Bluebell, we unify these styles of reasoning through the introduction of a new
modality called “joint conditioning” that can encode and illuminate the rich interaction between conditional
independence and relational liftings; the two powerhouses from the two styles of reasoning.
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1 INTRODUCTION

Probabilistic programs are pervasive, appearing as machine learned subsystems, implementations
of randomized algorithms, cryptographic protocols, and differentially private components, among
many more. Ensuring reliability of such programs requires formal frameworks in which correctness
requirements can be formalized and verified for such programs. Similar to the history of classical
program verification, a lot of progress in this has come in the form of program logics for probabilistic
programs. In the program logic literature, there are two main styles of reasoning for probabilistic
programs: unary and relational, depending on the nature of the property of interest. For instance,
for differential privacy or cryptographic protocols correctness, the property of interest is naturally
expressible relationally. In contrast, for example, specifying the expected cost of a randomized
algorithm is naturally done in the unary style.
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Unary goals are triples {𝑃} 𝑡 {𝑄} where 𝑡 is a probabilistic program, 𝑃 and 𝑄 are the pre- and
post-conditions, i.e. predicates over distributions of stores. Such triples assert that running 𝑡 on an
input store drawn from a distribution satisfying 𝑃 results in a distribution over output stores which
satisfies 𝑄 . Unary reasoning for probabilistic programs has made great strides, producing logics for
reasoning about expectations [Aguirre et al. 2021; Kaminski 2019; Kaminski et al. 2016; Kozen 1983;
Moosbrugger et al. 2022; Morgan et al. 1996] and probabilistic independence [Barthe et al. 2019].
DIBI [Bao et al. 2021] and Lilac [Li et al. 2023a], which are the most recent, made a strong case for
adding power to reason about conditioning and independence in one logic. Intuitively, conditioning
on some random variable x allows to focus on the distribution of other variables assuming x is some
deterministic outcome 𝑣 ; two variables are (conditionally) independent if knowledge of one does not
give any knowledge of the other (under conditioning). Lilac argued for (conditional) independence
as the fundamental source of modularity in the probabilistic setting.
Relational goals, in contrast, specify a desired relation between the output distributions of

two programs 𝑡1 and 𝑡2, for example, that 𝑡1 and 𝑡2 produce the same output distribution. In
principle, proving such goals can be approached in a unary style: if the output distributions can be
characterized individually for each program, then they can be compared after the fact. More often
than not, however, precisely characterizing the output distribution of a program can be extremely
challenging. Relational program logics like pRHL [Barthe et al. 2009] and its successors [Aguirre
et al. 2017; Barthe et al. 2015, 2009; Gregersen et al. 2024; Hsu 2017], allow for a different and
often more advantageous strategy. The idea is to consider the two programs side by side, and
analyse their code as if executed in lockstep. If the effect of a step on one side is “matched” by the
corresponding step on the other side, then the overall outputs would also “match”. This way, the
proof only shows that whatever is computed on one side, will be matched by a computation on the
other, without having to characterise what the actual output is.
This idea of “matching” probabilistic steps is formalised in these logics via the notion of cou-

plings [Barthe et al. 2015, 2009]. The two programs can be conceptually considered to execute in
two “parallel universes”, where they are oblivious to each other’s randomness. It is therefore sound
to pretend their executions draw samples from a common source of randomness (called a coupling)
in any way that eases the argument, as long as the marginal distribution of the correlated runs in
each universe coincides with the original one. For example, if both programs flip a fair coin, one
can force the outcomes of the coin flips to be the same (or the opposite of each other, depending on
which serves the particular line of argument better). Relating the samples in a specific way helps
with relating the distributions step by step, to support a relational goal. Couplings, when applicable,
permit relational logics to elegantly sidestep the need to characterize the output distributions
precisely. As such, relational logics hit an ergonomic sweet spot in reasoning style by restricting
the form of the proofs that can be carried out.

Consider, for example, the code in Fig. 1. The BelowMax(𝑥, 𝑆) procedure takes 𝑁 samples from
a non-empty set 𝑆 ⊆ Z, according to an (arbitrary) distribution 𝜇𝑆 :D(𝑆); if any of the samples
is larger than the given input 𝑥 it declares 𝑥 to be below the maximum of 𝑆 . The AboveMin(𝑥, 𝑆)
approximates in the same way whether 𝑥 is above the minimum of 𝑆 . These are Monte Carlo
style algorithms with a false bias: if the answer is false, they always correctly produce it, and if
the answer is true, then they correctly classify it with a probability that depends on 𝑁 (i.e., the
number of samples). It is a well-known fact that Monte Carlo style algorithms can be composed.
For example, BETW_SEQ runs BelowMax(𝑥, 𝑆) and AboveMin(𝑥, 𝑆) to produce a false-biased Monte
Carlo algorithm for approximately deciding whether 𝑥 lies within the extrema of 𝑆 . Now, imagine
a programmer proposed BETW, as a way of getting more mileage out of the number of samples
drawn; both procedures take 2𝑁 samples, but BETW performs more computation for each sample.
Such optimisations are not really concerned about what the precise output distribution of each
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def BelowMax(𝑥,𝑆):

repeat 𝑁:

q 𝜇𝑆

r := r ∥ q ≥ 𝑥

def AboveMin(𝑥,𝑆):

repeat 𝑁:

p 𝜇𝑆

l := l ∥ p ≤ 𝑥

def BETW_SEQ(𝑥, 𝑆):

BelowMax(𝑥,𝑆);

AboveMin(𝑥,𝑆);

d := r && l

def BETW(𝑥,𝑆):

repeat 2𝑁:

s 𝜇𝑆

l := l ∥ s ≤ 𝑥

r := r ∥ s ≥ 𝑥

d := r && l

Fig. 1. A stochastic dominance example: composing Monte Carlo algorithms two different ways. 𝑁 ∈ N is

some fixed constant, and all variables are initially 0.

code is, but rather that a true answer is produced with higher probability by BETW; in other words,
its stochastic dominance over BETW_SEQ.

A unary program logic has only one way of reasoning about this type of stochastic-dominance:
it has to analyze each code in isolation, characterize its output distribution, and finally assert/prove
that one dominates the other. In contrast, there is a natural relational strategy for proving this goal:
we can match the 𝑁 samples of BelowMax with 𝑁 of the samples of BETW, and the 𝑁 samples of
AboveMin with the remaining samples of BETW in lockstep, and for each of these aligned steps,
BETW has more chances of turning l and r to 1 (and they can only increase).

Unary logics can express information about distributions with arbitrary levels of precision; yet
none can encode the simple natural proof idea outlined above. This suggests an opportunity: Bring
native relational reasoning support to an expressive unary logic, like Lilac. Such a logic can be
based on assertions over distributions, thus able to be as precise and expressive as unary logics, yet
it can support relational reasoning natively and as such can encode the argument outlined above at
the appropriate level of abstraction. To explore this idea, let us outline the basic principle that we
would need to import from relational reasoning: relational lifting.

Relational logics use variants of judgments of the form {𝑅1}[1: 𝑡1, 2: 𝑡2]{𝑅2}, where 𝑡1 and 𝑡2 are
the two programs we are comparing and 𝑅1 and 𝑅2 are the relational pre- and post-conditions. 𝑅1
and 𝑅2 differ from unary assertions in two ways: first they are used to relate two distributions
instead of constraining a single one. Second, they are predicates over pairs of stores, and not
of distributions directly. Let us call predicates of this type “deterministic relations”. If 𝑅 was a
deterministic predicate over a single store, requiring it to hold with probability 1 would naturally
lift it to a predicate ⌈𝑅⌉ over distributions of stores. When 𝑅 is a deterministic relation between
pairs of stores, its relational lifting ⌊𝑅⌋ relates two distributions over stores 𝜇1, 𝜇2 :D(S), if (1) there
is a distribution over pairs of stores 𝜇 :D(S × S) such that its marginal distributions on the first
and second store coincide with 𝜇1 and 𝜇2 respectively, (i.e. 𝜇 is a coupling of 𝜇1 and 𝜇2) and (2)
𝜇 samples pairs of stores satisfying the relation 𝑅 with probability 1. Such relational liftings can
encode a variety of useful relations between distributions. For instance, let 𝑅 = (x⟨1⟩ = x⟨2⟩)
relate stores 𝑠1 and 𝑠2 if they both assign the same value to x; then the lifting ⌊𝑅⌋ holds for two
distributions 𝜇1, 𝜇2 :D(S) if and only if they induce the same distributions in x. Similarly, the lifting
⌊x⟨1⟩ ≤ x⟨2⟩⌋ encodes stochastic dominance of the distribution of x in 𝜇2 over the one in 𝜇1.
Relational proofs built out of relational lifting then work by using deterministic relations as

assertions, and showing that a suitably coupled lockstep execution of the two programs satisfies
each assertion with probability 1. To bring relational reasoning to unary logics, we want to preserve
the fact that assertions are over distributions, and yet support relational lifting as the key abstraction
to do relational reasoning. This new logic can equally be viewed as a relational logic with assertions
over pairs of distributions (rather than over pairs of stores). With such a view, seeing relational
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lifting as one among many constructs to build assertions seems like a very natural, yet completely
unexplored, idea.

What is entirely non-obvious is whether relational lifting works well as an abstraction together
with the other key “unary” constructs, such as independence and conditioning, that are the source
of expressive power of unary logics. For example, from the properties of couplings, we know
that establishing ⌊x⟨1⟩ = x⟨2⟩⌋ implies that x⟨1⟩ and x⟨2⟩ are identically distributed; this can be
expressed as an entailment:

⌊x⟨1⟩ = x⟨2⟩⌋ ⊣⊢ ∃𝜇. x⟨1⟩ ∼ 𝜇 ∧ x⟨2⟩ ∼ 𝜇 (1)

The equivalence says that establishing a coupling that can (almost surely) equate the values of x⟨1⟩
and x⟨2⟩, amounts to establishing that the two variables are identically distributed. The equivalence
can be seen as a way to interface “unary” facts and relational liftings.

Probability theory is full of lemmas of this sort and it is clearly undesirable to admit any lemma
that is needed for one proof or another as an axiom in the program logic. Can we have a logic
in which they are derivable without having to abandon its nice abstractions? Can the two styles
be interoperable at the level of the logic? In this paper, we provide an affirmative answer to this
question by proposing a new program logic called Bluebell.
We propose that relational lifting does in fact have non-trivial and useful interactions with

independence and conditioning. Remarkably, Bluebell’s development is unlocked by a more
fundamental observation: once an appropriate notion of conditioning is defined in Bluebell,
relational lifting and its laws can be derived from this foundational conditioning construct.
The key idea is a new characterization of relational lifting as a form of conditioning: whilst

relational lifting is usually seen as a way to induce a relation over distributions from a deterministic
relation, Bluebell sees it as a way to go from a tuple of distributions to a relation between the
values of some conditioned variables. More precisely:
• We introduce a new joint conditioning modality in Bluebell which can be seen, in hindsight,
as a natural way to condition when dealing with tuples of distributions.
• We show that joint conditioning can represent uniformly both, conditioning à la Lilac, and
relational lifting as derived notions in Bluebell.
• We prove a rich set of general rules for joint conditioning, from which we can derive both
known and novel proof principles for conditioning and for relational liftings in Bluebell.

Interestingly, our joint conditioning modality can replicate the same reasoning style of Lilac’s
modality, while having a different semantics (and validating an overlapping but different set of
rules as a result). This deviation in the semantics is a stepping stone for obtaining an adequate
generalization to the 𝑛-ary case (unifying unary and binary as special cases). We expand on these
ideas in Section 2, using a running example. More importantly, our joint conditioning enables
Bluebell to
• Accommodate unary and relational reasoning in a fundamentally interoperable way: For
instance, we showcase the interaction between lifting and conditioning in the derivation of
our running example in Section 2.
• Illuminate known reasoning principles: For instance, we discuss how Bluebell emulates
pRHL-style reasoning in Section 5.1.
• Propose new tools to build program proofs: For instance, we discuss out-of-order coupling of
samples through seq-swap in Section 2.4.
• Enable the exploration of the theory of high-level constructs like relational lifting (via the laws
of independence and joint conditioning): For instance, novel broadly useful rules rl-merge
and rl-convex, discussed in Section 2 can be derived within Bluebell.
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All proofs, omitted details, and additional examples can be found in [Bao et al. 2024].

2 A TOUR OF BLUEBELL

In this section we will highlight the main key ideas behind Bluebell, using a running example.

2.1 The Alliance

def encrypt():

k Ber(½)

m Ber(𝑝)

c := k xor m

Fig. 2. One time pad.

We work with a first-order imperative probabilistic programming language
consisting of programs 𝑡 ∈ T that mutate a variable store 𝑠 ∈ S (i.e. a
finite map from variable names X to values V). We only consider discrete
distributions (but with possibly infinite support). In Fig. 2 we show a simple
example adapted from [Barthe et al. 2019]: the encrypt procedure uses a
fair coin flip to generate an encryption key k, generates a plaintext message
in boolean variable m (using a coin flip with some bias 𝑝) and produces the
ciphertext c by XORing the key and the message. A desired property of the program is that the
ciphertext should be indistinguishable from an unbiased coin flip; as a binary triple:

{True}[1: encrypt(), 2: c Ber(½)]{⌊c⟨1⟩ = c⟨2⟩⌋} (2)

where we use the ⟨𝑖⟩ notation to indicate the index of the program store that an expression
references. In Section 5.2, we discuss a unary-style proof of this goal in Bluebell. Here, we focus
on a relational argument, as a running example. The natural (relational) argument goes as follows.
When computing the final XOR, if m = 0 then c= k, and if m = 1 then c=¬k. Since both k⟨1⟩ and
c⟨2⟩ are distributed as unbiased coins, they can be coupled either so that they get the same value,
or so that they get opposite values (the marginals are the same). One or the other coupling must be
established conditionally on m⟨1⟩, to formalize this argument. Doing so in pRHL faces the problem
that the logic is too rigid to permit one to condition on m⟨1⟩ before k⟨1⟩ is sampled; rather it forces
one to establish a coupling of k⟨1⟩ and c⟨2⟩ right when the two samplings happen. This rigidity is a
well-known limitation of relational logics, which we overcome by “immersing” relational lifting in
a logic with assertions on distributions. Recent work [Gregersen et al. 2024] proposed workarounds
based on ghost code for pre-sampling (see Section 6). We present a different solution based on
framing, to the generic problem of out-of-order coupling, in Section 2.4.

