
Coarser Equivalences for Causal Concurrency

AZADEH FARZAN, University of Toronto, Canada

UMANG MATHUR, National University of Singapore, Singapore

Trace theory (formulated by Mazurkiewicz in 1987) is a principled framework for defining equivalence relations

for concurrent program runs based on a commutativity relation over the set of atomic steps taken by individual

program threads. Its simplicity, elegance, and algorithmic efficiency makes it useful in many different contexts

including program verification and testing. It is well-understood that the larger the equivalence classes are,

the more benefits they would bring to the algorithms and applications that use them. In this paper, we study

relaxations of trace equivalence with the goal of maintaining its algorithmic advantages.

We first prove that the largest appropriate relaxation of trace equivalence, an equivalence relation that

preserves the order of steps taken by each thread and what write operation each read operation observes, does

not yield efficient algorithms. Specifically, we prove a linear space lower bound for the problem of checking, in

a streaming setting, if two arbitrary steps of a concurrent program run are causally concurrent (i.e. they can be

reordered in an equivalent run) or causally ordered (i.e. they always appear in the same order in all equivalent

runs). The same problem can be decided in constant space for trace equivalence. Next, we propose a new
commutativity-based notion of equivalence called grain equivalence that is strictly more relaxed than trace

equivalence, and yet yields a constant space algorithm for the same problem. This notion of equivalence uses

commutativity of grains, which are sequences of atomic steps, in addition to the standard commutativity from

trace theory. We study the two distinct cases when the grains are contiguous subwords of the input program

run and when they are not, formulate the precise definition of causal concurrency in each case, and show

that they can be decided in constant space, despite being strict relaxations of the notion of causal concurrency

based on trace equivalence.

1 INTRODUCTION
In the last 50 years, several models have been introduced for concurrency and parallelism, of which

Petri nets [Hack 1976], Hoare’s CSP [Hoare 1978], Milner’s CCS [Milner 1980], and event structures

[Winskel 1987] are prominent examples. Trace theory [Diekert and Rozenberg 1995] is a paradigm

in the same spirit which enriches words (or sequences) by a very restricted yet widely applicable

mechanism to model parallelism: some pairs of events (atomic steps performed by individual threads)

are determined statically to be independent (or commutative), and any two sequences that can be

transformed to each other through swaps of consecutive independent events are identified as trace
equivalent. In other words, it constructs a notion of equivalence based on commutativity of individual
events. The simplicity of trace theory, first formulated by Mazurkiewicz in 1987 [Mazurkiewicz

1987], has made it highly popular in a number of areas in computer science, including programming

languages, distributed computing, computer systems, and software engineering. The brilliance of

trace theory lies in its simplicity, both conceptually and in yielding simple and efficient algorithms

for several core problems in the context of concurrent and distributed programs. It has been widely

used in both dynamic program analysis and in construction of program proofs. In dynamic program

analysis, it has applications in predictive testing, for instance in data race prediction [Elmas et al.

2007; Flanagan and Freund 2009; Itzkovitz et al. 1999; Kini et al. 2017; Smaragdakis et al. 2012] and in

Authors’ addresses: Azadeh Farzan, azadeh@cs.toronto.edu, University of Toronto, Toronto, Canada; Umang Mathur,

umathur@comp.nus.edu.sg, National University of Singapore, Singapore, Singapore.

2023. 2475-1421/2023/8-ART $15.00

https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

https://doi.org/

2 Azadeh Farzan and Umang Mathur

prediction of atomicity violations [Farzan and Madhusudan 2006; Farzan et al. 2009; Sorrentino et al.

2010] among others. In verification, it is used for the simplification of verification of concurrent and

distributed programs [Desai et al. 2014; Drăgoi et al. 2016; Farzan 2023; Farzan et al. 2022; Farzan

and Vandikas 2019, 2020; Genest et al. 2007].

The philosophy behind most applications of trace theory is that a single representative replaces

an entire set of equivalent runs. Therefore, these applications would clearly benefit if larger sets

of concurrent runs could soundly be considered equivalent. This motivates the key question in

this paper: Can we retain all the benefits of classical trace theory while soundly enlarging the

equivalence classes to improve the algorithms that use them? It is not difficult to come up with

sound equivalence relations with larger classes. Abdulla et al. [2019] describe the sound equivalence

<latexit sha1_base64="7ilgb79VgVUep8OqTP2a7HYPjm0=">AAAB/nicbZDLSgMxFIZP6q3WW9Wlm2ARXJUZKeqy4MZlxd6gHUomzbShmcyQZIQyFHwBt/oG7sStr+IL+Bxm2lnY1h8CP985h3Py+7Hg2jjONypsbG5t7xR3S3v7B4dH5eOTto4SRVmLRiJSXZ9oJrhkLcONYN1YMRL6gnX8yV1W7zwxpXkkm2YaMy8kI8kDTomx6LE5cAflilN15sLrxs1NBXI1BuWf/jCiScikoYJo3XOd2HgpUYZTwWalfqJZTOiEjFjPWklCpr10fuoMX1gyxEGk7JMGz+nfiZSEWk9D33aGxIz1ai2D/9V6iQluvZTLODFM0sWiIBHYRDj7Nx5yxagRU2sIVdzeiumYKEKNTWdpS4YtnNlg3NUY1k37qupeV2sPtUq9lkdUhDM4h0tw4QbqcA8NaAGFEbzAK7yhZ/SOPtDnorWA8plTWBL6+gUlepZF</latexit>

T1
<latexit sha1_base64="u4lrfWuqNwm22Igyc0GM3dvstbo=">AAAB/nicbZDLSgMxFIbP1Futt6pLN8EiuCozpajLghuXFXuDdiiZNNOGJpkhyQhlKPgCbvUN3IlbX8UX8DnMtLPQ1h8CP985h3PyBzFn2rjul1PY2Nza3inulvb2Dw6PyscnHR0litA2iXikegHWlDNJ24YZTnuxolgEnHaD6W1W7z5SpVkkW2YWU1/gsWQhI9hY9NAa1oblilt1F0LrxstNBXI1h+XvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvrcSCaj9dnDpHF5aMUBgp+6RBC/p7IsVC65kIbKfAZqJXaxn8r9ZPTHjjp0zGiaGSLBeFCUcmQtm/0YgpSgyfWYOJYvZWRCZYYWJsOn+2ZNjCuQ3GW41h3XRqVe+qWr+vVxr1PKIinME5XIIH19CAO2hCGwiM4Rle4NV5ct6cd+dj2Vpw8plT+CPn8wcnEpZG</latexit>

T2

<latexit sha1_base64="F28r8q1TKnyEbuQg/HTDuF/U1Zk=">AAAB/nicbZDLSsNAFIZP6q3WW9Wlm8Ei1E1JKliXBTcuK9oLtKFMppN26GQSZiZCCQVfwK2+gTtx66v4Aj6HkzQL2/rDwM93zuGc+b2IM6Vt+9sqbGxube8Ud0t7+weHR+Xjk44KY0lom4Q8lD0PK8qZoG3NNKe9SFIceJx2veltWu8+UalYKB71LKJugMeC+YxgbdBD1bsclit2zc6E1o2Tmwrkag3LP4NRSOKACk04Vqrv2JF2Eyw1I5zOS4NY0QiTKR7TvrECB1S5SXbqHF0YMkJ+KM0TGmX070SCA6VmgWc6A6wnarWWwv9q/Vj7N27CRBRrKshikR9zpEOU/huNmKRE85kxmEhmbkVkgiUm2qSztCXFBs5NMM5qDOumU68517Wr+3ql2cgjKsIZnEMVHGhAE+6gBW0gMIYXeIU369l6tz6sz0VrwcpnTmFJ1tcv1vOWFA==</latexit>

(b)
<latexit sha1_base64="tHShRB9Gnje9gkma70C5RYN7LiE=">AAAB/nicbZDLSsNAFIZP6q3WW9Wlm8Ei1E1JKliXBTcuK9oLtKFMppN26GQSZiZCCQVfwK2+gTtx66v4Aj6HkzQL2/rDwM93zuGc+b2IM6Vt+9sqbGxube8Ud0t7+weHR+Xjk44KY0lom4Q8lD0PK8qZoG3NNKe9SFIceJx2veltWu8+UalYKB71LKJugMeC+YxgbdBDFV8OyxW7ZmdC68bJTQVytYbln8EoJHFAhSYcK9V37Ei7CZaaEU7npUGsaITJFI9p31iBA6rcJDt1ji4MGSE/lOYJjTL6dyLBgVKzwDOdAdYTtVpL4X+1fqz9GzdhIoo1FWSxyI850iFK/41GTFKi+cwYTCQztyIywRITbdJZ2pJiA+cmGGc1hnXTqdec69rVfb3SbOQRFeEMzqEKDjSgCXfQgjYQGMMLvMKb9Wy9Wx/W56K1YOUzp7Ak6+sX1VqWEw==</latexit>

(a)

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="ZlKKMRJiiXbvBip87FGQeyESHjE=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+kkTXp6xu4aNQ5zAS/gVm/gTtx6Cy/gOexJZmESfyj4+aqKKn4vFFyDbX9buZXVtfWN/GZha3tnd6+4f9DUQaQoa9BABKrtEc0El6wBHARrh4oR3xOs5Y2v0n7rninNA3kLk5C5PhlKPuCUgEFuF9gjAMQPSfnptFcs2RV7KrxsnMyUUKZ6r/jT7Qc08pkEKojWHccOwY2JAk4FSwrdSLOQ0DEZso6xkvhMu/H06QSfGNLHg0CZkoCn9O9GTHytJ75nJn0CI73YS+F/vU4Eg0s35jKMgEk6OzSIBIYApwngPleMgpgYQ6ji5ldMR0QRCianuSspNjAxwTiLMSyb5lnFOa9Ub6qlWjWLKI+O0DEqIwddoBq6RnXUQBTdoRf0it6sZ+vd+rA+Z6M5K9s5RHOyvn4BsAObCA==</latexit>

w(z)

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="gqzYN2XBcopATOy3qyveOfo6LB8=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyLWkBfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN7BJGJuQIaS+5wSMMjtAXsEgESllaezfqlsV+2p8LJxclNGuRr90k9vENI4YBKoIFp3HTsCNyEKOBUsLfZizSJCx2TIusZKEjDtJtOnU3xqyAD7oTIlAU/p342EBFpPAs9MBgRGerGXwf963Rj8KzfhMoqBSTo75McCQ4izBPCAK0ZBTIwhVHHzK6YjoggFk9PclQwbmJpgnMUYlk3rvOpcVGu3tXK9lkdUQMfoBFWQgy5RHd2gBmoiiu7RC3pFb9az9W59WJ+z0RUr3zlCc7K+fgGn95sD</latexit>

r(z)

<latexit sha1_base64="y9m+6PybCYRm8uS+PNkH8vnw5dY=">AAACCHicbZDLSsNAFIYn9VbrrerSzWAR6qYkUtRlwY3LCvYCbSiT6aQdOpnEmRMxhL6AL+BW38CduPUtfAGfw0mbhW394cDPd87hHH4vElyDbX9bhbX1jc2t4nZpZ3dv/6B8eNTWYawoa9FQhKrrEc0El6wFHATrRoqRwBOs401usn7nkSnNQ3kPScTcgIwk9zklYJDbB/YEAKmaVpPzQbli1+yZ8KpxclNBuZqD8k9/GNI4YBKoIFr3HDsCNyUKOBVsWurHmkWETsiI9YyVJGDaTWdPT/GZIUPsh8qUBDyjfzdSEmidBJ6ZDAiM9XIvg//1ejH4127KZRQDk3R+yI8FhhBnCeAhV4yCSIwhVHHzK6ZjoggFk9PClQwbODXBOMsxrJr2Rc25rNXv6pVGPY+oiE7QKaoiB12hBrpFTdRCFD2gF/SK3qxn6936sD7nowUr3zlGC7K+fgGmXpsC</latexit>

r(y)

<latexit sha1_base64="UVhnFHoEZOCbJCojOmwsxCC62CQ=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4c6KG0BfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN5BEjE3IEPJfU4JGOT2gD0BQPo4qSRn/VLZrtpT4WXj5KaMcjX6pZ/eIKRxwCRQQbTuOnYEbkoUcCrYpNiLNYsIHZMh6xorScC0m06fnuBTQwbYD5UpCXhK/26kJNA6CTwzGRAY6cVeBv/rdWPwr9yUyygGJunskB8LDCHOEsADrhgFkRhDqOLmV0xHRBEKJqe5Kxk2cGKCcRZjWDat86pzUa3d1sr1Wh5RAR2jE1RBDrpEdXSDGqiJKLpHL+gVvVnP1rv1YX3ORlesfOcIzcn6+gWuapsH</latexit>

w(y)

<latexit sha1_base64="UVhnFHoEZOCbJCojOmwsxCC62CQ=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4c6KG0BfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN5BEjE3IEPJfU4JGOT2gD0BQPo4qSRn/VLZrtpT4WXj5KaMcjX6pZ/eIKRxwCRQQbTuOnYEbkoUcCrYpNiLNYsIHZMh6xorScC0m06fnuBTQwbYD5UpCXhK/26kJNA6CTwzGRAY6cVeBv/rdWPwr9yUyygGJunskB8LDCHOEsADrhgFkRhDqOLmV0xHRBEKJqe5Kxk2cGKCcRZjWDat86pzUa3d1sr1Wh5RAR2jE1RBDrpEdXSDGqiJKLpHL+gVvVnP1rv1YX3ORlesfOcIzcn6+gWuapsH</latexit>

w(y)

<latexit sha1_base64="y9m+6PybCYRm8uS+PNkH8vnw5dY=">AAACCHicbZDLSsNAFIYn9VbrrerSzWAR6qYkUtRlwY3LCvYCbSiT6aQdOpnEmRMxhL6AL+BW38CduPUtfAGfw0mbhW394cDPd87hHH4vElyDbX9bhbX1jc2t4nZpZ3dv/6B8eNTWYawoa9FQhKrrEc0El6wFHATrRoqRwBOs401usn7nkSnNQ3kPScTcgIwk9zklYJDbB/YEAKmaVpPzQbli1+yZ8KpxclNBuZqD8k9/GNI4YBKoIFr3HDsCNyUKOBVsWurHmkWETsiI9YyVJGDaTWdPT/GZIUPsh8qUBDyjfzdSEmidBJ6ZDAiM9XIvg//1ejH4127KZRQDk3R+yI8FhhBnCeAhV4yCSIwhVHHzK6ZjoggFk9PClQwbODXBOMsxrJr2Rc25rNXv6pVGPY+oiE7QKaoiB12hBrpFTdRCFD2gF/SK3qxn6936sD7nowUr3zlGC7K+fgGmXpsC</latexit>

r(y)

<latexit sha1_base64="UVhnFHoEZOCbJCojOmwsxCC62CQ=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4c6KG0BfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN5BEjE3IEPJfU4JGOT2gD0BQPo4qSRn/VLZrtpT4WXj5KaMcjX6pZ/eIKRxwCRQQbTuOnYEbkoUcCrYpNiLNYsIHZMh6xorScC0m06fnuBTQwbYD5UpCXhK/26kJNA6CTwzGRAY6cVeBv/rdWPwr9yUyygGJunskB8LDCHOEsADrhgFkRhDqOLmV0xHRBEKJqe5Kxk2cGKCcRZjWDat86pzUa3d1sr1Wh5RAR2jE1RBDrpEdXSDGqiJKLpHL+gVvVnP1rv1YX3ORlesfOcIzcn6+gWuapsH</latexit>

w(y)

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="ZlKKMRJiiXbvBip87FGQeyESHjE=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+kkTXp6xu4aNQ5zAS/gVm/gTtx6Cy/gOexJZmESfyj4+aqKKn4vFFyDbX9buZXVtfWN/GZha3tnd6+4f9DUQaQoa9BABKrtEc0El6wBHARrh4oR3xOs5Y2v0n7rninNA3kLk5C5PhlKPuCUgEFuF9gjAMQPSfnptFcs2RV7KrxsnMyUUKZ6r/jT7Qc08pkEKojWHccOwY2JAk4FSwrdSLOQ0DEZso6xkvhMu/H06QSfGNLHg0CZkoCn9O9GTHytJ75nJn0CI73YS+F/vU4Eg0s35jKMgEk6OzSIBIYApwngPleMgpgYQ6ji5ldMR0QRCianuSspNjAxwTiLMSyb5lnFOa9Ub6qlWjWLKI+O0DEqIwddoBq6RnXUQBTdoRf0it6sZ+vd+rA+Z6M5K9s5RHOyvn4BsAObCA==</latexit>

w(z)

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="gqzYN2XBcopATOy3qyveOfo6LB8=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyLWkBfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN7BJGJuQIaS+5wSMMjtAXsEgESllaezfqlsV+2p8LJxclNGuRr90k9vENI4YBKoIFp3HTsCNyEKOBUsLfZizSJCx2TIusZKEjDtJtOnU3xqyAD7oTIlAU/p342EBFpPAs9MBgRGerGXwf963Rj8KzfhMoqBSTo75McCQ4izBPCAK0ZBTIwhVHHzK6YjoggFk9PclQwbmJpgnMUYlk3rvOpcVGu3tXK9lkdUQMfoBFWQgy5RHd2gBmoiiu7RC3pFb9az9W59WJ+z0RUr3zlCc7K+fgGn95sD</latexit>

r(z)

<latexit sha1_base64="y9m+6PybCYRm8uS+PNkH8vnw5dY=">AAACCHicbZDLSsNAFIYn9VbrrerSzWAR6qYkUtRlwY3LCvYCbSiT6aQdOpnEmRMxhL6AL+BW38CduPUtfAGfw0mbhW394cDPd87hHH4vElyDbX9bhbX1jc2t4nZpZ3dv/6B8eNTWYawoa9FQhKrrEc0El6wFHATrRoqRwBOs401usn7nkSnNQ3kPScTcgIwk9zklYJDbB/YEAKmaVpPzQbli1+yZ8KpxclNBuZqD8k9/GNI4YBKoIFr3HDsCNyUKOBVsWurHmkWETsiI9YyVJGDaTWdPT/GZIUPsh8qUBDyjfzdSEmidBJ6ZDAiM9XIvg//1ejH4127KZRQDk3R+yI8FhhBnCeAhV4yCSIwhVHHzK6ZjoggFk9PClQwbODXBOMsxrJr2Rc25rNXv6pVGPY+oiE7QKaoiB12hBrpFTdRCFD2gF/SK3qxn6936sD7nowUr3zlGC7K+fgGmXpsC</latexit>

r(y)

<latexit sha1_base64="UVhnFHoEZOCbJCojOmwsxCC62CQ=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4c6KG0BfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN5BEjE3IEPJfU4JGOT2gD0BQPo4qSRn/VLZrtpT4WXj5KaMcjX6pZ/eIKRxwCRQQbTuOnYEbkoUcCrYpNiLNYsIHZMh6xorScC0m06fnuBTQwbYD5UpCXhK/26kJNA6CTwzGRAY6cVeBv/rdWPwr9yUyygGJunskB8LDCHOEsADrhgFkRhDqOLmV0xHRBEKJqe5Kxk2cGKCcRZjWDat86pzUa3d1sr1Wh5RAR2jE1RBDrpEdXSDGqiJKLpHL+gVvVnP1rv1YX3ORlesfOcIzcn6+gWuapsH</latexit>

w(y)

<latexit sha1_base64="UVhnFHoEZOCbJCojOmwsxCC62CQ=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4c6KG0BfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN5BEjE3IEPJfU4JGOT2gD0BQPo4qSRn/VLZrtpT4WXj5KaMcjX6pZ/eIKRxwCRQQbTuOnYEbkoUcCrYpNiLNYsIHZMh6xorScC0m06fnuBTQwbYD5UpCXhK/26kJNA6CTwzGRAY6cVeBv/rdWPwr9yUyygGJunskB8LDCHOEsADrhgFkRhDqOLmV0xHRBEKJqe5Kxk2cGKCcRZjWDat86pzUa3d1sr1Wh5RAR2jE1RBDrpEdXSDGqiJKLpHL+gVvVnP1rv1YX3ORlesfOcIzcn6+gWuapsH</latexit>

w(y)

<latexit sha1_base64="y9m+6PybCYRm8uS+PNkH8vnw5dY=">AAACCHicbZDLSsNAFIYn9VbrrerSzWAR6qYkUtRlwY3LCvYCbSiT6aQdOpnEmRMxhL6AL+BW38CduPUtfAGfw0mbhW394cDPd87hHH4vElyDbX9bhbX1jc2t4nZpZ3dv/6B8eNTWYawoa9FQhKrrEc0El6wFHATrRoqRwBOs401usn7nkSnNQ3kPScTcgIwk9zklYJDbB/YEAKmaVpPzQbli1+yZ8KpxclNBuZqD8k9/GNI4YBKoIFr3HDsCNyUKOBVsWurHmkWETsiI9YyVJGDaTWdPT/GZIUPsh8qUBDyjfzdSEmidBJ6ZDAiM9XIvg//1ejH4127KZRQDk3R+yI8FhhBnCeAhV4yCSIwhVHHzK6ZjoggFk9PClQwbODXBOMsxrJr2Rc25rNXv6pVGPY+oiE7QKaoiB12hBrpFTdRCFD2gF/SK3qxn6936sD7nowUr3zlGC7K+fgGmXpsC</latexit>

r(y)

<latexit sha1_base64="UVhnFHoEZOCbJCojOmwsxCC62CQ=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4c6KG0BfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN5BEjE3IEPJfU4JGOT2gD0BQPo4qSRn/VLZrtpT4WXj5KaMcjX6pZ/eIKRxwCRQQbTuOnYEbkoUcCrYpNiLNYsIHZMh6xorScC0m06fnuBTQwbYD5UpCXhK/26kJNA6CTwzGRAY6cVeBv/rdWPwr9yUyygGJunskB8LDCHOEsADrhgFkRhDqOLmV0xHRBEKJqe5Kxk2cGKCcRZjWDat86pzUa3d1sr1Wh5RAR2jE1RBDrpEdXSDGqiJKLpHL+gVvVnP1rv1YX3ORlesfOcIzcn6+gWuapsH</latexit>

w(y)

<latexit sha1_base64="LxYFcIpkSJFU9gOP5yfCprUX5l4=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4c6KWkBfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN7BJGJuQIaS+5wSMMjtAXsCgOQxrcBZv1S2q/ZUeNk4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k+nTKT41ZID9UJmSgKf070ZCAq0ngWcmAwIjvdjL4H+9bgz+lZtwGcXAJJ0d8mOBIcRZAnjAFaMgJsYQqrj5FdMRUYSCyWnuSoYNTE0wzmIMy6Z1XnUuqrXbWrleyyMqoGN0girIQZeojm5QAzURRffoBb2iN+vZerc+rM/Z6IqV7xyhOVlfv6ZtmwI=</latexit>

w(t)

<latexit sha1_base64="28qj8uHNO82f+AogBjkna1HSHOU=">AAACCHicbZDLSsNAFIYn9VbrrerSzWAR6qYkUtRlwY3LCvYCbSiT6aQdOpnEmROxhLyAL+BW38CduPUtfAGfw0mbhW394cDPd87hHH4vElyDbX9bhbX1jc2t4nZpZ3dv/6B8eNTWYawoa9FQhKrrEc0El6wFHATrRoqRwBOs401usn7nkSnNQ3kP04i5ARlJ7nNKwCC3D+wJABKVVuF8UK7YNXsmvGqc3FRQruag/NMfhjQOmAQqiNY9x47ATYgCTgVLS/1Ys4jQCRmxnrGSBEy7yezpFJ8ZMsR+qExJwDP6dyMhgdbTwDOTAYGxXu5l8L9eLwb/2k24jGJgks4P+bHAEOIsATzkilEQU2MIVdz8iumYKELB5LRwJcMGpiYYZzmGVdO+qDmXtfpdvdKo5xEV0Qk6RVXkoCvUQLeoiVqIogf0gl7Rm/VsvVsf1ud8tGDlO8doQdbXL55hmv0=</latexit>

r(t)

<latexit sha1_base64="28qj8uHNO82f+AogBjkna1HSHOU=">AAACCHicbZDLSsNAFIYn9VbrrerSzWAR6qYkUtRlwY3LCvYCbSiT6aQdOpnEmROxhLyAL+BW38CduPUtfAGfw0mbhW394cDPd87hHH4vElyDbX9bhbX1jc2t4nZpZ3dv/6B8eNTWYawoa9FQhKrrEc0El6wFHATrRoqRwBOs401usn7nkSnNQ3kP04i5ARlJ7nNKwCC3D+wJABKVVuF8UK7YNXsmvGqc3FRQruag/NMfhjQOmAQqiNY9x47ATYgCTgVLS/1Ys4jQCRmxnrGSBEy7yezpFJ8ZMsR+qExJwDP6dyMhgdbTwDOTAYGxXu5l8L9eLwb/2k24jGJgks4P+bHAEOIsATzkilEQU2MIVdz8iumYKELB5LRwJcMGpiYYZzmGVdO+qDmXtfpdvdKo5xEV0Qk6RVXkoCvUQLeoiVqIogf0gl7Rm/VsvVsf1ud8tGDlO8doQdbXL55hmv0=</latexit>

r(t)

<latexit sha1_base64="LxYFcIpkSJFU9gOP5yfCprUX5l4=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4c6KWkBfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN7BJGJuQIaS+5wSMMjtAXsCgOQxrcBZv1S2q/ZUeNk4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k+nTKT41ZID9UJmSgKf070ZCAq0ngWcmAwIjvdjL4H+9bgz+lZtwGcXAJJ0d8mOBIcRZAnjAFaMgJsYQqrj5FdMRUYSCyWnuSoYNTE0wzmIMy6Z1XnUuqrXbWrleyyMqoGN0girIQZeojm5QAzURRffoBb2iN+vZerc+rM/Z6IqV7xyhOVlfv6ZtmwI=</latexit>

w(t)

<latexit sha1_base64="LxYFcIpkSJFU9gOP5yfCprUX5l4=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4c6KWkBfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN7BJGJuQIaS+5wSMMjtAXsCgOQxrcBZv1S2q/ZUeNk4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k+nTKT41ZID9UJmSgKf070ZCAq0ngWcmAwIjvdjL4H+9bgz+lZtwGcXAJJ0d8mOBIcRZAnjAFaMgJsYQqrj5FdMRUYSCyWnuSoYNTE0wzmIMy6Z1XnUuqrXbWrleyyMqoGN0girIQZeojm5QAzURRffoBb2iN+vZerc+rM/Z6IqV7xyhOVlfv6ZtmwI=</latexit>

w(t)

<latexit sha1_base64="LxYFcIpkSJFU9gOP5yfCprUX5l4=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4c6KWkBfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN7BJGJuQIaS+5wSMMjtAXsCgOQxrcBZv1S2q/ZUeNk4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k+nTKT41ZID9UJmSgKf070ZCAq0ngWcmAwIjvdjL4H+9bgz+lZtwGcXAJJ0d8mOBIcRZAnjAFaMgJsYQqrj5FdMRUYSCyWnuSoYNTE0wzmIMy6Z1XnUuqrXbWrleyyMqoGN0girIQZeojm5QAzURRffoBb2iN+vZerc+rM/Z6IqV7xyhOVlfv6ZtmwI=</latexit>

w(t)

<latexit sha1_base64="7ilgb79VgVUep8OqTP2a7HYPjm0=">AAAB/nicbZDLSgMxFIZP6q3WW9Wlm2ARXJUZKeqy4MZlxd6gHUomzbShmcyQZIQyFHwBt/oG7sStr+IL+Bxm2lnY1h8CP985h3Py+7Hg2jjONypsbG5t7xR3S3v7B4dH5eOTto4SRVmLRiJSXZ9oJrhkLcONYN1YMRL6gnX8yV1W7zwxpXkkm2YaMy8kI8kDTomx6LE5cAflilN15sLrxs1NBXI1BuWf/jCiScikoYJo3XOd2HgpUYZTwWalfqJZTOiEjFjPWklCpr10fuoMX1gyxEGk7JMGz+nfiZSEWk9D33aGxIz1ai2D/9V6iQluvZTLODFM0sWiIBHYRDj7Nx5yxagRU2sIVdzeiumYKEKNTWdpS4YtnNlg3NUY1k37qupeV2sPtUq9lkdUhDM4h0tw4QbqcA8NaAGFEbzAK7yhZ/SOPtDnorWA8plTWBL6+gUlepZF</latexit>

T1
<latexit sha1_base64="u4lrfWuqNwm22Igyc0GM3dvstbo=">AAAB/nicbZDLSgMxFIbP1Futt6pLN8EiuCozpajLghuXFXuDdiiZNNOGJpkhyQhlKPgCbvUN3IlbX8UX8DnMtLPQ1h8CP985h3PyBzFn2rjul1PY2Nza3inulvb2Dw6PyscnHR0litA2iXikegHWlDNJ24YZTnuxolgEnHaD6W1W7z5SpVkkW2YWU1/gsWQhI9hY9NAa1oblilt1F0LrxstNBXI1h+XvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvrcSCaj9dnDpHF5aMUBgp+6RBC/p7IsVC65kIbKfAZqJXaxn8r9ZPTHjjp0zGiaGSLBeFCUcmQtm/0YgpSgyfWYOJYvZWRCZYYWJsOn+2ZNjCuQ3GW41h3XRqVe+qWr+vVxr1PKIinME5XIIH19CAO2hCGwiM4Rle4NV5ct6cd+dj2Vpw8plT+CPn8wcnEpZG</latexit>

T2

Fig. 1. Read-From Equivalence

relation reads-from equivalence which has the largest classes that

remain sound and is defined in a way to preserve two essential

properties of concurrent program runs: (1) the total order of events
in each thread must remain the same in every equivalent run,

and (2) each read event must observe the value written from the

same write event in every equivalent run. The former is commonly

known as the preservation of program order, and the latter as the

preservation of the reads-from relation. These conditions guarantee

that any equivalent run is also a valid run of the same concurrent

program, and all the observed values (by read events) remain the

same, which implies that the outcome of the program run must

remain the same. In other words, both control flow and data flow

are preserved.