Unconstrained by the pRHL assumption that every assertion has to be represented as a relational
lifting, we observe three crucial components in the proof idea:
(1) Probabilistic independence between the sampling of k⟨1⟩ and m⟨1⟩, which makes conditioning

on m⟨1⟩ preserve the distribution of k⟨1⟩;
(2) Conditioning to perform case analysis on the possible values of m⟨1⟩;
(3) Relational lifting to represent the existence of couplings imposing the desired correlation

between k⟨1⟩ and c⟨2⟩.
Unary logics like Probabilistic Separation Logics (PSL) [Barthe et al. 2019] and Lilac explored how
probabilistic independence can be represented as separating conjunction, obtaining remarkably
expressive and elegant reasoning principles. In Bluebell, we import the notion of independence
from Lilac: Bluebell’s assertions are interpreted over tuples of probability spaces P, and 𝑄1 ∗𝑄2
holds on P if P(𝑖) can be seen as the independent product of P1 (𝑖) and P2 (𝑖), for each 𝑖 , such that
the tuples P1 and P2 satisfy 𝑄1 and 𝑄2 respectively. This means that x⟨1⟩ ∼ 𝜇 ∗ y⟨1⟩ ∼ 𝜇 states
that x⟨1⟩ and y⟨1⟩ are independent and identically distributed, as opposed to x⟨1⟩ ∼ 𝜇 ∧ y⟨1⟩ ∼ 𝜇
which merely declares the two variables as identically distributed (but possibly correlated). For a
unary predicate over stores 𝑅 we write ⌈𝑅⟨𝑖⟩⌉ to mean that the predicate 𝑅 holds with probability 1
in the distribution at index 𝑖 .
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With these tools it is easy to get through the first two assignments of encrypt and the one on
component 2 and get to a state satisfying the assertion

𝑃 = k⟨1⟩ ∼ Ber½ ∗ m⟨1⟩ ∼ Ber𝑝 ∗ c⟨2⟩ ∼ Ber½ (3)

The next ingredient we need is conditioning. We introduce a new modality C𝜇 for conditioning,
in the spirit of Lilac. The modality takes the form C𝜇 𝑣 . 𝐾 (𝑣) where 𝜇 is a distribution, 𝑣 is a logical
variable bound by the modality (ranging over the support of 𝜇), and 𝐾 (𝑣) is a family of assertions
indexed by 𝑣 . Before exploring the general meaning of the modality (which we do in Section 2.2),
let us illustrate how we would represent conditioning on m⟨1⟩ in our running example. We know
m⟨1⟩ is distributed as Ber𝑝 ; conditioning on m⟨1⟩ in Bluebell would give us an assertion of the
form CBer𝑝

𝑣 . 𝐾 (𝑣) where 𝑣 ranges over {0, 1}, and the assertions 𝐾 (0) = ⌈m⟨1⟩ = 0⌉ ∗ 𝑃0 and
𝐾 (1) = ⌈m⟨1⟩ = 1⌉ ∗ 𝑃1 (for some 𝑃0, 𝑃1) represent the properties of the distribution conditioned on
m⟨1⟩ = 0 and m⟨1⟩ = 1, respectively. Intuitively, the assertion states that the current distribution
satisfies 𝐾 (𝑣) when conditioned on m⟨1⟩ = 𝑣 . Semantically, a distribution 𝜇0 satisfies the assertion
CBer𝑝

𝑣 . 𝐾 (𝑣) if there exists distributions 𝜅0, 𝜅1 such that 𝜅0 satisfies 𝐾 (0), 𝜅1 satisfies 𝐾 (1), and
𝜇0 is the convex combination 𝜇0 = 𝑝 · 𝜅1 + (1 − 𝑝) · 𝜅0.When 𝐾 (𝑣) constrains, as in our case, the
value of a variable (here m⟨1⟩) to be 𝑣 , the only 𝜅0 and 𝜅1 satisfying the above constraints are the
distribution 𝜇0 conditioned on the variable being 0 and 1 respectively.
Combining independence and conditioning with the third ingredient, relational lifting ⌊𝑅⌋ (we

discuss more about how to define it in Section 2.2), we can now express with an assertion the
desired conditional coupling we foreshadowed in the beginning:

𝑄 = CBer𝑝
𝑣 .

(
⌈m⟨1⟩ = 𝑣⌉ ∗

{
⌊k⟨1⟩ = c⟨2⟩⌋ if 𝑣 = 0
⌊k⟨1⟩ = ¬c⟨2⟩⌋ if 𝑣 = 1

)
(4)

The idea is that we first condition on m⟨1⟩ so that we can see it as the deterministic value 𝑣 , and
then we couple k⟨1⟩ and c⟨2⟩ differently depending on 𝑣 .

To carry out the proof idea formally, we are left with two subgoals. The first is to formally prove
the entailment 𝑃 ⊢ 𝑄. Then, it is possible to prove that after the final assignment to c at index 1, the
program is in a state that satisfies𝑄 ∗ ⌈c⟨1⟩ = k⟨1⟩ xor m⟨1⟩⌉. To finish the proof we would need to
prove that 𝑄 ∗ ⌈c⟨1⟩ = k⟨1⟩ xor m⟨1⟩⌉ ⊢ ⌊c⟨1⟩ = c⟨2⟩⌋ . These missing steps need laws governing
the interaction among independence, conditioning and relational lifting in this 𝑛-ary setting.
A crucial observation of Bluebell is that, by choosing an appropriate definition for the joint condi-
tioning modality C𝜇 , relational lifting can be encoded as a form of conditioning. Consequently, the
laws governing relational lifting can be derived from the more primitive laws for joint conditioning.
Moreover, the interactions between relational lifting and independence can be derived through the
primitive laws for the interactions between joint conditioning and independence.

2.2 Joint Conditioning and Relational Lifting

Now we introduce the joint conditioning modality and its general 𝑛-ary version. Given 𝜇 :D(𝐴)
and a function 𝜅 : 𝐴→ D(𝐵) (called a Markov kernel), define the distribution bind(𝜇, 𝜅) :D(𝐵) as
bind(𝜇, 𝜅) = 𝛌𝑏.

∑
𝑎∈𝐴 𝜇 (𝑎) · 𝜅 (𝑎) (𝑏) and return(𝑣) = 𝛿𝑣 . The bind operation represents a convex

combination with coefficients in 𝜇, while 𝛿𝑣 is the Dirac distribution, which assigns probability 1 to
the outcome 𝑣 . These operations form a monad with the distribution functor D( · ), a special case
of the Giry monad [Giry 1982]. Given a distribution 𝜇 :D(𝐴), and a predicate 𝐾 (𝑎) over pairs of
distributions parametrized by values 𝑎 ∈ 𝐴, we define C𝜇 𝑎. 𝐾 (𝑎) to hold on some (𝜇1, 𝜇2) if

∃𝜅1, 𝜅2.∀𝑖 ∈ {1, 2}. 𝜇𝑖 = bind(𝜇, 𝜅𝑖 ) ∧ ∀𝑎 ∈ supp(𝜇). 𝐾 (𝑎) holds on (𝜅1 (𝑎), 𝜅2 (𝑎))
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Namely, we decompose the pair (𝜇1, 𝜇2) component wise into convex compositions of 𝜇 and some
kernels 𝜅1, 𝜅2, one per component. Then for every 𝑎 with non-zero probability in 𝜇, we require the
predicate 𝐾 (𝑎) to hold for the pair of distributions (𝜅1 (𝑎), 𝜅2 (𝑎)). The definition naturally extends
to any number of indices.

One powerful application of the joint conditioning modality is to encode relational liftings ⌊𝑅⌋.
Imagine we want to express ⌊k⟨1⟩ = c⟨2⟩⌋. It suffices to assert that there exists some distribution
𝜇 :D(V × V) over pairs of values such that C𝜇 (𝑣1, 𝑣2).

(
⌈k⟨1⟩ = 𝑣1⌉ ∧ ⌈c⟨2⟩ = 𝑣2⌉ ∧ ⌜𝑣1 = 𝑣2⌝

)
,

where ⌜𝜑⌝ denote the embedding of a pure fact 𝜑 (i.e. a meta-level statement) into the logic. Let us
digest the formula step-by-step. C𝜇 (𝑣1, 𝑣2).

(
⌈k⟨1⟩ = 𝑣1⌉ ∧ ⌈c⟨2⟩ = 𝑣2⌉

)
conditions the distribution

at index 1 on k⟨1⟩ = 𝑣1 and conditions the distribution at index 2 on c⟨2⟩ = 𝑣2; such simultaneous
conditioning is possible only if 𝜇 projected to its first index, 𝜇 ◦ 𝜋−11 , is the marginal distribution
of k⟨1⟩ and 𝜇 projected to its second index, 𝜇 ◦ 𝜋−12 , is the marginal distribution of c⟨2⟩. Thus,
𝜇 is a joint distribution – a.k.a. coupling – of the marginal distributions of k⟨1⟩ and c⟨2⟩. The
full assertion C𝜇 (𝑣1, 𝑣2). (⌈k⟨1⟩ = 𝑣1⌉ ∧ ⌈c⟨2⟩ = 𝑣2⌉ ∧ ⌜𝑣1 = 𝑣2⌝) ensures that the coupling 𝜇 has
non-zero probabilities only on pairs (𝑣1, 𝑣2) where 𝑣1 = 𝑣2, and this is exactly the requirement of
the relational lifting ⌊k⟨1⟩ = c⟨2⟩⌋.
The idea generalizes to arbitrary relation lifting ⌊𝑅⌋, which are encoded using assertions of

the form ∃𝜇. C𝜇 (®𝑣1, ®𝑣2).
(
⌈®x⟨1⟩ = ®𝑣1⌉ ∧ ⌈®x⟨2⟩ = ®𝑣2⌉ ∧ ⌜𝑅(®𝑣1, ®𝑣2)⌝

)
. The encoding hinges on the

crucial decision in the design of the joint conditioning modality of using the same distribution 𝜇 to
decompose the distributions at all indices. Then, the assertion inside the conditioning can force 𝜇
to be a joint distribution of (marginal) distributions of program states at different indices; and it
can further force 𝜇 to have non-zero probability only on pairs of program states that satisfy the
relation 𝑅.

The remarkable fact is that our formulation of relational lifting directly explains:
(1) How the relational lifting can be established: that is, by providing some joint distribution 𝜇

for k⟨1⟩ and c⟨2⟩ ensuring 𝑅 (the relation being lifted) holds for their joint outcomes; and
(2) How the relational lifting can be used in entailments: that is, it guarantees that if one

conditions on the store, 𝑅 holds between the (now deterministic) variables.

To make these definitions and connections come to fruition we need to study which laws are
supported by the joint conditioning modality and whether they are expressive enough to reason
about distributions pairs without having to drop down to the level of semantics.

2.3 The Laws of Joint Conditioning

We survey the key laws for joint conditioning in this section, and explore a vital consequence
of defining both conditional independence and relational lifting based on the joint conditioning
modality: the laws of both can be derived from a set of expressive laws about joint conditioning
alone. To keep the exposition concrete, we focus on a small subset of laws that are enough to prove
the example of Section 2.1. Let us focus first on proving:

k⟨1⟩ ∼ Ber½ ∗ m⟨1⟩ ∼ Ber𝑝 ∗ c⟨2⟩ ∼ Ber½ ⊢ CBer𝑝
𝑣 .

(
⌈m⟨1⟩ = 𝑣⌉ ∗

{
⌊k⟨1⟩ = c⟨2⟩⌋ if 𝑣 = 0
⌊k⟨1⟩ = ¬c⟨2⟩⌋ if 𝑣 = 1

)
(5)

We need the following primitive laws of joint conditioning:

c-unit-r
𝐸⟨𝑖⟩ ∼ 𝜇 ⊣⊢ C𝜇 𝑣 . ⌈𝐸⟨𝑖⟩ = 𝑣⌉

c-frame
𝑃 ∗ C𝜇 𝑣 . 𝐾 (𝑣) ⊢ C𝜇 𝑣 . (𝑃 ∗ 𝐾 (𝑣))

c-cons
∀𝑣 . 𝐾1 (𝑣) ⊢ 𝐾2 (𝑣)

C𝜇 𝑣 . 𝐾1 (𝑣) ⊢ C𝜇 𝑣 . 𝐾2 (𝑣)
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Rule c-unit-r can convert back and forth from ownership of an expression 𝐸 at 𝑖 distributed
as 𝜇, and the conditioning on 𝜇 that makes 𝐸 look deterministic. Rule c-frame allows to bring
inside conditioning any resource that is independent from it. Rule c-cons simply allows to apply
entailments inside joint conditioning. We can use these laws to perform conditioning on m⟨1⟩:

k⟨1⟩ ∼ Ber½ ∗ m⟨1⟩ ∼ Ber𝑝 ∗ c⟨2⟩ ∼ Ber½

⊢ k⟨1⟩ ∼ Ber½ ∗ (CBer𝑝
𝑣 . ⌈m⟨1⟩ = 𝑣⌉) ∗ c⟨2⟩ ∼ Ber½ (c-unit-r)

⊢ CBer𝑝
𝑣 . (⌈m⟨1⟩ = 𝑣⌉ ∗ k⟨1⟩ ∼ Ber½ ∗ c⟨2⟩ ∼ Ber½) (c-frame)

Here we use c-unit-r to convert ownership of m⟨1⟩ into its conditioned form. Then we can bring
the other independent variables inside the conditioning with c-frame. This derivation follows in
spirit the way in which Lilac introduces conditioning, thus inheriting its ergonomic elegance. Our
rules however differ from Lilac’s in both form and substance. First, Lilac’s rule for introducing
conditioning (called C-Indep), requires converting ownership of a variable into conditioning, and
bringing some independent resources inside conditioning, as a single monolithic step. In Bluebell
we accomplish this pattern as a combination of our c-unit-r and c-frame, which are independently
useful. Specifically, c-unit-r is bidirectional, which makes it useful to recover unconditional facts
from conditional ones. Furthermore, we recognize that c-unit-r is nothing but a reflection of the
right unit law of the monadic structure of distributions (which we elaborate on in Section 4). This
connection prompted us to provide rules that reflect the remaining monadic laws (left unit c-unit-l
and associativity c-fuse). It is noteworthy that these rules do not follow from Lilac’s proofs: our
modality has a different semantics, and our rules seamlessly apply to assertions of any arity.

To establish the conditional relational liftings of the entailment in (5), Bluebell provides a way
to introduce relational liftings from ownership of the distributions of some variables:

coupling
𝜇 ◦ 𝜋−11 = 𝜇1 𝜇 ◦ 𝜋−12 = 𝜇2 𝜇 (𝑅) = 1
x1⟨1⟩ ∼ 𝜇1 ∗ x2⟨2⟩ ∼ 𝜇2 ⊢ ⌊𝑅(x1⟨1⟩, x2⟨2⟩)⌋

The side conditions of the rule ask the prover to provide a coupling 𝜇 :D(V × V) of 𝜇1 :D(V) and
𝜇2 :D(V), which assigns probability 1 to a (binary) relation 𝑅. If x1⟨1⟩ and x2⟨2⟩ are distributed as
𝜇1 and 𝜇2, respectively, then the relational lifting of 𝑅 holds between them (as witnessed by the
existence of 𝜇). Note that for the rule to apply, the two variables need to live in distinct indices.

Interestingly, coupling can be derived from the encoding of relational lifting and the laws of joint
conditioning.
Remarkably, although the rule mirrors the step of coupling two samplings in a pRHL proof, it

does not apply to the code doing the sampling itself, but to the assertions representing the effects of
those samplings. This allows us to delay the forming of coupling to until all necessary information
is available (here, the outcome of m⟨1⟩). We can use coupling to prove both entailments:

k⟨1⟩ ∼ Ber½∗c⟨2⟩ ∼ Ber½ ⊢ ⌊k⟨1⟩ = c⟨2⟩⌋ and k⟨1⟩ ∼ Ber½∗c⟨2⟩ ∼ Ber½ ⊢ ⌊k⟨1⟩ = ¬c⟨2⟩⌋ (6)

In the first case we use the coupling which flips a single coin and returns the same outcome for
both components, in the second we flip a single coin but return opposite outcomes. Thus we can
now prove:

CBer𝑝
𝑣 .

(
⌈m⟨1⟩ = 𝑣⌉ ∗

(
k⟨1⟩ ∼ Ber½
∗ c⟨2⟩ ∼ Ber½

))
⊢ CBer𝑝

𝑣 .

(
⌈m⟨1⟩ = 𝑣⌉ ∗

{
⌊k⟨1⟩ = c⟨2⟩⌋ if 𝑣 = 0
⌊k⟨1⟩ = ¬c⟨2⟩⌋ if 𝑣 = 1

)
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by using c-cons, and using the two couplings of (6) in the 𝑣 = 0 and 𝑣 = 1 respectively. Finally, the
assignment to c in encrypt generates the fact ⌈c⟨1⟩ = k⟨1⟩ xor m⟨1⟩⌉. By routine propagation of
this fact we can establish CBer𝑝

𝑣 . ⌊c⟨1⟩ = c⟨2⟩⌋ . To get an unconditional lifting, we need a principle
explaining the interaction between lifting and conditioning. Bluebell can derive the general rule:

rl-convex
C𝜇 _. ⌊𝑅⌋ ⊢ ⌊𝑅⌋

which states that relational liftings are convex, i.e. closed under convex combinations.

rl-convex is an instance of many rules on the interaction between relational lifting and the other
connectives (conditioning in this case) that can be derived in Bluebell by exploiting the encoding
of liftings as joint conditioning.