Consider the concurrent program run illustrated in Fig. 1(a), and

let us focus on the order of the read event r(𝑥) from thread 𝑇1
and the write event w(𝑥) from thread 𝑇2. In classical trace theory,

these events are dependent (or non-commutatitive) and they must

be appear in the same order in every member of the equivalence

class of the run. This implies that the illustrated run belongs in an

equivalence class of size 1. On the other hand, there exist other

reads-from equivalent runs; one such run is illustrated in Fig. 1(b),

in which the two aforementioned events have been reordered. The

arrows connect each write event to the read event that reads its

value, which remain unchanged between the two runs.

We give a formal argument for why (the more relaxed) reads-from equivalence is not as useful

as trace equivalence from an algorithmic standpoint. One of the most fundamental algorithmic

questions in this context is: Given two events 𝑒 and 𝑒′ in a run 𝜌 , do they always appear in the

same order in every member of the equivalence class of 𝜌 or can they be reordered in an equivalent

run? In the former case, we call 𝑒 and 𝑒′ causally ordered, and otherwise causally concurrent. For
example, the events r(𝑥) from thread 𝑇1 and w(𝑥) from thread 𝑇2 are causally ordered under trace

equivalence but causally concurrent under reads-from equivalence. On the other hand, w(𝑧) event
of thread 𝑇1 and the r(𝑧) event of thread 𝑇2 are causally ordered under both equivalence relations.

For trace equivalence, it is possible to decide if two events are causally ordered or concurrent, using

a single pass constant space algorithm; if the length of the run is assumed to be the size of the input,

and other program measures such as the number of threads and the number of shared variables

are considered to be constants. In Section 3, we prove that if equivalence is defined as broadly as

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

Coarser Equivalences for Causal Concurrency 3

reads-from equivalence, then this check can no longer be done in constant space by proving a linear
space lower bound (Theorem 3.1). In particular, we prove this for two closely related variants of

this problem: (1) the decision about the ordering of two specific events (as discussed in the example

of Fig. 1), and (2) the decision about the ordering of any two occurrences of a specific (atomic)

action (e.g. are any two w(𝑥) actions unordered?). Both problems are closely related to predictive

testing of violations of generic correctness properties for concurrent programs, such as data race

freedom [Elmas et al. 2007; Flanagan and Freund 2009; Huang et al. 2014; Itzkovitz et al. 1999; Kini

et al. 2017; Pavlogiannis 2019; Smaragdakis et al. 2012], deadlock freedom [Kalhauge and Palsberg

2018; Tunç et al. 2023] and atomicity [Farzan and Madhusudan 2006; Farzan et al. 2009; Mathur and

Viswanathan 2020; Sorrentino et al. 2010], and have applications in dynamic partial order reduction

techniques [Abdulla et al. 2019; Flanagan and Godefroid 2005; Kokologiannakis et al. 2022] for

model checking of concurrent programs. In all such contexts, having a monitor whose state space

does not depend on the length of the input program run, which may include billions of events, is

highly desirable. Thus far, the only existing instance of such a monitor has been based on trace

equivalence.

We propose a new notion of equivalence for concurrent program runs, which in terms of expressivity

lies in between trace and reads-from equivalences, and retains the highly desirable algorithmic

simplicity of traces. The idea is based on enriching the classical commutativity relation of trace

theory to additionally account for commutativity of certain sequences of events, called grains. A
grain can be an arbitrarily long sequence of operations, which can belong to multiple threads. What

motivates this definition is that in places where swapping a pair of individual events may not be

possible, groups of operations (as grains) may still commute soundly, meaning without disturbing

the program order or the reads-from relation. For two grains to be swappable, they must be adjacent

and contiguous, at the time they are swapped.

<latexit sha1_base64="7ilgb79VgVUep8OqTP2a7HYPjm0=">AAAB/nicbZDLSgMxFIZP6q3WW9Wlm2ARXJUZKeqy4MZlxd6gHUomzbShmcyQZIQyFHwBt/oG7sStr+IL+Bxm2lnY1h8CP985h3Py+7Hg2jjONypsbG5t7xR3S3v7B4dH5eOTto4SRVmLRiJSXZ9oJrhkLcONYN1YMRL6gnX8yV1W7zwxpXkkm2YaMy8kI8kDTomx6LE5cAflilN15sLrxs1NBXI1BuWf/jCiScikoYJo3XOd2HgpUYZTwWalfqJZTOiEjFjPWklCpr10fuoMX1gyxEGk7JMGz+nfiZSEWk9D33aGxIz1ai2D/9V6iQluvZTLODFM0sWiIBHYRDj7Nx5yxagRU2sIVdzeiumYKEKNTWdpS4YtnNlg3NUY1k37qupeV2sPtUq9lkdUhDM4h0tw4QbqcA8NaAGFEbzAK7yhZ/SOPtDnorWA8plTWBL6+gUlepZF</latexit>

T1
<latexit sha1_base64="u4lrfWuqNwm22Igyc0GM3dvstbo=">AAAB/nicbZDLSgMxFIbP1Futt6pLN8EiuCozpajLghuXFXuDdiiZNNOGJpkhyQhlKPgCbvUN3IlbX8UX8DnMtLPQ1h8CP985h3PyBzFn2rjul1PY2Nza3inulvb2Dw6PyscnHR0litA2iXikegHWlDNJ24YZTnuxolgEnHaD6W1W7z5SpVkkW2YWU1/gsWQhI9hY9NAa1oblilt1F0LrxstNBXI1h+XvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvrcSCaj9dnDpHF5aMUBgp+6RBC/p7IsVC65kIbKfAZqJXaxn8r9ZPTHjjp0zGiaGSLBeFCUcmQtm/0YgpSgyfWYOJYvZWRCZYYWJsOn+2ZNjCuQ3GW41h3XRqVe+qWr+vVxr1PKIinME5XIIH19CAO2hCGwiM4Rle4NV5ct6cd+dj2Vpw8plT+CPn8wcnEpZG</latexit>

T2
<latexit sha1_base64="ixOAVLf0efHThglb3yO1hDmyh5E=">AAAB/nicbZDNSgMxFIXv1L9a/6ou3QSL4KrMaFGXBTcuK7a10A4lk2ba0CQzJBmhDAVfwK2+gTtx66v4Aj6HmXYWtvVA4PDde7k3J4g508Z1v53C2vrG5lZxu7Szu7d/UD48ausoUYS2SMQj1QmwppxJ2jLMcNqJFcUi4PQxGN9m9ccnqjSLZNNMYuoLPJQsZAQbix6a/ct+ueJW3ZnQqvFyU4FcjX75pzeISCKoNIRjrbueGxs/xcowwum01Es0jTEZ4yHtWiuxoNpPZ6dO0ZklAxRGyj5p0Iz+nUix0HoiAtspsBnp5VoG/6t1ExPe+CmTcWKoJPNFYcKRiVD2bzRgihLDJ9Zgopi9FZERVpgYm87ClgxbOLXBeMsxrJr2RdW7qtbua5V6LY+oCCdwCufgwTXU4Q4a0AICQ3iBV3hznp1358P5nLcWnHzmGBbkfP0CKKqWRw==</latexit>

T3

<latexit sha1_base64="F28r8q1TKnyEbuQg/HTDuF/U1Zk=">AAAB/nicbZDLSsNAFIZP6q3WW9Wlm8Ei1E1JKliXBTcuK9oLtKFMppN26GQSZiZCCQVfwK2+gTtx66v4Aj6HkzQL2/rDwM93zuGc+b2IM6Vt+9sqbGxube8Ud0t7+weHR+Xjk44KY0lom4Q8lD0PK8qZoG3NNKe9SFIceJx2veltWu8+UalYKB71LKJugMeC+YxgbdBD1bsclit2zc6E1o2Tmwrkag3LP4NRSOKACk04Vqrv2JF2Eyw1I5zOS4NY0QiTKR7TvrECB1S5SXbqHF0YMkJ+KM0TGmX070SCA6VmgWc6A6wnarWWwv9q/Vj7N27CRBRrKshikR9zpEOU/huNmKRE85kxmEhmbkVkgiUm2qSztCXFBs5NMM5qDOumU68517Wr+3ql2cgjKsIZnEMVHGhAE+6gBW0gMIYXeIU369l6tz6sz0VrwcpnTmFJ1tcv1vOWFA==</latexit>

(b)
<latexit sha1_base64="tHShRB9Gnje9gkma70C5RYN7LiE=">AAAB/nicbZDLSsNAFIZP6q3WW9Wlm8Ei1E1JKliXBTcuK9oLtKFMppN26GQSZiZCCQVfwK2+gTtx66v4Aj6HkzQL2/rDwM93zuGc+b2IM6Vt+9sqbGxube8Ud0t7+weHR+Xjk44KY0lom4Q8lD0PK8qZoG3NNKe9SFIceJx2veltWu8+UalYKB71LKJugMeC+YxgbdBDFV8OyxW7ZmdC68bJTQVytYbln8EoJHFAhSYcK9V37Ei7CZaaEU7npUGsaITJFI9p31iBA6rcJDt1ji4MGSE/lOYJjTL6dyLBgVKzwDOdAdYTtVpL4X+1fqz9GzdhIoo1FWSxyI850iFK/41GTFKi+cwYTCQztyIywRITbdJZ2pJiA+cmGGc1hnXTqdec69rVfb3SbOQRFeEMzqEKDjSgCXfQgjYQGMMLvMKb9Wy9Wx/W56K1YOUzp7Ak6+sX1VqWEw==</latexit>

(a)

<latexit sha1_base64="ZlKKMRJiiXbvBip87FGQeyESHjE=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+kkTXp6xu4aNQ5zAS/gVm/gTtx6Cy/gOexJZmESfyj4+aqKKn4vFFyDbX9buZXVtfWN/GZha3tnd6+4f9DUQaQoa9BABKrtEc0El6wBHARrh4oR3xOs5Y2v0n7rninNA3kLk5C5PhlKPuCUgEFuF9gjAMQPSfnptFcs2RV7KrxsnMyUUKZ6r/jT7Qc08pkEKojWHccOwY2JAk4FSwrdSLOQ0DEZso6xkvhMu/H06QSfGNLHg0CZkoCn9O9GTHytJ75nJn0CI73YS+F/vU4Eg0s35jKMgEk6OzSIBIYApwngPleMgpgYQ6ji5ldMR0QRCianuSspNjAxwTiLMSyb5lnFOa9Ub6qlWjWLKI+O0DEqIwddoBq6RnXUQBTdoRf0it6sZ+vd+rA+Z6M5K9s5RHOyvn4BsAObCA==</latexit>

w(z)

<latexit sha1_base64="ZlKKMRJiiXbvBip87FGQeyESHjE=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+kkTXp6xu4aNQ5zAS/gVm/gTtx6Cy/gOexJZmESfyj4+aqKKn4vFFyDbX9buZXVtfWN/GZha3tnd6+4f9DUQaQoa9BABKrtEc0El6wBHARrh4oR3xOs5Y2v0n7rninNA3kLk5C5PhlKPuCUgEFuF9gjAMQPSfnptFcs2RV7KrxsnMyUUKZ6r/jT7Qc08pkEKojWHccOwY2JAk4FSwrdSLOQ0DEZso6xkvhMu/H06QSfGNLHg0CZkoCn9O9GTHytJ75nJn0CI73YS+F/vU4Eg0s35jKMgEk6OzSIBIYApwngPleMgpgYQ6ji5ldMR0QRCianuSspNjAxwTiLMSyb5lnFOa9Ub6qlWjWLKI+O0DEqIwddoBq6RnXUQBTdoRf0it6sZ+vd+rA+Z6M5K9s5RHOyvn4BsAObCA==</latexit>

w(z)

<latexit sha1_base64="gqzYN2XBcopATOy3qyveOfo6LB8=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyLWkBfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN7BJGJuQIaS+5wSMMjtAXsEgESllaezfqlsV+2p8LJxclNGuRr90k9vENI4YBKoIFp3HTsCNyEKOBUsLfZizSJCx2TIusZKEjDtJtOnU3xqyAD7oTIlAU/p342EBFpPAs9MBgRGerGXwf963Rj8KzfhMoqBSTo75McCQ4izBPCAK0ZBTIwhVHHzK6YjoggFk9PclQwbmJpgnMUYlk3rvOpcVGu3tXK9lkdUQMfoBFWQgy5RHd2gBmoiiu7RC3pFb9az9W59WJ+z0RUr3zlCc7K+fgGn95sD</latexit>

r(z)

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="gqzYN2XBcopATOy3qyveOfo6LB8=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyLWkBfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN7BJGJuQIaS+5wSMMjtAXsEgESllaezfqlsV+2p8LJxclNGuRr90k9vENI4YBKoIFp3HTsCNyEKOBUsLfZizSJCx2TIusZKEjDtJtOnU3xqyAD7oTIlAU/p342EBFpPAs9MBgRGerGXwf963Rj8KzfhMoqBSTo75McCQ4izBPCAK0ZBTIwhVHHzK6YjoggFk9PclQwbmJpgnMUYlk3rvOpcVGu3tXK9lkdUQMfoBFWQgy5RHd2gBmoiiu7RC3pFb9az9W59WJ+z0RUr3zlCc7K+fgGn95sD</latexit>

r(z)

<latexit sha1_base64="gqzYN2XBcopATOy3qyveOfo6LB8=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyLWkBfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN7BJGJuQIaS+5wSMMjtAXsEgESllaezfqlsV+2p8LJxclNGuRr90k9vENI4YBKoIFp3HTsCNyEKOBUsLfZizSJCx2TIusZKEjDtJtOnU3xqyAD7oTIlAU/p342EBFpPAs9MBgRGerGXwf963Rj8KzfhMoqBSTo75McCQ4izBPCAK0ZBTIwhVHHzK6YjoggFk9PclQwbmJpgnMUYlk3rvOpcVGu3tXK9lkdUQMfoBFWQgy5RHd2gBmoiiu7RC3pFb9az9W59WJ+z0RUr3zlCc7K+fgGn95sD</latexit>

r(z)

<latexit sha1_base64="ZlKKMRJiiXbvBip87FGQeyESHjE=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+kkTXp6xu4aNQ5zAS/gVm/gTtx6Cy/gOexJZmESfyj4+aqKKn4vFFyDbX9buZXVtfWN/GZha3tnd6+4f9DUQaQoa9BABKrtEc0El6wBHARrh4oR3xOs5Y2v0n7rninNA3kLk5C5PhlKPuCUgEFuF9gjAMQPSfnptFcs2RV7KrxsnMyUUKZ6r/jT7Qc08pkEKojWHccOwY2JAk4FSwrdSLOQ0DEZso6xkvhMu/H06QSfGNLHg0CZkoCn9O9GTHytJ75nJn0CI73YS+F/vU4Eg0s35jKMgEk6OzSIBIYApwngPleMgpgYQ6ji5ldMR0QRCianuSspNjAxwTiLMSyb5lnFOa9Ub6qlWjWLKI+O0DEqIwddoBq6RnXUQBTdoRf0it6sZ+vd+rA+Z6M5K9s5RHOyvn4BsAObCA==</latexit>

w(z)

<latexit sha1_base64="ZlKKMRJiiXbvBip87FGQeyESHjE=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+kkTXp6xu4aNQ5zAS/gVm/gTtx6Cy/gOexJZmESfyj4+aqKKn4vFFyDbX9buZXVtfWN/GZha3tnd6+4f9DUQaQoa9BABKrtEc0El6wBHARrh4oR3xOs5Y2v0n7rninNA3kLk5C5PhlKPuCUgEFuF9gjAMQPSfnptFcs2RV7KrxsnMyUUKZ6r/jT7Qc08pkEKojWHccOwY2JAk4FSwrdSLOQ0DEZso6xkvhMu/H06QSfGNLHg0CZkoCn9O9GTHytJ75nJn0CI73YS+F/vU4Eg0s35jKMgEk6OzSIBIYApwngPleMgpgYQ6ji5ldMR0QRCianuSspNjAxwTiLMSyb5lnFOa9Ub6qlWjWLKI+O0DEqIwddoBq6RnXUQBTdoRf0it6sZ+vd+rA+Z6M5K9s5RHOyvn4BsAObCA==</latexit>

w(z)

<latexit sha1_base64="gqzYN2XBcopATOy3qyveOfo6LB8=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyLWkBfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN7BJGJuQIaS+5wSMMjtAXsEgESllaezfqlsV+2p8LJxclNGuRr90k9vENI4YBKoIFp3HTsCNyEKOBUsLfZizSJCx2TIusZKEjDtJtOnU3xqyAD7oTIlAU/p342EBFpPAs9MBgRGerGXwf963Rj8KzfhMoqBSTo75McCQ4izBPCAK0ZBTIwhVHHzK6YjoggFk9PclQwbmJpgnMUYlk3rvOpcVGu3tXK9lkdUQMfoBFWQgy5RHd2gBmoiiu7RC3pFb9az9W59WJ+z0RUr3zlCc7K+fgGn95sD</latexit>

r(z)

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="gqzYN2XBcopATOy3qyveOfo6LB8=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyLWkBfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN7BJGJuQIaS+5wSMMjtAXsEgESllaezfqlsV+2p8LJxclNGuRr90k9vENI4YBKoIFp3HTsCNyEKOBUsLfZizSJCx2TIusZKEjDtJtOnU3xqyAD7oTIlAU/p342EBFpPAs9MBgRGerGXwf963Rj8KzfhMoqBSTo75McCQ4izBPCAK0ZBTIwhVHHzK6YjoggFk9PclQwbmJpgnMUYlk3rvOpcVGu3tXK9lkdUQMfoBFWQgy5RHd2gBmoiiu7RC3pFb9az9W59WJ+z0RUr3zlCc7K+fgGn95sD</latexit>

r(z)

<latexit sha1_base64="gqzYN2XBcopATOy3qyveOfo6LB8=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyLWkBfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN7BJGJuQIaS+5wSMMjtAXsEgESllaezfqlsV+2p8LJxclNGuRr90k9vENI4YBKoIFp3HTsCNyEKOBUsLfZizSJCx2TIusZKEjDtJtOnU3xqyAD7oTIlAU/p342EBFpPAs9MBgRGerGXwf963Rj8KzfhMoqBSTo75McCQ4izBPCAK0ZBTIwhVHHzK6YjoggFk9PclQwbmJpgnMUYlk3rvOpcVGu3tXK9lkdUQMfoBFWQgy5RHd2gBmoiiu7RC3pFb9az9W59WJ+z0RUr3zlCc7K+fgGn95sD</latexit>

r(z)

<latexit sha1_base64="7ilgb79VgVUep8OqTP2a7HYPjm0=">AAAB/nicbZDLSgMxFIZP6q3WW9Wlm2ARXJUZKeqy4MZlxd6gHUomzbShmcyQZIQyFHwBt/oG7sStr+IL+Bxm2lnY1h8CP985h3Py+7Hg2jjONypsbG5t7xR3S3v7B4dH5eOTto4SRVmLRiJSXZ9oJrhkLcONYN1YMRL6gnX8yV1W7zwxpXkkm2YaMy8kI8kDTomx6LE5cAflilN15sLrxs1NBXI1BuWf/jCiScikoYJo3XOd2HgpUYZTwWalfqJZTOiEjFjPWklCpr10fuoMX1gyxEGk7JMGz+nfiZSEWk9D33aGxIz1ai2D/9V6iQluvZTLODFM0sWiIBHYRDj7Nx5yxagRU2sIVdzeiumYKEKNTWdpS4YtnNlg3NUY1k37qupeV2sPtUq9lkdUhDM4h0tw4QbqcA8NaAGFEbzAK7yhZ/SOPtDnorWA8plTWBL6+gUlepZF</latexit>

T1
<latexit sha1_base64="u4lrfWuqNwm22Igyc0GM3dvstbo=">AAAB/nicbZDLSgMxFIbP1Futt6pLN8EiuCozpajLghuXFXuDdiiZNNOGJpkhyQhlKPgCbvUN3IlbX8UX8DnMtLPQ1h8CP985h3PyBzFn2rjul1PY2Nza3inulvb2Dw6PyscnHR0litA2iXikegHWlDNJ24YZTnuxolgEnHaD6W1W7z5SpVkkW2YWU1/gsWQhI9hY9NAa1oblilt1F0LrxstNBXI1h+XvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvrcSCaj9dnDpHF5aMUBgp+6RBC/p7IsVC65kIbKfAZqJXaxn8r9ZPTHjjp0zGiaGSLBeFCUcmQtm/0YgpSgyfWYOJYvZWRCZYYWJsOn+2ZNjCuQ3GW41h3XRqVe+qWr+vVxr1PKIinME5XIIH19CAO2hCGwiM4Rle4NV5ct6cd+dj2Vpw8plT+CPn8wcnEpZG</latexit>

T2
<latexit sha1_base64="ixOAVLf0efHThglb3yO1hDmyh5E=">AAAB/nicbZDNSgMxFIXv1L9a/6ou3QSL4KrMaFGXBTcuK7a10A4lk2ba0CQzJBmhDAVfwK2+gTtx66v4Aj6HmXYWtvVA4PDde7k3J4g508Z1v53C2vrG5lZxu7Szu7d/UD48ausoUYS2SMQj1QmwppxJ2jLMcNqJFcUi4PQxGN9m9ccnqjSLZNNMYuoLPJQsZAQbix6a/ct+ueJW3ZnQqvFyU4FcjX75pzeISCKoNIRjrbueGxs/xcowwum01Es0jTEZ4yHtWiuxoNpPZ6dO0ZklAxRGyj5p0Iz+nUix0HoiAtspsBnp5VoG/6t1ExPe+CmTcWKoJPNFYcKRiVD2bzRgihLDJ9Zgopi9FZERVpgYm87ClgxbOLXBeMsxrJr2RdW7qtbua5V6LY+oCCdwCufgwTXU4Q4a0AICQ3iBV3hznp1358P5nLcWnHzmGBbkfP0CKKqWRw==</latexit>

T3

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)
<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)
<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

Fig. 2. Commuting Grains

As an example, consider the concurrent program run in

Fig. 2(a). Four grains are marked. Observe that the grains of

the same colour soundly commute. Grains of different colour

always share a thread and therefore commuting them would

break program order. First, assume that only the two blue

grains exist. One can then use a sequence of swaps that are ei-

ther standard swaps permitted by trace equivalence, or a swap

of the two blue grains, and transform the run in (a) to the one

illustrated in Fig. 2(b), and hence reorder the two w(𝑧) events.
We call the run in (b) to be grain-equivalent to the one in (a).

Observe that this is not possible under trace equivalence. A

similar observation can be made if we consider only the green

grains, and the goal of reordering the two w(𝑥) operations.
However, if all four grains are considered together, since the

grains of different colour do not commute, nothing can be

swapped in Fig. 2(a). Once something is decided to be part of a

grain, it must always move together with the rest of the grain.

This turns out to be a key to algorithmic simplicity.

In Section 4, we formally define the set of runs that are soundly equivalent to a program run based

on a choice of grains that, as in Fig. 2(a), appear as contiguous subwords of the program run. We

observe that different choices of grains can imply the concurrency of different pairs of events. We

define grain concurrency of two events formally as the existence of a choice of grains and a sound

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

4 Azadeh Farzan and Umang Mathur

commutativity relation (over the grains) such that the two events can be (soundly) reordered in a

grain-equivalent run up to those choices.

The construction of a monitor based on trace equivalence vitally relies on the fact that the alphabet

of concurrent programs is finite and consequently there are finitely many choices of commutativity

relations over this alphabet. Note that, once any subword can become a new entity that participates

in commutativity-based reasoning, the number of these subwords is no longer bounded. Neither is

the set of possible commutativity relations over them. In Section 5, we prove by construction that

grain-equivalence can be monitored in constant-space. This construction relies on a key insight that

the monitor can maintain summaries for these grains that belong to a finite universe, and correctly

check the concurrency status of two events.

Let us revisit the example runs in Fig. 2. The run in Fig. 2(b) is the result of commuting two blue

grains in the run in Fig. 2(b). The first green grain, however, is no longer a contiguous subword and

therefore cannot be seen as a potential grain in the solution we have outlined so far. In Section 6, we

formally expand the definition of grains so that these so-called scattered grains can be considered

as candidates as well. This requires a leap in the definition of the set of words that are soundly

equivalent to the input run. In the case of contiguous grains, the set of equivalent runs maintains

the characteristic of classic trace theory that one can transform the input run to any inferred

equivalent run through a sequence of valid swaps. With scattered grains, we establish soundness by

deferring to the more general definition of reads-from equivalence, and consequently forfeit the

characteristic of transformation through swaps.

Surprisingly, however, this weaker definition still maintains the property that it can be monitored

in constant-space. First, there is the additional complication that unlike contiguous subwords where

at most one grain is active (open) at any given time, there may be an unbounded number of active
scattered grains in a concurrent program run at any given time. Nevertheless, we prove that if an

outcome can be decided based on an arbitrary choice of scattered grains, then it can also be decided

based on a choice of scattered grains in which the number of active grains is bounded. With a

bounded number of active grains (in contrast to just a single one), there is another complication

where two active grains, which belong to the middle of a chain witnessing that 𝑒 and 𝑒′ are ordered,
are only discovered to be ordered long after 𝑒 and 𝑒′ have been visited. In Section 7, we construct a

monitor that resolves these problems and soundly checks the concurrency of a pair of events based

on all possible choices of scattered grains, which we call scattered grain concurrency.

Even though the scattered grain concurrency monitor subsumes the grain concurrency monitor in

expressivity, the paper presents thesemonitors separately, since the former admits a characterization

based on swaps and the latter does not. Moreover, this permits us to introduce the relevant ideas in

tandem with the problems they help solve. In summary, the paper presents the following results:

• We prove that there is no constant-space algorithm that checks if two arbitrary events are

causally ordered or concurrent under the reads-from equivalence relation by establishing a

linear space lower bound, a quadratic time-space tradeoff bound, a conditional quadratic time

lower bound as well as the non context-freeness of this problem. We complement these lower

bounds by showing that the problem can nevertheless be solved in polynomial time as well as

in deterministic linear space. (Section 3).

• We propose grain equivalence as the means of defining a set of runs that are soundly equivalent

to a given program run and form a strictly larger set than the trace equivalence class of the run,

and a strictly smaller set than the reads-from equivalence class of it. This notion of equivalence

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

Coarser Equivalences for Causal Concurrency 5

is constructed based on commutativity of certain pairs of words over the alphabet of concurrent

program operations that appear as contiguous subwords of the input program run (Section 4).

• We introduce the notion of grain concurrency that attempts to find a witness for causal con-

currency of a pair of events based on all possible choices of grains. We further weaken the

definition of grain concurrency by permitting scattered grains to be soundly used for reasoning

in equivalence and call this scattered grain concurrency (Section 6).

• We give a space efficient algorithm that soundly checks grain concurrency for a pair of events,

i.e. whether the two events are causally ordered or concurrent up to grain equivalence (Section
5), and a space efficient algorithm that soundly checks scattered grain concurrency based on all

possible choices of scattered grains (Section 7).

2 PRELIMINARIES
A string over an alphabet Σ is a finite sequence of symbols from Σ. We use |𝑤 | to denote the length

of the string𝑤 and𝑤 [𝑖] to denote the 𝑖th symbol in𝑤 . The concatenation of two strings𝑤,𝑤 ′
will

be denoted by𝑤𝑤 ′
.

2.1 Trace Equivalence
Antoni Mazurkiewicz popularized the use of partially commutative monoids for modelling execu-

tions of concurrent systems[Mazurkiewicz 1987]. We discuss this formalism here. An independence

relation over Σ is a symmetric irreflexive binary relation I ⊆ Σ × Σ. The Mazurkiewicz equivalence

(or trace equivalence) relation induced by I, denoted1 ≡M is then the smallest equivalence over Σ∗

such that for any two strings𝑤,𝑤 ′ ∈ Σ∗
and for any two letters 𝑎, 𝑏 ∈ Σ with (𝑎, 𝑏) ∈ I, we have

𝑤𝑎𝑏𝑤 ′ ≡M 𝑤𝑏𝑎𝑤 ′
. A Mazurkiewicz trace is then an equivalence class of ≡M .

Mazurkiewicz partial order. An equivalence class of ≡M can be succinctly represented using a

partial order on the set of events in a given string. Events are unique identifiers for the different

occurrences of symbols in a string. Formally, for a string𝑤 , the set of events of𝑤 , denoted Events𝑤
is the set of pairs of the form 𝑒 = (𝑎, 𝑖) such that 𝑎 ∈ Σ and there are at least 𝑖 occurrences of 𝑎 in

𝑤 . Thus, an event uniquely identifies a position in the string — the pair (𝑎, 𝑖) corresponds to the
unique position 𝑗 ≤ |𝑤 | such that𝑤 [𝑗] = 𝑎 and there are exactly 𝑖 − 1 occurrences of 𝑎 before the

index 𝑗 in𝑤 . Observe that if𝑤 and𝑤 ′
are permutations of each other, then Events𝑤 = Events𝑤′ .

For an event 𝑒 = (𝑎, 𝑖), we use the shorthand 𝑤 [𝑒] to denote the label 𝑎. Often, we will use the

position 𝑗 itself to denote the event (𝑎, 𝑖) when the distinction is immaterial. Fix 𝑤 ∈ Σ∗
. The

Mazurkiewicz (or trace) partial order for 𝑤 , denoted ≺M is then, the transitive closure of the

relation {(𝑒, 𝑓) | 𝑒, 𝑓 ∈ Events𝑤, 𝑒 occurs before 𝑓 in𝑤 ∧ (𝑤 [𝑒],𝑤 [𝑓]) ∈ D}.

For Mazurkiewicz traces, the corresponding partial order is a sound and complete representation

of an equivalence class [Mazurkiewicz 1987].

2.2 Concurrent alphabet and dependence
For modeling runs or executions of shared memory multi-threaded concurrent programs, we will

consider the alphabet consisting of reads and writes. Let us fix finite sets T and X of thread

1
The equivalence is parametric on the independence relation I. In this view, a notation like ≡IM would be more precise. In

favor of readability, we skip this parametrization; the independence relation I will always be clear.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

6 Azadeh Farzan and Umang Mathur

identifiers and memory location identifiers respectively. The concurrent alphabet ΣConc we consider

in the rest of the paper is:

ΣConc = {⟨𝑡, 𝑜, 𝑥⟩ | 𝑡 ∈ T , 𝑜 ∈ {r, w}, 𝑥 ∈ X}
For a symbol 𝑎 = ⟨𝑡, 𝑜, 𝑥⟩ ∈ ΣConc, we say thr(𝑎) = 𝑡 , op(𝑎) = 𝑜 and var(𝑎) = 𝑥 . A concurrent

program run or execution is a string over ΣConc. For a run 𝑤 ∈ Σ∗
Conc and event 𝑒 ∈ Events𝑤 ,

we overload the notation and use thr(𝑒), op(𝑒) and var(𝑒) in place of thr(𝑤 [𝑒]), op(𝑤 [𝑒]) and
var(𝑤 [𝑒]) respectively. Since the focus of the rest of the article will be on concurrent program runs,

we will omit the subscript Conc, and unless Σ is not explicitly defined, we will assume it is ΣConc.

We use the following independence (commutativity) relation:

IM = Σ × Σ − {(𝑎, 𝑏) | thr(𝑎) = thr(𝑏) ∨ (var(𝑎) = var(𝑏) ∧ w ∈ {op(𝑎), op(𝑏)})} (1)

This defines an appropriate trace monoid for the alphabet of concurrent program actions. We refer

to the equivalence classes a concurrent program run𝑤 in this monoid as [𝑤]M . This trace monoid

is provably sound in the following sense:

Remark 1. For a given concurrent program run 𝑤 ∈ Σ, every member of [𝑤]M preserves the

program order and reads-from relations induced by𝑤 .

Next, for ease of notation, we will often denote labels as ⟨𝑡, 𝑜 (𝑥)⟩ (for example ⟨𝑡, w(𝑥)⟩) in place

of the expanded version ⟨𝑡, 𝑜, 𝑥⟩. We will also, at times, omit the thread identifier and use the

shorthand 𝑒 = 𝑜 (𝑥) to denote that op(𝑒) = 𝑜 and var(𝑒) = 𝑥 .

2.3 Reads-From Equivalence
A natural notion of equivalence of program runs in the context of shared memory multi-threaded

program is reads-from equivalence. We formalize this notion here.

Program Order and Reads-from mapping. The program order, or thread order induced by a

concurrent program run 𝑤 ∈ Σ∗
orders any two events belonging to the same thread. Formally,

po𝑤 = {(𝑒, 𝑓) | 𝑒, 𝑓 ∈ Events𝑤, thr(𝑒) = thr(𝑓), 𝑒 occurs before 𝑓 in𝑤}. The reads-from mapping

induced by𝑤 maps each read event to the write event it observes. In our context, this corresponds

to the last conflicting write event before the read event. Formally, the reads-from mapping is a

partial function rf𝑤 : Events𝑤 ↩→ Events𝑤 such that rf𝑤 (𝑒) is defined iff op(𝑒) = r. Further, for a
read event 𝑒 occurring at the 𝑖th index in𝑤 , rf𝑤 (𝑒), is the unique event 𝑓 occurring at index 𝑗 < 𝑖

for which op(𝑓) = w, var(𝑓) = var(𝑒) and there is no other write event on var(𝑒) (occurring at

index 𝑗 ′) such that 𝑗 < 𝑗 ′ < 𝑖 . Here, and for the rest of the paper, we assume that every read event

is preceded by some write event on the same variable.

Reads-from equivalence. Reads-from equivalence is a semantic notion of equivalence on concur-

rent program runs, that distinguishes between two runs based onwhether or not theymight produce

different outcomes. We say two runs 𝑤,𝑤 ′ ∈ Σ∗
are reads-from equivalent, denoted 𝑤 ≡rf 𝑤

′
if

Events𝑤 = Events𝑤′ , po𝑤 = po𝑤′ and rf𝑤 = rf𝑤′ . That is, for𝑤 and𝑤 ′
to be reads-from equivalent,

they should be permutations of each other and must follow the same program order, and further,

every read event 𝑒 must read from the same write event in both 𝑤 and 𝑤 ′
. Reads-from equiva-

lence is a strictly coarser equivalence than trace equivalence for concurrent program runs. That is,

whenever𝑤 ≡M 𝑤 ′
, we must have𝑤 ≡rf 𝑤

′
; but the converse is not true.

Example 2.1. Consider the two runs (denoted 𝜎 and 𝜎 ′
) shown in Fig. 1(a) and Fig. 1(b) respectively.

Observe that 𝜎 and 𝜎 ′
have the same set of events, and program order (po𝜎 = po𝜎 ′). Also, for

each read event 𝑒 , rf𝜎 (𝑒) = rf𝜎 ′ (𝑒). This means 𝜎 ≡rf 𝜎 ′
. Consider now the permutation of 𝜎

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

Coarser Equivalences for Causal Concurrency 7

corresponding to the sequence 𝜎 ′′ = 𝑒1 . . . 𝑒8𝑒10𝑒9𝑒11 . . . 𝑒14, where 𝑒𝑖 denotes the 𝑖
th
event of 𝜎 from

the top. 𝜎 ′′
does not have the same reads-from mapping as 𝜎 since rf𝜎 ′′ (𝑒9) = 𝑒10 ≠ 𝑒7 = rf𝜎 (𝑒9),

and thus 𝜎 ′′ ̸≡rf 𝜎 .

Soundness of Equivalence. The focus of this work is to develop equivalences that are coarser

than Mazurkiewicz equivalence and are also sound, where soundness will be with respect to

reads-from equivalence. Given a run 𝑤 ∈ Σ∗
and a set 𝑆𝑤 ⊆ Σ∗

, we say that 𝑆𝑤 is sound for 𝑤 if

𝑆𝑤 ⊆ {𝑤 ′ |𝑤 ≡rf 𝑤}. Likewise, an equivalence relation ∼ over Σ∗
is said to be sound if for every

𝑤 ∈ Σ∗
, the equivalence class [𝑤]∼ is sound for 𝑤 . Hence, Remark 1 precisely states that trace

equivalence defined based on the independence relation IM is sound in this sense.

3 CAUSAL CONCURRENCY UNDER READS-FROM EQUIVALENCE
In scenarios like dynamic partial order reduction in stateless model checking, or runtime predictive

monitoring, one is often interested in the causal relationship between actions. Understanding

causality at the level of program runs often amounts to answering whether there is an equivalent

run that witnesses the inversion of order between two events.

The efficiency of determining causal concurrency is then key in designing efficient techniques in

the aforementioned contexts. When deploying such techniques for monitoring large scale software

artifacts exhibiting executions with billions of events, a desirable goal is to design monitoring

algorithms that can be efficiently implemented in an online ‘incremental’ fashion that store only a

constant amount of information, independent of the size of the execution being monitored [Roşu

and Viswanathan 2003]. In other words, an ideal algorithm would observe events in an execution

in a single forward pass, using a small amount of memory. This motivates our investigation of the

efficiency of checking causal ordering.

We first formally define the relevant algorithmic questions in the context of any equivalence relation

on concurrent program runs, and then study their complexity under reads-from equivalence.

3.1 Causal Concurrency and Ordering
Formally, let ∼ be an equivalence over Σ∗

such that when two runs are equivalent under ∼, they are
also permutations of each other. Let𝑤 ∈ Σ∗

be a concurrent program run, and let 𝑒, 𝑓 ∈ Events𝑤 be

two events occurring at indices 𝑖 and 𝑗 (with 𝑖 < 𝑗). We say that 𝑒 and 𝑓 in𝑤 are causally ordered
under ∼ if for every𝑤 ′ ∼ 𝑤 , 𝑒 and 𝑓 appear in the same order as they do in𝑤 . If 𝑒 and 𝑓 are not

causally ordered under an equivalence ∼, we say that they are causally concurrent under ∼.

The following are the key algorithmic questions we investigate in this paper.

Problem 3.1 (Checking Causal Concurrency Between Events). Let ∼ be an equivalence relation

over Σ∗
. Given a program run 𝑤 ∈ Σ∗

, and two events 𝑒, 𝑓 ∈ Events𝑤 , the problem of checking

causal concurrency between events asks if 𝑒 and 𝑓 are causally concurrent under ∼.

In the context of many applications in testing and verification of concurrent programs, one often

asks the following more coarse grained question.

Problem 3.2 (Checking Causal Concurrency Between Symbols). Let ∼ be an equivalence relation

over Σ∗
. Given a program run𝑤 ∈ Σ∗

, and two symbols (or letters) 𝑐, 𝑑 ∈ Σ, the problem of checking

causal concurrency between symbols (or letters) asks to determine if there are events 𝑒, 𝑓 ∈ Events𝑤
such that𝑤 [𝑒] = 𝑐 ,𝑤 [𝑓] = 𝑑 and 𝑒 and 𝑓 are causally concurrent under ∼.

If one has an oracle for deciding causal concurrency between symbols, then one can use it to check

causal concurrency between events. In particular, assume 𝑐 = 𝑤 [𝑒] and 𝑑 = 𝑤 [𝑓] and consider the

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

8 Azadeh Farzan and Umang Mathur

alphabet Δ = Σ ⊎ {𝑐⋄1 , 𝑑⋄2 }, where 𝑐⋄1 and 𝑑⋄2
are distinct marked copies of the letters 𝑐, 𝑑 ∈ Σ.

Consider the string𝑤 ′ ∈ Δ∗
with |𝑤 ′ | = |𝑤 | such that𝑤 ′ [𝑔] = 𝑤 [𝑔] for every 𝑔 ∉ {𝑒, 𝑓 },𝑤 [𝑒] = 𝑐⋄1

and𝑤 [𝑓] = 𝑑⋄2
. Then, causal concurrency (respectively orderedness) of symbols 𝑐⋄1 and 𝑑⋄2

under

∼′
implies the causal concurrency (respectively orderedness) of events 𝑒 and 𝑓 under ∼, where the

equivalence ∼′
is the same as ∼, modulo renaming letters 𝑐⋄1 and 𝑑⋄2

to 𝑐 and 𝑑 respectively.

3.2 Computational Hardness in Checking Concurrency
For the case of trace equivalence, more specifically under≡M , causal concurrency can be determined

in a constant space streaming fashion. This result is somewhat known amongst the experts in the

field, but it does not appear in the following specific way anywhere in the literature.

Proposition 3.1 (Causal concurrency for trace equivalence). Given an input𝑤 ∈ Σ∗
and symbols

𝑐, 𝑑 ∈ Σ, the causal concurrency between 𝑐 and 𝑑 under ≡M can be determined using a single pass

constant space streaming algorithm.

In Section 5, we give a constructive proof to this lemma by presenting a constant space monitoring

algorithm. Next, we show that the same is not achievable for the case of reads-from equivalence —

we show that any algorithm for checking causal ordering (for the semantic notion of equivalence

≡rf) must use linear space in a streaming setting.

Theorem 3.1 (Linear space hardness). Any streaming algorithm that checks the causal concurrency

of a pair of symbols under ≡rf in a streaming fashion uses linear space, even for program runs

containing just 2 threads and 6 variables.

The key idea behind the proof of Theorem 3.1 is to exploit and generalize the intricate pattern in

the runs in Fig. 1. The idea is that determining if two specific events are causally concurret in such

a pattern, relies on successively inferring the concurrency status of linearly many pairs of events,

placed arbitrarily far away in the past and/or in the future, which is impossible for a one pass

streaming algorithm that only uses sub-linear space. The formal proof is presented in Appendix A.1.

In fact, we use similar ideas as in the proof of the above statement to also establish a lower bound

on the time-space tradeoff for the problem of determining causal concurrency, even when we do

not bound the number of passes; formal proof is deferred to Appendix A.1:

Theorem 3.2 (Quadratic time space lower bound). For any algorithm (streaming or not) that

checks if a pair of symbols are causally concurrent under ≡rf in 𝑆 (𝑛) space and 𝑇 (𝑛) time on an

input run of length 𝑛, we must have 𝑆 (𝑛) ·𝑇 (𝑛) ∈ Ω(𝑛2).

The linear lower bound in Theorem 3.1 establishes non-regularity of any monitor for causal

concurrency of symbols. We can further refine this result and show that the problem of determining

causal concurrency of symbols is also not context-free. We establish the following result by invoking

a pumping lemma argument for context free languages on sets of runs that observe intricate patterns

akin to the one in Fig. 1.

Theorem 3.3 (Non Context-freeness). Let 𝑐, 𝑑 ∈ Σ. There exists no nondeterministic pushdown

automaton that accepts exactly the runs 𝑤 such that both 𝑐 and 𝑑 appear in 𝑤 and are causally

concurrent in it under ≡rf .

Finally, conditioned on the widely believed Strong Exponential Time Hypothesis (SETH) [Impagli-

azzo and Paturi 2001], we establish a quadratic time lower bound for Problems 3.1 and 3.2.

Theorem 3.4. Assume SETH. The problem of determining the causal concurrency of a pair of

events in𝑤 under ≡rf cannot be solved in time 𝑂 (|𝑤 |2−𝜖) for all 𝜖 > 0, even when𝑤 has 2 threads.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

Coarser Equivalences for Causal Concurrency 9

The formal proof of Theorem 3.4 is presented in Appendix A.3. It is established via a fine-grained

reduction from the Orthogonal Vector Conjecture, which also admits a quadratic lower bound under

SETH [Williams 2005]. The input to the Orthogonal Vectors (OV) problem is a pair of sequences

𝐴, 𝐵 ⊆ {0, 1}𝑑 of 𝑑-dimensional vectors, each of length 𝑛 (i.e., |𝐴| = |𝐵 | = 𝑛), and the output is YES

iff there are two vectors 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵 such that their inner product is 0 (i.e., 𝑎 · 𝑏 = 0). The OV

hypothesis states that for every 𝜖 > 0, there is no algorithm that solves the OV problem (with input

instances of length 𝑛 and dimension 𝑑 , with 𝑑 ∈ Ω(log𝑛)) in 𝑂 (𝑛2−𝜖 poly(𝑑)) time.

3.3 Upper Bounds for Checking Concurrency
In this section, we study the precise complexity of reasoning about concurrency under ≡rf and

establish time and space upper bounds. First, we observe that both Problems 3.1 and 3.2 can be

solved using an algorithm whose running time is a polynomial expression whose degree varies

with the number of threads:

Theorem 3.5 (Polynomial time algorithm). Let 𝑤 ∈ Σ be a run with |𝑤 | = 𝑛 and let 𝑒 and 𝑓 be

two events in𝑤 . The problem of determining if 𝑒 and 𝑓 are causally concurrent under ≡rf can be

solved in time 𝑂 (|T | · 𝑛 | T |+1). Similarly, given 𝑐, 𝑑 ∈ Σ, the problem of determining if 𝑐 and 𝑑 are

causally concurrent under ≡rf can be solved in time 𝑂 (|T | · 𝑛 | T |+2).

The proof (see Appendix A.4) is based on constructing a ‘frontier graph’ [Gibbons and Korach

1994], whose vertices represent subsets of Events𝑤 which are downward closed with respect to po𝑤
and rf𝑤 , while edges represent valid extensions obtained by adding single events to the subsets.

The problem can also be solved using a linearly bounded Turing machine, which also implies that

the language of runs that exhibit concurrency of two given events is a context sensitive language.

Theorem 3.6 (Linear Space Upper Bound). Let 𝑤 ∈ Σ be a run with |𝑤 | = 𝑛 and let 𝑒 and 𝑓 be

two events in𝑤 . The problem of determining if 𝑒 and 𝑓 are causally concurrent under ≡rf can be

solved in deterministic space 𝑂 (𝑛). Similarly, given 𝑐, 𝑑 ∈ Σ, the problem of determining if 𝑐 and 𝑑

are causally concurrent under ≡rf can be solved in time deterministic space 𝑂 (𝑛).

We present the formal proof of Theorem 3.6 in Appendix A.5. It operates by successively generating

permutations of the given run and checking if they are equivalent to the input run and also invert

the order of the given events, all in deterministic linear space.

4 GRAIN COMMUTATIVITY
In this section, we present a new stronger and more syntactic definition of equivalence for concur-

rent runs that can overcome the hardness results previously discussed. We build on the theory of

traces, where equivalence is defined based on a commutativity relation on the alphabet of program

actions. The new equivalence relation is defined based on an extended commutativity relation

that additionally allows commutating some pairs of words over the same underlying alphabet, and

strictly weakens trace equivalence. First, let us briefly discuss that unchecked generalization in this

direction can very quickly result in hardness.

Theorem 4.1. Let Σ = {𝑎, 𝑏, 𝑐} and let I = {(𝑎, 𝑏𝑐), (𝑏𝑐, 𝑎), (𝑏, 𝑐), (𝑐, 𝑏)}. There exists no constant
space monitor that given an input word𝑤 ∈ Σ∗

can decide whether the first occurrence of 𝑎 and

the last occurrence of 𝑐 in𝑤 are ordered.

The idea of the proof is to focus on words of the form 𝑎𝑏𝑛𝑐𝑚 , and a causal concurrency query that

involves the 𝑎 and the last occurrence of 𝑐 . It can be argued that the two are causally concurrent if

and only if 𝑛 ≥ 𝑚. A detailed proof is presented in Appendix B.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

10 Azadeh Farzan and Umang Mathur

Note that here, I is a generalization of commutativity relation in trace equivalence (IM) by what

seems to be the smallest increment to a classic commutativity relation over letters: the commutativity

of one word of length 2 (the shortest possible word that is not a letter) against one single letter.

Yet, we immediately loose the constant-space checkability of concurrency/orderedness of pairs of

events. Therefore, to maintain the property of constant-space checkability, one has to be careful

with the generalization of IM .

4.1 Partially-Commutative Grain Monoids
We define an equivalence relation based on commutativity of words.

Definition 4.1 (Grains). A grain is simply a non-empty word in Σ∗
.

For a grain 𝑔, let letters(𝑔) be the set of letters (from Σ) that appear in 𝑔. We can define a partially

commutative monoid in the same style as trace monoids [Mazurkiewicz 1987] as follows:

Definition 4.2 (Grain Monoids). Given a trace monoid (Σ, I), a set of grains𝐺 induces the (partially

commutative) grain monoid (Σ𝐺 ∪ Σ, Î𝐺) where Σ𝐺 = {𝑎𝑔 | 𝑔 ∈ 𝐺} and

Î𝐺 = I ∪ I𝐺 ∪ {(𝑎, 𝑎𝑔), (𝑎𝑔, 𝑎) | 𝑎 ∈ Σ ∧ 𝑎𝑔 ∈ Σ𝐺 ∧ {𝑎} × letters(𝑔) ⊆ I}
∪ {(𝑎𝑔, 𝑎𝑔′), (𝑎𝑔′ , 𝑎𝑔) | 𝑎𝑔, 𝑎𝑔′ ∈ Σ𝐺 ∧ letters(𝑔) × letters(𝑔′) ⊆ I}

where I𝐺 ⊆ Σ𝐺 × Σ𝐺 , the grain commutativity relation, is an arbitrary symmetric independence

relation defined on the grains.

If 𝐺 = Σ and I𝐺 = ∅, then the induced grain monoid coincides with the trace monoid (Σ, I).
Otherwise, it can be viewed as a classic trace monoid on a new alphabet Σ𝐺 ∪ Σ. For this reason, it
induces an equivalence relation ≡ Î𝐺 on the set of words in (Σ𝐺 ∪ Σ)∗.

Recall that IM is defined in the context of the alphabet Σ to be sound, precisely in the sense that

the induced ≡M preserves rf-equivalence. We need to determine when ≡𝐺 is considered sound.

Definition 4.3 (Strict Soundness). We call a grain commutativity relation I𝐺 strictly sound if,

(𝑔,𝑔′) ∈ I𝐺 iff for all 𝛼, 𝛽 ∈ Σ∗
, we have 𝛼𝑔𝑔′𝛽 ≡rf 𝛼𝑔

′𝑔𝛽 .

It is straightforward to see that if we let 𝐺 = Σ, then the independence relation that defines trace

equivalence is strictly sound according to this definition. The less straightforward fact is that trace

equivalence defines the largest such sound relation. To be precise,

Proposition 4.1. If 𝑔 and 𝑔′ strictly soundly commute, then 𝑔𝑔′ ≡M 𝑔′𝑔.

On the one hand, strict soundness seems reasonable because it decouples commutativity from its

context. On the other hand, it makes the grains seem pointless in the sense that they do not offer

any additional commutativity compared to classical trace monoids. The motivation behind forcing

the soundness to be independent of the context (i.e. the choice of 𝛼 and 𝛽 in Definition 4.3) is that

as one swaps two commutating grains, the context may change, and it would complicate reasoning

substantially if the commutativity status of two other grains were to change as a result. In [Sassone

et al. 1993], a generalized version of trace monoids are formulated that account for context. These

have a sophisticated set of coherence and consistency conditions and have not been studied in any

algorithmic contexts beyond being defined.