Let us see how this is done for rl-convex based on two other rules of joint conditioning:

c-skolem
𝜇 :D(Σ𝐴)

C𝜇 𝑣 . ∃𝑥 :𝑋 .𝑄 (𝑣, 𝑥) ⊢ ∃𝑓 :𝐴→ 𝑋 . C𝜇 𝑣 .𝑄 (𝑣, 𝑓 (𝑣))

c-fuse
C𝜇 𝑣 . C𝜅 (𝑣) 𝑤. 𝐾 (𝑣,𝑤) ⊣⊢ C𝜇�𝜅 (𝑣,𝑤) . 𝐾 (𝑣,𝑤)

Rule c-skolem is a primitive rule which follows from Skolemization of the implicit universal
quantification used on 𝑣 by the modality. Rule c-fuse can be seen as a way to merge two nested
conditioning or split one conditioning into two. The rule uses the operation 𝜇 � 𝜅 ≜ 𝛌(𝑣,𝑤). 𝜇 (𝑣) ·
𝜅 (𝑣) (𝑤), a variant of bind that does not forget the intermediate 𝑣 . Rule c-fuse is an immediate
consequence of two primitive rules that reflect the associativity of the bind operation.

To prove rl-convex we start by unfolding the definition of relational lifting (we write 𝐾 (𝑣) for
the part of the encoding inside the conditioning):

C𝜇 𝑣 . ⌊𝑅⌋ ⊣⊢ C𝜇 𝑣 . ∃𝜇0 . C𝜇0 𝑤. 𝐾 (𝑤)
⊢ ∃𝜅. C𝜇 𝑣 . C𝜅 (𝑣) 𝑤. 𝐾 (𝑤) (c-skolem)

⊢ ∃𝜅. C𝜇�𝜅 (𝑣,𝑤). 𝐾 (𝑤) (c-fuse)

⊢ ∃𝜇1. C𝜇1 (𝑣,𝑤). 𝐾 (𝑤) ⊢ ⌊𝑅⌋ (By def.)

The application of c-skolem commutes the existential quantification of the joint distribution 𝜇0 and
the outer modality. By c-fuse we are able to merge the two modalities and obtain again something
of the same form as the encoding of relational liftings.

2.4 Outside the Box of Relational Lifting

One of the well-known limitations of pRHL is that it requires a very strict structural alignment be-
tween the order of samplings to be coupled in the two programs. A common pattern that pRHL rules
cannot handle is showing that reversing the order of execution of two blocks of code does not affect
the output distribution, e.g. running x := Ber(½);y := Ber(2/3) versus y := Ber(2/3);x := Ber(½).
In Bluebell, we can establish this pattern using a derived general rule:

seq-swap
{𝑃1}[1: 𝑡1, 2: 𝑡 ′1]{⌊𝑅1⌋} {𝑃2}[1: 𝑡2, 2: 𝑡 ′2]{⌊𝑅2⌋}
{𝑃1 ∗ 𝑃2}[1: (𝑡1;𝑡2), 2: (𝑡 ′2;𝑡 ′1)]{⌊𝑅1 ∧ 𝑅2⌋}

The rule assumes that the lifting of 𝑅1 (resp. 𝑅2) can be established by analyzing 𝑡1 and 𝑡 ′1 (𝑡2
and 𝑡 ′2) side by side from precondition 𝑃1 (𝑃2). The standard sequential rule of pRHL would force
an alignment between the wrong pairs (𝑡1 with 𝑡 ′2, and 𝑡2 with 𝑡

′
1). Crucial to the soundness of the

rule is the assumption (expressed by the precondition 𝑃1 ∗ 𝑃2 in the conclusion) that 𝑃1 and 𝑃2 are
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probabilistically independent.1 In contrast, because pRHL lacks the construct of independence, it
simply cannot express such a rule.
Bluebell’s treatment of relational lifting enables the study of the interaction between lifting
and independence, unlocking a novel solution for forfeiting strict structural similarities between
components required by relational logics.

Two ingredients of Bluebell cooperate to prove seq-swap: the adoption of a weakest precondi-
tion (WP) formulation of triples (and associated rules) and a novel property of relational lifting. Let
us start with WP. In Bluebell, a triple {𝑃} 𝒕 {𝑄} is actually encoded as the entailment 𝑃 ⊢ wp 𝒕 {𝑄}.
Here, 𝑃 and𝑄 are both assertions on 𝑛-nary tuples of distributions; and throughout, we use the bold
𝒕 to denote an 𝑛-nary tuple of program terms. The formula wp 𝒕 {𝑄} is a natural generalization of
WP assertion to 𝑛-nary programs: wp 𝒕 {𝑄} holds on a 𝑛-nary tuple of distributions 𝝁, if the tuple
of output distributions obtained by running each program in 𝒕 on the corresponding component
of 𝝁, satisfies 𝑄 . Bluebell provides a number of rules for manipulating WP; here is a selection
needed for deriving seq-swap:

wp-cons
𝑄 ⊢ 𝑄 ′

wp 𝒕 {𝑄} ⊢ wp 𝒕 {𝑄 ′}

wp-frame
𝑃 ∗wp 𝒕 {𝑄} ⊢ wp 𝒕 {𝑃 ∗𝑄}

wp-seq
wp [𝑖: 𝑡]

{
wp [𝑖: 𝑡 ′] {𝑄}

}
⊢ wp [𝑖: (𝑡; 𝑡 ′)] {𝑄}

wp-nest
wp 𝒕1 {wp 𝒕2 {𝑄}} ⊣⊢ wp (𝒕1 · 𝒕2) {𝑄}

Rules wp-cons and wp-frame are the usual consequence and framing rules of Separation Logic, in
WP form. By adopting Lilac’s measure-theoretic notion of independence as the interpretation for
separating conjunction, we obtain a clean frame rule. Among the WP rules for program constructs,
rule wp-seq takes care of sequential composition. Notably, we only need to state it for unary WPs,
in contrast to other logics where supporting relational proofs requires building the lockstep strategy
into the rules. We use the more flexible approach from the Logic for Hypertriple Composition
(LHC) [D’Osualdo et al. 2022], where a handful of arity-changing rules allow seamless integration
of unary and relational judgments. One such rule is the wp-nest rule, which establishes the
equivalence of a WP on 𝒕1 · 𝒕2, where (·) is union of indexed tuples with disjoint indexes, and two
nested WPs involving 𝒕1, and 𝒕2 individually. This for instance allows us to lift the unary wp-seq to
a binary lockstep rule:

𝑃 ⊢ wp [1: 𝑡1] {wp [2: 𝑡2] {𝑄 ′}} 𝑄 ′ ⊢ wp [1: 𝑡 ′1] {wp [2: 𝑡 ′2] {𝑄}}
𝑃 ⊢ wp [1: 𝑡1] {wp [2: 𝑡2] {wp [1: 𝑡 ′1] {wp [2: 𝑡 ′2] {𝑄}}}}

wp-cons

𝑃 ⊢ wp [1: 𝑡1] {wp [1: 𝑡 ′1] {wp [2: 𝑡2] {wp [2: 𝑡 ′2] {𝑄}}}}
wp-nest

𝑃 ⊢ wp [1: (𝑡1;𝑡 ′1)] {wp [2: (𝑡2;𝑡 ′2)] {𝑄}}
wp-seq,wp-cons

𝑃 ⊢ wp [1: (𝑡1;𝑡 ′1), 2: (𝑡2;𝑡
′
2)] {𝑄}

wp-nest

The crucial idea behind seq-swap is that the two programs 𝑡1 and 𝑡2 we want to swap rely on
independent resources, and thus their effects are independent from each other. In Separation Logic
this kind of reasoning is driven by framing: which is done through framing in Separation Logic:

1In the full model of Bluebell, to ensure safe mutation, assertions also include “write/read permissions” on variables (in
the “variables as resource”-style [Bornat et al. 2005]). In seq-swap the separation between 𝑃1 and 𝑃2 ensures, in addition to
probabilistic independence, that if 𝑡1 has write permissions on a variable x, 𝑡2 does not have read permissions on it and
viceversa (and analogously for 𝑡 ′1 and 𝑡

′
2). The full model incurs in some permissions bookkeeping, which we omit in this

section for readability; Example 4.15 shows how to fill in the omitted details.
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while executing 𝑡1, frame the resources needed for 𝑡2, which remain intact in the state left by 𝑡1.
Multiple applications of wp-frame and other basic rules get us to the post-condition ⌊𝑅1⌋ ∗ ⌊𝑅2⌋,
but we want to combine them into one relational lifting. This is accommodated by:

rl-merge
⌊𝑅1⌋ ∗ ⌊𝑅2⌋ ⊢ ⌊𝑅1 ∧ 𝑅2⌋

We do not show the derivation here for space constraints, but essentially it consists in unfolding the
encoding of lifting, and using c-frame and c-fuse to merge the two joint conditioning modalities.

Using these rules we can construct the following derivation:

𝑃1 ⊢ wp [1: 𝑡1, 2: 𝑡 ′1] {⌊𝑅1⌋} 𝑃2 ⊢ wp [1: 𝑡2, 2: 𝑡 ′2] {⌊𝑅2⌋}
𝑃1 ∗ 𝑃2 ⊢ wp [1: 𝑡1, 2: 𝑡 ′1] {⌊𝑅1⌋} ∗wp [1: 𝑡2, 2: 𝑡 ′2] {⌊𝑅2⌋}

𝑃1 ∗ 𝑃2 ⊢ wp [1: 𝑡1]
{
wp [1: 𝑡2, 2: 𝑡 ′2] {⌊𝑅2⌋} ∗wp [2: 𝑡 ′1] {⌊𝑅1⌋}

} wp-frame,wp-nest

𝑃1 ∗ 𝑃2 ⊢ wp [1: 𝑡1]
{
wp [1: 𝑡2, 2: 𝑡 ′2]

{
⌊𝑅2⌋ ∗wp [2: 𝑡 ′1] {⌊𝑅1⌋}

}} wp-frame

𝑃1 ∗ 𝑃2 ⊢ wp [1: 𝑡1]
{
wp [1: 𝑡2, 2: 𝑡 ′2]

{
wp [2: 𝑡 ′1] {⌊𝑅1⌋ ∗ ⌊𝑅2⌋}

}} wp-frame

𝑃1 ∗ 𝑃2 ⊢ wp [1: (𝑡1;𝑡2)]
{
wp [2: (𝑡 ′2;𝑡

′
1)] {⌊𝑅1⌋ ∗ ⌊𝑅2⌋}

} wp-seq,wp-nest

𝑃1 ∗ 𝑃2 ⊢ wp [1: (𝑡1;𝑡2), 2: (𝑡 ′2;𝑡
′
1)]

{
⌊𝑅1⌋ ∗ ⌊𝑅2⌋

} wp-nest

𝑃1 ∗ 𝑃2 ⊢ wp [1: (𝑡1;𝑡2), 2: (𝑡 ′2;𝑡
′
1)] {⌊𝑅1 ∧ 𝑅2⌋}

rl-merge

We explain the proof strategy from bottom to top. We first apply rl-merge to the postcondition
(thanks to wp-cons). This step reduces the goal to proving the two relational liftings can be
established independently from each other. Then we apply wp-nest and wp-seq to separate the
two indices, break the sequential compositions and recombine the two inner WPs. We then proceed
by three applications of the wp-frame rule: the first brings ⌊𝑅2⌋ out of the innermost WP; the
second brings the WP on [1: 𝑡 ′1] outside the middle WP; the last brings the WP on [1: 𝑡2, 2: 𝑡 ′2]
outside the topmost WP. An application of rule wp-nest merges the resulting nested WPs on 𝑡1
and 𝑡 ′1. We thus effectively reduced the problem to showing that the two WPs can be established
independently, which was our original goal.

The rl-merge rule not only provides an elegant way of overcoming the long-standing alignments
issue with constructing relational lifting, but also shows how fundamental the role of probabilistic
independence is for compositional reasoning: the same rule with standard conjunction is unsound!
Intuitively, if we just had ⌊𝑅1⌋ ∧ ⌊𝑅2⌋, we would know there exist two couplings 𝜇1 and 𝜇2, justifying
⌊𝑅1⌋ and ⌊𝑅2⌋ respectively, but the desired consequence ⌊𝑅1 ∧ 𝑅2⌋ requires the construction of a
single coupling that justifies both relations at the same time. We can see this is not always possible
by looking back at (6): for two fair coins we can establish ⌊k⟨1⟩ = c⟨2⟩⌋ ∧ ⌊k⟨1⟩ = ¬c⟨2⟩⌋, but
⌊k⟨1⟩ = c⟨2⟩ ∧ k⟨1⟩ = ¬c⟨2⟩⌋ is equivalent to false.

3 PRELIMINARIES: PROGRAMS AND PROBABILITY SPACES

To formally define the model of Bluebell and validate its rules, we introduce a number of prelimi-
nary notions. Our starting point is the measure-theoretic approach of [Li et al. 2023a] in defining
probabilistic separation. We recall the main definitions here. The main additional assumption we
make throughout is that the set of outcomes of distributions is countable.

Definition 3.1 (Probability spaces). Given a set of possible outcomes Ω, a 𝜎-algebra F ∈ A(Ω) is a
set of subsets of Ω that is closed under countable unions and complements, and such that Ω ∈ F .
The full 𝜎-algebra over Ω is ΣΩ = ℘(Ω), the powerset of Ω. For 𝐹 ⊆ ℘(Ω), we write 𝜎 (𝐹 ) ∈ A(Ω)
for the smallest 𝜎-algebra containing 𝐹 . Given F ∈ A(Ω), a probability distribution 𝜇 ∈ D(F ), is a
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E ∋ 𝑒 F 𝑣 | x | 𝜑 (®𝑒) ®𝑒 F 𝑒1, . . . , 𝑒𝑛 𝜑 F + | − | < | . . . 𝑑 F Ber | Unif | . . .
T ∋ 𝑡 F 𝑥 := 𝑒 | 𝑥  𝑑(®𝑒) | skip | 𝑡1;𝑡2 | if 𝑒 then 𝑡1 else 𝑡2 | repeat 𝑒 𝑡

Fig. 3. Syntax of program terms.

countably additive function 𝜇 : F → [0, 1] with 𝜇 (Ω) = 1. The support of a distribution 𝜇 ∈ D(ΣΩ)
is the set of outcomes with non-zero probability supp(𝜇) ≜ {𝑎 ∈ Ω | 𝜇 (𝑎) > 0}, where 𝜇 (𝑎)
abbreviates 𝜇 ({𝑎}).
A probability space P ∈ P(Ω) is a pair P = (F , 𝜇) of a 𝜎-algebra F ∈ A(Ω) and a probability

distribution 𝜇 ∈ D(F ). The trivial probability space 𝟙Ω ∈ P(Ω) is the trivial 𝜎-algebra {Ω, ∅}
equipped with the trivial probability distribution. Given F1 ⊆ F2 and 𝜇 ∈ D(F2), the distribution
𝜇 |F1 ∈ D(F1) is the restriction of 𝜇 to F1. The extension pre-order (⊑) over probability spaces is
defined as (F1, 𝜇1) ⊑ (F2, 𝜇2) ≜ F1 ⊆ F2 ∧ 𝜇1 = 𝜇2 |F1 .

A function 𝑓 : Ω1 → Ω2 is measurable on F1 ∈ A(Ω1) and F2 ∈ A(Ω2) if ∀𝑋 ∈ F2. 𝑓 −1 (𝑋 ) ∈ F1.
When F2 = ΣΩ2 we simply say 𝑓 is measurable in F1.

Definition 3.2 (Product and union spaces). Given F1 ∈ A(Ω1), F2 ∈ A(Ω2), their product is the
𝜎-algebra F1⊗F2 ∈ A(Ω1×Ω2) defined as F1⊗F2 ≜ 𝜎 ({𝑋1×𝑋2 |𝑋1 ∈ F1, 𝑋2 ∈ F2}), and their union
is the 𝜎-algebra F1 ⊕ F2 ≜ 𝜎 (F1 ∪F2). The product of two probability distributions 𝜇1 ∈ D(F1) and
𝜇2 ∈ D(F2) is the distribution (𝜇1 ⊗ 𝜇2) ∈ D(F1 ⊗F2) defined by (𝜇1 ⊗ 𝜇2) (𝑋1×𝑋2) = 𝜇1 (𝑋1)𝜇2 (𝑋2)
for all 𝑋1 ∈ F1, 𝑋2 ∈ F2.

Definition 3.3 (Independent product [Li et al. 2023a]). Given (F1, 𝜇1), (F2, 𝜇2) ∈ P(Ω), their in-
dependent product is the probability space (F1 ⊕ F2, 𝜇) ∈ P(Ω) where for all 𝑋1 ∈ F1, 𝑋2 ∈ F2,
𝜇 (𝑋1 ∩ 𝑋2) = 𝜇1 (𝑋1) · 𝜇2 (𝑋2). It is unique, if it exists [Li et al. 2023a, Lemma 2.3]. Let P1 ⊛ P2 be
the unique independent product of P1 and P2 when it exists, and be undefined otherwise.

Indexed tuples. To handle unary and higher-arity relational assertions in a uniform way, we
consider finite sets of indices 𝐼 ⊆ N, and 𝐼 -indexed tuples of values of type 𝑋 , represented as (finite)
functions 𝑋 𝐼 . We use boldface to range over such functions. The syntax 𝒙 = [𝑖0:𝑥0, . . . , 𝑖𝑛 :𝑥𝑛]
denotes the function 𝒙 ∈ 𝑋 {𝑖0,...,𝑖𝑛 } with 𝒙 (𝑖𝑘 ) = 𝑥𝑘 . We often use comprehension-style notation
e.g. 𝒙 = [𝑖:𝑥𝑖 | 𝑖 ∈ 𝐼 ]. For 𝒙 ∈ 𝐴𝐼 we let |𝒙 | ≜ 𝐼 . Given some 𝒙 ∈ 𝐴𝐼 and some 𝐽 ⊆ 𝐼 , the operation
𝒙 \ 𝐽 ≜ [𝑖: 𝒙 (𝑖) | 𝑖 ∈ 𝐼 \ 𝐽 ] removes the components with indices in 𝐽 from 𝒙 .

Programs. We consider a simple first-order imperative language. We fix a finite set of program
variables x ∈ X and countable set of values 𝑣 ∈ V ≜ Z and define the program stores to be
𝑠 ∈ S ≜ X→ V (note that S is countable).

Program terms 𝑡 ∈ T are formed according to the grammar in Fig. 3. For simplicity, booleans are
encoded by using 0 ∈ V as false and any other value as true. We will use the events false ≜ {0} and
true ≜ {𝑛 ∈ V | 𝑛 ≠ 0}. Programs use standard deterministic primitives 𝜑 , which are interpreted
as functions J𝜑K : V𝑛 → V, where 𝑛 is the arity of 𝜑 . Expressions 𝑒 are effect-free deterministic
numeric expressions, and denote, as is standard, a function J𝑒K : S → V, i.e. a random variable
of ΣS. We write pvar(𝑒) for the set of program variables that occur in 𝑒 . Programs can refer to
some collection of known discrete distributions 𝑑 , each allowing a certain number of parameters.
Sampling assignments x𝑑(®𝑣) sample from the distribution J𝑑K(®𝑣) : D(ΣV). The distribution
JBerK(𝑝) = Ber𝑝 :D(Σ{0,1}) is the Bernoulli distribution assigning probability 𝑝 to outcome 1.
Similar to Lilac, we consider a simple iteration construct repeat 𝑒 𝑡 which evaluates 𝑒 to a

value 𝑛 ∈ V and, if 𝑛 > 0, executes 𝑡 in sequence 𝑛 times. This means we only consider a subset
of terminating programs. The semantics of programs is entirely standard and is defined in [Bao
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et al. 2024]. It associates each term 𝑡 to a function J𝑡K : D(ΣS) → D(ΣS) from distributions of input
stores to distributions of output stores.

In the relational reasoning setting, one would consider multiple programs at the same time and
relate their semantics. Following LHC [D’Osualdo et al. 2022], we define hyper-terms as 𝒕 ∈ T𝐽 for
some finite set of indices 𝐽 . Let 𝐼 be such that |𝒕 | ⊆ 𝐼 ; the semantics J𝒕K𝐼 : D(ΣS)𝐼 → D(ΣS)𝐼 takes
a 𝐼 -indexed family of distributions as input and outputs another 𝐼 -indexed family of distributions:

J𝒕K𝐼 (𝝁) ≜ 𝛌𝑖 . if 𝑖 ∈ |𝒕 | then J𝒕 (𝑖)K(𝝁 (𝑖)) else 𝝁 (𝑖)

Note that the store distributions at indices in 𝐼 \ |𝑡 | are preserved as is. We omit 𝐼 when it can be
inferred from context. To refer to program variables in a specific component we use elements of
𝐼 × X, writing x⟨𝑖⟩ for (𝑖, x).

4 THE BLUEBELL LOGIC

We are now ready to define Bluebell’s semantic model, and formally prove its laws.

4.1 A Model of (Probabilistic) Resources

As a model for our assertions we use a modern presentation of partial commutative monoids,
adapted from [Krebbers et al. 2018], called “ordered unital resource algebras” (henceforth RA).
Instead of a partial binary operation, RAs are equipped with a total binary operation and a predicate
V indicating which elements of the carrier are considered valid resources. Partiality of the operation
manifests as mapping some combinations of arguments to invalid elements.

Definition 4.1 (Ordered Unital Resource Algebra). An ordered unital resource algebra (RA) is a tuple
(𝑀, ⪯,V, ·, 𝜀) where ⪯ : 𝑀 ×𝑀 → Prop is the reflexive and transitive resource order,V : 𝑀 → Prop

is the validity predicate, (·) : 𝑀 → 𝑀 → 𝑀 is the resource composition, a commutative and
associative binary operation on𝑀 , and 𝜀 ∈ 𝑀 is the unit of𝑀 , satisfying, for all 𝑎, 𝑏, 𝑐 ∈ 𝑀 :

V(𝜀) 𝜀 · 𝑎 = 𝑎
V(𝑎 · 𝑏)
V(𝑎)

𝑎 ⪯ 𝑏 V(𝑏)
V(𝑎)

𝑎 ⪯ 𝑏
𝑎 · 𝑐 ⪯ 𝑏 · 𝑐

Any RA can serve as a model of basic connectives of separation logics; in particular, 𝑃 ∗𝑄 will
hold on 𝑎 ∈ 𝑀 if and only if there are 𝑎1, 𝑎2 ∈ 𝑀 such that 𝑎 = 𝑎1 · 𝑎2 and 𝑃 holds on 𝑎1 and 𝑄
holds on 𝑎2.

Bluebell’s assertions will be interpreted over a specific RA, which we construct as the combina-
tion of other basic RAs. The main component is the Probability Spaces RA, which uses independent
product as the RA operation.

Definition 4.2 (Probability Spaces RA). The probability spaces RA PSpΩ is the resource algebra
(P(Ω) ⊎ { }, ⪯,V, ·, 𝟙Ω) where ⪯ is the extension order with  added as the top element, i.e. P1 ⪯
P2 ≜ P1 ⊑ P2 and ∀𝑎 ∈ PSpΩ . 𝑎 ⪯  ;V(𝑎) ≜ 𝑎 ≠  ; composition is independent product:

𝑎 · 𝑏 ≜
{
P1 ⊛ P2 if 𝑎 = P1, 𝑏 = P2, and P1 ⊛ P2 is defined
 otherwise

The fact that PSpΩ satisfies the axioms of RAs is established in [Bao et al. 2024] and builds on
the analogous construction in Lilac. In comparison with the coarser model of PSL, independent
product represents a more sophisticated way of separating probability spaces. In PSL, separation of
distributions requires the distributions to involve disjoint sets of variables, ruling out assertions
like x ∼ 𝜇 ∗ ⌈x = y⌉ or own(x) ∗ own(x xor y), which are satisfiable in Lilac and Bluebell.
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Example 4.3. Assume there are only two variables x and y. Let𝑋𝑣 = {𝑠 |𝑠 (x) = 𝑣} andP1 = (F1, 𝜇1)
with F1 = 𝜎 ({𝑋𝑣 | 𝑣 ∈ V}) and let 𝜇1 give x the distribution of a fair coin, i.e. 𝜇1 is the extension
to F1 of 𝜇1 (𝑋0) = 𝜇1 (𝑋1) = ½. Intuitively, the assertion x ∼ Ber½ holds on P1 (we will define
the assertion’s interpretation in Section 4.2). Similarly, ⌈x = y⌉ holds on P2 = (F2, 𝜇2) where
F2 = {∅, S, {𝐸}, S \ 𝐸} with 𝐸 = {𝑠 | 𝑠 (x) = 𝑠 (y)} and 𝜇2 (𝐸) = 1. Note that F2 is very coarse: it does
not contain events that can pin the value of x precisely; thanks to this, 𝜇2 does not need to specify
what is the distribution of x, but only that y will coincide on x with probability 1. It is easy to see
that the independent product of P1 and P2 exists and is P3 = (F1 ⊕ F2, 𝜇3) where 𝜇3 is determined
by 𝜇3 (𝑋0 ∩ 𝐸) = 𝜇3 (𝑋1 ∩ 𝐸) = ½, i.e. makes x y the outcomes of the same fair coin. This means P3
is a model of x ∼ Ber½ ∗ ⌈x = y⌉.

When state is immutable, like in Lilac (which uses a functional language), the PSpΩ RA is
adequate to support a logic for probabilistic independence. There is however an obstacle in adopting
independent product in a language with mutable state.

Example 4.4. Consider a simple assignment x := 0. In the spirit of separation logic’s local rea-
soning, we would want to prove a small-footprint triple for the assignment, i.e. one where the
precondition only involves ownership of the variable x. We could try with 𝑥 ∼ 𝜇 (for arbitrary 𝜇)
but we would run into problems proving the frame property: as we remarked, an assertion like
⌈x = y⌉ is a valid frame of 𝑥 ∼ 𝜇; yet if 𝑦 ≠ 0, such frame would not hold after the assignment.

We solve this problem by combining PSpwith an RA of permissions over variables. The idea is that
in addition to information about the distribution, assertions can indicate which “write permissions”
we own on variables. An assertion that owns write permissions on x would be incompatible with
any frame predicating on x. Then a triple for assignment just needs to require write permission to
the assigned variable. We model permissions using a standard fractional permission RA.

Definition 4.5. The permissions RA is defined as (Perm, ⪯,V, ·, 𝜀) where Perm ≜ X → Q+,
𝑎 ⪯ 𝑏 ≜ ∀x ∈ X. 𝑎(x) ≤ 𝑏 (x),V(𝑎) ≜ (∀x ∈ X. 𝑎(x) ≤ 1), 𝑎1 · 𝑎2 ≜ 𝛌x. 𝑎1 (x) +𝑎2 (x) and 𝜀 = 𝛌_. 0.

We now want to combine permissions with probability spaces. The goal is to allow probability
spaces to contain only information about variables of which we have some non-zero permission.
This gives rise to the following definition.

Definition 4.6 (Compatibility). Given a probability space P ∈ P(S) and a permission map 𝑝 ∈
Perm, we say that P is compatible with 𝑝 , written P # 𝑝 , if there exists P′ ∈ P((X \ 𝑆) → V) such
that P = P′ ⊗ 𝟙𝑆→V, where 𝑆 = {𝑥 ∈ X | 𝑝 (𝑥) = 0}. Note that we are exploiting the isomorphism
S � ((X \ 𝑆) → V) × (𝑆 → V) .We extend the notion to PSpS by declaring  # 𝑝 ≜ True.

We can now construct an RA which combines probability spaces and permissions.

Definition 4.7. Let PSpPm ≜ {(P , 𝑝) | P ∈ PSpS, 𝑝 ∈ Perm,P # 𝑝}.We associate with PSpPm

the Probability Spaces with Permissions RA (PSpPm, ⪯,V, ·, 𝜀) where

V((P , 𝑝)) ≜ P ≠  ∧ ∀x.𝑝 (x) ≤ 1 (P , 𝑝) · (P′ , 𝑝
′) ≜ (P · P′ , 𝑝 · 𝑝

′)
(P , 𝑝) ⪯ (P′ , 𝑝

′) ≜ P ⪯ P′ and 𝑝 ⪯ 𝑝′ 𝜀 ≜ (𝟙S, 𝛌x. 0)

Example 4.8. Using PSpPm, we can refine an assertion x ∼ 𝜇 into (x ∼ 𝜇)@(𝑥 :𝑞), which holds
on resources (P, 𝑝) where P distributes x as 𝜇 and 𝑝 (x) ≥ 𝑞. What this achieves is to be able
to differentiate between an assertion (x ∼ 𝜇)@(𝑥 :½) which allows frames to predicate on x
(e.g. ⌈x = y⌉) and an assertion (x ∼ 𝜇)@(𝑥 :1) which does not allow the frame and consequently
allows mutation of x.
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While this allows for a clean semantic treatment of mutation and independence, it does incur
some bookkeeping of permissions in practice, which we omitted in the examples of Section 2. The
necessary permissions are however easy to infer from the variables used in the assertions, as we
will illustrate later in Example 4.15.

Finally, to build Bluebell’s model we simply construct an RA of 𝐼 -indexed tuples of probability
spaces with permissions.

Definition 4.9 (Bluebell RA). Given a set of indices 𝐼 and a RA 𝑀 , the product RA 𝑀 𝐼 is the
pointwise lifting of the components of𝑀 . Bluebell’s model isM𝐼 ≜ PSpPm

𝐼 .

4.2 Probabilistic Hyper-Assertions

Now we turn to the assertions in our logic. We take a semantic approach to assertions: we do not
insist on a specific syntax and instead characterize what constitutes an assertion by its type. In
Separation Logic, assertions are defined relative to some RA 𝑀 , as the upward closed functions
𝑀 → Prop. An assertion 𝑃 : 𝑀 → Prop is upward closed if ∀𝑎, 𝑎′ ∈ 𝑀. 𝑎 ⪯𝑀 𝑎′ ⇒ 𝑃 (𝑎) ⇒ 𝑃 (𝑎′).
We write 𝑀

u−→ Prop for the type of upward closed assertions on 𝑀 . We define hyper-assertions
to be assertions overM𝐼 , i.e. 𝑃 ∈ HA𝐼 ≜ M𝐼

u−→ Prop. Entailment is defined as (𝑃 ⊢ 𝑄) ≜ ∀𝑎 ∈
𝑀.V(𝑎) ⇒ (𝑃 (𝑎) ⇒ 𝑄 (𝑎)) . Logical equivalence is defined as entailment in both directions:
𝑃 ⊣⊢ 𝑄 ≜ (𝑃 ⊢ 𝑄) ∧ (𝑄 ⊢ 𝑃). We inherit the basic connectives (conjunction, disjunction, separation,
quantification) from SL, which are well-defined on arbitrary RAs, includingM𝐼 . In particular:

𝑃 ∗𝑄 ≜ 𝛌𝑎. ∃𝑏1, 𝑏2. (𝑏1 · 𝑏2) ⪯ 𝑎 ∧ 𝑃 (𝑏1) ∧𝑄 (𝑏2) ⌜𝜙⌝ ≜ 𝛌_. 𝜙 Own(𝑏) ≜ 𝛌𝑎. 𝑏 ⪯ 𝑎
Pure assertions ⌜𝜙⌝ lift meta-level propositions 𝜙 to assertions (by ignoring the resource). Own(𝑏)
holds on resources that are greater or equal than 𝑏 in the RA order; this means 𝑏 represents a lower
bound on the available resources.