Fundamentally, we would like a commutativity relation that is sound in the sense that it maintains

rf-equivalence and defines an equivalence class in which the commutativity relation does not

change from one member to another to keep things simple for formulating algorithms.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

Coarser Equivalences for Causal Concurrency 11

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="7ilgb79VgVUep8OqTP2a7HYPjm0=">AAAB/nicbZDLSgMxFIZP6q3WW9Wlm2ARXJUZKeqy4MZlxd6gHUomzbShmcyQZIQyFHwBt/oG7sStr+IL+Bxm2lnY1h8CP985h3Py+7Hg2jjONypsbG5t7xR3S3v7B4dH5eOTto4SRVmLRiJSXZ9oJrhkLcONYN1YMRL6gnX8yV1W7zwxpXkkm2YaMy8kI8kDTomx6LE5cAflilN15sLrxs1NBXI1BuWf/jCiScikoYJo3XOd2HgpUYZTwWalfqJZTOiEjFjPWklCpr10fuoMX1gyxEGk7JMGz+nfiZSEWk9D33aGxIz1ai2D/9V6iQluvZTLODFM0sWiIBHYRDj7Nx5yxagRU2sIVdzeiumYKEKNTWdpS4YtnNlg3NUY1k37qupeV2sPtUq9lkdUhDM4h0tw4QbqcA8NaAGFEbzAK7yhZ/SOPtDnorWA8plTWBL6+gUlepZF</latexit>

T1
<latexit sha1_base64="u4lrfWuqNwm22Igyc0GM3dvstbo=">AAAB/nicbZDLSgMxFIbP1Futt6pLN8EiuCozpajLghuXFXuDdiiZNNOGJpkhyQhlKPgCbvUN3IlbX8UX8DnMtLPQ1h8CP985h3PyBzFn2rjul1PY2Nza3inulvb2Dw6PyscnHR0litA2iXikegHWlDNJ24YZTnuxolgEnHaD6W1W7z5SpVkkW2YWU1/gsWQhI9hY9NAa1oblilt1F0LrxstNBXI1h+XvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvrcSCaj9dnDpHF5aMUBgp+6RBC/p7IsVC65kIbKfAZqJXaxn8r9ZPTHjjp0zGiaGSLBeFCUcmQtm/0YgpSgyfWYOJYvZWRCZYYWJsOn+2ZNjCuQ3GW41h3XRqVe+qWr+vVxr1PKIinME5XIIH19CAO2hCGwiM4Rle4NV5ct6cd+dj2Vpw8plT+CPn8wcnEpZG</latexit>

T2

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x) <latexit sha1_base64="rlgp+U8RW3HDbUs4fdgSN8GkKpE=">AAACZHicdVHdatRAGJ1N/amxan/wSpDBINSbkGTjtr0QKt4IelHRbQubsEwmk+zQyUyY+WJdwjyCt/psvoDP4WS7oi36wcDhnPPB+c4UreAGoujHyNu4dfvO3c17/v2tBw8fbe/snhrVacqmVAmlzwtimOCSTYGDYOetZqQpBDsrLt4M+tlnpg1X8hMsW5Y3pJa84pSAoz7W82S+HURhOhmPxwmOwmjy8vDoaADpOD1IcRxGqwnQek7mO6N3Walo1zAJVBBjZnHUQt4TDZwKZv2sM6wl9ILUbOagJA0zeb/KavFzx5S4Uto9CXjF/r3Rk8aYZVM4Z0NgYW5qA/lPreiMabVSlbmRAKrDvOey7YBJehWg6gQGhYdCcMk1oyCWDhCqubsB0wXRhIKrzc+AfYFLXsLiVRomXPp+JtklVU1DZNln7nqmwfbZkIcS0b+29rpDEFnbWZLP8j+m93beB7HdD5IX1tX/u2P8f3CahPEkTD+kwXG6/ohN9AQ9Q/soRgfoGL1FJ2iKKKrRV/QNfR/99La8Pe/xldUbrXf20LXxnv4C6Y26Qg==</latexit>g2

<latexit sha1_base64="KtTSqZFe/Bg8Zc7sete6sWmpe5Y=">AAACZHicdVHdatRAGJ1N/amxan/wSpDBINSbkGTjtr0QKt4IelHRbQubsEwmk+zQyUyY+WJdwjyCt/psvoDP4WS7oi36wcDhnPPB+c4UreAGoujHyNu4dfvO3c17/v2tBw8fbe/snhrVacqmVAmlzwtimOCSTYGDYOetZqQpBDsrLt4M+tlnpg1X8hMsW5Y3pJa84pSAoz7W83i+HURhOhmPxwmOwmjy8vDoaADpOD1IcRxGqwnQek7mO6N3Walo1zAJVBBjZnHUQt4TDZwKZv2sM6wl9ILUbOagJA0zeb/KavFzx5S4Uto9CXjF/r3Rk8aYZVM4Z0NgYW5qA/lPreiMabVSlbmRAKrDvOey7YBJehWg6gQGhYdCcMk1oyCWDhCqubsB0wXRhIKrzc+AfYFLXsLiVRomXPp+JtklVU1DZNln7nqmwfbZkIcS0b+29rpDEFnbWZLP8j+m93beB7HdD5IX1tX/u2P8f3CahPEkTD+kwXG6/ohN9AQ9Q/soRgfoGL1FJ2iKKKrRV/QNfR/99La8Pe/xldUbrXf20LXxnv4C54+6QQ==</latexit>g1

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

Example 4.1. Consider the program run on the right, with 2 threads. Two grains 𝑔1
and 𝑔2 have been marked. In isolation (as in if everything else from this run is ignored),

these two grains soundly commute. But, the run illustrates that in the presence of the

last r(𝑥), the two grains do not soundly commute, and therefore they do not strictly

soundly commute. Observe that the left context is irrelevant to the commutativity

status of these two grains. Only the right context can violate soundness. If unsoundness

is the result of the program order being broken, one would observe it by looking only

at the two grains. Therefore, any violations to soundness related to the context have

to be related to the reads-from relation. Specifically, a write event w belongs to a grain,

but there is at least one read event r, which reads from it (i.e., w = rf (r)), that does not
belong to the same grain. By formally disallowing any such bad right contexts for a pair of grains,

one can define a more permissive commutativity relation. □

Example 4.1 illustrates why we put the fault in the definition of strict soundness mainly with

the right context. To rule these scenarios out, one can restrict the right context from all possible

contexts to those that cannot adversarially affect the commutativity status of 𝑔 and 𝑔′.

Definition 4.4 (Sound Grain Commutativity). We call a grain commutativity relation I𝐺 sound
if for all 𝑔,𝑔′ ∈ 𝐺 , for all 𝑥 ∈ var(𝑔) ∩ var(𝑔′) where at least one w(𝑥) appears in 𝑔𝑔′, and for all

𝛼, 𝛽 ∈ Σ∗
such that 𝛽 |𝑥 ∈ 𝐿(w(𝑥)Σ∗), we have: (𝑔,𝑔′) ∈ I𝐺 ⇐⇒ 𝛼𝑔𝑔′𝛽 ≡rf 𝛼𝑔

′𝑔𝛽

Definition 4.4 strictly weakens Definition 4.3 by limiting the (right) contexts in which commuting

the actions must be sound. In other words, every strictly sound grain commutativity relation is

sound, but not all sound grain commutativity relations are strictly sound. In particular, if 𝑔 and 𝑔′

do not strictly soundly commute, it is fairly straightforward to construct a right context 𝛽 in which

they do not soundly commute.

Remark 2. Given a run𝑤 and another run 𝑢 that can be acquired from𝑤 through a sequence of

swaps defined by a strictly sound commutativity relation Î𝐺 (Definition 4.3), we have𝑤 ≡rf 𝑣 . This

is not true for a sound commutativity relation (Definition 4.4).

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="7ilgb79VgVUep8OqTP2a7HYPjm0=">AAAB/nicbZDLSgMxFIZP6q3WW9Wlm2ARXJUZKeqy4MZlxd6gHUomzbShmcyQZIQyFHwBt/oG7sStr+IL+Bxm2lnY1h8CP985h3Py+7Hg2jjONypsbG5t7xR3S3v7B4dH5eOTto4SRVmLRiJSXZ9oJrhkLcONYN1YMRL6gnX8yV1W7zwxpXkkm2YaMy8kI8kDTomx6LE5cAflilN15sLrxs1NBXI1BuWf/jCiScikoYJo3XOd2HgpUYZTwWalfqJZTOiEjFjPWklCpr10fuoMX1gyxEGk7JMGz+nfiZSEWk9D33aGxIz1ai2D/9V6iQluvZTLODFM0sWiIBHYRDj7Nx5yxagRU2sIVdzeiumYKEKNTWdpS4YtnNlg3NUY1k37qupeV2sPtUq9lkdUhDM4h0tw4QbqcA8NaAGFEbzAK7yhZ/SOPtDnorWA8plTWBL6+gUlepZF</latexit>

T1
<latexit sha1_base64="u4lrfWuqNwm22Igyc0GM3dvstbo=">AAAB/nicbZDLSgMxFIbP1Futt6pLN8EiuCozpajLghuXFXuDdiiZNNOGJpkhyQhlKPgCbvUN3IlbX8UX8DnMtLPQ1h8CP985h3PyBzFn2rjul1PY2Nza3inulvb2Dw6PyscnHR0litA2iXikegHWlDNJ24YZTnuxolgEnHaD6W1W7z5SpVkkW2YWU1/gsWQhI9hY9NAa1oblilt1F0LrxstNBXI1h+XvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvrcSCaj9dnDpHF5aMUBgp+6RBC/p7IsVC65kIbKfAZqJXaxn8r9ZPTHjjp0zGiaGSLBeFCUcmQtm/0YgpSgyfWYOJYvZWRCZYYWJsOn+2ZNjCuQ3GW41h3XRqVe+qWr+vVxr1PKIinME5XIIH19CAO2hCGwiM4Rle4NV5ct6cd+dj2Vpw8plT+CPn8wcnEpZG</latexit>

T2

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x) <latexit sha1_base64="rlgp+U8RW3HDbUs4fdgSN8GkKpE=">AAACZHicdVHdatRAGJ1N/amxan/wSpDBINSbkGTjtr0QKt4IelHRbQubsEwmk+zQyUyY+WJdwjyCt/psvoDP4WS7oi36wcDhnPPB+c4UreAGoujHyNu4dfvO3c17/v2tBw8fbe/snhrVacqmVAmlzwtimOCSTYGDYOetZqQpBDsrLt4M+tlnpg1X8hMsW5Y3pJa84pSAoz7W82S+HURhOhmPxwmOwmjy8vDoaADpOD1IcRxGqwnQek7mO6N3Walo1zAJVBBjZnHUQt4TDZwKZv2sM6wl9ILUbOagJA0zeb/KavFzx5S4Uto9CXjF/r3Rk8aYZVM4Z0NgYW5qA/lPreiMabVSlbmRAKrDvOey7YBJehWg6gQGhYdCcMk1oyCWDhCqubsB0wXRhIKrzc+AfYFLXsLiVRomXPp+JtklVU1DZNln7nqmwfbZkIcS0b+29rpDEFnbWZLP8j+m93beB7HdD5IX1tX/u2P8f3CahPEkTD+kwXG6/ohN9AQ9Q/soRgfoGL1FJ2iKKKrRV/QNfR/99La8Pe/xldUbrXf20LXxnv4C6Y26Qg==</latexit>g2

<latexit sha1_base64="KtTSqZFe/Bg8Zc7sete6sWmpe5Y=">AAACZHicdVHdatRAGJ1N/amxan/wSpDBINSbkGTjtr0QKt4IelHRbQubsEwmk+zQyUyY+WJdwjyCt/psvoDP4WS7oi36wcDhnPPB+c4UreAGoujHyNu4dfvO3c17/v2tBw8fbe/snhrVacqmVAmlzwtimOCSTYGDYOetZqQpBDsrLt4M+tlnpg1X8hMsW5Y3pJa84pSAoz7W83i+HURhOhmPxwmOwmjy8vDoaADpOD1IcRxGqwnQek7mO6N3Walo1zAJVBBjZnHUQt4TDZwKZv2sM6wl9ILUbOagJA0zeb/KavFzx5S4Uto9CXjF/r3Rk8aYZVM4Z0NgYW5qA/lPreiMabVSlbmRAKrDvOey7YBJehWg6gQGhYdCcMk1oyCWDhCqubsB0wXRhIKrzc+AfYFLXsLiVRomXPp+JtklVU1DZNln7nqmwfbZkIcS0b+29rpDEFnbWZLP8j+m93beB7HdD5IX1tX/u2P8f3CahPEkTD+kwXG6/ohN9AQ9Q/soRgfoGL1FJ2iKKKrRV/QNfR/99La8Pe/xldUbrXf20LXxnv4C54+6QQ==</latexit>g1

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

Example 4.2. Recall the run illustrated in Example 4.1. According to Definition 4.4 and

as discussed in Example 4.1, the two grains 𝑔1 and 𝑔2 soundly commute. But, clearly,

the equivalence class of the run from Example 4.1 up to this commutativity relation

is not sound. In contrast, the same two grains appear in the run illustrated on the right

and the equivalence runs inferred by their commutativity are sound. The difference

is that the run on the right does not violate the condition about right contexts (from

Definition 4.4) but the run from Example 4.1 does. □

It feels like we took one step forward by weakening the definition of soundness and

then one step backward since it is not guaranteed to provide soundness in all contexts.

There are, however, two key observations that make this definition of soundness a good fit in the

context of our main goal, that is checking the status of concurrency of two given events. First, we

are solely interested in the set of words equivalent to a single reference program run. Second, we

may not have control over the choice of right contexts, but we do have control over the choice of

grains and the commutativity relation I𝐺 . We can limit these choices based on the input run so that

the equivalence class of the input run induced by the corresponding grain monoid is indeed sound.

Therefore, we next focus on the equivalence class [𝑤]𝐺 of a given word𝑤 and the choices for 𝐺

(the set of grains) and the grain commutativity relation I𝐺 that make [𝑤]𝐺 sound.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

12 Azadeh Farzan and Umang Mathur

4.2 Sound Grain Equivalence
First, observe that the same exact grain (which is a word) can appear several times as a subword in

a particular word. In our formalism so far, we had no need of distinguishing the multiple instances,

but since their right contexts may differ, we must do so now to attach different commutativity

attributes to them.

Definition 4.5. A valid set of grains for a run 𝑤 ∈ Σ∗
is set of indexed words of the form 𝑔@𝑖

where 𝑔 is a contiguous subword of𝑤 that appears at position 𝑖 and no two grains overlap in𝑤 .

Consider a valid set of (indexed) grains 𝐺 in a program run𝑤 . Since the indexed set 𝐺 may only

be a valid set for the run 𝑤 in consideration, we cannot cleanly define the equivalence induced

by𝐺 on the set of all runs Σ∗
. However, we can still precisely define the class of runs that can be

inferred by successively swapping adjacent grains from 𝐺 . For ease of presentation, we will abuse

the notation [𝑤]𝐺 to denote this set, and will take the liberty to call it the equivalence class of𝑤 ,

when 𝐺 is known from the context.

We can formalize [𝑤]𝐺 as follows. Define ℎ𝐺 : Σ∗ → (Σ𝐺 ∪ Σ)∗ as the homomorphism that maps

each indexed grain 𝑔@𝑖 to the corresponding letter 𝑎𝑔 ∈ Σ𝐺 and each letter in Σ, that does not
belong to a grain, to itself. Let ℎ−1

𝐺
be the inverse homomorphism that replaces letters in Σ𝐺 with

the corresponding grain words. Then,

𝑢 ∈ [𝑤]𝐺 ⇐⇒ ∃𝑢′ ∈ (Σ𝐺 ∪ Σ)∗ :
(
𝑢 = ℎ−1

𝐺 (𝑢′) ∧ 𝑢′ ≡̂I𝐺 ℎ𝐺 (𝑤)
)

In short, the set of words that are considered equivalent to 𝑤 are determined by those that are

equivalent to its corresponding word in the grain monoid, for the specific choice of valid grains 𝐺 .

In prose, we say 𝑢 is equivalent to𝑤 when 𝑢 ∈ [𝑤]𝐺 for some valid choice of grains 𝐺 .

We lift the commutativity relation I𝐺 to relate indexed words of the form 𝑔@𝑖 as well. This will

enable us to say that (𝑔@𝑖, 𝑔′@ 𝑗) ∈ I𝐺 while (𝑔@𝑘,𝑔′@ 𝑗) ∉ I𝐺 . Note that corresponding grain

monoid is defined as before, each new grain 𝑔@𝑖 is mapped to a designated letter 𝑎𝑔@𝑖 .

Definition 4.6. For a word 𝑤 and a set of valid grains 𝐺 in 𝑤 , I𝐺 is sound if [𝑤]𝐺 is sound (i.e.

[𝑤]𝐺 ⊆ [𝑤]rf).

Next we give necessary and sufficient conditions for soundness of I𝐺 . For an event 𝑒 = w(𝑥), let
reads(𝑒) denote all events 𝑒′ of the form r(𝑥) that read from 𝑒 . To lighten the notation whenever

possible, we may refer to a grain only by its word 𝑔 whenever the position is not of importance, or

implied from the context. We only specifically mention the position 𝑔@𝑖 when it really matters.

Define op(𝑔, 𝑥), for a grain 𝑔 to be the set of operations ({r, w}) of variable 𝑥 that appear in 𝑔.

Theorem 4.2. In the context of a word𝑤 and a valid set of grains 𝐺 , a commutativity relation I𝐺
is sound iff for all (𝑔,𝑔′) ∈ I𝐺 , 𝑔𝑔′ ≡rf 𝑔

′𝑔 and for all 𝑥 ∈ var(𝑔) ∩ var(𝑔′) the following holds:(
op(𝑔, 𝑥) ∪ op(𝑔′, 𝑥) = {r}

)
∨
(
∀𝑒, 𝑓 · (𝑒 = w(𝑥), 𝑓 = r(𝑥), 𝑓 = rf𝑤 (𝑒)) =⇒ (𝑒 ∈ 𝑔 ⇐⇒ 𝑓 ∈ 𝑔)

)
It is clear that if 𝑔𝑔′ ≡rf 𝑔

′𝑔 does not hold, the resulting commutativity relation is unsound. Example

4.1 captures the idea of why the violation of the additional conditions also leads to unsoundness.

Intuitively, these conditions express that if the grains share a variable and at least one writes to

that shared variable, then once a write action is included in one grain then all reads that read from

it also must be included in that grain. The proof of the other direction is a tedious case analysis

and given in Appendix B

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

Coarser Equivalences for Causal Concurrency 13

<latexit sha1_base64="7ilgb79VgVUep8OqTP2a7HYPjm0=">AAAB/nicbZDLSgMxFIZP6q3WW9Wlm2ARXJUZKeqy4MZlxd6gHUomzbShmcyQZIQyFHwBt/oG7sStr+IL+Bxm2lnY1h8CP985h3Py+7Hg2jjONypsbG5t7xR3S3v7B4dH5eOTto4SRVmLRiJSXZ9oJrhkLcONYN1YMRL6gnX8yV1W7zwxpXkkm2YaMy8kI8kDTomx6LE5cAflilN15sLrxs1NBXI1BuWf/jCiScikoYJo3XOd2HgpUYZTwWalfqJZTOiEjFjPWklCpr10fuoMX1gyxEGk7JMGz+nfiZSEWk9D33aGxIz1ai2D/9V6iQluvZTLODFM0sWiIBHYRDj7Nx5yxagRU2sIVdzeiumYKEKNTWdpS4YtnNlg3NUY1k37qupeV2sPtUq9lkdUhDM4h0tw4QbqcA8NaAGFEbzAK7yhZ/SOPtDnorWA8plTWBL6+gUlepZF</latexit>

T1
<latexit sha1_base64="u4lrfWuqNwm22Igyc0GM3dvstbo=">AAAB/nicbZDLSgMxFIbP1Futt6pLN8EiuCozpajLghuXFXuDdiiZNNOGJpkhyQhlKPgCbvUN3IlbX8UX8DnMtLPQ1h8CP985h3PyBzFn2rjul1PY2Nza3inulvb2Dw6PyscnHR0litA2iXikegHWlDNJ24YZTnuxolgEnHaD6W1W7z5SpVkkW2YWU1/gsWQhI9hY9NAa1oblilt1F0LrxstNBXI1h+XvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvrcSCaj9dnDpHF5aMUBgp+6RBC/p7IsVC65kIbKfAZqJXaxn8r9ZPTHjjp0zGiaGSLBeFCUcmQtm/0YgpSgyfWYOJYvZWRCZYYWJsOn+2ZNjCuQ3GW41h3XRqVe+qWr+vVxr1PKIinME5XIIH19CAO2hCGwiM4Rle4NV5ct6cd+dj2Vpw8plT+CPn8wcnEpZG</latexit>

T2
<latexit sha1_base64="ixOAVLf0efHThglb3yO1hDmyh5E=">AAAB/nicbZDNSgMxFIXv1L9a/6ou3QSL4KrMaFGXBTcuK7a10A4lk2ba0CQzJBmhDAVfwK2+gTtx66v4Aj6HmXYWtvVA4PDde7k3J4g508Z1v53C2vrG5lZxu7Szu7d/UD48ausoUYS2SMQj1QmwppxJ2jLMcNqJFcUi4PQxGN9m9ccnqjSLZNNMYuoLPJQsZAQbix6a/ct+ueJW3ZnQqvFyU4FcjX75pzeISCKoNIRjrbueGxs/xcowwum01Es0jTEZ4yHtWiuxoNpPZ6dO0ZklAxRGyj5p0Iz+nUix0HoiAtspsBnp5VoG/6t1ExPe+CmTcWKoJPNFYcKRiVD2bzRgihLDJ9Zgopi9FZERVpgYm87ClgxbOLXBeMsxrJr2RdW7qtbua5V6LY+oCCdwCufgwTXU4Q4a0AICQ3iBV3hznp1358P5nLcWnHzmGBbkfP0CKKqWRw==</latexit>

T3

<latexit sha1_base64="F28r8q1TKnyEbuQg/HTDuF/U1Zk=">AAAB/nicbZDLSsNAFIZP6q3WW9Wlm8Ei1E1JKliXBTcuK9oLtKFMppN26GQSZiZCCQVfwK2+gTtx66v4Aj6HkzQL2/rDwM93zuGc+b2IM6Vt+9sqbGxube8Ud0t7+weHR+Xjk44KY0lom4Q8lD0PK8qZoG3NNKe9SFIceJx2veltWu8+UalYKB71LKJugMeC+YxgbdBD1bsclit2zc6E1o2Tmwrkag3LP4NRSOKACk04Vqrv2JF2Eyw1I5zOS4NY0QiTKR7TvrECB1S5SXbqHF0YMkJ+KM0TGmX070SCA6VmgWc6A6wnarWWwv9q/Vj7N27CRBRrKshikR9zpEOU/huNmKRE85kxmEhmbkVkgiUm2qSztCXFBs5NMM5qDOumU68517Wr+3ql2cgjKsIZnEMVHGhAE+6gBW0gMIYXeIU369l6tz6sz0VrwcpnTmFJ1tcv1vOWFA==</latexit>

(b)
<latexit sha1_base64="tHShRB9Gnje9gkma70C5RYN7LiE=">AAAB/nicbZDLSsNAFIZP6q3WW9Wlm8Ei1E1JKliXBTcuK9oLtKFMppN26GQSZiZCCQVfwK2+gTtx66v4Aj6HkzQL2/rDwM93zuGc+b2IM6Vt+9sqbGxube8Ud0t7+weHR+Xjk44KY0lom4Q8lD0PK8qZoG3NNKe9SFIceJx2veltWu8+UalYKB71LKJugMeC+YxgbdBDFV8OyxW7ZmdC68bJTQVytYbln8EoJHFAhSYcK9V37Ei7CZaaEU7npUGsaITJFI9p31iBA6rcJDt1ji4MGSE/lOYJjTL6dyLBgVKzwDOdAdYTtVpL4X+1fqz9GzdhIoo1FWSxyI850iFK/41GTFKi+cwYTCQztyIywRITbdJZ2pJiA+cmGGc1hnXTqdec69rVfb3SbOQRFeEMzqEKDjSgCXfQgjYQGMMLvMKb9Wy9Wx/W56K1YOUzp7Ak6+sX1VqWEw==</latexit>

(a)

<latexit sha1_base64="ZlKKMRJiiXbvBip87FGQeyESHjE=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+kkTXp6xu4aNQ5zAS/gVm/gTtx6Cy/gOexJZmESfyj4+aqKKn4vFFyDbX9buZXVtfWN/GZha3tnd6+4f9DUQaQoa9BABKrtEc0El6wBHARrh4oR3xOs5Y2v0n7rninNA3kLk5C5PhlKPuCUgEFuF9gjAMQPSfnptFcs2RV7KrxsnMyUUKZ6r/jT7Qc08pkEKojWHccOwY2JAk4FSwrdSLOQ0DEZso6xkvhMu/H06QSfGNLHg0CZkoCn9O9GTHytJ75nJn0CI73YS+F/vU4Eg0s35jKMgEk6OzSIBIYApwngPleMgpgYQ6ji5ldMR0QRCianuSspNjAxwTiLMSyb5lnFOa9Ub6qlWjWLKI+O0DEqIwddoBq6RnXUQBTdoRf0it6sZ+vd+rA+Z6M5K9s5RHOyvn4BsAObCA==</latexit>

w(z)

<latexit sha1_base64="ZlKKMRJiiXbvBip87FGQeyESHjE=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+kkTXp6xu4aNQ5zAS/gVm/gTtx6Cy/gOexJZmESfyj4+aqKKn4vFFyDbX9buZXVtfWN/GZha3tnd6+4f9DUQaQoa9BABKrtEc0El6wBHARrh4oR3xOs5Y2v0n7rninNA3kLk5C5PhlKPuCUgEFuF9gjAMQPSfnptFcs2RV7KrxsnMyUUKZ6r/jT7Qc08pkEKojWHccOwY2JAk4FSwrdSLOQ0DEZso6xkvhMu/H06QSfGNLHg0CZkoCn9O9GTHytJ75nJn0CI73YS+F/vU4Eg0s35jKMgEk6OzSIBIYApwngPleMgpgYQ6ji5ldMR0QRCianuSspNjAxwTiLMSyb5lnFOa9Ub6qlWjWLKI+O0DEqIwddoBq6RnXUQBTdoRf0it6sZ+vd+rA+Z6M5K9s5RHOyvn4BsAObCA==</latexit>

w(z)

<latexit sha1_base64="gqzYN2XBcopATOy3qyveOfo6LB8=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyLWkBfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN7BJGJuQIaS+5wSMMjtAXsEgESllaezfqlsV+2p8LJxclNGuRr90k9vENI4YBKoIFp3HTsCNyEKOBUsLfZizSJCx2TIusZKEjDtJtOnU3xqyAD7oTIlAU/p342EBFpPAs9MBgRGerGXwf963Rj8KzfhMoqBSTo75McCQ4izBPCAK0ZBTIwhVHHzK6YjoggFk9PclQwbmJpgnMUYlk3rvOpcVGu3tXK9lkdUQMfoBFWQgy5RHd2gBmoiiu7RC3pFb9az9W59WJ+z0RUr3zlCc7K+fgGn95sD</latexit>

r(z)

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="gqzYN2XBcopATOy3qyveOfo6LB8=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyLWkBfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN7BJGJuQIaS+5wSMMjtAXsEgESllaezfqlsV+2p8LJxclNGuRr90k9vENI4YBKoIFp3HTsCNyEKOBUsLfZizSJCx2TIusZKEjDtJtOnU3xqyAD7oTIlAU/p342EBFpPAs9MBgRGerGXwf963Rj8KzfhMoqBSTo75McCQ4izBPCAK0ZBTIwhVHHzK6YjoggFk9PclQwbmJpgnMUYlk3rvOpcVGu3tXK9lkdUQMfoBFWQgy5RHd2gBmoiiu7RC3pFb9az9W59WJ+z0RUr3zlCc7K+fgGn95sD</latexit>

r(z)

<latexit sha1_base64="7ilgb79VgVUep8OqTP2a7HYPjm0=">AAAB/nicbZDLSgMxFIZP6q3WW9Wlm2ARXJUZKeqy4MZlxd6gHUomzbShmcyQZIQyFHwBt/oG7sStr+IL+Bxm2lnY1h8CP985h3Py+7Hg2jjONypsbG5t7xR3S3v7B4dH5eOTto4SRVmLRiJSXZ9oJrhkLcONYN1YMRL6gnX8yV1W7zwxpXkkm2YaMy8kI8kDTomx6LE5cAflilN15sLrxs1NBXI1BuWf/jCiScikoYJo3XOd2HgpUYZTwWalfqJZTOiEjFjPWklCpr10fuoMX1gyxEGk7JMGz+nfiZSEWk9D33aGxIz1ai2D/9V6iQluvZTLODFM0sWiIBHYRDj7Nx5yxagRU2sIVdzeiumYKEKNTWdpS4YtnNlg3NUY1k37qupeV2sPtUq9lkdUhDM4h0tw4QbqcA8NaAGFEbzAK7yhZ/SOPtDnorWA8plTWBL6+gUlepZF</latexit>