We now turn to assertions that are specific to probabilistic reasoning in Bluebell, i.e. the ones
that can only be interpreted inM𝐼 . We use the following two abbreviations:

Own(F, 𝝁,𝒑) ≜ Own(((F, 𝝁),𝒑)) Own(F, 𝝁) ≜ ∃𝒑.Own(F, 𝝁,𝒑)
To start, we define 𝐴-typed assertion expressions 𝐸 which are of type 𝐸 : S→ 𝐴. Note that the

type of the semantics of a program expression J𝑒K : S → V is a V-typed assertion expression;
because of this we seamlessly use program expressions in assertions, implicitly coercing them to
their semantics. Since in general we deal with hyper-stores 𝒔 ∈ S𝐼 , we use the notation 𝐸⟨𝑖⟩ to
denote the application of 𝐸 to the store 𝒔 (𝑖). Notationally, it may be confusing to read composite
expressions like (x− z)⟨𝑖⟩, so we write them for clarity with each program variable annotated with
the index, as in x⟨𝑖⟩ − z⟨𝑖⟩.

The meaning of owning x⟨1⟩ ∼ 𝜇. A function 𝑓 : 𝐴 → 𝐵 is measurable in a 𝜎-algebra F :A(𝐴)
if 𝑓 −1 (𝑏) = {𝑎 ∈ 𝐴 | 𝑓 (𝑎) = 𝑏} ∈ F for all 𝑏 ∈ 𝐵. An expression 𝐸 always defines a measurable
function (i.e. a random variable) in ΣS, but might not be measurable in some sub-algebras of ΣS. Lilac
proposed to use measurability as the notion of ownership: an expression 𝐸 is owned in any resources
that contains enough information to determine its distribution, i.e. that makes 𝐸 measurable. While
this makes sense conceptually, we discovered it made another important connective of Lilac, almost
sure equality, slightly flawed (in that it would not support the necessary laws).2 We propose a
slight weakening of the notion of measurability which solves those issues while still retaining the
intent behind the meaning of ownership in relation to independence and conditioning. We call this
weaker notion “almost measurability”.

2In fact, a later revision [Li et al. 2023b] corrected the issue, although with a different solution from ours. See Section 6.
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Definition 4.10 (Almost-measurability). Given a probability space (F , 𝜇) ∈ P(Ω) and a set 𝑋 ⊆ Ω,
we say 𝑋 is almost measurable in (F , 𝜇), written 𝑋 � (F , 𝜇), if

∃𝑋1, 𝑋2 ∈ F . 𝑋1 ⊆ 𝑋 ⊆ 𝑋2 ∧ 𝜇 (𝑋1) = 𝜇 (𝑋2)

We say a function 𝐸 : Ω → 𝐴, is almost measurable in (F , 𝜇), written 𝐸 � (F , 𝜇), if 𝐸−1 (𝑎) � (F , 𝜇)
for all 𝑎 ∈ 𝐴. When 𝑋1 ⊆ 𝑋 ⊆ 𝑋2 and 𝜇 (𝑋1) = 𝜇 (𝑋2) = 𝑝 , we can unambiguously assign
probability 𝑝 to 𝑋 , as any extension of 𝜇 to ΣΩ must assign 𝑝 to 𝑋 ; then we write 𝜇 (𝑋 ) for 𝑝 .

While almost-measurability does not imply measurability, it constrains the current probability
space to contain enough information to uniquely determine the distribution of 𝐸 in any extension
where 𝐸 becomes measurable. For example let𝑋 = {𝑠 |𝑠 (x) = 42} and F = 𝜎 ({𝑋 }) = {S, ∅, 𝑋, S\𝑋 }.
If 𝜇 (𝑋 ) = 1, then x � (F , 𝜇) holds but x is not measurable in F , as F lacks events for x = 𝑣 for all 𝑣
except 42. Nevertheless, any extension (F ′, 𝜇′) ⊒ (F , 𝜇) where x is measurable, would need to
assign 𝜇′ (𝑋 ) = 1 and 𝜇 (x = 𝑣) = 0 for every 𝑣 ≠ 42.

We arrive at the definition of the assertion 𝐸⟨𝑖⟩ ∼ 𝜇 which requires 𝐸⟨𝑖⟩ to be almost-measurable,
determining its distribution as 𝜇 in any extension of the local probability space. Formally, given
𝜇 :D(Σ𝐴) and 𝐸 : S→ 𝐴, we define:

𝐸⟨𝑖⟩ ∼ 𝜇 ≜ ∃F, 𝝁 .Own(F, 𝝁) ∗ ⌜𝐸 � (F (𝑖), 𝝁 (𝑖)) ∧ 𝜇 = 𝝁 (𝑖) ◦ 𝐸−1⌝

The assertion states that we own just enough information about the probability space at index 𝑖 , so
that its distribution is uniquely determined as 𝜇 in any extension of the space.

Using the 𝐸⟨𝑖⟩ ∼ 𝜇 assertion we can define a number of useful derived assertions:

E[𝐸⟨𝑖⟩] = 𝑟 ≜ ∃𝜇. 𝐸⟨𝑖⟩ ∼ 𝜇 ∗ ⌜𝑟 = ∑
𝑎∈supp(𝜇 ) 𝜇 (𝑎) · 𝑎⌝ ⌈𝐸⟨𝑖⟩⌉ ≜ (𝐸 ∈ true)⟨𝑖⟩ ∼ 𝛿True

Pr(𝐸⟨𝑖⟩) = 𝑟 ≜ ∃𝜇. 𝐸⟨𝑖⟩ ∼ 𝜇 ∗ ⌜𝜇 (true) = 𝑟⌝ own(𝐸⟨𝑖⟩) ≜ ∃𝜇. 𝐸⟨𝑖⟩ ∼ 𝜇

Assertions about expectations (E[𝐸⟨𝑖⟩]) and probabilities (Pr(𝐸⟨𝑖⟩)), simply assert ownership of
some distribution with the desired (pure) property. The “almost surely” assertion ⌈𝐸⟨𝑖⟩⌉ takes a
boolean-valued expression 𝐸 and asserts that it holds (at 𝑖) with probability 1. As remarked in
Example 4.3, an assertion like ⌈x⟨1⟩ = y⟨1⟩⌉ owns the expression (x⟨1⟩ = y⟨1⟩) but not necessar-
ily x⟨1⟩ itself: the only events needed to make the expression almost measurable are x⟨1⟩ = y⟨1⟩
and x⟨1⟩ ≠ y⟨1⟩, which would be not enough to make x⟨1⟩ itself almost measurable. This means
that an assertion like own(x⟨1⟩) ∗ ⌈x⟨1⟩ = y⟨1⟩⌉ is satisfiable.

Permissions. The previous example highlights the difficulty with supporting mutable state: own-
ing x⟨1⟩ ∼ 𝜇 is not enough to allow safe mutation, because the frame can record information
like ⌈x⟨1⟩ = y⟨1⟩⌉, which could be invalidated by an assignment to x. Our solution is analogous
to the “variables as resource” technique in Separation Logic [Bornat et al. 2005], and uses the
permission component of Bluebell’s RA. To manipulate permissions we define the assertions:

(x⟨𝑖⟩:𝑞) ≜ ∃P,𝒑.Own(P,𝒑) ∗ ⌜𝒑(𝑖) (x) = 𝑞⌝ 𝑃@𝒑 ≜ 𝑃 ∧ ∃P.Own(P,𝒑)

Now owning (x⟨1⟩:1) forbids any frame to retain information about x⟨1⟩: any resource compatible
with (x⟨1⟩:1) would have a 𝜎-algebra which is trivial on x⟨1⟩. In practice, preconditions are always
of the form 𝑃@𝒑 where 𝒑 contains full permissions for every variable the relevant programmutates,
and non-zero permissions for the other variables referenced in the assertions or program. When
framing, one would distribute evenly the permissions to each separated conjunct, according to the
variables mentioned in the assertions. We illustrate this pattern concretely in Example 4.15.
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c-true
⊢ C𝜇 _. True

c-unit-l
C𝛿𝑣0

𝑣 . 𝐾 (𝑣) ⊣⊢ 𝐾 (𝑣0)

c-transf
𝑓 : supp(𝜇′) → supp(𝜇) bijective
∀𝑏 ∈ supp(𝜇′) . 𝜇′ (𝑏) = 𝜇 (𝑓 (𝑏))
C𝜇 𝑎. 𝐾 (𝑎) ⊢ C𝜇′ 𝑏. 𝐾 (𝑓 (𝑏))

c-and
idx(𝐾1) ∩ idx(𝐾2) = ∅

C𝜇 𝑣 . 𝐾1 (𝑣) ∧ C𝜇 𝑣 . 𝐾2 (𝑣) ⊢ C𝜇 𝑣 . (𝐾1 (𝑣) ∧ 𝐾2 (𝑣))

sure-str-convex
C𝜇 𝑣 . (𝐾 (𝑣) ∗ ⌈𝐸⟨𝑖⟩⌉) ⊢ ⌈𝐸⟨𝑖⟩⌉ ∗ C𝜇 𝑣 . 𝐾 (𝑣)

c-pure
⌜𝜇 (𝑋 ) = 1⌝ ∗ C𝜇 𝑣 . 𝐾 (𝑣) ⊣⊢ C𝜇 𝑣 . (⌜𝑣 ∈ 𝑋 ⌝ ∗ 𝐾 (𝑣))

Fig. 4. Primitive Conditioning Laws.

and-to-star
idx(𝑃) ∩ idx(𝑄) = ∅

𝑃 ∧𝑄 ⊢ 𝑃 ∗𝑄

Relevant indices. Sometimes it is useful to determine which indices are
relevant for an assertion. Semantically, we can determine if the indices
𝐽 ⊆ 𝐼 are irrelevant to 𝑃 by irrel𝐽 (𝑃) ≜ ∀𝑎 ∈ M𝐼 .

(
∃𝑎′.V(𝑎′) ∧ 𝑎 =

𝑎′ \ 𝐽 ∧ 𝑃 (𝑎′)
)
⇒ 𝑃 (𝑎). The set idx(𝑃) is the smallest subset of 𝐼 so

that irrel𝐼\idx(𝑃 ) (𝑃) holds. Rule and-to-star states that separation between resources that live in
different indexes is the same as normal conjunction: distributions at different indexes are neither
independent nor correlated; they simply live in “parallel universes” and can be related as needed.

4.3 Joint Conditioning

As we discussed in Section 2, the centerpiece of Bluebell is the joint conditioning modality, which
we can now define fully formally.

Definition 4.11 (Joint conditioning modality). Let 𝜇 ∈ D(Σ𝐴) and 𝐾 : 𝐴→ HA𝐼 , then we define
the assertion C𝜇 𝐾 :HA𝐼 as follows (where 𝜿 (𝐼 ) (𝑣) ≜ [𝑖:𝜿 (𝑖) (𝑣) | 𝑖 ∈ 𝐼 ]):

C𝜇 𝐾 ≜ 𝛌𝑎. ∃F, 𝝁,𝒑,𝜿 . (F, 𝝁,𝒑) ⪯ 𝑎 ∧ ∀𝑖 ∈ 𝐼 . 𝝁 (𝑖) = bind(𝜇,𝜿 (𝑖))
∧ ∀𝑣 ∈ supp(𝜇).𝐾 (𝑣) (F,𝜿 (𝐼 ) (𝑣),𝒑)

The definition follows the principle we explained in Section 2.2: C𝜇 𝐾 holds on resources where
we own some tuple of probability spaces which can all be seen as the convex combinations of the
same 𝜇 and some kernel. Then the conditional assertion 𝐾 (𝑣) is required to hold on the tuple of
kernels evaluated at 𝑣 . Note that the definition is upward-closed by construction.

We discussed a number of joint conditioning laws in Section 2. Figure 4 shows some important
primitive laws that were left out. Rule c-true allows to introduce a trivial modality; together with
c-frame this allows for the introduction of the modality around any assertion. Rule c-unit-l is a
reflection of the left unit rule of the underlying monad: conditioning on the Dirac distribution can
be eliminated. Rule c-transf allows for the transformation of the convex combination using 𝜇 into
using 𝜇′ by applying a bijection between their support in a way that does not affect the weights of
each outcome. Rule c-and allows to merge two modalities using the same 𝜇, provided the inner
conditioned assertions do not overlap in their relevant indices.
Rule sure-str-convex internalizes a stronger version of convexity of ⌈𝐸⟨𝑖⟩⌉ assertions. When

𝐾 (𝑣) = True we obtain convexity C𝜇 𝑣 . ⌈𝐸⟨𝑖⟩⌉ ⊢ ⌈𝐸⟨𝑖⟩⌉ . Additionally the rule asserts that the
unconditional ⌈𝐸⟨𝑖⟩⌉ keeps being independent of the conditional 𝐾 .
Finally, rule c-pure allows to translate facts that hold with probability 1 in 𝜇 to predicates that

hold on every 𝑣 bound by conditioning on 𝜇.
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We can now give the general encoding of relational lifting in terms of joint conditioning.

Definition 4.12 (Relational Lifting). Let 𝑋 ⊆ I × X; given a relation 𝑅 between variables in 𝑋 ,
i.e. 𝑅 ⊆ V𝑋 , we define (letting ⌈x⟨𝑖⟩ = 𝒗 (x⟨𝑖⟩)⌉x⟨𝑖 ⟩∈𝑋 ≜

∧
x⟨𝑖 ⟩∈𝑋 ⌈x⟨𝑖⟩ = 𝒗 (x⟨𝑖⟩)⌉):

⌊𝑅⌋ ≜ ∃𝜇 :D(V𝑋 ). ⌜𝜇 (𝑅) = 1⌝ ∗ C𝜇 𝒗 . ⌈x⟨𝑖⟩ = 𝒗 (x⟨𝑖⟩)⌉x⟨𝑖 ⟩∈𝑋
Example 4.13. Let us expand Definition 4.12 on ⌊k⟨1⟩ = c⟨2⟩⌋. The assertion concerns the

variables 𝑋 = {k⟨1⟩, c⟨2⟩}; to instantiate the definition we see the assertion as the lifting ⌊𝑅=⌋ of
the relation 𝑅= ⊆ V𝑋 defined as 𝑅= = {𝒗 ∈ V𝑋 | 𝒗 (k⟨1⟩) = 𝒗 (c⟨2⟩)}, giving rise to the assertion

∃𝜇. ⌜𝜇 (𝑅=) = 1⌝ ∗ C𝜇 𝒗 . ⌈k⟨1⟩ = 𝒗 (k⟨1⟩)⌉ ∧ ⌈c⟨2⟩ = 𝒗 (c⟨2⟩)⌉

Here, V𝑋 can be alternatively presented as V2, giving 𝑅= ≡ {(𝑣, 𝑣) | 𝑣 ∈ V}. With this reformulation,
the encoding of Definition 4.12 becomes

∃𝜇. ⌜𝜇 (𝑅=) = 1⌝ ∗ C𝜇 (𝑣1, 𝑣2). ⌈k⟨1⟩ = 𝑣1⌉ ∧ ⌈c⟨2⟩ = 𝑣2⌉

Thanks to c-pure, the assertion can be rewritten as ∃𝜇. C𝜇 (𝑣1, 𝑣2). ⌜𝑅= (𝑣1, 𝑣2)⌝ ∗ ⌈k⟨1⟩ = 𝑣1⌉ ∧
⌈c⟨2⟩ = 𝑣2⌉ which can be simplified to ∃𝜇. C𝜇 (𝑣1, 𝑣2).

(
⌈k⟨1⟩ = 𝑣1⌉ ∧ ⌈c⟨2⟩ = 𝑣2⌉ ∧ ⌜𝑣1 = 𝑣2⌝

)
(which is how we presented the encoding in Section 2.2). Since 𝑅= is so simple, by c-transf we
can simplify the assertion even further and obtain ∃𝜇. C𝜇 𝑣 .