T1
<latexit sha1_base64="u4lrfWuqNwm22Igyc0GM3dvstbo=">AAAB/nicbZDLSgMxFIbP1Futt6pLN8EiuCozpajLghuXFXuDdiiZNNOGJpkhyQhlKPgCbvUN3IlbX8UX8DnMtLPQ1h8CP985h3PyBzFn2rjul1PY2Nza3inulvb2Dw6PyscnHR0litA2iXikegHWlDNJ24YZTnuxolgEnHaD6W1W7z5SpVkkW2YWU1/gsWQhI9hY9NAa1oblilt1F0LrxstNBXI1h+XvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvrcSCaj9dnDpHF5aMUBgp+6RBC/p7IsVC65kIbKfAZqJXaxn8r9ZPTHjjp0zGiaGSLBeFCUcmQtm/0YgpSgyfWYOJYvZWRCZYYWJsOn+2ZNjCuQ3GW41h3XRqVe+qWr+vVxr1PKIinME5XIIH19CAO2hCGwiM4Rle4NV5ct6cd+dj2Vpw8plT+CPn8wcnEpZG</latexit>

T2
<latexit sha1_base64="ixOAVLf0efHThglb3yO1hDmyh5E=">AAAB/nicbZDNSgMxFIXv1L9a/6ou3QSL4KrMaFGXBTcuK7a10A4lk2ba0CQzJBmhDAVfwK2+gTtx66v4Aj6HmXYWtvVA4PDde7k3J4g508Z1v53C2vrG5lZxu7Szu7d/UD48ausoUYS2SMQj1QmwppxJ2jLMcNqJFcUi4PQxGN9m9ccnqjSLZNNMYuoLPJQsZAQbix6a/ct+ueJW3ZnQqvFyU4FcjX75pzeISCKoNIRjrbueGxs/xcowwum01Es0jTEZ4yHtWiuxoNpPZ6dO0ZklAxRGyj5p0Iz+nUix0HoiAtspsBnp5VoG/6t1ExPe+CmTcWKoJPNFYcKRiVD2bzRgihLDJ9Zgopi9FZERVpgYm87ClgxbOLXBeMsxrJr2RdW7qtbua5V6LY+oCCdwCufgwTXU4Q4a0AICQ3iBV3hznp1358P5nLcWnHzmGBbkfP0CKKqWRw==</latexit>

T3

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="ZlKKMRJiiXbvBip87FGQeyESHjE=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+kkTXp6xu4aNQ5zAS/gVm/gTtx6Cy/gOexJZmESfyj4+aqKKn4vFFyDbX9buZXVtfWN/GZha3tnd6+4f9DUQaQoa9BABKrtEc0El6wBHARrh4oR3xOs5Y2v0n7rninNA3kLk5C5PhlKPuCUgEFuF9gjAMQPSfnptFcs2RV7KrxsnMyUUKZ6r/jT7Qc08pkEKojWHccOwY2JAk4FSwrdSLOQ0DEZso6xkvhMu/H06QSfGNLHg0CZkoCn9O9GTHytJ75nJn0CI73YS+F/vU4Eg0s35jKMgEk6OzSIBIYApwngPleMgpgYQ6ji5ldMR0QRCianuSspNjAxwTiLMSyb5lnFOa9Ub6qlWjWLKI+O0DEqIwddoBq6RnXUQBTdoRf0it6sZ+vd+rA+Z6M5K9s5RHOyvn4BsAObCA==</latexit>

w(z)

<latexit sha1_base64="ZlKKMRJiiXbvBip87FGQeyESHjE=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+kkTXp6xu4aNQ5zAS/gVm/gTtx6Cy/gOexJZmESfyj4+aqKKn4vFFyDbX9buZXVtfWN/GZha3tnd6+4f9DUQaQoa9BABKrtEc0El6wBHARrh4oR3xOs5Y2v0n7rninNA3kLk5C5PhlKPuCUgEFuF9gjAMQPSfnptFcs2RV7KrxsnMyUUKZ6r/jT7Qc08pkEKojWHccOwY2JAk4FSwrdSLOQ0DEZso6xkvhMu/H06QSfGNLHg0CZkoCn9O9GTHytJ75nJn0CI73YS+F/vU4Eg0s35jKMgEk6OzSIBIYApwngPleMgpgYQ6ji5ldMR0QRCianuSspNjAxwTiLMSyb5lnFOa9Ub6qlWjWLKI+O0DEqIwddoBq6RnXUQBTdoRf0it6sZ+vd+rA+Z6M5K9s5RHOyvn4BsAObCA==</latexit>

w(z)

<latexit sha1_base64="gqzYN2XBcopATOy3qyveOfo6LB8=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyLWkBfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN7BJGJuQIaS+5wSMMjtAXsEgESllaezfqlsV+2p8LJxclNGuRr90k9vENI4YBKoIFp3HTsCNyEKOBUsLfZizSJCx2TIusZKEjDtJtOnU3xqyAD7oTIlAU/p342EBFpPAs9MBgRGerGXwf963Rj8KzfhMoqBSTo75McCQ4izBPCAK0ZBTIwhVHHzK6YjoggFk9PclQwbmJpgnMUYlk3rvOpcVGu3tXK9lkdUQMfoBFWQgy5RHd2gBmoiiu7RC3pFb9az9W59WJ+z0RUr3zlCc7K+fgGn95sD</latexit>

r(z)

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="gqzYN2XBcopATOy3qyveOfo6LB8=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyLWkBfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN7BJGJuQIaS+5wSMMjtAXsEgESllaezfqlsV+2p8LJxclNGuRr90k9vENI4YBKoIFp3HTsCNyEKOBUsLfZizSJCx2TIusZKEjDtJtOnU3xqyAD7oTIlAU/p342EBFpPAs9MBgRGerGXwf963Rj8KzfhMoqBSTo75McCQ4izBPCAK0ZBTIwhVHHzK6YjoggFk9PclQwbmJpgnMUYlk3rvOpcVGu3tXK9lkdUQMfoBFWQgy5RHd2gBmoiiu7RC3pFb9az9W59WJ+z0RUr3zlCc7K+fgGn95sD</latexit>

r(z)

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="7ilgb79VgVUep8OqTP2a7HYPjm0=">AAAB/nicbZDLSgMxFIZP6q3WW9Wlm2ARXJUZKeqy4MZlxd6gHUomzbShmcyQZIQyFHwBt/oG7sStr+IL+Bxm2lnY1h8CP985h3Py+7Hg2jjONypsbG5t7xR3S3v7B4dH5eOTto4SRVmLRiJSXZ9oJrhkLcONYN1YMRL6gnX8yV1W7zwxpXkkm2YaMy8kI8kDTomx6LE5cAflilN15sLrxs1NBXI1BuWf/jCiScikoYJo3XOd2HgpUYZTwWalfqJZTOiEjFjPWklCpr10fuoMX1gyxEGk7JMGz+nfiZSEWk9D33aGxIz1ai2D/9V6iQluvZTLODFM0sWiIBHYRDj7Nx5yxagRU2sIVdzeiumYKEKNTWdpS4YtnNlg3NUY1k37qupeV2sPtUq9lkdUhDM4h0tw4QbqcA8NaAGFEbzAK7yhZ/SOPtDnorWA8plTWBL6+gUlepZF</latexit>

T1
<latexit sha1_base64="u4lrfWuqNwm22Igyc0GM3dvstbo=">AAAB/nicbZDLSgMxFIbP1Futt6pLN8EiuCozpajLghuXFXuDdiiZNNOGJpkhyQhlKPgCbvUN3IlbX8UX8DnMtLPQ1h8CP985h3PyBzFn2rjul1PY2Nza3inulvb2Dw6PyscnHR0litA2iXikegHWlDNJ24YZTnuxolgEnHaD6W1W7z5SpVkkW2YWU1/gsWQhI9hY9NAa1oblilt1F0LrxstNBXI1h+XvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvrcSCaj9dnDpHF5aMUBgp+6RBC/p7IsVC65kIbKfAZqJXaxn8r9ZPTHjjp0zGiaGSLBeFCUcmQtm/0YgpSgyfWYOJYvZWRCZYYWJsOn+2ZNjCuQ3GW41h3XRqVe+qWr+vVxr1PKIinME5XIIH19CAO2hCGwiM4Rle4NV5ct6cd+dj2Vpw8plT+CPn8wcnEpZG</latexit>

T2
<latexit sha1_base64="ixOAVLf0efHThglb3yO1hDmyh5E=">AAAB/nicbZDNSgMxFIXv1L9a/6ou3QSL4KrMaFGXBTcuK7a10A4lk2ba0CQzJBmhDAVfwK2+gTtx66v4Aj6HmXYWtvVA4PDde7k3J4g508Z1v53C2vrG5lZxu7Szu7d/UD48ausoUYS2SMQj1QmwppxJ2jLMcNqJFcUi4PQxGN9m9ccnqjSLZNNMYuoLPJQsZAQbix6a/ct+ueJW3ZnQqvFyU4FcjX75pzeISCKoNIRjrbueGxs/xcowwum01Es0jTEZ4yHtWiuxoNpPZ6dO0ZklAxRGyj5p0Iz+nUix0HoiAtspsBnp5VoG/6t1ExPe+CmTcWKoJPNFYcKRiVD2bzRgihLDJ9Zgopi9FZERVpgYm87ClgxbOLXBeMsxrJr2RdW7qtbua5V6LY+oCCdwCufgwTXU4Q4a0AICQ3iBV3hznp1358P5nLcWnHzmGBbkfP0CKKqWRw==</latexit>

T3

<latexit sha1_base64="ZlKKMRJiiXbvBip87FGQeyESHjE=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+kkTXp6xu4aNQ5zAS/gVm/gTtx6Cy/gOexJZmESfyj4+aqKKn4vFFyDbX9buZXVtfWN/GZha3tnd6+4f9DUQaQoa9BABKrtEc0El6wBHARrh4oR3xOs5Y2v0n7rninNA3kLk5C5PhlKPuCUgEFuF9gjAMQPSfnptFcs2RV7KrxsnMyUUKZ6r/jT7Qc08pkEKojWHccOwY2JAk4FSwrdSLOQ0DEZso6xkvhMu/H06QSfGNLHg0CZkoCn9O9GTHytJ75nJn0CI73YS+F/vU4Eg0s35jKMgEk6OzSIBIYApwngPleMgpgYQ6ji5ldMR0QRCianuSspNjAxwTiLMSyb5lnFOa9Ub6qlWjWLKI+O0DEqIwddoBq6RnXUQBTdoRf0it6sZ+vd+rA+Z6M5K9s5RHOyvn4BsAObCA==</latexit>

w(z)

<latexit sha1_base64="ZlKKMRJiiXbvBip87FGQeyESHjE=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+kkTXp6xu4aNQ5zAS/gVm/gTtx6Cy/gOexJZmESfyj4+aqKKn4vFFyDbX9buZXVtfWN/GZha3tnd6+4f9DUQaQoa9BABKrtEc0El6wBHARrh4oR3xOs5Y2v0n7rninNA3kLk5C5PhlKPuCUgEFuF9gjAMQPSfnptFcs2RV7KrxsnMyUUKZ6r/jT7Qc08pkEKojWHccOwY2JAk4FSwrdSLOQ0DEZso6xkvhMu/H06QSfGNLHg0CZkoCn9O9GTHytJ75nJn0CI73YS+F/vU4Eg0s35jKMgEk6OzSIBIYApwngPleMgpgYQ6ji5ldMR0QRCianuSspNjAxwTiLMSyb5lnFOa9Ub6qlWjWLKI+O0DEqIwddoBq6RnXUQBTdoRf0it6sZ+vd+rA+Z6M5K9s5RHOyvn4BsAObCA==</latexit>

w(z)

<latexit sha1_base64="gqzYN2XBcopATOy3qyveOfo6LB8=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyLWkBfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN7BJGJuQIaS+5wSMMjtAXsEgESllaezfqlsV+2p8LJxclNGuRr90k9vENI4YBKoIFp3HTsCNyEKOBUsLfZizSJCx2TIusZKEjDtJtOnU3xqyAD7oTIlAU/p342EBFpPAs9MBgRGerGXwf963Rj8KzfhMoqBSTo75McCQ4izBPCAK0ZBTIwhVHHzK6YjoggFk9PclQwbmJpgnMUYlk3rvOpcVGu3tXK9lkdUQMfoBFWQgy5RHd2gBmoiiu7RC3pFb9az9W59WJ+z0RUr3zlCc7K+fgGn95sD</latexit>

r(z)

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="gqzYN2XBcopATOy3qyveOfo6LB8=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyLWkBfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN7BJGJuQIaS+5wSMMjtAXsEgESllaezfqlsV+2p8LJxclNGuRr90k9vENI4YBKoIFp3HTsCNyEKOBUsLfZizSJCx2TIusZKEjDtJtOnU3xqyAD7oTIlAU/p342EBFpPAs9MBgRGerGXwf963Rj8KzfhMoqBSTo75McCQ4izBPCAK0ZBTIwhVHHzK6YjoggFk9PclQwbmJpgnMUYlk3rvOpcVGu3tXK9lkdUQMfoBFWQgy5RHd2gBmoiiu7RC3pFb9az9W59WJ+z0RUr3zlCc7K+fgGn95sD</latexit>

r(z)

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="klrNEXlMdiQnlb1WKGpNgPeH5Ao=">AAAB/3icbZDLSsNAFIZP6q3WW9Wlm8Ei1E1JiliXBTcuK9oLtKFMppN26GQSZiZCCV34AG71EdyJWx/FJ/A1nKRZ2NYfBn6+cw7nzO9FnClt299WYWNza3unuFva2z84PCofn3RUGEtC2yTkoex5WFHOBG1rpjntRZLiwOO0601v03r3iUrFQvGoZxF1AzwWzGcEa4MequRyWK7YNTsTWjdObiqQqzUs/wxGIYkDKjThWKm+Y0faTbDUjHA6Lw1iRSNMpnhM+8YKHFDlJtmpc3RhyAj5oTRPaJTRvxMJDpSaBZ7pDLCeqNVaCv+r9WPt37gJE1GsqSCLRX7MkQ5R+m80YpISzWfGYCKZuRWRCZaYaJPO0pYUGzgvmWSc1RzWTadec65rV/f1SrORZ1SEMziHKjjQgCbcQQvaQGAML/AKb9az9W59WJ+L1oKVz5zCkqyvX2SLliY=</latexit>

(c)
<latexit sha1_base64="1RBzkY+eNikxAjDgyig7ZsDwzb4=">AAAB/3icbZDLSsNAFIZP6q3WW9Wlm8Ei1E1JiliXBTcuK9oLtKFMJpN26GQSZiZCCV34AG71EdyJWx/FJ/A1nLRZ2NYfBn6+cw7nzO/FnClt299WYWNza3unuFva2z84PCofn3RUlEhC2yTikex5WFHOBG1rpjntxZLi0OO0601us3r3iUrFIvGopzF1QzwSLGAEa4Meqv7lsFyxa/ZcaN04ualArtaw/DPwI5KEVGjCsVJ9x461m2KpGeF0VhokisaYTPCI9o0VOKTKTeenztCFIT4KImme0GhO/06kOFRqGnqmM8R6rFZrGfyv1k90cOOmTMSJpoIsFgUJRzpC2b+RzyQlmk+NwUQycysiYywx0SadpS0ZNnBWMsk4qzmsm0695lzXru7rlWYjz6gIZ3AOVXCgAU24gxa0gcAIXuAV3qxn6936sD4XrQUrnzmFJVlfv2Yllic=</latexit>

(d)

<latexit sha1_base64="7ilgb79VgVUep8OqTP2a7HYPjm0=">AAAB/nicbZDLSgMxFIZP6q3WW9Wlm2ARXJUZKeqy4MZlxd6gHUomzbShmcyQZIQyFHwBt/oG7sStr+IL+Bxm2lnY1h8CP985h3Py+7Hg2jjONypsbG5t7xR3S3v7B4dH5eOTto4SRVmLRiJSXZ9oJrhkLcONYN1YMRL6gnX8yV1W7zwxpXkkm2YaMy8kI8kDTomx6LE5cAflilN15sLrxs1NBXI1BuWf/jCiScikoYJo3XOd2HgpUYZTwWalfqJZTOiEjFjPWklCpr10fuoMX1gyxEGk7JMGz+nfiZSEWk9D33aGxIz1ai2D/9V6iQluvZTLODFM0sWiIBHYRDj7Nx5yxagRU2sIVdzeiumYKEKNTWdpS4YtnNlg3NUY1k37qupeV2sPtUq9lkdUhDM4h0tw4QbqcA8NaAGFEbzAK7yhZ/SOPtDnorWA8plTWBL6+gUlepZF</latexit>

T1
<latexit sha1_base64="u4lrfWuqNwm22Igyc0GM3dvstbo=">AAAB/nicbZDLSgMxFIbP1Futt6pLN8EiuCozpajLghuXFXuDdiiZNNOGJpkhyQhlKPgCbvUN3IlbX8UX8DnMtLPQ1h8CP985h3PyBzFn2rjul1PY2Nza3inulvb2Dw6PyscnHR0litA2iXikegHWlDNJ24YZTnuxolgEnHaD6W1W7z5SpVkkW2YWU1/gsWQhI9hY9NAa1oblilt1F0LrxstNBXI1h+XvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvrcSCaj9dnDpHF5aMUBgp+6RBC/p7IsVC65kIbKfAZqJXaxn8r9ZPTHjjp0zGiaGSLBeFCUcmQtm/0YgpSgyfWYOJYvZWRCZYYWJsOn+2ZNjCuQ3GW41h3XRqVe+qWr+vVxr1PKIinME5XIIH19CAO2hCGwiM4Rle4NV5ct6cd+dj2Vpw8plT+CPn8wcnEpZG</latexit>

T2
<latexit sha1_base64="ixOAVLf0efHThglb3yO1hDmyh5E=">AAAB/nicbZDNSgMxFIXv1L9a/6ou3QSL4KrMaFGXBTcuK7a10A4lk2ba0CQzJBmhDAVfwK2+gTtx66v4Aj6HmXYWtvVA4PDde7k3J4g508Z1v53C2vrG5lZxu7Szu7d/UD48ausoUYS2SMQj1QmwppxJ2jLMcNqJFcUi4PQxGN9m9ccnqjSLZNNMYuoLPJQsZAQbix6a/ct+ueJW3ZnQqvFyU4FcjX75pzeISCKoNIRjrbueGxs/xcowwum01Es0jTEZ4yHtWiuxoNpPZ6dO0ZklAxRGyj5p0Iz+nUix0HoiAtspsBnp5VoG/6t1ExPe+CmTcWKoJPNFYcKRiVD2bzRgihLDJ9Zgopi9FZERVpgYm87ClgxbOLXBeMsxrJr2RdW7qtbua5V6LY+oCCdwCufgwTXU4Q4a0AICQ3iBV3hznp1358P5nLcWnHzmGBbkfP0CKKqWRw==</latexit>

T3

<latexit sha1_base64="ZlKKMRJiiXbvBip87FGQeyESHjE=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+kkTXp6xu4aNQ5zAS/gVm/gTtx6Cy/gOexJZmESfyj4+aqKKn4vFFyDbX9buZXVtfWN/GZha3tnd6+4f9DUQaQoa9BABKrtEc0El6wBHARrh4oR3xOs5Y2v0n7rninNA3kLk5C5PhlKPuCUgEFuF9gjAMQPSfnptFcs2RV7KrxsnMyUUKZ6r/jT7Qc08pkEKojWHccOwY2JAk4FSwrdSLOQ0DEZso6xkvhMu/H06QSfGNLHg0CZkoCn9O9GTHytJ75nJn0CI73YS+F/vU4Eg0s35jKMgEk6OzSIBIYApwngPleMgpgYQ6ji5ldMR0QRCianuSspNjAxwTiLMSyb5lnFOa9Ub6qlWjWLKI+O0DEqIwddoBq6RnXUQBTdoRf0it6sZ+vd+rA+Z6M5K9s5RHOyvn4BsAObCA==</latexit>

w(z)

<latexit sha1_base64="ZlKKMRJiiXbvBip87FGQeyESHjE=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+kkTXp6xu4aNQ5zAS/gVm/gTtx6Cy/gOexJZmESfyj4+aqKKn4vFFyDbX9buZXVtfWN/GZha3tnd6+4f9DUQaQoa9BABKrtEc0El6wBHARrh4oR3xOs5Y2v0n7rninNA3kLk5C5PhlKPuCUgEFuF9gjAMQPSfnptFcs2RV7KrxsnMyUUKZ6r/jT7Qc08pkEKojWHccOwY2JAk4FSwrdSLOQ0DEZso6xkvhMu/H06QSfGNLHg0CZkoCn9O9GTHytJ75nJn0CI73YS+F/vU4Eg0s35jKMgEk6OzSIBIYApwngPleMgpgYQ6ji5ldMR0QRCianuSspNjAxwTiLMSyb5lnFOa9Ub6qlWjWLKI+O0DEqIwddoBq6RnXUQBTdoRf0it6sZ+vd+rA+Z6M5K9s5RHOyvn4BsAObCA==</latexit>

w(z)

<latexit sha1_base64="gqzYN2XBcopATOy3qyveOfo6LB8=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyLWkBfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN7BJGJuQIaS+5wSMMjtAXsEgESllaezfqlsV+2p8LJxclNGuRr90k9vENI4YBKoIFp3HTsCNyEKOBUsLfZizSJCx2TIusZKEjDtJtOnU3xqyAD7oTIlAU/p342EBFpPAs9MBgRGerGXwf963Rj8KzfhMoqBSTo75McCQ4izBPCAK0ZBTIwhVHHzK6YjoggFk9PclQwbmJpgnMUYlk3rvOpcVGu3tXK9lkdUQMfoBFWQgy5RHd2gBmoiiu7RC3pFb9az9W59WJ+z0RUr3zlCc7K+fgGn95sD</latexit>

r(z)

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="gqzYN2XBcopATOy3qyveOfo6LB8=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyLWkBfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN7BJGJuQIaS+5wSMMjtAXsEgESllaezfqlsV+2p8LJxclNGuRr90k9vENI4YBKoIFp3HTsCNyEKOBUsLfZizSJCx2TIusZKEjDtJtOnU3xqyAD7oTIlAU/p342EBFpPAs9MBgRGerGXwf963Rj8KzfhMoqBSTo75McCQ4izBPCAK0ZBTIwhVHHzK6YjoggFk9PclQwbmJpgnMUYlk3rvOpcVGu3tXK9lkdUQMfoBFWQgy5RHd2gBmoiiu7RC3pFb9az9W59WJ+z0RUr3zlCc7K+fgGn95sD</latexit>

r(z)

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="KtTSqZFe/Bg8Zc7sete6sWmpe5Y=">AAACZHicdVHdatRAGJ1N/amxan/wSpDBINSbkGTjtr0QKt4IelHRbQubsEwmk+zQyUyY+WJdwjyCt/psvoDP4WS7oi36wcDhnPPB+c4UreAGoujHyNu4dfvO3c17/v2tBw8fbe/snhrVacqmVAmlzwtimOCSTYGDYOetZqQpBDsrLt4M+tlnpg1X8hMsW5Y3pJa84pSAoz7W83i+HURhOhmPxwmOwmjy8vDoaADpOD1IcRxGqwnQek7mO6N3Walo1zAJVBBjZnHUQt4TDZwKZv2sM6wl9ILUbOagJA0zeb/KavFzx5S4Uto9CXjF/r3Rk8aYZVM4Z0NgYW5qA/lPreiMabVSlbmRAKrDvOey7YBJehWg6gQGhYdCcMk1oyCWDhCqubsB0wXRhIKrzc+AfYFLXsLiVRomXPp+JtklVU1DZNln7nqmwfbZkIcS0b+29rpDEFnbWZLP8j+m93beB7HdD5IX1tX/u2P8f3CahPEkTD+kwXG6/ohN9AQ9Q/soRgfoGL1FJ2iKKKrRV/QNfR/99La8Pe/xldUbrXf20LXxnv4C54+6QQ==</latexit>g1
<latexit sha1_base64="rlgp+U8RW3HDbUs4fdgSN8GkKpE=">AAACZHicdVHdatRAGJ1N/amxan/wSpDBINSbkGTjtr0QKt4IelHRbQubsEwmk+zQyUyY+WJdwjyCt/psvoDP4WS7oi36wcDhnPPB+c4UreAGoujHyNu4dfvO3c17/v2tBw8fbe/snhrVacqmVAmlzwtimOCSTYGDYOetZqQpBDsrLt4M+tlnpg1X8hMsW5Y3pJa84pSAoz7W82S+HURhOhmPxwmOwmjy8vDoaADpOD1IcRxGqwnQek7mO6N3Walo1zAJVBBjZnHUQt4TDZwKZv2sM6wl9ILUbOagJA0zeb/KavFzx5S4Uto9CXjF/r3Rk8aYZVM4Z0NgYW5qA/lPreiMabVSlbmRAKrDvOey7YBJehWg6gQGhYdCcMk1oyCWDhCqubsB0wXRhIKrzc+AfYFLXsLiVRomXPp+JtklVU1DZNln7nqmwfbZkIcS0b+29rpDEFnbWZLP8j+m93beB7HdD5IX1tX/u2P8f3CahPEkTD+kwXG6/ohN9AQ9Q/soRgfoGL1FJ2iKKKrRV/QNfR/99La8Pe/xldUbrXf20LXxnv4C6Y26Qg==</latexit>g2

<latexit sha1_base64="43wYHOIRlHKndyndyuAE7rIbS7w=">AAACZHicdVHdatRAGJ1N/amxan/wSpDBINSbkGTHbXshVLwR9KKi2xY2YZlMJtmhk5kw88W6hDyCt/psvoDP4WS7oi36wcDhnPPB+c7kjRQWoujHyNu4dfvO3c17/v2tBw8fbe/snlrdGsanTEttznNquRSKT0GA5OeN4bTOJT/LL94M+tlnbqzQ6hMsG57VtFKiFIyCoz5WczLfDqKQTMbjcYKjMJq8PDw6GgAZkwOC4zBaTYDWczLfGb1LC83amitgklo7i6MGso4aEEzy3k9byxvKLmjFZw4qWnObdausPX7umAKX2rinAK/Yvzc6Wlu7rHPnrCks7E1tIP+p5a21jdG6tDcSQHmYdUI1LXDFrgKUrcSg8VAILoThDOTSAcqMcDdgtqCGMnC1+SnwL3ApCli8ImEilO+nil8yXddUFV3qrucG+i4d8jAqu9d9f90hqar6WZLNsj+m9/28C+J+P0he9K7+3x3j/4PTJIwnIflAgmOy/ohN9AQ9Q/soRgfoGL1FJ2iKGKrQV/QNfR/99La8Pe/xldUbrXf20LXxnv4C7Ym6RA==</latexit>g4

<latexit sha1_base64="KtTSqZFe/Bg8Zc7sete6sWmpe5Y=">AAACZHicdVHdatRAGJ1N/amxan/wSpDBINSbkGTjtr0QKt4IelHRbQubsEwmk+zQyUyY+WJdwjyCt/psvoDP4WS7oi36wcDhnPPB+c4UreAGoujHyNu4dfvO3c17/v2tBw8fbe/snhrVacqmVAmlzwtimOCSTYGDYOetZqQpBDsrLt4M+tlnpg1X8hMsW5Y3pJa84pSAoz7W83i+HURhOhmPxwmOwmjy8vDoaADpOD1IcRxGqwnQek7mO6N3Walo1zAJVBBjZnHUQt4TDZwKZv2sM6wl9ILUbOagJA0zeb/KavFzx5S4Uto9CXjF/r3Rk8aYZVM4Z0NgYW5qA/lPreiMabVSlbmRAKrDvOey7YBJehWg6gQGhYdCcMk1oyCWDhCqubsB0wXRhIKrzc+AfYFLXsLiVRomXPp+JtklVU1DZNln7nqmwfbZkIcS0b+29rpDEFnbWZLP8j+m93beB7HdD5IX1tX/u2P8f3CahPEkTD+kwXG6/ohN9AQ9Q/soRgfoGL1FJ2iKKKrRV/QNfR/99La8Pe/xldUbrXf20LXxnv4C54+6QQ==</latexit>g1

<latexit sha1_base64="KtTSqZFe/Bg8Zc7sete6sWmpe5Y=">AAACZHicdVHdatRAGJ1N/amxan/wSpDBINSbkGTjtr0QKt4IelHRbQubsEwmk+zQyUyY+WJdwjyCt/psvoDP4WS7oi36wcDhnPPB+c4UreAGoujHyNu4dfvO3c17/v2tBw8fbe/snhrVacqmVAmlzwtimOCSTYGDYOetZqQpBDsrLt4M+tlnpg1X8hMsW5Y3pJa84pSAoz7W83i+HURhOhmPxwmOwmjy8vDoaADpOD1IcRxGqwnQek7mO6N3Walo1zAJVBBjZnHUQt4TDZwKZv2sM6wl9ILUbOagJA0zeb/KavFzx5S4Uto9CXjF/r3Rk8aYZVM4Z0NgYW5qA/lPreiMabVSlbmRAKrDvOey7YBJehWg6gQGhYdCcMk1oyCWDhCqubsB0wXRhIKrzc+AfYFLXsLiVRomXPp+JtklVU1DZNln7nqmwfbZkIcS0b+29rpDEFnbWZLP8j+m93beB7HdD5IX1tX/u2P8f3CahPEkTD+kwXG6/ohN9AQ9Q/soRgfoGL1FJ2iKKKrRV/QNfR/99La8Pe/xldUbrXf20LXxnv4C54+6QQ==</latexit>g1

<latexit sha1_base64="rlgp+U8RW3HDbUs4fdgSN8GkKpE=">AAACZHicdVHdatRAGJ1N/amxan/wSpDBINSbkGTjtr0QKt4IelHRbQubsEwmk+zQyUyY+WJdwjyCt/psvoDP4WS7oi36wcDhnPPB+c4UreAGoujHyNu4dfvO3c17/v2tBw8fbe/snhrVacqmVAmlzwtimOCSTYGDYOetZqQpBDsrLt4M+tlnpg1X8hMsW5Y3pJa84pSAoz7W82S+HURhOhmPxwmOwmjy8vDoaADpOD1IcRxGqwnQek7mO6N3Walo1zAJVBBjZnHUQt4TDZwKZv2sM6wl9ILUbOagJA0zeb/KavFzx5S4Uto9CXjF/r3Rk8aYZVM4Z0NgYW5qA/lPreiMabVSlbmRAKrDvOey7YBJehWg6gQGhYdCcMk1oyCWDhCqubsB0wXRhIKrzc+AfYFLXsLiVRomXPp+JtklVU1DZNln7nqmwfbZkIcS0b+29rpDEFnbWZLP8j+m93beB7HdD5IX1tX/u2P8f3CahPEkTD+kwXG6/ohN9AQ9Q/soRgfoGL1FJ2iKKKrRV/QNfR/99La8Pe/xldUbrXf20LXxnv4C6Y26Qg==</latexit>g2

<latexit sha1_base64="LxnUCX4m6hKveJ5ghFWrgqe3Gzw=">AAACZHicdVHdatRAGJ1N/Wlj1f7QK0EGg1BvQv7cthdCizeCXlR028ImLJPJJDt0MhNmvliXkEfw1j6bL+BzONmuaIt+MHA453xwvjN5I7iBIPgxctbu3X/wcH3DfbT5+MnTre2dM6NaTdmEKqH0RU4ME1yyCXAQ7KLRjNS5YOf55dtBP//CtOFKfoZFw7KaVJKXnBKw1KdqFs+2vMBPxnEcRzjwg/Hrw6OjASRxcpDg0A+W46HVnM62R+/TQtG2ZhKoIMZMw6CBrCMaOBWsd9PWsIbQS1KxqYWS1Mxk3TJrj19apsCl0vZJwEv2742O1MYs6tw6awJzc1cbyH9qeWtMo5UqzZ0EUB5mHZdNC0zSmwBlKzAoPBSCC64ZBbGwgFDN7Q2YzokmFGxtbgrsK1zxAuZvEj/i0nVTya6oqmsiiy611zMNfZcOeSgR3Unf33YIIqt+GmXT7I/pQz/rvLDf96JXva3/d8f4/+As8sOxn3xMvONk9RHr6Bl6gfZRiA7QMXqHTtEEUVShb+g7uh79dDadXWfvxuqMVju76NY4z38B64u6Qw==</latexit>g3

<latexit sha1_base64="LxnUCX4m6hKveJ5ghFWrgqe3Gzw=">AAACZHicdVHdatRAGJ1N/Wlj1f7QK0EGg1BvQv7cthdCizeCXlR028ImLJPJJDt0MhNmvliXkEfw1j6bL+BzONmuaIt+MHA453xwvjN5I7iBIPgxctbu3X/wcH3DfbT5+MnTre2dM6NaTdmEKqH0RU4ME1yyCXAQ7KLRjNS5YOf55dtBP//CtOFKfoZFw7KaVJKXnBKw1KdqFs+2vMBPxnEcRzjwg/Hrw6OjASRxcpDg0A+W46HVnM62R+/TQtG2ZhKoIMZMw6CBrCMaOBWsd9PWsIbQS1KxqYWS1Mxk3TJrj19apsCl0vZJwEv2742O1MYs6tw6awJzc1cbyH9qeWtMo5UqzZ0EUB5mHZdNC0zSmwBlKzAoPBSCC64ZBbGwgFDN7Q2YzokmFGxtbgrsK1zxAuZvEj/i0nVTya6oqmsiiy611zMNfZcOeSgR3Unf33YIIqt+GmXT7I/pQz/rvLDf96JXva3/d8f4/+As8sOxn3xMvONk9RHr6Bl6gfZRiA7QMXqHTtEEUVShb+g7uh79dDadXWfvxuqMVju76NY4z38B64u6Qw==</latexit>g3

<latexit sha1_base64="43wYHOIRlHKndyndyuAE7rIbS7w=">AAACZHicdVHdatRAGJ1N/amxan/wSpDBINSbkGTHbXshVLwR9KKi2xY2YZlMJtmhk5kw88W6hDyCt/psvoDP4WS7oi36wcDhnPPB+c7kjRQWoujHyNu4dfvO3c17/v2tBw8fbe/snlrdGsanTEttznNquRSKT0GA5OeN4bTOJT/LL94M+tlnbqzQ6hMsG57VtFKiFIyCoz5WczLfDqKQTMbjcYKjMJq8PDw6GgAZkwOC4zBaTYDWczLfGb1LC83amitgklo7i6MGso4aEEzy3k9byxvKLmjFZw4qWnObdausPX7umAKX2rinAK/Yvzc6Wlu7rHPnrCks7E1tIP+p5a21jdG6tDcSQHmYdUI1LXDFrgKUrcSg8VAILoThDOTSAcqMcDdgtqCGMnC1+SnwL3ApCli8ImEilO+nil8yXddUFV3qrucG+i4d8jAqu9d9f90hqar6WZLNsj+m9/28C+J+P0he9K7+3x3j/4PTJIwnIflAgmOy/ohN9AQ9Q/soRgfoGL1FJ2iKGKrQV/QNfR/99La8Pe/xldUbrXf20LXxnv4C7Ym6RA==</latexit>g4
<latexit sha1_base64="43wYHOIRlHKndyndyuAE7rIbS7w=">AAACZHicdVHdatRAGJ1N/amxan/wSpDBINSbkGTHbXshVLwR9KKi2xY2YZlMJtmhk5kw88W6hDyCt/psvoDP4WS7oi36wcDhnPPB+c7kjRQWoujHyNu4dfvO3c17/v2tBw8fbe/snlrdGsanTEttznNquRSKT0GA5OeN4bTOJT/LL94M+tlnbqzQ6hMsG57VtFKiFIyCoz5WczLfDqKQTMbjcYKjMJq8PDw6GgAZkwOC4zBaTYDWczLfGb1LC83amitgklo7i6MGso4aEEzy3k9byxvKLmjFZw4qWnObdausPX7umAKX2rinAK/Yvzc6Wlu7rHPnrCks7E1tIP+p5a21jdG6tDcSQHmYdUI1LXDFrgKUrcSg8VAILoThDOTSAcqMcDdgtqCGMnC1+SnwL3ApCli8ImEilO+nil8yXddUFV3qrucG+i4d8jAqu9d9f90hqar6WZLNsj+m9/28C+J+P0he9K7+3x3j/4PTJIwnIflAgmOy/ohN9AQ9Q/soRgfoGL1FJ2iKGKrQV/QNfR/99La8Pe/xldUbrXf20LXxnv4C7Ym6RA==</latexit>g4

<latexit sha1_base64="43wYHOIRlHKndyndyuAE7rIbS7w=">AAACZHicdVHdatRAGJ1N/amxan/wSpDBINSbkGTHbXshVLwR9KKi2xY2YZlMJtmhk5kw88W6hDyCt/psvoDP4WS7oi36wcDhnPPB+c7kjRQWoujHyNu4dfvO3c17/v2tBw8fbe/snlrdGsanTEttznNquRSKT0GA5OeN4bTOJT/LL94M+tlnbqzQ6hMsG57VtFKiFIyCoz5WczLfDqKQTMbjcYKjMJq8PDw6GgAZkwOC4zBaTYDWczLfGb1LC83amitgklo7i6MGso4aEEzy3k9byxvKLmjFZw4qWnObdausPX7umAKX2rinAK/Yvzc6Wlu7rHPnrCks7E1tIP+p5a21jdG6tDcSQHmYdUI1LXDFrgKUrcSg8VAILoThDOTSAcqMcDdgtqCGMnC1+SnwL3ApCli8ImEilO+nil8yXddUFV3qrucG+i4d8jAqu9d9f90hqar6WZLNsj+m9/28C+J+P0he9K7+3x3j/4PTJIwnIflAgmOy/ohN9AQ9Q/soRgfoGL1FJ2iKGKrQV/QNfR/99La8Pe/xldUbrXf20LXxnv4C7Ym6RA==</latexit>g4

<latexit sha1_base64="rlgp+U8RW3HDbUs4fdgSN8GkKpE=">AAACZHicdVHdatRAGJ1N/amxan/wSpDBINSbkGTjtr0QKt4IelHRbQubsEwmk+zQyUyY+WJdwjyCt/psvoDP4WS7oi36wcDhnPPB+c4UreAGoujHyNu4dfvO3c17/v2tBw8fbe/snhrVacqmVAmlzwtimOCSTYGDYOetZqQpBDsrLt4M+tlnpg1X8hMsW5Y3pJa84pSAoz7W82S+HURhOhmPxwmOwmjy8vDoaADpOD1IcRxGqwnQek7mO6N3Walo1zAJVBBjZnHUQt4TDZwKZv2sM6wl9ILUbOagJA0zeb/KavFzx5S4Uto9CXjF/r3Rk8aYZVM4Z0NgYW5qA/lPreiMabVSlbmRAKrDvOey7YBJehWg6gQGhYdCcMk1oyCWDhCqubsB0wXRhIKrzc+AfYFLXsLiVRomXPp+JtklVU1DZNln7nqmwfbZkIcS0b+29rpDEFnbWZLP8j+m93beB7HdD5IX1tX/u2P8f3CahPEkTD+kwXG6/ohN9AQ9Q/soRgfoGL1FJ2iKKKrRV/QNfR/99La8Pe/xldUbrXf20LXxnv4C6Y26Qg==</latexit>g2

<latexit sha1_base64="7ilgb79VgVUep8OqTP2a7HYPjm0=">AAAB/nicbZDLSgMxFIZP6q3WW9Wlm2ARXJUZKeqy4MZlxd6gHUomzbShmcyQZIQyFHwBt/oG7sStr+IL+Bxm2lnY1h8CP985h3Py+7Hg2jjONypsbG5t7xR3S3v7B4dH5eOTto4SRVmLRiJSXZ9oJrhkLcONYN1YMRL6gnX8yV1W7zwxpXkkm2YaMy8kI8kDTomx6LE5cAflilN15sLrxs1NBXI1BuWf/jCiScikoYJo3XOd2HgpUYZTwWalfqJZTOiEjFjPWklCpr10fuoMX1gyxEGk7JMGz+nfiZSEWk9D33aGxIz1ai2D/9V6iQluvZTLODFM0sWiIBHYRDj7Nx5yxagRU2sIVdzeiumYKEKNTWdpS4YtnNlg3NUY1k37qupeV2sPtUq9lkdUhDM4h0tw4QbqcA8NaAGFEbzAK7yhZ/SOPtDnorWA8plTWBL6+gUlepZF</latexit>

T1
<latexit sha1_base64="u4lrfWuqNwm22Igyc0GM3dvstbo=">AAAB/nicbZDLSgMxFIbP1Futt6pLN8EiuCozpajLghuXFXuDdiiZNNOGJpkhyQhlKPgCbvUN3IlbX8UX8DnMtLPQ1h8CP985h3PyBzFn2rjul1PY2Nza3inulvb2Dw6PyscnHR0litA2iXikegHWlDNJ24YZTnuxolgEnHaD6W1W7z5SpVkkW2YWU1/gsWQhI9hY9NAa1oblilt1F0LrxstNBXI1h+XvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvrcSCaj9dnDpHF5aMUBgp+6RBC/p7IsVC65kIbKfAZqJXaxn8r9ZPTHjjp0zGiaGSLBeFCUcmQtm/0YgpSgyfWYOJYvZWRCZYYWJsOn+2ZNjCuQ3GW41h3XRqVe+qWr+vVxr1PKIinME5XIIH19CAO2hCGwiM4Rle4NV5ct6cd+dj2Vpw8plT+CPn8wcnEpZG</latexit>

T2
<latexit sha1_base64="ixOAVLf0efHThglb3yO1hDmyh5E=">AAAB/nicbZDNSgMxFIXv1L9a/6ou3QSL4KrMaFGXBTcuK7a10A4lk2ba0CQzJBmhDAVfwK2+gTtx66v4Aj6HmXYWtvVA4PDde7k3J4g508Z1v53C2vrG5lZxu7Szu7d/UD48ausoUYS2SMQj1QmwppxJ2jLMcNqJFcUi4PQxGN9m9ccnqjSLZNNMYuoLPJQsZAQbix6a/ct+ueJW3ZnQqvFyU4FcjX75pzeISCKoNIRjrbueGxs/xcowwum01Es0jTEZ4yHtWiuxoNpPZ6dO0ZklAxRGyj5p0Iz+nUix0HoiAtspsBnp5VoG/6t1ExPe+CmTcWKoJPNFYcKRiVD2bzRgihLDJ9Zgopi9FZERVpgYm87ClgxbOLXBeMsxrJr2RdW7qtbua5V6LY+oCCdwCufgwTXU4Q4a0AICQ3iBV3hznp1358P5nLcWnHzmGBbkfP0CKKqWRw==</latexit>

T3

<latexit sha1_base64="ZlKKMRJiiXbvBip87FGQeyESHjE=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+kkTXp6xu4aNQ5zAS/gVm/gTtx6Cy/gOexJZmESfyj4+aqKKn4vFFyDbX9buZXVtfWN/GZha3tnd6+4f9DUQaQoa9BABKrtEc0El6wBHARrh4oR3xOs5Y2v0n7rninNA3kLk5C5PhlKPuCUgEFuF9gjAMQPSfnptFcs2RV7KrxsnMyUUKZ6r/jT7Qc08pkEKojWHccOwY2JAk4FSwrdSLOQ0DEZso6xkvhMu/H06QSfGNLHg0CZkoCn9O9GTHytJ75nJn0CI73YS+F/vU4Eg0s35jKMgEk6OzSIBIYApwngPleMgpgYQ6ji5ldMR0QRCianuSspNjAxwTiLMSyb5lnFOa9Ub6qlWjWLKI+O0DEqIwddoBq6RnXUQBTdoRf0it6sZ+vd+rA+Z6M5K9s5RHOyvn4BsAObCA==</latexit>

w(z)

<latexit sha1_base64="ZlKKMRJiiXbvBip87FGQeyESHjE=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+kkTXp6xu4aNQ5zAS/gVm/gTtx6Cy/gOexJZmESfyj4+aqKKn4vFFyDbX9buZXVtfWN/GZha3tnd6+4f9DUQaQoa9BABKrtEc0El6wBHARrh4oR3xOs5Y2v0n7rninNA3kLk5C5PhlKPuCUgEFuF9gjAMQPSfnptFcs2RV7KrxsnMyUUKZ6r/jT7Qc08pkEKojWHccOwY2JAk4FSwrdSLOQ0DEZso6xkvhMu/H06QSfGNLHg0CZkoCn9O9GTHytJ75nJn0CI73YS+F/vU4Eg0s35jKMgEk6OzSIBIYApwngPleMgpgYQ6ji5ldMR0QRCianuSspNjAxwTiLMSyb5lnFOa9Ub6qlWjWLKI+O0DEqIwddoBq6RnXUQBTdoRf0it6sZ+vd+rA+Z6M5K9s5RHOyvn4BsAObCA==</latexit>

w(z)

<latexit sha1_base64="gqzYN2XBcopATOy3qyveOfo6LB8=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyLWkBfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN7BJGJuQIaS+5wSMMjtAXsEgESllaezfqlsV+2p8LJxclNGuRr90k9vENI4YBKoIFp3HTsCNyEKOBUsLfZizSJCx2TIusZKEjDtJtOnU3xqyAD7oTIlAU/p342EBFpPAs9MBgRGerGXwf963Rj8KzfhMoqBSTo75McCQ4izBPCAK0ZBTIwhVHHzK6YjoggFk9PclQwbmJpgnMUYlk3rvOpcVGu3tXK9lkdUQMfoBFWQgy5RHd2gBmoiiu7RC3pFb9az9W59WJ+z0RUr3zlCc7K+fgGn95sD</latexit>

r(z)

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="gqzYN2XBcopATOy3qyveOfo6LB8=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyLWkBfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN7BJGJuQIaS+5wSMMjtAXsEgESllaezfqlsV+2p8LJxclNGuRr90k9vENI4YBKoIFp3HTsCNyEKOBUsLfZizSJCx2TIusZKEjDtJtOnU3xqyAD7oTIlAU/p342EBFpPAs9MBgRGerGXwf963Rj8KzfhMoqBSTo75McCQ4izBPCAK0ZBTIwhVHHzK6YjoggFk9PclQwbmJpgnMUYlk3rvOpcVGu3tXK9lkdUQMfoBFWQgy5RHd2gBmoiiu7RC3pFb9az9W59WJ+z0RUr3zlCc7K+fgGn95sD</latexit>

r(z)

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="Go4kyJ/WrdgtaRQDGEHB3TgSeWA=">AAAB/nicbZDLSsNAFIZP6q3WW9Wlm2AR6qYkRazLghuXFe0F2lAm09N26GQSZiZCCQVfwK2+gTtx66v4Aj6HkzYL2/rDwM93zuGc+f2IM6Ud59vKbWxube/kdwt7+weHR8Xjk5YKY0mxSUMeyo5PFHImsKmZ5tiJJJLA59j2J7dpvf2EUrFQPOpphF5ARoINGSXaoIcyXvaLJafizGWvGzczJcjU6Bd/eoOQxgEKTTlRqus6kfYSIjWjHGeFXqwwInRCRtg1VpAAlZfMT53ZF4YM7GEozRPantO/EwkJlJoGvukMiB6r1VoK/6t1Yz288RImolijoItFw5jbOrTTf9sDJpFqPjWGUMnMrTYdE0moNuksbUmxgTMTjLsaw7ppVSvudeXqvlqq17KI8nAG51AGF2pQhztoQBMojOAFXuHNerberQ/rc9Gas7KZU1iS9fUL3BCWGA==</latexit>

(e)

Fig. 3. Examples 4.3, 6.1, and 6.2.

Recall the program runs in Examples 4.1 and 4.2. Observe that even though the pairs of grains are

identical, if we assume the commutativity of the pair of grains, then the choice in Example 4.2

satisfies the conditions of the above theorem, and the one in Example 4.1 does not; in particular,

they violate the part that demands every read that reads from the same w(𝑥) operation must belong

to the grain.

4.3 The Expressive Power of [𝑤]𝐺
We use an extended example to highlight how [𝑤]𝐺 soundly enlarges the trace equivalence class

of𝑤 , induced by the trace equivalence relation ≡M .

Example 4.3. Consider the program runs illustrated in Fig. 3. They are all rf -equivalent.We observe

that different choices of grains witness the equivalence of different pairs of the run from the figure.

Independent of which grain is present in which subfigure, the only sound commutativity between

grains, in addition to classic trace theory commutativity, is I𝐺 = {(𝑔1, 𝑔3), (𝑔3, 𝑔1), (𝑔2, 𝑔4), (𝑔4, 𝑔2)}.

First, focus on Fig. 3(a), and observe that 𝑔1 and 𝑔3 soundly commute (in the sense of Theorem 4.2).

Yet 𝑔4 does not commute with anything that it would not otherwise under the classic trace monoid

through the commutativity of its individual events. For example, taking the single w(𝑥) of thread
𝑇2 or the single r(𝑥) of thread 𝑇3 as grains, one would violate the conditions of Theorem 4.2) if one

were to declare either event commutative against 𝑔4. With the grains marked in Fig. 3(a), the run

illustrated in Fig. 3(a) is equivalent to the one in Fig. 3(b) — starting from (a), we can swap 𝑔1 and

𝑔3 first, and then 𝑔1 against the w(𝑥) of thread 𝑇2 and 𝑔3 against the r(𝑥) of thread 𝑇3.

Now consider the set of grains in Fig. 3(b). It is a superset of grains marked in Fig. 3(a), and

yet, in this configuration we have less freedom of movement. I𝐺 is still sound, but since (𝑔1, 𝑔2),
(𝑔2, 𝑔3), and (𝑔3, 𝑔4) do not commute, this run effectively belongs to an equivalence class of size 1.

Specifically, we cannot conclude that it is equivalent to the run illustrated in Fig. 3(a). If we remove

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

14 Azadeh Farzan and Umang Mathur

grain 𝑔2, then the equivalence class gets larger, and includes the run illustrated in Fig. 3(a). Observe

that, therefore:

Having more grains does not necessarily imply having a larger equivalence classes.

Similarly, if we take the set of grains in Fig. 3(c), then the run in Fig. 3(c) is equivalent to the one

in Fig. 3(b). But, note that there is no possible choice of grains in Fig. 3(c) that would make it

equivalent to the run in Fig. 3(a), and vice versa. The two runs are clearly rf-equivalent. They are

grain-equivalent to the run in Fig. 3(b). Yet, for no choice of grains they can bemade grain-equivalent

to each other.

If 𝑣 ∈ [𝑢]𝐺 and𝑤 ∈ [𝑣]𝐺 ′ , there may not exist a sound 𝐺 ′′ such that𝑤 ∈ [𝑢]𝐺 ′′ .

Example 4.3 illustrates that depending on the input run𝑤 , or the choice of events for a query of

concurrency, a different choice of grains 𝐺 may be suitable to define the appropriate [𝑤]𝐺 .

Definition 4.7 (Grain Concurrency). Consider a program run 𝑤 and two events 𝑒 and 𝑒′ that
appear in𝑤 . We call the pair of events 𝑒 and 𝑒′ to be grain concurrent iff there exists a sound set of

grains 𝐺 and a commutativity relation I𝐺 in the context of𝑤 such that, there exists 𝑢 ∈ [𝑤]𝐺 in

which 𝑒 and 𝑒′ are reordered with respect to their order of appearance in𝑤 .

Note that for any given program run𝑤 and any choice of valid grains𝐺 and a sound commutativity

relation I𝐺 , [𝑤]𝐺 is always, by definition, a superset of the trace equivalence class of𝑤 . Moreover,

if we let 𝐺 = Σ, then [𝑤]𝐺 coincides with the trace equivalence class of 𝑤 , since the IM is by

definition sound. As such, any two events that are concurrent according to trace equivalent are

also grain concurrent.

In Section 5, we formally argue that grain concurrency can be checked in constant space by giving

a construction for a monitor that is strictly more expressive than a constant-space monitor based

on ≡M . For example, our monitor would declare that both the pair of w(𝑥) and the pair of w(𝑧)
operations in the run illustrated in Fig. 3(b) can be soundly reordered, while they are strictly ordered

according to ≡M .

5 GRAIN CONCURRENCY MONITOR
Grain monoids are closely related to trace monoids. Therefore, we begin by defining a monitor that

in constant space checks whether two events in an input run are concurrent according to ≡M , and

then present the grain concurrency monitor as an extension of this monitor.

To have a simple setup, we augment our alphabet Σ with two new symbols ⋄1 and ⋄2 that are
assumed to appear precisely once each in any input word, marking the two events that are meant

to be checked for concurrency; these would be the events that immediately succeed ⋄1 and ⋄2. The
regular expression Σ∗ ⋄1 Σ+ ⋄2 Σ+

captures that the the two ⋄’s are properly placed in an input

run. Therefore, in the description of our main monitor, we assume that the input run is already

well-formed in this sense.

The high level idea behind the monitor is simple. The monitor idles until it sees the first marker ⋄1
and the event 𝑒1 that it marks. Afterwards, it maintains a summary of the set of operations, reads

or writes to specific variables by specific threads, seen so far that are ordered wrt to 𝑒1. When the

monitor comes across ⋄2 and therefore identifies the second event 𝑒2, it can use the summary to

determine if 𝑒1 and 𝑒2 are causally concurrent or ordered.

The key to constant-space implementability is that the monitor does not have to remember all indi-

vidual events, but rather what variables and threads are involved. This is based on the observation

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

Coarser Equivalences for Causal Concurrency 15

State Event State Update

⟨−,C⟩ 𝑒 ∈ Σ ⟨−,C⟩
⟨−,C⟩ ⋄1 ⟨⋄1,C⟩
⟨⋄1,C⟩ 𝑒 ∈ Σ ⟨⋄1−, {𝑒}⟩
⟨⋄1−,C⟩ 𝑒 ∈ Σ ⟨⋄1−,C ⊙ 𝑒⟩
⟨⋄1−,C⟩ ⋄2 ⟨⋄1 − ⋄2,C⟩
⟨⋄1 − ⋄2,C⟩ 𝑒 ∈ Σ ⟨Ord (C, 𝑒),C⟩
⟨false,C⟩ 𝑒 ∈ Σ ⟨false,C⟩

C ⊙ 𝑒 =

{
C ∪ {𝑒} if ∃𝑒′ ∈ C : (𝑒, 𝑒′) ∈ DM
C owise

Ord (C, 𝑒) ⇐⇒ ∃𝑒′ ∈ C : (𝑒, 𝑒′) ∈ DM

Fig. 4. Trace Concurrency Monitor: The monitor starts in state ⟨−,∅⟩ and accepts if in a state ⟨false,C⟩ (for
any C) once the input is read. The operation ⊙ updates C based on a new event.

that to determine if two events commute, it suffices to know what variables are being accessed,

what the nature of the access is, and to what threads the two events belong. The summary can

be maintained in the most compact manner if the list of operations op(𝑥) and the list of thread

identifies are kept separately. But, we present the less compact version that maintains the summary

as a set of events, since it is easier to generalize this version of the monitor to grains.