(
⌈k⟨1⟩ = 𝑣⌉ ∧ ⌈c⟨2⟩ = 𝑣⌉

)
.

In rule rl-merge, the two relations might refer to different indexed variables, i.e. 𝑅1 ∈ V𝑋1 and
𝑅2 ∈ V𝑋2 ; the notation 𝑅1 ∧ 𝑅2 is defined as 𝑅1 ∧ 𝑅2 ≜

{
𝒔 ∈ V𝑋1∪𝑋2

�� 𝒔 |𝑋1 ∈ 𝑅1 ∧ 𝒔 |𝑋2 ∈ 𝑅2
}
.

4.4 Weakest Precondition

To reason about (hyper-)programs, we introduce a weakest-precondition assertion (WP) wp 𝒕 {𝑄},
which intuitively states: given the current input distributions (at each index), if we run the programs
in 𝒕 at their corresponding index we obtain output distributions that satisfy 𝑄 ; furthermore, every
frame is preserved. We refer to the number of indices of 𝒕 as the arity of the WP.

Definition 4.14 (Weakest Precondition). For𝑎 ∈ M𝐼 and 𝝁 :D(ΣS𝐼 ) let𝑎 ⪯ 𝝁mean𝑎 ⪯ (ΣS𝐼 , 𝝁, 𝛌𝑥 . 1).
wp 𝒕 {𝑄} ≜ 𝛌𝑎.∀𝝁0 .∀𝑐. (𝑎 · 𝑐) ⪯ 𝝁0 ⇒ ∃𝑏.

(
(𝑏 · 𝑐) ⪯ J𝒕K(𝝁0) ∧𝑄 (𝑏)

)
The assertion holds on the resources 𝑎 such that if, together with some frame 𝑐 , they can be seen

as a fragment of the global distribution 𝝁0, then it is possible to update the resource to some 𝑏
which still composes with the frame 𝑐 , and 𝑏 · 𝑐 can be seen as a fragment of the output distribution
J𝒕K(𝝁0). Moreover, such 𝑏 needs to satisfy the postcondition 𝑄 .

We discussed some of the WP rules of Bluebell in Section 2; the full set of rules is produced in
[Bao et al. 2024]. Let us briefly mention the axioms for assignments:

wp-samp
(x⟨𝑖⟩:1) ⊢ wp [𝑖:x𝑑(®𝑣)] {x⟨𝑖⟩ ∼ 𝑑 (®𝑣)}

wp-assign
x ∉ pvar(𝑒) ∀y ∈ pvar(𝑒) .𝒑(y⟨𝑖⟩) > 0 𝒑(x⟨𝑖⟩) = 1

(𝒑) ⊢ wp [𝑖:x := 𝑒]
{
⌈x⟨𝑖⟩ = 𝑒 ⟨𝑖⟩⌉@𝒑

}
Rule wp-samp is the expected “small footprint” rule for sampling; the precondition only requires
full permission on the variable being assigned, to forbid any frame to record information about it.
Rulewp-assign requires full permission on x, and non-zero permission on the variables on the RHS
of the assignment. This allows the postcondition to assert that x and the expression 𝑒 assigned to it
are equal with probability 1. The condition x ∉ pvar(®𝑒) ensures 𝑒 has the same meaning before and
after the assignment, but is not restrictive: if needed the old value of x can be stored in a temporary
variable, or the proof can condition on x to work with its pure value.
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The assignment rules are the only ones that impose constraints on the owned permissions. In
proofs, this means that most manipulations simply thread through permissions so that the needed
ones can reach the applications of the assignment rules. To avoid cluttering derivations with this
bookkeeping, we mostly omit permission information from assertions. The appropriate permission
annotations can be easily inferred, as we show in the following example.

Example 4.15. Consider the following triple with permissions omitted:

x⟨1⟩ ∼ 𝜇1 ∗ ⌈x⟨1⟩ = y⟨1⟩⌉ ∗ z⟨1⟩ ∼ 𝜇2 ⊢ wp [1:x := z] {⌈x⟨1⟩ = z⟨1⟩⌉ ∗ z⟨1⟩ ∼ 𝜇2}

To be able to apply rule wp-assign, we need to get (𝑥 :1, 𝑧:𝑞) from the precondition, for some 𝑞 > 0.
To do so, formally, we need to be more explicit about the permissions owned. The pattern is that
whenever a triple is considered, the precondition should own full permissions on the variables
assigned to in the program term, and non-zero permission on the other relevant variables. In our
example we need permission 1 for x⟨1⟩ and arbitrary permissions 𝑞1, 𝑞2 > 0 for y⟨1⟩ and z⟨1⟩
respectively. Since we have two separated sub-assertions that refer to x⟨1⟩, we would split the full
permission into two halves, obtaining the precondition:

(x⟨1⟩ ∼ 𝜇1)@(x⟨1⟩:½) ∗ ⌈x⟨1⟩ = y⟨1⟩⌉@(x⟨1⟩:½, y⟨1⟩:𝑞1) ∗ (z⟨1⟩ ∼ 𝜇2)@(z⟨1⟩:𝑞2)

To obtain the full permission on x⟨1⟩ we are now forced to consume both the first two resources,
weakening the precondition to:

(x⟨1⟩:1) ∗ (y⟨1⟩:𝑞1) ∗ (z⟨1⟩ ∼ 𝜇2)@(z⟨1⟩:𝑞2)

This step in general forces the consumption of any frame recording information about the assigned
variables. To obtain non-zero permission for z⟨1⟩ while still being able to frame z⟨1⟩ ∼ 𝜇2, we
let 𝑞 = 𝑞2/2 and weaken the precondition to:

(x⟨1⟩:1, z⟨1⟩:𝑞) ∗ (y⟨1⟩:𝑞1) ∗ (z⟨1⟩ ∼ 𝜇2)@(z⟨1⟩:𝑞)

Now an application of wp-frame and wp-assign would give us a postcondition:

⌈x⟨1⟩ = z⟨1⟩⌉@(x⟨1⟩:1, z⟨1⟩:𝑞) ∗ (y⟨1⟩:𝑞1) ∗ (z⟨1⟩ ∼ 𝜇2)@(z⟨1⟩:𝑞)

which is strong enough to imply the desired postcondition. In a fully expanded proof, one would
keep the permissions owned in the postcondition so that they can be used in proofs concerning the
continuation of the program.

5 CASE STUDIES FOR BLUEBELL

Our evaluation of Bluebell is based on two main lines of enquiry: (1) Are high-level principles
about probabilistic reasoning provable from the core constructs of Bluebell? (2) Does Bluebell,
through enabling new reasoning patterns, expand the horizon for verification of probabilistic
programs beyond what was possible before? We include case studies that try to highlight the
contribution of Bluebell each question, and sometimes both at the same time. Specifically, our
evaluation is guided by the following research questions:
RQ1: Do joint conditioning and independence offer a good abstract interface over the underlying

semantic model?
RQ2: Can known unary/relational principles be reconstructed from Bluebell’s primitives?
RQ3: Can new unary/relational principles be discovered (as new lemmas) and proved from Blue-

bell’s primitives?
RQ4: Can Bluebell’s primitives be successfully incorporated in an effective program logic?
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We already demonstrated positive answers to some of these questions in Section 2: for example,
the proof of the One-time pad addresses RQ1 and RQ2, the proof of seq-swap addresses RQ3
and RQ4. In this section we provide a more detailed evaluation through a number of challenging
examples. The full proofs of the case studies and additional examples are in [Bao et al. 2024]. Here,
we summarize some highlights to frame the key contributions of Bluebell.

5.1 pRHL-style Reasoning

Our first example is an encoding of pRHL’s judgments in Bluebell, sketching how pRHL-style
reasoning can be effectively embedded and extended in Bluebell (RQ1 to RQ4).

In pRHL, the semantics of triples implicitly always conditions on the input store, so that programs
are always seen as running from a pair of deterministic input stores satisfying the relational
precondition. Judgments in pRHL have the form ⊢ 𝑡1 ∼ 𝑡2 : 𝑅0 ⇒ 𝑅1 where 𝑅0, 𝑅1 are two relations
on states (the pre- and postcondition, respectively) and 𝑡1, 𝑡2 are the two programs to be compared.
Such a judgment can be encoded in Bluebell as:

⌊𝑅0⌋ ⊢ ∃𝜇. C𝜇 𝒔 . (St (𝒔) ∧wp [1: 𝑡1, 2: 𝑡2] {⌊𝑅1⌋}) where St (𝒔) ≜ ⌈x⟨𝑖⟩ = 𝒔 (x⟨𝑖⟩)⌉x⟨𝑖 ⟩∈𝐼×X (7)

As the input state is always conditioned, and the precondition is always a relational lifting, one is
always in the position of applying c-cons to eliminate the implicit conditioning of the lifting and
the one wrapping the WP, reducing the problem to a goal where the input state is deterministic
(and thus where the primitive rules of WP laws apply without need for further conditioning). As
noted in Section 2.4, LHC-style WPs allow us to lift our unary WP rules to binary with little effort.

An interesting property of the encoding in (7) is that anything of the form C𝜇 𝒔 . (St (𝒔) ∧ . . . ) has
ownership of the full store (as it conditions on every variable). We observe that WPs (of any arity)
which have this property enjoy an extremely powerful rule. Let ownX ≜ ∀x⟨𝑖⟩ ∈ 𝐼 × X. own(x⟨𝑖⟩).
The following is a valid (primitive) rule in Bluebell:

c-wp-swap
C𝜇 𝑣 .wp 𝒕 {𝑄 (𝑣)} ∧ ownX ⊢ wp 𝒕

{
C𝜇 𝑣 .𝑄 (𝑣)

}
Rule c-wp-swap, allows the shift of the conditioning on the input to the conditioning of the

output. This rule provides a powerful way to make progress in lifting a conditional statement to
an unconditional one. To showcase c-wp-swap, consider the two programs in Fig. 7, which are
equivalent: if we couple the x in both programs, the other two samplings can be coupled under
conditioning on x. Formally, let 𝑃 ⊩ 𝑄 ≜ 𝑃 ∧ ownX ⊢ 𝑄 ∧ ownX. We process the two assignments
to x, which we can couple x⟨1⟩ ∼ 𝑑0 ∗ x⟨2⟩ ∼ 𝑑0 ⊢ C𝑑0 𝑣 . (⌈x⟨1⟩ = 𝑣⌉ ∧ ⌈x⟨2⟩ = 𝑣⌉). Then, let 𝑡1 (𝑡2)
be the rest of prog1 (prog2). We can then derive:

∀𝑣 . ⌈x⟨1⟩ = 𝑣⌉ ∧ ⌈x⟨2⟩ = 𝑣⌉ ⊩ wp [1: 𝑡1, 2: 𝑡2]
{
⌊x⟨1⟩ = x⟨2⟩⌋ ∗ y⟨1⟩ ∼ 𝑑1 (𝑣) ∗ y⟨2⟩ ∼ 𝑑1 (𝑣) ∗
z⟨1⟩ ∼ 𝑑2 (𝑣) ∗ z⟨2⟩ ∼ 𝑑2 (𝑣)

}
∀𝑣 . ⌈x⟨1⟩ = 𝑣⌉ ∧ ⌈x⟨2⟩ = 𝑣⌉ ⊩ wp [1: 𝑡1, 2: 𝑡2] {⌊x⟨1⟩ = x⟨2⟩⌋ ∗ ⌊y⟨1⟩ = y⟨2⟩⌋ ∗ ⌊z⟨1⟩ = z⟨2⟩⌋}

coupling

∀𝑣 . ⌈x⟨1⟩ = 𝑣⌉ ∧ ⌈x⟨2⟩ = 𝑣⌉ ⊩ wp [1: 𝑡1, 2: 𝑡2] {⌊x⟨1⟩ = x⟨2⟩ ∧ y⟨1⟩ = y⟨2⟩ ∧ z⟨1⟩ = z⟨2⟩⌋}
rl-merge

C𝑑0 𝑣 . (⌈x⟨1⟩ = 𝑣⌉ ∧ ⌈x⟨2⟩ = 𝑣⌉) ⊩ C𝑑0 𝑣 .wp [1: 𝑡1, 2: 𝑡2] {⌊x⟨1⟩ = x⟨2⟩ ∧ y⟨1⟩ = y⟨2⟩ ∧ z⟨1⟩ = z⟨2⟩⌋}
c-cons

C𝑑0 𝑣 . (⌈x⟨1⟩ = 𝑣⌉ ∧ ⌈x⟨2⟩ = 𝑣⌉) ⊩ wp [1: 𝑡1, 2: 𝑡2] {C𝑑0 𝑣 . ⌊x⟨1⟩ = x⟨2⟩ ∧ y⟨1⟩ = y⟨2⟩ ∧ z⟨1⟩ = z⟨2⟩⌋}
c-wp-swap

C𝑑0 𝑣 . (⌈x⟨1⟩ = 𝑣⌉ ∧ ⌈x⟨2⟩ = 𝑣⌉) ⊩ wp [1: 𝑡1, 2: 𝑡2] {⌊x⟨1⟩ = x⟨2⟩ ∧ y⟨1⟩ = y⟨2⟩ ∧ z⟨1⟩ = z⟨2⟩⌋}
rl-convex

Where the top triple can be easily derived using standard steps. Reading it from bottom to
top, we start by invoking convexity of relational lifting to introduce a conditioning modality in
the postcondition matching the one in the precondition. Rule c-wp-swap allows us to bring the
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whole WP under the modality, allowing rule c-cons to remove it on both sides. From then it is a
matter of establishing and combining the couplings on y and z. Note that these couplings are only
possible because the coupling on x made the parameters of 𝑑1 and of 𝑑2 coincide on both indices.
In Section 5.5 we show this kind of derivation can be useful for unary reasoning too.
While the ownX condition is restricting, without it the rule is unsound in the current model.

We leave it as future work to study whether there is a model that validates this rule without
requiring ownX.

5.2 One Time Pad Revisited

In Section 2, we prove the encrypt program correct relationally (missing details are in [Bao et al.
2024]). An alternative way of stating and proving the correctness of encrypt is to establish that in
the output distribution c and m are independent, which can be expressed as the unary goal (also
studied in [Barthe et al. 2019]): (𝒑) ⊢ wp [1: encrypt()] {c⟨1⟩ ∼ Ber1/2 ∗ m⟨1⟩ ∼ Ber𝑝 } (where
𝒑 = [k⟨1⟩: 1, m⟨1⟩: 1, c⟨1⟩: 1]). The triple states that after running encrypt, the ciphertext c is
distributed as a fair coin, and—importantly—is not correlated with the plaintext in m. The PSL proof
in [Barthe et al. 2019] performs some of the steps within the logic, but needs to carry out some
crucial entailments at the meta-level, which is a symptom of unsatisfactory abstractions (RQ1).
The same applies to the Lilac proof in [Li et al. 2023b] which requires ad-hoc lemmas proven on
the semantic model. The stumbling block is proving the valid entailment:

k⟨1⟩ ∼ Ber½ ∗ m⟨1⟩ ∼ Ber𝑝 ∗ ⌈c⟨1⟩ = k⟨1⟩ xor m⟨1⟩⌉ ⊢ m⟨1⟩ ∼ Ber𝑝 ∗ c⟨1⟩ ∼ Ber½

In Bluebell we can prove the entailment in two steps: (1) we condition on m and k to compute the
result of the xor operation and obtain that c is distributed as Ber½; (2) we carefully eliminate the
conditioning while preserving the independence of m and c.
The first step starts by conditioning on m and k and proceeds as follows:

CBer𝑝
𝑚.

(
⌈m⟨1⟩ =𝑚⌉ ∗ CBer½ 𝑘. (⌈k⟨1⟩ = 𝑘⌉ ∗ ⌈c⟨1⟩ = 𝑘 xor𝑚⌉)

)
⊢ CBer𝑝

𝑚.

(
⌈m⟨1⟩ =𝑚⌉ ∗

{
CBer½ 𝑘. ⌈c⟨1⟩ = 𝑘⌉ if𝑚 = 0
CBer½ 𝑘. ⌈c⟨1⟩ = ¬𝑘⌉ if𝑚 = 1

)
(c-cons)

⊢ CBer𝑝
𝑚.

(
⌈m⟨1⟩ =𝑚⌉ ∗ CBer½ 𝑘. ⌈c⟨1⟩ = 𝑘⌉

)
(c-transf)

The crucial entailment is the application of c-transf to the𝑚 = 1 branch, by using negation as the
bijection (which satisfies the premises of the rules since Ber½ is unbiased).
The second step uses the following primitive rule of Bluebell:

prod-split
(𝐸1⟨𝑖⟩, 𝐸2⟨𝑖⟩) ∼ 𝜇1 ⊗ 𝜇2 ⊢ 𝐸1⟨𝑖⟩ ∼ 𝜇1 ∗ 𝐸2⟨𝑖⟩ ∼ 𝜇2

with which we can prove:

CBer𝑝
𝑚.

(
⌈m⟨1⟩ =𝑚⌉ ∗ CBer½ 𝑘. ⌈c⟨1⟩ = 𝑘⌉

)
⊢ CBer𝑝

𝑚. CBer½ 𝑘. ⌈m⟨1⟩ =𝑚 ∧ c⟨1⟩ = 𝑘⌉ (c-frame)

⊢ CBer𝑝⊗Ber½ (𝑚,𝑘). ⌈(m⟨1⟩, c⟨1⟩) = (𝑚,𝑘)⌉ (c-fuse)

⊢ (m⟨1⟩, c⟨1⟩) ∼ (Ber𝑝 ⊗ Ber½) (c-unit-r)

⊢ m⟨1⟩ ∼ Ber𝑝 ∗ c⟨1⟩ ∼ Ber½ (prod-split)

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 58. Publication date: January 2025.



58:22 Jialu Bao, Emanuele D’Osualdo, and Azadeh Farzan

As this is a common manipulation needed to extract unconditional independence from a condi-
tional fact, we can formulate it as the more general derived rule

c-extract
C𝜇1 𝑣1 .

(
⌈𝐸1⟨𝑖⟩ = 𝑣1⌉ ∗ 𝐸2⟨𝑖⟩ ∼ 𝜇2

)
⊢ 𝐸1⟨𝑖⟩ ∼ 𝜇1 ∗ 𝐸2⟨𝑖⟩ ∼ 𝜇2

5.3 Markov Blankets

In probabilistic reasoning, introducing conditioning is easy, but deducing unconditional facts from
conditional ones is not immediate. The same applies to the joint conditioning modality: by design,
one cannot eliminate it for free. Crucial to Bluebell’s expressiveness is the inclusion of rules that
can soundly derive unconditional information from conditional assertions.

We use the concept of a Markov Blanket—a very common tool in Bayesian reasoning for simpli-
fying conditioning—to illustrate Bluebell’s expressiveness (RQ1 and RQ2). Intuitively, Markov
blankets identify a set of variables that affect the distribution of a random variable directly: this is
useful because by conditioning on those variables we can remove conditional connection between
the random variable and all the variables on which it indirectly depends.
For concreteness, consider the program x1 𝑑1; x2𝑑2 (x1); x3𝑑3 (x2). The program de-

scribes a Markov chain of three variables. One way of interpreting this pattern is that the joint
output distribution is described by the program as a product of conditional distributions: the
distribution over x2 is described conditionally on x1, and the one of x3 conditionally on x2. This
kind of dependencies are ubiquitous in, for instance, hidden Markov models and Bayesian network
representations of distributions.

A crucial tool for the analysis of such models is the concept of a Markov Blanket of a variable x:
the set of variables that are direct dependencies of x. Clearly x3 depends on x2 and, indirectly,
on x1. However, Markov chains enjoy the memorylessness property: when fixing a variable in
the chain, the variables that follow it are independent from the variables that preceded it. For our
example this means that if we condition on x2, then x1 and x3 are independent (i.e. we can ignore
the indirect dependencies).

In Bluebell we can characterize the output distribution with the assertion

C𝑑1 𝑣1.
(
⌈x1 = 𝑣1⌉ ∗ C𝑑2 (𝑣1 ) 𝑣2.

(
⌈x2 = 𝑣2⌉ ∗ x3 ∼ 𝑑3 (𝑣2)

) )
Note how this postcondition represents the output distribution as implicitly as the program does.
We want to transform the assertion into:

C𝜇2 𝑣2.
(
⌈x2 = 𝑣2⌉ ∗ x1 ∼ 𝜇1 (𝑣2) ∗ x3 ∼ 𝑑3 (𝑣2)

)
for appropriate 𝜇2 and 𝜇1. This isolates the conditioning to the direct dependency of x1 and keeps
full information about x3, available for further manipulation down the line.
In probability theory, the proof of memorylessness is an application of Bayes’ law: we are

computing the distribution of x1 conditioned on x2, from the distribution of x2 conditioned on x1.
In Bluebell we can produce the transformation using the joint conditioning rules, in particular

the right-to-left direction of c-fuse and the primitive rule that is behind its left-to-right direction:

c-unassoc
Cbind(𝜇,𝜅 ) 𝑤. 𝐾 (𝑤) ⊢ C𝜇 𝑣 . C𝜅 (𝑣) 𝑤. 𝐾 (𝑤)
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Using these we can prove:

C𝑑1 𝑣1 .
(
⌈x1 = 𝑣1⌉ ∗ C𝑑2 (𝑣1 ) 𝑣2.

(
⌈x1 = 𝑣2⌉ ∗ x3 ∼ 𝑑3 (𝑣2)

) )
⊢ C𝑑1 𝑣1.

(
C𝑑2 (𝑣1 ) 𝑣2.

(
⌈x1 = 𝑣1⌉ ∗ ⌈x1 = 𝑣2⌉ ∗ x3 ∼ 𝑑3 (𝑣2)

) )
(c-frame)

⊢ C𝜇0 (𝑣1, 𝑣2).
(
⌈x1 = 𝑣1⌉ ∗ ⌈x2 = 𝑣2⌉ ∗ x3 ∼ 𝑑3 (𝑣2)

)
(c-fuse)

⊢ C𝜇2 𝑣2 .
(
C𝜇1 (𝑣2 ) 𝑣1.

(
⌈x1 = 𝑣1⌉ ∗ ⌈x2 = 𝑣2⌉ ∗ x3 ∼ 𝑑3 (𝑣2)

) )
(c-unassoc)

⊢ C𝜇2 𝑣2 .
(
⌈x2 = 𝑣2⌉ ∗ C𝜇1 (𝑣2 ) 𝑣1.

(
⌈x1 = 𝑣1⌉ ∗ x3 ∼ 𝑑3 (𝑣2)

) )
(sure-str-convex)

⊢ C𝜇2 𝑣2 .
(
⌈x2 = 𝑣2⌉ ∗ x1 ∼ 𝜇1 (𝑣2) ∗ x3 ∼ 𝑑3 (𝑣2)

)
(c-extract)

where 𝑑1 � 𝑑2 = 𝜇0 = bind(𝜇2, 𝜇1). The existence of such 𝜇2 and 𝜇1 is a simple application of
Bayes’ law: 𝜇2 (𝑣2) =

∑
𝑣1∈V 𝜇0 (𝑣1, 𝑣2), and 𝜇1 (𝑣2) (𝑣1) =

𝜇0 (𝑣1,𝑣2 )
𝜇2 (𝑣2 ) .We see the ability of Bluebell to

perform these manipulations as evidence that joint conditioning and independence form a sturdy
abstraction over the semantic model (RQ1). The amount of meta-reasoning required to manipulate
the distributions indexing the conditioning modality are minimal and localized, and offer a good
entry-point to inject facts about distributions without interfering with the rest of the proof context.

5.4 Multi-party Secure Computation

In multi-party secure computation, the goal is to for 𝑁 parties to compute a function 𝑓 (𝑥1, . . . , 𝑥𝑁 )
of some private data 𝑥𝑖 owned by each party 𝑖 , without revealing any more information about 𝑥𝑖
than the output of 𝑓 would reveal if computed centrally by a trusted party. For example, if 𝑓 is
addition, a secure computation of 𝑓 can be used to compute the total number of votes without
revealing who voted positively: some information would leak (e.g. if the total is non-zero then
somebody voted positively) but only what is revealed by knowing the total and nothing more.

To achieve this objective, multi-party secure addition (MPSAdd) works by having the parties break
their secret into 𝑁 secret shares which individually look random, but the sum of which amounts to
the original secret. These secret shares are then distributed to the other parties so that each party
knows an incomplete set of shares of the other parties. Yet, each party can reliably compute the
result of the function by computing a function of the received shares.

As it is very often the case, there is no single “canonical” way of specifying this kind of security
property. For MPSAdd, for instance, we can formalize security (focusing on the perspective of party 1)
in two ways: as a unary or as a relational specification.

The unary specification says that, conditionally on the secret of party 1 and the sum of the other
secrets, all the values received by 1 (we call this the view of 1) are independent from the secrets of
the other parties. Roughly:

(x1, x2, x3)⟨1⟩ ∼ 𝜇0 ⊢ wp [1: MPSAdd]
{
∃𝜇. C𝜇 (𝑣, 𝑠).

⌈x1⟨1⟩ = 𝑣 ∧ (x2 + x3)⟨1⟩ = 𝑠⌉ ∗own(view1⟨1⟩) ∗ own(x2⟨1⟩, x3⟨1⟩)


}

where 𝜇0 is an arbitrary distribution of the three secrets. Notice how conditioning nicely expresses
that the acceptable leakage is just the sum.

The relational specification says that when running the program from two initial states differing
only in the secrets of the other parties, but not in their sum, the views of party 𝑖 would be distributed
in the same way. Roughly:⌊

x1⟨1⟩ = x1⟨2⟩
(x2 + x3)⟨1⟩ = (x2 + x3)⟨2⟩

⌋
⊢ wp

[
1: MPSAdd
2: MPSAdd

] {
⌊view1⟨1⟩ = view1⟨2⟩⌋

}
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The two specifications look quite different and also suggest quite different proof strategies: the
unary judgment suggests a proof by manipulating independence and conditioning; the relational
one hints at a proof by relational lifting. Depending on the program, each of these strategies could
have their merits. As a first contribution, we show that Bluebell can not only specify in both
styles (RQ1), but also provide proofs in both styles (RQ4).

Having two very different specifications for the same security goal, however begs the question:
are they equivalent? After all, as the prover of the property one might prefer one proof style over
the other, but as a consumer of the specification the choice might be dictated by the proof context
that needs to use the specification for proving a global goal. To decouple the proof strategy from
the uses of the specification, we would need to be able to convert one specification into the other
within the logic, thus sparing the prover from having to forsee which specification a proof context
might need in the future.
Our second key result is that in fact the equivalence between the unary and the relational

specification can be proven in Bluebell. This is enabled by the powerful joint conditioning rules
and the encoding of relational lifting as joint conditioning. This is remarkable as this type of result
has always been justified entirely at the level of the semantic model in other logics (e.g. pRHL,
Lilac). This illustrates the fitness of Bluebell as a tool for abstract meta-level reasoning (RQ1).

In [Bao et al. 2024] we provide Bluebell proofs for: (1) the unary specification; (2) the relational
specification (independently of the unary proof); (3) the equivalence of the two specifications.
Although the third item would spare us from proving one of the first two, we provide direct proofs
in the two styles to provide a point of comparison between them.

5.5 Von Neumann Extractor

A randomness extractor is a mechanism that transforms a stream of “low-quality” randomness
sources into a stream of “high-quality” randomness sources. The von Neumann extractor [von
Neumann 1951] is perhaps the earliest instance of such mechanism, and it converts a stream of
independent coins with the same bias 𝑝 into a stream of independent fair coins. Verifying the
correctness of the extractor requires careful reasoning under conditioning, and showcases the use
of rule c-wp-swap in a unary setting (RQ2 and RQ4).
We can model the extractor, up to 𝑁 ∈ N iterations, in our language3 as shown in Fig. 5. The

program repeatedly flips two biased coins, and outputs the outcome of the first coin if the outcomes
where different, otherwise it retries. As an example, we prove in Bluebell that the bits produced
in out are independent fair coin flips. Formally, for ℓ produced bits, we want the following to hold:

Outℓ ≜ out[0]⟨1⟩ ∼ Ber½ ∗ · · · ∗ out[ℓ − 1]⟨1⟩ ∼ Ber½ .

To know how many bits were produced, however, we need to condition on len obtaining the
specification (recall 𝑃 ⊩ 𝑄 ≜ 𝑃 ∧ ownX ⊢ 𝑄 ∧ ownX):

⊩ wp [1: vn(𝑁 )]
{
∃𝜇. C𝜇 ℓ .

(
⌈len⟨1⟩ = ℓ ≤ 𝑁 ⌉ ∗ Outℓ

)}
The postcondition straightforwardly generalizes to a loop invariant

𝑃 (𝑖) = ∃𝜇. C𝜇 ℓ .
(
⌈len⟨1⟩ = ℓ ≤ 𝑖⌉ ∗ Outℓ

)
The main challenge in the example is handling the if-then statement. Intuitively we want to argue
that if coin1 ≠ coin2, the two coins would have either values (0, 1) or (1, 0), and both of these
outcomes have probability 𝑝 (1 − 𝑝); therefore, conditionally on the ‘if’ guard being true, coin1 is a
fair coin.

3While technically our language does not support arrays, they can be easily encoded as a collection of 𝑁 variables.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 58. Publication date: January 2025.



Bluebell: An Alliance of Relational Lifting and Independence for Probabilistic Reasoning 58:25

def vn(𝑁):

len := 0

repeat 𝑁:

coin1 Ber(𝑝)

coin2 Ber(𝑝)

if coin1 ≠ coin2 then:
out[len] := coin1
len := len+1

Fig. 5. Von Neumann extractor.

Two features of Bluebell are crucial to implement the above
intuition. The first is the ability of manipulating conditioning
given by the joint conditioning rules. At the entry point of the
if-then statement in Fig. 5 we obtain 𝑃 (𝑖) ∗ coin1⟨1⟩ ∼ Ber𝑝 ∗
coin2⟨1⟩ ∼ Ber𝑝 . Using Bluebell’s rules we can easily derive
𝑃 (𝑖) ∗ (coin1 ≠ coin2, coin1)⟨1⟩ ∼ 𝜇0 for some 𝜇0. The main
insight of the algorithm then can be expressed as the fact that
𝜇0 = 𝛽 � 𝜅 for some 𝛽 :D({0, 1}) which is the distribution of
coin1 ≠ coin2, and some𝜅 describing the distribution of the first
coin in the two cases, which we know is such that 𝜅 (1) = Ber½.
Then, thanks to c-unit-r and c-fuse, we obtain:

(coin1 ≠ coin2, coin1)⟨1⟩ ∼ (𝛽 � 𝜅)
⊢ C𝛽 𝑏.

(
⌈(coin1 ≠ coin2)⟨1⟩ = 𝑏⌉ ∗ ⌜𝑏 = 1⌝ ⇒ coin1⟨1⟩ ∼ Ber½

)
Then, if we could reason about the ‘then’ branch under conditioning, since the guard coin1 ≠ coin2
implies 𝑏 = 1 we would obtain coin1⟨1⟩ ∼ Ber½, which is the key to the proof. The ability of
reasoning under conditioning is the second feature of Bluebell which unlocks the proof. In this
case, the step is driven by rule c-wp-swap, which allows us to prove the if-then statement by case
analysis on 𝑏.