Formally, the monitor’s state is pair ⟨𝑑,C⟩ where C ⊆ Σ is a set of labels. The first element of the

pair 𝑑 is used to track whether the monitor has seen events 𝑒1 and 𝑒2 yet. It encodes the six distinct

stages: −: before the first diamond, ⋄1: right after the first diamond, ⋄−: after 𝑒1 has been recorded,

⋄1 − ⋄2: right after the second diamond is seen, and true/false: depending on the monitors decision

to accept/reject after reading 𝑒2. Fig. 4 lists the transitions of the monitor and the functions used.

Since the result is folklore, we forgo giving a proof for the correctness of this monitor.

5.1 A Monitor for a Fixed Set of Grains 𝐺
We introduce our monitor based on grains in two stages, for the simplicity of presentation. First,

we assume a set of grains is pre-decided and pre-marked in an input word, and present the core

idea behind monitoring causal concurrency in this setup. Then, in Section 5.2, we build the final

grain concurrency monitor as a generalization of this one.

Assume that Σ is further extended with a pair of symbols ▷ and ◁, which are used as delimiters to

mark grain boundaries. Any letter that appears outside the range of these delimiters is treated as a

standalone event. For example, the program run form Fig. 3(a) with the marked grains becomes:

⟨𝑇2, w(𝑥)⟩ ▷ ⟨𝑇1, w(𝑧)⟩⟨𝑇2, r(𝑧)⟩ ◁ ▷⟨𝑇3, w(𝑧)⟩⟨𝑇3, r(𝑧)⟩ ◁ ⟨𝑇3, r(𝑥)⟩ ▷ ⟨𝑇1, w(𝑥)⟩⟨𝑇1, r(𝑥)⟩◁

The two events of interest are marked with ⋄’s, as before. Except that if either event belongs to a

grain, then the diamond must mark the entire grain. For example, if we want to determine whether

the two w(𝑥) events are ordered in the program run above, the diamonds would mark the first one

as before, and the second one behind the left grain delimiter like this:

⋄1⟨𝑇2, w(𝑥)⟩ ▷ ⟨𝑇1, w(𝑧)⟩⟨𝑇2, r(𝑧)⟩ ◁ ▷⟨𝑇3, w(𝑧)⟩⟨𝑇3, r(𝑧)⟩ ◁ ⟨𝑇3, r(𝑥)⟩ ⋄2 ▷⟨𝑇1, w(𝑥)⟩⟨𝑇1, r(𝑥)⟩◁
Note that the events in a grain always move together. Therefore, one cannot have a verdict that

an event 𝑒 (e.g. the first w(𝑥) above) is concurrent with some arbitrary event 𝑓 of a grain (e.g. the

second w(𝑥) above), while it is ordered wrt another event 𝑓 ′ of the same grain (e.g. the second r(𝑥)
above). The following (revised) regular expression captures all the input runs in which grains and

⋄’s are marked properly, and therefore, we do not make it part of the design of the monitor:(
(▷Σ+◁) + Σ

)∗ ⋄1 ((▷Σ+◁) + Σ
)+ ⋄2 ((▷Σ+◁) + Σ

)+
(WF)

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

16 Azadeh Farzan and Umang Mathur

To generalize the monitor in Fig. 4 to work with grains, we face two sources of complications.

First, grains are arbitrary words in Σ+
, and even though Σ is finite, Σ+

is infinite in size. Second,

there are (potentially) infinitely many sound commutativity relations that can be inferred over the

unbounded set of potential grains.

A simple observation helps overcome the first problem. Fundamentally, we are interested in grains

because we are interested in the commutativity properties of these grains. Theorem 4.2 captures

what information is relevant to make a sound decision about the commutativity of two grains.

According to Theorem 4.2, 𝑔 and 𝑔′ soundly commute if 𝑔𝑔′ ≡rf 𝑔′𝑔 and for every variable 𝑥

accessed in 𝑔 (respectively 𝑔′), where 𝑥 is written in at least one of the two grains, the following

predicate is true:

complete(𝑔, 𝑥) def

=
(
∀𝑒, 𝑓 · (𝑒 = w(𝑥), 𝑓 = r(𝑥), 𝑒 = rf𝑤 (𝑓)) =⇒ (𝑒 ∈ 𝑔 ⇐⇒ 𝑓 ∈ 𝑔)

)
(2)

In other words, two grains commute, if they commute according to ≡rf in isolation and if the share

a variable that is written by at least one of them, then both grains must be complete wrt to that

variable. We now introduce the signature of a grain as a pair of a set of letters that appear in the

grain and a set of variables wrt which the grain is complete:

∀𝑤 ∈ Σ+
: grain(𝑤) def

= ⟨letters(𝑤), {𝑥 ∈ X | complete(𝑤, 𝑥)}⟩
which contains all the information required for deciding commutativity of two given grains. More

importantly, observe that there are boundedly many different grain signatures, 2
|Σ |+|X |

to be exact.

Therefore, in the summary (C in Fig. 4), rather than keep track of the grain as an arbitrary size

word, we maintain a set of grain signatures, which is very much bounded.

Let us turn our attention to the second problem. For any pair of grains in a word, one can look

at their signatures and soundly decide whether they commute or not. Yet, there are unboundedly

many such grains, and therefore, unboundedly many such commutativity relations to enumerate

for the definition of grain concurrency (Definition 4.7).

Observe that commutativity and causal concurrency are monotonically related: the larger the grain

commutativity relation, the larger the set of pairs of grain concurrent events. Therefore, rather than

enumerate all possible commutativity relations, one can conservatively choose the largest one. In

this largest relation, any two grains, that can soundly commute, are assumed to be commuting. This

is determined based on their signatures alone, and therefore, the number of possible choices for the

largest commutativity relation is bounded because the number of distinct signatures is bounded.

The Monitor. One can conceptually think about the monitor combining the following two passes

into a single pass through nondeterminism:

• Pass 1: From right to left, analyze the grains and replace each with a fresh letter (corresponding

to its signature), and learn the bounded maximal commutativity relations for these new letters.

Intuitively, this pass finds out which grains are complete wrt which variables, constructs their

signature, and replaces the grains with a new letter that encodes the information from the

signature. Constructing signatures is straightforward in a left-to-right or right-to-left pass, but

it is more straightforward to see why completeness (condition 2) can be checked and encoded

for each grain in a right-to-left pass: a violation of this condition manifests as a pending read’s

matching write appearing in a grain.

• Pass 2: In the style of the trace concurrency monitor (Fig. 4)), in a left to right pass, decide the

causal concurrency of the two entities marked by ⋄’s based on the original letters and the new

letters computed during pass 1.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

Coarser Equivalences for Causal Concurrency 17

Classic ideas from automata theory provide the recipe to combine these passes, through nondeter-

minism, into a single-pass (left to right) constant space monitor that decides causal concurrency

between any two events based on the largest sound grain commutativity relation:

Theorem 5.1. For a fixed set of valid grains 𝐺 and a largest sound commutativity relation I𝐺 , the
monitor sketched above accepts a program run 𝑢 ⋄1 𝑒 𝑣 ⋄2 𝑒′𝑤 iff 𝑒 and 𝑒′ are reordered in some

member of [𝑢 ⋄1 𝑒 𝑣 ⋄2 𝑒′𝑤]𝐺 .

The proof together with the details of the monitor are presented in Appendix C.1.

5.2 Grain Concurrency Monitor
We are now ready to construct the monitor that precisely captures Definition 4.7. This monitor

nondeterministically guesses the ▷ and ◁ symbols and therefore the grain boundaries, and for

each guess runs the monitor in Fig. 9. It has to maintain a state to make sure that the grains are

well-formed (non-overlapping) and non-empty. Therefore it effectively makes a guess and checks

that its guess belongs to the language of the regular expression WF. Note that this guessing must

account for the ⋄’s. The monitor makes a guess that an event of interest will be in a grain that

it just nondeterministically opened, and therefore marks it with a diamond. Naturally, all wrong

guesses are refuted later when the grain closes without seeing an event of interest.

Theorem 5.2. There exists a monitor that can decide, in constant space, the (causal) grain concur-

rency (respectively orderedness) of two events in a given program run.

6 SCATTERED GRAINS
So far, we have formally defined grains as subwords of a concurrent program run. Let us revisit our

examples from Fig. 3 to motivate expanding the definition to include grains that do not appear as

contiguous subwords; we call these scattered grains.

Example 6.1. To argue for the equivalence of the run illustrated in Fig. 3(d) to the one in Fig. 3(c),

we need the w(𝑥) of 𝑇2 to first commute as an individual event (from (d) to (b)), and then move as

part of the grain that is marked in Fig. 3(c). If we are permitted to consider the scattered grain 𝑔2 as
a grain in Fig. 3(d) (marked in pink), then we can argue that w(𝑥) of thread 𝑇2 can be reordered

against w(𝑥) of thread 𝑇1 by (eventually) swapping the corresponding grains 𝑔2 and 𝑔4.

The grain monitor we present in Section 5 cannot keep track of these dual roles. Starting from the

run illustrated in Fig. 3(d), it cannot see the potential of the grain including the w(𝑥) of 𝑇2 and r(𝑥)
of 𝑇3 forming after a few sound swaps, and therefore cannot reason that w(𝑥) of 𝑇2 can ultimately

be soundly reordered against w(𝑥) of 𝑇1. □

Formally, we say i is subsequence of the sequence of the range [1..𝑛] if it is strictly increasing, and

all its elements belong to [1..𝑛]. For convenience, we treat subsequences as sets of their elements

(without order) when appropriate.

Definition 6.1 (Scattered Grains). A scattered grain of program run 𝑤 is a subsequence of 𝑤 .

To distinguish identical scattered grains from each other, we denote them as 𝑔@i, where i is a
subsequence of [1..|𝑤 |] and identifies the position of𝑔. A set of scattered grains𝐺 for a word𝑤 ∈ Σ∗

is said to be valid if no two distinct grains overlap, that is, 𝑔1@i1 ≠ 𝑔2@i2 ∈ 𝐺 =⇒ i1 ∩ i2 = ∅.

Observe that scattered grains generalize the definition of grains when the subsequences happen

to be contiguous. We may refer to a scattered grain simply as 𝑔 rather than 𝑔@i whenever the
position is unimportant or clear from the context. Sound commutativity relations over scattered

grains are defined identically to contiguous grains, therefore all definitions and theorems from

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

18 Azadeh Farzan and Umang Mathur

Section 4 hold. Moreover, we assume that single events form grains of size one and therefore every

event belongs to some grain in what follows.

Definition 6.2 (Grain Graph of a Run). Let 𝐺 be a valid set of scattered grains for a program run

𝑤 and I𝐺 be the largest sound commutativity relation over 𝐺 in the context of𝑤 . The grain graph

G𝑤,𝐺 = (𝑉 , 𝐸) is a directed graph defined with the set of nodes 𝑉 = 𝐺 and the set of edges

𝐸 = 𝑉 ×𝑉 − {(𝑣1, 𝑣2) | 𝑣1 = 𝑣2 ∨ (𝑣1, 𝑣2) ∈ Î𝐺 ∨𝑤 |𝑣1,𝑣2 ≡M 𝑣2𝑣1}

where𝑤𝑣1,𝑣2 is the projection of𝑤 to the content of the grains 𝑣1 and 𝑣2.

The first two sets of excluded edges correspond to the classic notions of anti-reflexivity and

independence. The third condition above determines when there is an edge between two scattered

grains that are entangled. We want a directed edge only if the second grain cannot be safely

commuted to before the first grain.

Grain graphs can be used to define a notion of concurrency based on a set of scattered grains in

the following sense:

Definition 6.3 (Grain Graph Concurrency). Let𝑤 be a run, 𝐺 be a valid set of scattered grains in

𝑤 and G𝑤,𝐺 be the corresponding grain graph. Let 𝑒1 and 𝑒2 be events in 𝑤 such that 𝑒1 appears

before 𝑒2 in𝑤 . We say that the events 𝑒1 and 𝑒2 are grain graph concurrent under 𝐺 if there is no

path in G𝑤,𝐺 from the node containing 𝑒1 to the node containing 𝑒2.

We call a valid set of scattered grains 𝐺 and the corresponding commutativity relation I𝐺 sound in
the context of a run𝑤 if the same conditions listed in Definition 4.4 hold.

Observe that for contiguous grains, soundness of grain concurrency was baked into the definition

that [𝑤]𝐺 is sound. With scattered grains, this is no longer the case, and hence we need the

following theorem:

Theorem 6.1. (Soundness of Grain Graph Concurrency) Let𝑤 be a run,𝐺 be a valid set of scattered

grains in𝑤 . If a pair of events 𝑒1 and 𝑒2 are grain graph concurrent under 𝐺 , then they appear in a

different order in some run 𝑢 such that 𝑢 ≡rf 𝑤 .

<latexit sha1_base64="7ilgb79VgVUep8OqTP2a7HYPjm0=">AAAB/nicbZDLSgMxFIZP6q3WW9Wlm2ARXJUZKeqy4MZlxd6gHUomzbShmcyQZIQyFHwBt/oG7sStr+IL+Bxm2lnY1h8CP985h3Py+7Hg2jjONypsbG5t7xR3S3v7B4dH5eOTto4SRVmLRiJSXZ9oJrhkLcONYN1YMRL6gnX8yV1W7zwxpXkkm2YaMy8kI8kDTomx6LE5cAflilN15sLrxs1NBXI1BuWf/jCiScikoYJo3XOd2HgpUYZTwWalfqJZTOiEjFjPWklCpr10fuoMX1gyxEGk7JMGz+nfiZSEWk9D33aGxIz1ai2D/9V6iQluvZTLODFM0sWiIBHYRDj7Nx5yxagRU2sIVdzeiumYKEKNTWdpS4YtnNlg3NUY1k37qupeV2sPtUq9lkdUhDM4h0tw4QbqcA8NaAGFEbzAK7yhZ/SOPtDnorWA8plTWBL6+gUlepZF</latexit>

T1
<latexit sha1_base64="u4lrfWuqNwm22Igyc0GM3dvstbo=">AAAB/nicbZDLSgMxFIbP1Futt6pLN8EiuCozpajLghuXFXuDdiiZNNOGJpkhyQhlKPgCbvUN3IlbX8UX8DnMtLPQ1h8CP985h3PyBzFn2rjul1PY2Nza3inulvb2Dw6PyscnHR0litA2iXikegHWlDNJ24YZTnuxolgEnHaD6W1W7z5SpVkkW2YWU1/gsWQhI9hY9NAa1oblilt1F0LrxstNBXI1h+XvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvrcSCaj9dnDpHF5aMUBgp+6RBC/p7IsVC65kIbKfAZqJXaxn8r9ZPTHjjp0zGiaGSLBeFCUcmQtm/0YgpSgyfWYOJYvZWRCZYYWJsOn+2ZNjCuQ3GW41h3XRqVe+qWr+vVxr1PKIinME5XIIH19CAO2hCGwiM4Rle4NV5ct6cd+dj2Vpw8plT+CPn8wcnEpZG</latexit>

T2

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="UVhnFHoEZOCbJCojOmwsxCC62CQ=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4c6KG0BfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN5BEjE3IEPJfU4JGOT2gD0BQPo4qSRn/VLZrtpT4WXj5KaMcjX6pZ/eIKRxwCRQQbTuOnYEbkoUcCrYpNiLNYsIHZMh6xorScC0m06fnuBTQwbYD5UpCXhK/26kJNA6CTwzGRAY6cVeBv/rdWPwr9yUyygGJunskB8LDCHOEsADrhgFkRhDqOLmV0xHRBEKJqe5Kxk2cGKCcRZjWDat86pzUa3d1sr1Wh5RAR2jE1RBDrpEdXSDGqiJKLpHL+gVvVnP1rv1YX3ORlesfOcIzcn6+gWuapsH</latexit>

w(y)

<latexit sha1_base64="UVhnFHoEZOCbJCojOmwsxCC62CQ=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4c6KG0BfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN5BEjE3IEPJfU4JGOT2gD0BQPo4qSRn/VLZrtpT4WXj5KaMcjX6pZ/eIKRxwCRQQbTuOnYEbkoUcCrYpNiLNYsIHZMh6xorScC0m06fnuBTQwbYD5UpCXhK/26kJNA6CTwzGRAY6cVeBv/rdWPwr9yUyygGJunskB8LDCHOEsADrhgFkRhDqOLmV0xHRBEKJqe5Kxk2cGKCcRZjWDat86pzUa3d1sr1Wh5RAR2jE1RBDrpEdXSDGqiJKLpHL+gVvVnP1rv1YX3ORlesfOcIzcn6+gWuapsH</latexit>

w(y)

<latexit sha1_base64="y9m+6PybCYRm8uS+PNkH8vnw5dY=">AAACCHicbZDLSsNAFIYn9VbrrerSzWAR6qYkUtRlwY3LCvYCbSiT6aQdOpnEmRMxhL6AL+BW38CduPUtfAGfw0mbhW394cDPd87hHH4vElyDbX9bhbX1jc2t4nZpZ3dv/6B8eNTWYawoa9FQhKrrEc0El6wFHATrRoqRwBOs401usn7nkSnNQ3kPScTcgIwk9zklYJDbB/YEAKmaVpPzQbli1+yZ8KpxclNBuZqD8k9/GNI4YBKoIFr3HDsCNyUKOBVsWurHmkWETsiI9YyVJGDaTWdPT/GZIUPsh8qUBDyjfzdSEmidBJ6ZDAiM9XIvg//1ejH4127KZRQDk3R+yI8FhhBnCeAhV4yCSIwhVHHzK6ZjoggFk9PClQwbODXBOMsxrJr2Rc25rNXv6pVGPY+oiE7QKaoiB12hBrpFTdRCFD2gF/SK3qxn6936sD7nowUr3zlGC7K+fgGmXpsC</latexit>

r(y)

<latexit sha1_base64="y9m+6PybCYRm8uS+PNkH8vnw5dY=">AAACCHicbZDLSsNAFIYn9VbrrerSzWAR6qYkUtRlwY3LCvYCbSiT6aQdOpnEmRMxhL6AL+BW38CduPUtfAGfw0mbhW394cDPd87hHH4vElyDbX9bhbX1jc2t4nZpZ3dv/6B8eNTWYawoa9FQhKrrEc0El6wFHATrRoqRwBOs401usn7nkSnNQ3kPScTcgIwk9zklYJDbB/YEAKmaVpPzQbli1+yZ8KpxclNBuZqD8k9/GNI4YBKoIFr3HDsCNyUKOBVsWurHmkWETsiI9YyVJGDaTWdPT/GZIUPsh8qUBDyjfzdSEmidBJ6ZDAiM9XIvg//1ejH4127KZRQDk3R+yI8FhhBnCeAhV4yCSIwhVHHzK6ZjoggFk9PClQwbODXBOMsxrJr2Rc25rNXv6pVGPY+oiE7QKaoiB12hBrpFTdRCFD2gF/SK3qxn6936sD7nowUr3zlGC7K+fgGmXpsC</latexit>

r(y)

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="vLb4JgKfdia07mtyihTMKPyH578=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GmaSyXYLePEY0SyQDKGn0zNp0rPQ3SOEIZ/gxYMiXv0ib/6NnUVQ0QcFj/eqqKrnJZxJZVkfRm5jc2t7J79b2Ns/ODwqHp90ZZwKQjsk5rHoe1hSziLaUUxx2k8ExaHHac+bXi383j0VksXRnZol1A1xEDGfEay0dBuM7FGxZJl2s9JsWsgynUa9blc0qdbK1WYD2aa1RAnWaI+K78NxTNKQRopwLOXAthLlZlgoRjidF4appAkmUxzQgaYRDql0s+Wpc3ShlTHyY6ErUmipfp/IcCjlLPR0Z4jVRP72FuJf3iBVfsPNWJSkikZktchPOVIxWvyNxkxQovhME0wE07ciMsECE6XTKegQvj5F/5Nu2bRrpnPjlFrOOo48nME5XIINdWjBNbShAwQCeIAneDa48Wi8GK+r1pyxnjmFHzDePgF7TY3q</latexit>g1

<latexit sha1_base64="d4yeo7IuRk/shr64j/2qD/dsNBo=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GmaSyTK3gBePEc0CyRB6Oj1Jk56F7h4hDPkELx4U8eoXefNv7CyCij4oeLxXRVU9P+FMKsv6MHIbm1vbO/ndwt7+weFR8fikI+NUENomMY9Fz8eSchbRtmKK014iKA59Trv+9Grhd++pkCyO7tQsoV6IxxELGMFKS7fjYXlYLFmm7VZc10KW6TTqdbuiSbVWrroNZJvWEiVYozUsvg9GMUlDGinCsZR920qUl2GhGOF0XhikkiaYTPGY9jWNcEilly1PnaMLrYxQEAtdkUJL9ftEhkMpZ6GvO0OsJvK3txD/8vqpChpexqIkVTQiq0VBypGK0eJvNGKCEsVnmmAimL4VkQkWmCidTkGH8PUp+p90yqZdM50bp9R01nHk4QzO4RJsqEMTrqEFbSAwhgd4gmeDG4/Gi/G6as0Z65lT+AHj7RN80Y3r</latexit>g2

<latexit sha1_base64="8b4g4zV/fshYIfCU+R2WdrYpmBA=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GmaSyTK3gBePEc0CyRB6Oj1Jk56F7h4hDPkELx4U8eoXefNv7CyCij4oeLxXRVU9P+FMKsv6MHIbm1vbO/ndwt7+weFR8fikI+NUENomMY9Fz8eSchbRtmKK014iKA59Trv+9Grhd++pkCyO7tQsoV6IxxELGMFKS7fjYWVYLFmm7VZc10KW6TTqdbuiSbVWrroNZJvWEiVYozUsvg9GMUlDGinCsZR920qUl2GhGOF0XhikkiaYTPGY9jWNcEilly1PnaMLrYxQEAtdkUJL9ftEhkMpZ6GvO0OsJvK3txD/8vqpChpexqIkVTQiq0VBypGK0eJvNGKCEsVnmmAimL4VkQkWmCidTkGH8PUp+p90yqZdM50bp9R01nHk4QzO4RJsqEMTrqEFbSAwhgd4gmeDG4/Gi/G6as0Z65lT+AHj7RN+VY3s</latexit>g3

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)
<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

Fig. 5. Entangled Grains

The proof (given in Appendix D) relies on the construction of the condensation
of G𝑤,𝐺 ; that is, the directed acyclic graph acquired from G𝑤,𝐺 by contracting

all its maximal strongly connected components. The proof argues that any

linearization of this condensed graph is rf-equivalent to 𝑤 . This, in turn,

means that the condensed graph is analogous to a partial order representing

a an equivalence class of ≡M induced by the trace commutativity relation

IM . However, it differs from it in two important ways: (1) even though every

linearization is rf -equivalent to𝑤 , it is not guaranteed to be equivalent to𝑤 up

to a sequence of valid grain and letter swaps, and (2) the set of linearizations

does not necessarily include everything that is (grain) equivalent to𝑤 , even

possibly𝑤 itself.

Consider the grains illustrated in Fig. 5. They can be used to argue that

the first w(𝑥) and the last w(𝑦) are grain graph concurrent. The grain graph

only has one edge between grains 𝑔2 and 𝑔3, since all other pairs commute.

However, observe that because 𝑔2 is somewhat entangled with 𝑔1, there exists
no swap sequence to witness this concurrency. Moreover, the illustrated run

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

Coarser Equivalences for Causal Concurrency 19

itself does not belong to any linearization of the (condensed) grain graph, since no such linearization

can reproduce the entanglement of the grains of the illustrated run.

Even though contiguous grains are a special case of scattered grains, the way we define concurrency
in the two cases are fundamentally different in Definitions 4.7 and 6.3. Yet, for a set of contiguous

grains, grain graph concurrency coincides with grain concurrency.

Theorem 6.2. For a program run𝑤 and a sound valid set of contiguous grains𝐺 , a pair of events

𝑒 and 𝑒′ are grain concurrent under 𝐺 iff they are grain graph concurrent under 𝐺 .

This is the consequence of the fact that G𝑤,𝐺 is an acyclic graph for a valid set of contiguous grains𝐺 ,

and as such the condensed graph and G𝑤,𝐺 coincide, and are identical to the partial order describing

the same equivalence class in the corresponding grain monoid, for which a valid swap sequence

can be constructed.

As with Definition 4.7, two events may be graph grain concurrent under one choice of scattered

grains 𝐺 but not under another choice 𝐺 ′
. Consequently we define the following more permissive

notion of concurrency under scattered grains.

Definition 6.4 (Scattered Grain Concurrency). Consider a program run𝑤 and two events 𝑒 and 𝑒′

that appear in𝑤 . We call the pair of events 𝑒 and 𝑒′ to be scattered grain concurrent if there exists a
valid set of scattered grains 𝐺 for𝑤 such that 𝑒 and 𝑒′ are grain graph concurrent under 𝐺 .

The Theorem 6.2 also implies that scattered grain concurrency properly subsumes grain concurrency.
In Section 7, we demonstrate how scattered grain concurrency can be monitored in constant space.

With the following example, we make the observation that even though scattered grain concurrency
is strictly weaker than grain concurrency, it strictly under-approximates sound concurrency defined

based on rf-equivalence.

Example 6.2. There remains a fundamental gap between the notion of concurrency defined based

on rf -equivalence and scattered grain concurrency: in the run in Fig. 3(b), no choice of grains would

witness the fact that the w(𝑧) operation of thread 𝑇3 can be soundly reordered against the w(𝑥)
operation of thread𝑇1. If all 4 grains are present, then the events are ordered. If we take either 𝑔1 or

𝑔3 out, then they become ordered through the conflict dependencies between the 𝑥 operations. If

we take either 𝑔2 or 𝑔4 out, then they become ordered through the conflict dependencies between

the 𝑧 variables. Yet, the rf-equivalent run in Fig. 3(e) witnesses that they are soundly concurrent.

Interestingly, if we focus on the run in Fig. 3(e), and assume all grains 𝑔1, 𝑔2, 𝑔3, and 𝑔4 are present

in it as scattered grains, then we can reason using the induced grain graph that the run in Fig. 3(b)

is linearization of its (condensed) grain graph and as such w(𝑥) of thread 𝑇1 is (scattered) grain
concurrent with w(𝑧) of 𝑇3. Therefore, in the non-swap-based notion of scattered grain concurrency,
one can reason about the implied equivalence and the corresponding notion of the runs in Figures

3(b,e) in one way but the inverse. □

7 MONITORINGWITH SCATTERED GRAINS
In this section, we develop a monitor for checking concurrency of two events in the presence of

scattered grains. When grains are scattered, they can be interleaved in the run𝑤 , and this poses

fundamental challenges towards the design of a constant space monitor.