5.6 Monte Carlo Algorithms

By elaborating on the Monte Carlo example of Section 1, we want to show the fitness of Bluebell
as a program logic (RQ4) and its specific approach for dealing with the structure of a program.
Recall the example in Figure 1 and the goal outlined in Section 1 of comparing the accuracy of the
two Monte Carlo algorithms BETW_SEQ and BETW. This goal can be encoded as

(
⌈l⟨1⟩ = r⟨1⟩ = 0⌉ ∗
⌈l⟨2⟩ = r⟨2⟩ = 0⌉

)
@𝒑 ⊢ wp

[
1: BETW_SEQ(𝑥,𝑆)
2: BETW(𝑥,𝑆)

] {
⌊d⟨1⟩ ≤ d⟨2⟩⌋

}
(where 𝒑 contains full permissions for all the variables) which, through the relational lifting, states
that it is more likely to get a positive answer from BETW than from BETW_SEQ. The challenge is
implementing the intuitive relational argument sketched in Section 1, in the presence of very
different looping structures. More precisely, we want to compare the sequential composition of
two loops 𝑙1 = (repeat 𝑁 𝑡A;repeat 𝑁 𝑡B) with a single loop 𝑙2 = repeat (2𝑁 ) 𝑡 considering the
𝑁 iterations of 𝑡A in lockstep with the first 𝑁 iterations of 𝑙2, and the 𝑁 iterations of 𝑡B with the
remaining 𝑁 iterations of 𝑙2. It is not possible to perform such proof purely in pRHL, which can
only handle loops that are perfectly aligned, and tools based on pRHL overcome this limitation
by offering a number of code transformations, proved correct externally to the logic, with which
one can rewrite the loops so that they syntactically align. In this case such a transformation could
look like repeat (𝑀 + 𝑁 ) 𝑡 ≡ repeat𝑀 𝑡;repeat 𝑁 𝑡 , using which one can rewrite 𝑙2 so it aligns
with the two shorter loops. What Bluebell can achieve is to avoid the use of such ad-hoc syntactic
transformations, and produce a proof structured in two steps: first, one can prove, within the logic,
that it is sound to align the loops as described; and then proceed with the proof of the aligned loops.
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def BETW_MIX(𝑥,𝑆):

repeat 𝑁:

p 𝜇𝑆; l := l ∥ p ≤ 𝑥

q 𝜇𝑆; r := r ∥ q ≥ 𝑥

d := r && l

def prog1:

x𝑑0
y𝑑1(x)

z𝑑2(x)

def prog2:

x𝑑0
z𝑑2(x)

y𝑑1(x)

Fig. 6. A variant of the BETW program. Fig. 7. Conditional Swapping

The key idea is that the desired alignment of loops can be expressed as a (derived) rule, encoding
the net effect of the syntactic loop splitting, without having to manipulate the syntax:

wp-loop-split
𝑃1 (𝑁1) ⊢ 𝑃2 (0)

∀𝑖 < 𝑁1 . 𝑃1 (𝑖) ⊢ wp [1: 𝑡1, 2: 𝑡] {𝑃1 (𝑖 + 1)}
∀𝑗 < 𝑁2. 𝑃2 ( 𝑗) ⊢ wp [1: 𝑡2, 2: 𝑡] {𝑃2 ( 𝑗 + 1)}

𝑃1 (0) ⊢ wp [1: (repeat 𝑁1 𝑡1;repeat 𝑁2 𝑡2), 2: repeat (𝑁1 + 𝑁2) 𝑡] {𝑃2 (𝑁2)}

The rule considers two programs: a sequence of two loops, and a single loop with the same
cumulative number of iterations. It asks the user to produce two relational loop invariants 𝑃1 and 𝑃2
which are used to relate 𝑁1 iterations of 𝑡1 and 𝑡 together, and 𝑁2 iterations of 𝑡2 and 𝑡 together.

Crucially, such rule is derivable from the primitive rules of looping of Bluebell:

wp-loop
∀𝑖 < 𝑛. 𝑃 (𝑖) ⊢ wp [ 𝑗 : 𝑡] {𝑃 (𝑖 + 1)}
𝑃 (0) ⊢ wp [ 𝑗 : repeat 𝑛 𝑡] {𝑃 (𝑛)}

𝑛 ∈ N

wp-loop-unf
wp [𝑖: repeat 𝑛 𝑡] {wp [𝑖: 𝑡] {𝑄}}
⊢ wp [𝑖: repeat (𝑛 + 1) 𝑡] {𝑄}

Rule wp-loop is a standard unary invariant-based rule; wp-loop-unf simply reflects the semantics
of a loop in terms of its unfoldings. Using these we can prove wp-loop-split avoiding semantic
reasoning all together, and fully generically on the loop bodies, allowing it to be reused in any
situation fitting the pattern.

In our example, we can prove our goal by instanting it with the loop invariants:

𝑃1 (𝑖) ≜ ⌊r⟨1⟩ ≤ r⟨2⟩ ∧ l⟨1⟩ = 0 ≤ l⟨2⟩⌋ 𝑃2 ( 𝑗) ≜ ⌊r⟨1⟩ ≤ r⟨2⟩ ∧ l⟨1⟩ ≤ l⟨2⟩⌋

This handling of structural differences as derived proof patterns is more powerful than syntactic
transformations: it can, for example, handle transformations that are sound only under some
assumptions about state. To show an instance of this, we consider a variant of the previous example:
BETW_MIX (in Fig. 6) is another variant of BETW_SEQ which still makes 2𝑁 samples but interleaves
sampling for the minimum and for the maximum. We want to prove that this is equivalent to
BETW_SEQ. Letting 𝒑 contain full permissions for the relevant variables, the goal is

𝑃0@𝒑 ⊢ wp [1: BETW_SEQ(𝑥, 𝑆), 2: BETW_MIX(𝑥, 𝑆)] {⌊d⟨1⟩ = d⟨2⟩⌋}

with 𝑃0 = ⌈l⟨1⟩ = r⟨1⟩ = 0⌉ ∗ ⌈l⟨2⟩ = r⟨2⟩ = 0⌉.
Call 𝑡1M and 𝑡

2
M the first and second half of the body of the loop of BETW_MIX, respectively. The

strategy is to consider together one execution of 𝑡A (the body of the loop of AboveMin), and 𝑡1M ; and
one of 𝑡B (of BelowMax), and 𝑡2M . The strategy relies on the observation that every iteration of the
three loops is independent from the others. To formalize the proof idea we thus first prove a derived

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 58. Publication date: January 2025.



Bluebell: An Alliance of Relational Lifting and Independence for Probabilistic Reasoning 58:27

proof pattern encoding the desired alignment, which we can state for generic 𝑡1, 𝑡2, 𝑡 ′1, 𝑡
′
2:

wp-loop-mix
∀𝑖 < 𝑁 . 𝑃1 (𝑖) ⊢ wp [1: 𝑡1, 2: 𝑡 ′1] {𝑃1 (𝑖 + 1)} ∀𝑖 < 𝑁 . 𝑃2 (𝑖) ⊢ wp [1: 𝑡2, 2: 𝑡 ′2] {𝑃2 (𝑖 + 1)}
𝑃1 (0) ∗ 𝑃2 (0) ⊢ wp [1: (repeat 𝑁 𝑡1;repeat 𝑁 𝑡2), 2: repeat 𝑁 (𝑡 ′1; 𝑡 ′2)] {𝑃1 (𝑁 ) ∗ 𝑃2 (𝑁 )}

The rule matches on two programs: a sequence of two loops, and a single loop with a body split
into two parts. The premises require a proof that 𝑡1 together with 𝑡 ′1 (the first half of the body of
the second loop) preserve the invariant 𝑃1; and that the same is true for 𝑡2 and 𝑡 ′2 with respect
to an invariant 𝑃2. The precondition 𝑃1 (0) ∗ 𝑃2 (0) in the conclusion ensures that the two loop
invariants are independent. The rule wp-loop-mix can be again entirely derived from Bluebell’s
primitive rules. We can then apply it to our example using as invariants 𝑃1 ≜ ⌊l⟨1⟩ = l⟨2⟩⌋ and
𝑃2 ≜ ⌊r⟨1⟩ = r⟨2⟩⌋ . Then, rl-merge closes the proof.

6 RELATEDWORK

Research on deductive verification of probabilistic programs has developed a wide range of tech-
niques that employ unary and relational styles of reasoning. Bluebell advances the state of the
art in both styles, by coherently unifying the strengths of both. We limit our comparison here to
deductive techniques only, and focus most of our attention on explaining how Bluebell offers new
reasoning tools compared to these.

Unary-style Reasoning. Early work in this line focuses more on analyzing marginal distribu-
tions and probabilities, and features like harnessing the power of probabilistic independence and
conditioning have been more recently added to make more expressive program logics [Bao et al.
2022; Barthe et al. 2018, 2019; Li et al. 2023a; Ramshaw 1979; Rand and Zdancewic 2015].

Much work in this line has been inspired by Separation Logic (SL), a powerful tool for reasoning
about pointer-manipulating programs, known for its support of local reasoning of separated program
components [Reynolds 2000]. PSL [Barthe et al. 2019] was the first logic to present a SL model for
reasoning about the probabilistic independence of program variables, which facilitates modular
reasoning about independent components within a probabilistic program. In [Bao et al. 2021]
and [Bao et al. 2022] SL variants are used for reasoning about conditional independence and negative
dependence, respectively; both are used in algorithm analysis as relaxations of independence.

Lilac. Lilac [Li et al. 2023a] is the most recent addition to this group and introduces a new
foundation of probabilistic separation logic based on measure theory. It enables reasoning about
independence and conditional independence uniformly in one logic and supports continuous
distributions. Bluebell also uses a measure-theory based model, similar to Lilac, although limited
to discrete distributions. While Bluebell uses Lilac’s independent product as a model of separating
conjunction, it differs from Lilac in three aspects: (1) the treatment of ownership, (2) support for
mutable state, and (3) the model of conditioning.
Ownership as almost-measurability is required to support inferences like own(x) ∗ ⌈x = y⌉ ⊢

own(y), which were implicitly used in the first version of Lilac, but were not valid in its model. Li
et al. [2023b] fixes the issue by changing the meaning of ⌈x = y⌉, while our fix acts on the meaning
of ownership (and we see ⌈𝐸⌉ assertions as an instance of regular ownership).
Lilac works with immutable state [Staton 2020], which simplifies reasoning in certain contexts

(e.g., the frame rule and the if rule). Bluebell’s model supports mutable state through a creative
use of permissions, obtaining a clean frame rule, at the cost of some predictable bookkeeping.
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The more significant difference with Lilac is however in the definition of the conditioning
modality. Lilac’s modality C𝑣←𝐸 𝑃 (𝑣) is indexed by a random variable 𝐸, and roughly corre-
sponds to the Bluebell assertion ∃𝜇. C𝜇 𝑣 . (⌈𝐸 = 𝑣⌉ ∗ 𝑃 (𝑣)). The difference is not merely syn-
tactic, and requires changing the model of the modality. For example, Lilac’s modality satisfies
C𝑣←𝐸 𝑃1 (𝑣) ∧ C𝑣←𝐸 𝑃2 (𝑣) ⊢ C𝑣←𝐸 (𝑃1 (𝑣) ∧ 𝑃2 (𝑣)), but the analogous rule C𝜇 𝑣 . 𝐾1 (𝑣) ∧ C𝜇 𝑣 . 𝐾2 (𝑣) ⊢
C𝜇 𝑣 . (𝐾1 (𝑣) ∧ 𝐾2 (𝑣)) (corresponding to c-and without the side condition) is unsound in Blue-
bell: The meaning of the modalities in the premise ensures the existence of two kernels 𝜅1 and
𝜅2 supporting 𝐾1 and 𝐾2 respectively, but the conclusion requires the existence of a single kernel
supporting both 𝐾1 and 𝐾2. Lilac’s rule holds because when one conditions on a random variable,
the corresponding kernels are unique. We did not find losing this rule limiting. On the other hand,
Lilac’s conditioning has two key disadvantages: (i) it does not record the distribution of 𝐸, losing this
information when conditioning, (ii) it does not generalize to the relational setting. Even considering
only the unary setting, having access to the distribution 𝜇 in fact unlocks a number of new rules
(e.g. c-unit-r and c-fuse) that are key to the increased expressivity of Bluebell. In particular, the
rules of Bluebell provide a wider arsenal of tools that can convert a conditional assertion back
into an unconditional one. This is especially important when conditioning is used as a reasoning
tool, regardless of whether the end goal is a conditional statement.

Relational Reasoning. Barthe et al. [2009] extend relational Hoare logic [Benton 2004] to reason
about probabilistic programs in a logic called pRHL (probabilistic Relational Hoare Logic). In pRHL,
assertions on pairs of deterministic program states are lifted to assertions on pairs of distributions,
and on the surface, the logic simply manipulates the deterministic assertions. A number of variants
of pRHL were successfully applied to proving various cryptographic protocols and differential
privacy algorithms [Barthe et al. 2015, 2009; Hsu 2017; Wang et al. 2019; Zhang and Kifer 2017].
When a natural relational proof for an argument exists, these logics are simple and elegant to
use. However, they fundamentally trade expressiveness for ease of use. A persisting problem with
them has been that they rely on a strict structural alignment between the order of samples in
the two programs. Recall our discussion in Section 2.4 for an example of this that Bluebell can
handle. Gregersen et al. [2024] recently proposed Clutch, a logic to prove contextual refinement
in a probabilistic higher-order language, where “out of order” couplings between samplings are
achieved by using ghost code that pre-samples some assignments, a technique inspired by prophecy
variables [Jung et al. 2019]. In Section 2 we showed how Bluebell can resolve the issue without
ghost code (in the context of first-order imperative programs) by using framing and probabilistic
independence creatively. In contrast to Bluebell, Clutch can only express relational properties; it
also uses separation but with its classical interpretation as disjointness of deterministic state.

Polaris [Tassarotti and Harper 2019], is an early instance of a probabilistic relational (concurrent)
separation logic. However, separation in Polaris is again classic disjointness of state.

Our 𝑛-ary WP is inspired by LHC [D’Osualdo et al. 2022], which shows how arity-changing rules
(like wp-nest) can accommodate modular and flexible relational proofs of deterministic programs.

Other Techniques. Expectation-based approaches, which reason about expected quantities of
probabilistic programs via a weakest-pre-expectation operator that propagates information about
expected values backwards through the program, have been classically used to verify randomized
algorithms [Aguirre et al. 2021; Kaminski 2019; Kaminski et al. 2016; Kozen 1983; Moosbrugger
et al. 2022; Morgan et al. 1996]. These logics offer ergonomic dedicated principles for expectations,
but do not aim at unifying principles for analyzing more general classes of properties or proof
techniques, like we attempt here. Ellora [Barthe et al. 2018] proposes an assertion-based logic
(without separation nor conditioning) to overcome the limitation of working only with expectations.
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7 CONCLUSIONS AND FUTUREWORK

Bluebell’s journey started as a quest to integrate unary and relational probabilistic reasoning and
ended up uncovering joint conditioning as a key fundational tool. Remarkably, to achieve our goal
we had to deviate from Lilac’s previous proposal in both the definition of conditioning, to enable
the encoding of relational lifting, and of ownership (with almost measurability), to resolve an issue
with almost sure assertions (recently corrected [Li et al. 2023b] in a different way). In addition, our
model supports mutable state without sacrificing expressiveness. One limitation of our current
model is lack of support for continuous distributions. Lilac’s model and recent advances in it [Li
et al. 2024] could suggest a pathway for a continuous extension of Bluebell, but it is unclear if all
our rules would be still valid; for example rule c-fuse’s soundness hinges on properties of discrete
distributions that we could not extend to the general case in an obvious way. Bluebell’s encoding
of relational lifting and the novel proof principles it uncovered for it are a demonstration of the
potential of joint conditioning as a basis for deriving high-level logics on top of an ergonomic core
logic. Obvious candidates for such scheme are approximate couplings [Barthe et al. 2012] (which
have been used for e.g. differential privacy), and expectation-based calculi (à la Ellora).
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