We call a grain active in a prefix of a concurrent run, if part of the grain has appeared in the

prefix, but it is has not appeared in its entirety. With contiguous grains, at most one grain can

be active at any given time. In sharp contrast, the number of scattered grains that may be active

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

20 Azadeh Farzan and Umang Mathur

<latexit sha1_base64="7ilgb79VgVUep8OqTP2a7HYPjm0=">AAAB/nicbZDLSgMxFIZP6q3WW9Wlm2ARXJUZKeqy4MZlxd6gHUomzbShmcyQZIQyFHwBt/oG7sStr+IL+Bxm2lnY1h8CP985h3Py+7Hg2jjONypsbG5t7xR3S3v7B4dH5eOTto4SRVmLRiJSXZ9oJrhkLcONYN1YMRL6gnX8yV1W7zwxpXkkm2YaMy8kI8kDTomx6LE5cAflilN15sLrxs1NBXI1BuWf/jCiScikoYJo3XOd2HgpUYZTwWalfqJZTOiEjFjPWklCpr10fuoMX1gyxEGk7JMGz+nfiZSEWk9D33aGxIz1ai2D/9V6iQluvZTLODFM0sWiIBHYRDj7Nx5yxagRU2sIVdzeiumYKEKNTWdpS4YtnNlg3NUY1k37qupeV2sPtUq9lkdUhDM4h0tw4QbqcA8NaAGFEbzAK7yhZ/SOPtDnorWA8plTWBL6+gUlepZF</latexit>

T1
<latexit sha1_base64="u4lrfWuqNwm22Igyc0GM3dvstbo=">AAAB/nicbZDLSgMxFIbP1Futt6pLN8EiuCozpajLghuXFXuDdiiZNNOGJpkhyQhlKPgCbvUN3IlbX8UX8DnMtLPQ1h8CP985h3PyBzFn2rjul1PY2Nza3inulvb2Dw6PyscnHR0litA2iXikegHWlDNJ24YZTnuxolgEnHaD6W1W7z5SpVkkW2YWU1/gsWQhI9hY9NAa1oblilt1F0LrxstNBXI1h+XvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvrcSCaj9dnDpHF5aMUBgp+6RBC/p7IsVC65kIbKfAZqJXaxn8r9ZPTHjjp0zGiaGSLBeFCUcmQtm/0YgpSgyfWYOJYvZWRCZYYWJsOn+2ZNjCuQ3GW41h3XRqVe+qWr+vVxr1PKIinME5XIIH19CAO2hCGwiM4Rle4NV5ct6cd+dj2Vpw8plT+CPn8wcnEpZG</latexit>

T2

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="UVhnFHoEZOCbJCojOmwsxCC62CQ=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4c6KG0BfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN5BEjE3IEPJfU4JGOT2gD0BQPo4qSRn/VLZrtpT4WXj5KaMcjX6pZ/eIKRxwCRQQbTuOnYEbkoUcCrYpNiLNYsIHZMh6xorScC0m06fnuBTQwbYD5UpCXhK/26kJNA6CTwzGRAY6cVeBv/rdWPwr9yUyygGJunskB8LDCHOEsADrhgFkRhDqOLmV0xHRBEKJqe5Kxk2cGKCcRZjWDat86pzUa3d1sr1Wh5RAR2jE1RBDrpEdXSDGqiJKLpHL+gVvVnP1rv1YX3ORlesfOcIzcn6+gWuapsH</latexit>

w(y)

<latexit sha1_base64="UVhnFHoEZOCbJCojOmwsxCC62CQ=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4c6KG0BfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN5BEjE3IEPJfU4JGOT2gD0BQPo4qSRn/VLZrtpT4WXj5KaMcjX6pZ/eIKRxwCRQQbTuOnYEbkoUcCrYpNiLNYsIHZMh6xorScC0m06fnuBTQwbYD5UpCXhK/26kJNA6CTwzGRAY6cVeBv/rdWPwr9yUyygGJunskB8LDCHOEsADrhgFkRhDqOLmV0xHRBEKJqe5Kxk2cGKCcRZjWDat86pzUa3d1sr1Wh5RAR2jE1RBDrpEdXSDGqiJKLpHL+gVvVnP1rv1YX3ORlesfOcIzcn6+gWuapsH</latexit>

w(y)

<latexit sha1_base64="y9m+6PybCYRm8uS+PNkH8vnw5dY=">AAACCHicbZDLSsNAFIYn9VbrrerSzWAR6qYkUtRlwY3LCvYCbSiT6aQdOpnEmRMxhL6AL+BW38CduPUtfAGfw0mbhW394cDPd87hHH4vElyDbX9bhbX1jc2t4nZpZ3dv/6B8eNTWYawoa9FQhKrrEc0El6wFHATrRoqRwBOs401usn7nkSnNQ3kPScTcgIwk9zklYJDbB/YEAKmaVpPzQbli1+yZ8KpxclNBuZqD8k9/GNI4YBKoIFr3HDsCNyUKOBVsWurHmkWETsiI9YyVJGDaTWdPT/GZIUPsh8qUBDyjfzdSEmidBJ6ZDAiM9XIvg//1ejH4127KZRQDk3R+yI8FhhBnCeAhV4yCSIwhVHHzK6ZjoggFk9PClQwbODXBOMsxrJr2Rc25rNXv6pVGPY+oiE7QKaoiB12hBrpFTdRCFD2gF/SK3qxn6936sD7nowUr3zlGC7K+fgGmXpsC</latexit>

r(y)

<latexit sha1_base64="vLb4JgKfdia07mtyihTMKPyH578=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GmaSyXYLePEY0SyQDKGn0zNp0rPQ3SOEIZ/gxYMiXv0ib/6NnUVQ0QcFj/eqqKrnJZxJZVkfRm5jc2t7J79b2Ns/ODwqHp90ZZwKQjsk5rHoe1hSziLaUUxx2k8ExaHHac+bXi383j0VksXRnZol1A1xEDGfEay0dBuM7FGxZJl2s9JsWsgynUa9blc0qdbK1WYD2aa1RAnWaI+K78NxTNKQRopwLOXAthLlZlgoRjidF4appAkmUxzQgaYRDql0s+Wpc3ShlTHyY6ErUmipfp/IcCjlLPR0Z4jVRP72FuJf3iBVfsPNWJSkikZktchPOVIxWvyNxkxQovhME0wE07ciMsECE6XTKegQvj5F/5Nu2bRrpnPjlFrOOo48nME5XIINdWjBNbShAwQCeIAneDa48Wi8GK+r1pyxnjmFHzDePgF7TY3q</latexit>g1

<latexit sha1_base64="d4yeo7IuRk/shr64j/2qD/dsNBo=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GmaSyTK3gBePEc0CyRB6Oj1Jk56F7h4hDPkELx4U8eoXefNv7CyCij4oeLxXRVU9P+FMKsv6MHIbm1vbO/ndwt7+weFR8fikI+NUENomMY9Fz8eSchbRtmKK014iKA59Trv+9Grhd++pkCyO7tQsoV6IxxELGMFKS7fjYXlYLFmm7VZc10KW6TTqdbuiSbVWrroNZJvWEiVYozUsvg9GMUlDGinCsZR920qUl2GhGOF0XhikkiaYTPGY9jWNcEilly1PnaMLrYxQEAtdkUJL9ftEhkMpZ6GvO0OsJvK3txD/8vqpChpexqIkVTQiq0VBypGK0eJvNGKCEsVnmmAimL4VkQkWmCidTkGH8PUp+p90yqZdM50bp9R01nHk4QzO4RJsqEMTrqEFbSAwhgd4gmeDG4/Gi/G6as0Z65lT+AHj7RN80Y3r</latexit>g2

<latexit sha1_base64="8b4g4zV/fshYIfCU+R2WdrYpmBA=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GmaSyTK3gBePEc0CyRB6Oj1Jk56F7h4hDPkELx4U8eoXefNv7CyCij4oeLxXRVU9P+FMKsv6MHIbm1vbO/ndwt7+weFR8fikI+NUENomMY9Fz8eSchbRtmKK014iKA59Trv+9Grhd++pkCyO7tQsoV6IxxELGMFKS7fjYWVYLFmm7VZc10KW6TTqdbuiSbVWrroNZJvWEiVYozUsvg9GMUlDGinCsZR920qUl2GhGOF0XhikkiaYTPGY9jWNcEilly1PnaMLrYxQEAtdkUJL9ftEhkMpZ6GvO0OsJvK3txD/8vqpChpexqIkVTQiq0VBypGK0eJvNGKCEsVnmmAimL4VkQkWmCidTkGH8PUp+p90yqZdM50bp9R01nHk4QzO4RJsqEMTrqEFbSAwhgd4gmeDG4/Gi/G6as0Z65lT+AHj7RN+VY3s</latexit>g3

<latexit sha1_base64="y9m+6PybCYRm8uS+PNkH8vnw5dY=">AAACCHicbZDLSsNAFIYn9VbrrerSzWAR6qYkUtRlwY3LCvYCbSiT6aQdOpnEmRMxhL6AL+BW38CduPUtfAGfw0mbhW394cDPd87hHH4vElyDbX9bhbX1jc2t4nZpZ3dv/6B8eNTWYawoa9FQhKrrEc0El6wFHATrRoqRwBOs401usn7nkSnNQ3kPScTcgIwk9zklYJDbB/YEAKmaVpPzQbli1+yZ8KpxclNBuZqD8k9/GNI4YBKoIFr3HDsCNyUKOBVsWurHmkWETsiI9YyVJGDaTWdPT/GZIUPsh8qUBDyjfzdSEmidBJ6ZDAiM9XIvg//1ejH4127KZRQDk3R+yI8FhhBnCeAhV4yCSIwhVHHzK6ZjoggFk9PClQwbODXBOMsxrJr2Rc25rNXv6pVGPY+oiE7QKaoiB12hBrpFTdRCFD2gF/SK3qxn6936sD7nowUr3zlGC7K+fgGmXpsC</latexit>

r(y)

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="NTVt0hsj1DQtY77exGPxhLTOxQ8=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GmaSyXYLePEY0SyQDKGn0zNp0rPQ3SOEIZ/gxYMiXv0ib/6NnUVQ0QcFj/eqqKrnJZxJZVkfRm5jc2t7J79b2Ns/ODwqHp90ZZwKQjsk5rHoe1hSziLaUUxx2k8ExaHHac+bXi383j0VksXRnZol1A1xEDGfEay0dBuMnFGxZJl2s9JsWsgynUa9blc0qdbK1WYD2aa1RAnWaI+K78NxTNKQRopwLOXAthLlZlgoRjidF4appAkmUxzQgaYRDql0s+Wpc3ShlTHyY6ErUmipfp/IcCjlLPR0Z4jVRP72FuJf3iBVfsPNWJSkikZktchPOVIxWvyNxkxQovhME0wE07ciMsECE6XTKegQvj5F/5Nu2bRrpnPjlFrOOo48nME5XIINdWjBNbShAwQCeIAneDa48Wi8GK+r1pyxnjmFHzDePgF/2Y3t</latexit>g4

<latexit sha1_base64="tF4E/snmg/28aDQkCBGRGJMNDZA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeCF48VW1toQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHj0aOJUM95isYx1J6CGS6F4CwVK3kk0p1EgeTsY38789hPXRsSqiZOE+xEdKhEKRtFKD83+Zb9ccavuHGSVeDmpQI5Gv/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDG/8TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVfJ4UfWuqrX7WqVey+Mowgmcwjl4cA11uIMGtIDBEJ7hFd4c6bw4787HorXg5DPH8AfO5w/WiY15</latexit>

T3

<latexit sha1_base64="GbMjNnn+wp1LuOe8zDNUDNFvpDM=">AAAB7HicdVDLSgMxFL3js9ZX1aWbYBFcDTPt9LUruHFZwWkL7VAyadqGZjJDkhHK0G9w40IRt36QO//G9CGo6IHA4Zx7yL0nTDhT2nE+rI3Nre2d3dxefv/g8Oi4cHLaVnEqCfVJzGPZDbGinAnqa6Y57SaS4ijktBNOrxd+555KxWJxp2cJDSI8FmzECNZG8vvDWKtBoejYbqPcaDjIsb16reaWDalUS5VGHbm2s0QR1mgNCu8mR9KICk04VqrnOokOMiw1I5zO8/1U0QSTKR7TnqECR1QF2XLZObo0yhCNYmme0Gipfk9kOFJqFoVmMsJ6on57C/Evr5fqUT3ImEhSTQVZfTRKOdIxWlyOhkxSovnMEEwkM7siMsESE236yZsSvi5F/5N2yXartnfrFZveuo4cnMMFXIELNWjCDbTABwIMHuAJni1hPVov1utqdMNaZ87gB6y3T3r6jx0=</latexit>

...

<latexit sha1_base64="GbMjNnn+wp1LuOe8zDNUDNFvpDM=">AAAB7HicdVDLSgMxFL3js9ZX1aWbYBFcDTPt9LUruHFZwWkL7VAyadqGZjJDkhHK0G9w40IRt36QO//G9CGo6IHA4Zx7yL0nTDhT2nE+rI3Nre2d3dxefv/g8Oi4cHLaVnEqCfVJzGPZDbGinAnqa6Y57SaS4ijktBNOrxd+555KxWJxp2cJDSI8FmzECNZG8vvDWKtBoejYbqPcaDjIsb16reaWDalUS5VGHbm2s0QR1mgNCu8mR9KICk04VqrnOokOMiw1I5zO8/1U0QSTKR7TnqECR1QF2XLZObo0yhCNYmme0Gipfk9kOFJqFoVmMsJ6on57C/Evr5fqUT3ImEhSTQVZfTRKOdIxWlyOhkxSovnMEEwkM7siMsESE236yZsSvi5F/5N2yXartnfrFZveuo4cnMMFXIELNWjCDbTABwIMHuAJni1hPVov1utqdMNaZ87gB6y3T3r6jx0=</latexit>

...

<latexit sha1_base64="7ilgb79VgVUep8OqTP2a7HYPjm0=">AAAB/nicbZDLSgMxFIZP6q3WW9Wlm2ARXJUZKeqy4MZlxd6gHUomzbShmcyQZIQyFHwBt/oG7sStr+IL+Bxm2lnY1h8CP985h3Py+7Hg2jjONypsbG5t7xR3S3v7B4dH5eOTto4SRVmLRiJSXZ9oJrhkLcONYN1YMRL6gnX8yV1W7zwxpXkkm2YaMy8kI8kDTomx6LE5cAflilN15sLrxs1NBXI1BuWf/jCiScikoYJo3XOd2HgpUYZTwWalfqJZTOiEjFjPWklCpr10fuoMX1gyxEGk7JMGz+nfiZSEWk9D33aGxIz1ai2D/9V6iQluvZTLODFM0sWiIBHYRDj7Nx5yxagRU2sIVdzeiumYKEKNTWdpS4YtnNlg3NUY1k37qupeV2sPtUq9lkdUhDM4h0tw4QbqcA8NaAGFEbzAK7yhZ/SOPtDnorWA8plTWBL6+gUlepZF</latexit>

T1
<latexit sha1_base64="u4lrfWuqNwm22Igyc0GM3dvstbo=">AAAB/nicbZDLSgMxFIbP1Futt6pLN8EiuCozpajLghuXFXuDdiiZNNOGJpkhyQhlKPgCbvUN3IlbX8UX8DnMtLPQ1h8CP985h3PyBzFn2rjul1PY2Nza3inulvb2Dw6PyscnHR0litA2iXikegHWlDNJ24YZTnuxolgEnHaD6W1W7z5SpVkkW2YWU1/gsWQhI9hY9NAa1oblilt1F0LrxstNBXI1h+XvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvrcSCaj9dnDpHF5aMUBgp+6RBC/p7IsVC65kIbKfAZqJXaxn8r9ZPTHjjp0zGiaGSLBeFCUcmQtm/0YgpSgyfWYOJYvZWRCZYYWJsOn+2ZNjCuQ3GW41h3XRqVe+qWr+vVxr1PKIinME5XIIH19CAO2hCGwiM4Rle4NV5ct6cd+dj2Vpw8plT+CPn8wcnEpZG</latexit>

T2

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="UVhnFHoEZOCbJCojOmwsxCC62CQ=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4c6KG0BfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN5BEjE3IEPJfU4JGOT2gD0BQPo4qSRn/VLZrtpT4WXj5KaMcjX6pZ/eIKRxwCRQQbTuOnYEbkoUcCrYpNiLNYsIHZMh6xorScC0m06fnuBTQwbYD5UpCXhK/26kJNA6CTwzGRAY6cVeBv/rdWPwr9yUyygGJunskB8LDCHOEsADrhgFkRhDqOLmV0xHRBEKJqe5Kxk2cGKCcRZjWDat86pzUa3d1sr1Wh5RAR2jE1RBDrpEdXSDGqiJKLpHL+gVvVnP1rv1YX3ORlesfOcIzcn6+gWuapsH</latexit>

w(y)

<latexit sha1_base64="UVhnFHoEZOCbJCojOmwsxCC62CQ=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4c6KG0BfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN5BEjE3IEPJfU4JGOT2gD0BQPo4qSRn/VLZrtpT4WXj5KaMcjX6pZ/eIKRxwCRQQbTuOnYEbkoUcCrYpNiLNYsIHZMh6xorScC0m06fnuBTQwbYD5UpCXhK/26kJNA6CTwzGRAY6cVeBv/rdWPwr9yUyygGJunskB8LDCHOEsADrhgFkRhDqOLmV0xHRBEKJqe5Kxk2cGKCcRZjWDat86pzUa3d1sr1Wh5RAR2jE1RBDrpEdXSDGqiJKLpHL+gVvVnP1rv1YX3ORlesfOcIzcn6+gWuapsH</latexit>

w(y)
<latexit sha1_base64="y9m+6PybCYRm8uS+PNkH8vnw5dY=">AAACCHicbZDLSsNAFIYn9VbrrerSzWAR6qYkUtRlwY3LCvYCbSiT6aQdOpnEmRMxhL6AL+BW38CduPUtfAGfw0mbhW394cDPd87hHH4vElyDbX9bhbX1jc2t4nZpZ3dv/6B8eNTWYawoa9FQhKrrEc0El6wFHATrRoqRwBOs401usn7nkSnNQ3kPScTcgIwk9zklYJDbB/YEAKmaVpPzQbli1+yZ8KpxclNBuZqD8k9/GNI4YBKoIFr3HDsCNyUKOBVsWurHmkWETsiI9YyVJGDaTWdPT/GZIUPsh8qUBDyjfzdSEmidBJ6ZDAiM9XIvg//1ejH4127KZRQDk3R+yI8FhhBnCeAhV4yCSIwhVHHzK6ZjoggFk9PClQwbODXBOMsxrJr2Rc25rNXv6pVGPY+oiE7QKaoiB12hBrpFTdRCFD2gF/SK3qxn6936sD7nowUr3zlGC7K+fgGmXpsC</latexit>

r(y)

<latexit sha1_base64="y9m+6PybCYRm8uS+PNkH8vnw5dY=">AAACCHicbZDLSsNAFIYn9VbrrerSzWAR6qYkUtRlwY3LCvYCbSiT6aQdOpnEmRMxhL6AL+BW38CduPUtfAGfw0mbhW394cDPd87hHH4vElyDbX9bhbX1jc2t4nZpZ3dv/6B8eNTWYawoa9FQhKrrEc0El6wFHATrRoqRwBOs401usn7nkSnNQ3kPScTcgIwk9zklYJDbB/YEAKmaVpPzQbli1+yZ8KpxclNBuZqD8k9/GNI4YBKoIFr3HDsCNyUKOBVsWurHmkWETsiI9YyVJGDaTWdPT/GZIUPsh8qUBDyjfzdSEmidBJ6ZDAiM9XIvg//1ejH4127KZRQDk3R+yI8FhhBnCeAhV4yCSIwhVHHzK6ZjoggFk9PClQwbODXBOMsxrJr2Rc25rNXv6pVGPY+oiE7QKaoiB12hBrpFTdRCFD2gF/SK3qxn6936sD7nowUr3zlGC7K+fgGmXpsC</latexit>

r(y)

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="AoEbdbbXeVpVV8hZ0/4uHjZ6wcU=">AAAB7HicdVDLSgNBEOz1GeMr6tHLYBA8LbvJ5nULePEYwU0CyRpmJ5NkyOzsMjMrhpBv8OJBEa9+kDf/xslDUNGChqKqm+6uMOFMacf5sNbWNza3tjM72d29/YPD3NFxU8WpJNQnMY9lO8SKciaor5nmtJ1IiqOQ01Y4vpz7rTsqFYvFjZ4kNIjwULABI1gbyR/23Nv7Xi7v2G6tWKs5yLG9aqXiFg0plQulWhW5trNAHlZo9HLv3X5M0ogKTThWquM6iQ6mWGpGOJ1lu6miCSZjPKQdQwWOqAqmi2Nn6NwofTSIpSmh0UL9PjHFkVKTKDSdEdYj9dubi395nVQPqsGUiSTVVJDlokHKkY7R/HPUZ5ISzSeGYCKZuRWREZaYaJNP1oTw9Sn6nzQLtlu2vWsvX/dWcWTgFM7gAlyoQB2uoAE+EGDwAE/wbAnr0XqxXpeta9Zq5gR+wHr7BAvhjtQ=</latexit>

gx
1

<latexit sha1_base64="hl4I5FsI75Dsg7hzosNO7TpV1fI=">AAAB7HicdVDLSgNBEOz1GeMr6tHLYBA8LbvJ5nULePEYwU0CyRpmJ5NkyOzsMjMrhpBv8OJBEa9+kDf/xslDUNGChqKqm+6uMOFMacf5sNbWNza3tjM72d29/YPD3NFxU8WpJNQnMY9lO8SKciaor5nmtJ1IiqOQ01Y4vpz7rTsqFYvFjZ4kNIjwULABI1gbyR/2xO19L5d3bLdWrNUc5NhetVJxi4aUyoVSrYpc21kgDys0ern3bj8maUSFJhwr1XGdRAdTLDUjnM6y3VTRBJMxHtKOoQJHVAXTxbEzdG6UPhrE0pTQaKF+n5jiSKlJFJrOCOuR+u3Nxb+8TqoH1WDKRJJqKshy0SDlSMdo/jnqM0mJ5hNDMJHM3IrICEtMtMkna0L4+hT9T5oF2y3b3rWXr3urODJwCmdwAS5UoA5X0AAfCDB4gCd4toT1aL1Yr8vWNWs1cwI/YL19AmjPjxE=</latexit>

gx
n

<latexit sha1_base64="GbMjNnn+wp1LuOe8zDNUDNFvpDM=">AAAB7HicdVDLSgMxFL3js9ZX1aWbYBFcDTPt9LUruHFZwWkL7VAyadqGZjJDkhHK0G9w40IRt36QO//G9CGo6IHA4Zx7yL0nTDhT2nE+rI3Nre2d3dxefv/g8Oi4cHLaVnEqCfVJzGPZDbGinAnqa6Y57SaS4ijktBNOrxd+555KxWJxp2cJDSI8FmzECNZG8vvDWKtBoejYbqPcaDjIsb16reaWDalUS5VGHbm2s0QR1mgNCu8mR9KICk04VqrnOokOMiw1I5zO8/1U0QSTKR7TnqECR1QF2XLZObo0yhCNYmme0Gipfk9kOFJqFoVmMsJ6on57C/Evr5fqUT3ImEhSTQVZfTRKOdIxWlyOhkxSovnMEEwkM7siMsESE236yZsSvi5F/5N2yXartnfrFZveuo4cnMMFXIELNWjCDbTABwIMHuAJni1hPVov1utqdMNaZ87gB6y3T3r6jx0=</latexit>

...

<latexit sha1_base64="1eFA3pSHPX7Us3ixMzGe2MFSuiQ=">AAAB7HicdVDLSsNAFJ3UV62vqks3g0VwFZKaxnRXcOOygmkLbSyT6aQdOpmEmYkQQr/BjQtF3PpB7vwbpw9BRQ9cOJxzL/feE6aMSmVZH0ZpbX1jc6u8XdnZ3ds/qB4edWSSCUx8nLBE9EIkCaOc+IoqRnqpICgOGemG06u5370nQtKE36o8JUGMxpxGFCOlJX88tO/yYbVmmVbT9S4a0DLrnuPajiYNt+nV69A2rQVqYIX2sPo+GCU4iwlXmCEp+7aVqqBAQlHMyKwyyCRJEZ6iMelrylFMZFAsjp3BM62MYJQIXVzBhfp9okCxlHkc6s4YqYn87c3Fv7x+piIvKChPM0U4Xi6KMgZVAuefwxEVBCuWa4KwoPpWiCdIIKx0PhUdwten8H/SqZu2azo3Tq3lrOIogxNwCs6BDS5BC1yDNvABBhQ8gCfwbHDj0XgxXpetJWM1cwx+wHj7BAH7js0=</latexit>

gy
1

<latexit sha1_base64="34Tmz/GMFo1KWtVcH48OAn+RvhU=">AAAB7HicdVDLSsNAFJ3UV62vqks3g0VwFZKaxnRXcOOygmkLbSyT6aQdOpmEmYkQQr/BjQtF3PpB7vwbpw9BRQ9cOJxzL/feE6aMSmVZH0ZpbX1jc6u8XdnZ3ds/qB4edWSSCUx8nLBE9EIkCaOc+IoqRnqpICgOGemG06u5370nQtKE36o8JUGMxpxGFCOlJX885Hf5sFqzTKvpehcNaJl1z3FtR5OG2/TqdWib1gI1sEJ7WH0fjBKcxYQrzJCUfdtKVVAgoShmZFYZZJKkCE/RmPQ15SgmMigWx87gmVZGMEqELq7gQv0+UaBYyjwOdWeM1ET+9ubiX14/U5EXFJSnmSIcLxdFGYMqgfPP4YgKghXLNUFYUH0rxBMkEFY6n4oO4etT+D/p1E3bNZ0bp9ZyVnGUwQk4BefABpegBa5BG/gAAwoewBN4NrjxaLwYr8vWkrGaOQY/YLx9Al7pjwo=</latexit>

gy
n

<latexit sha1_base64="GbMjNnn+wp1LuOe8zDNUDNFvpDM=">AAAB7HicdVDLSgMxFL3js9ZX1aWbYBFcDTPt9LUruHFZwWkL7VAyadqGZjJDkhHK0G9w40IRt36QO//G9CGo6IHA4Zx7yL0nTDhT2nE+rI3Nre2d3dxefv/g8Oi4cHLaVnEqCfVJzGPZDbGinAnqa6Y57SaS4ijktBNOrxd+555KxWJxp2cJDSI8FmzECNZG8vvDWKtBoejYbqPcaDjIsb16reaWDalUS5VGHbm2s0QR1mgNCu8mR9KICk04VqrnOokOMiw1I5zO8/1U0QSTKR7TnqECR1QF2XLZObo0yhCNYmme0Gipfk9kOFJqFoVmMsJ6on57C/Evr5fqUT3ImEhSTQVZfTRKOdIxWlyOhkxSovnMEEwkM7siMsESE236yZsSvi5F/5N2yXartnfrFZveuo4cnMMFXIELNWjCDbTABwIMHuAJni1hPVov1utqdMNaZ87gB6y3T3r6jx0=</latexit>

...

<latexit sha1_base64="9b8Sl9upG7Cps/ujxOZeXFarUnE=">AAAB/nicbZDLSsNAFIZP6q3WW9Wlm8Ei1E1JirdlwY3LiqYttKFMppN26GQSZiZCCQVfwK2+gTtx66v4Aj6HkzYL2/rDwM93zuGc+f2YM6Vt+9sqrK1vbG4Vt0s7u3v7B+XDo5aKEkmoSyIeyY6PFeVMUFczzWknlhSHPqdtf3yb1dtPVCoWiUc9iakX4qFgASNYG/RQxef9csWu2TOhVePkpgK5mv3yT28QkSSkQhOOleo6dqy9FEvNCKfTUi9RNMZkjIe0a6zAIVVeOjt1is4MGaAgkuYJjWb070SKQ6UmoW86Q6xHarmWwf9q3UQHN17KRJxoKsh8UZBwpCOU/RsNmKRE84kxmEhmbkVkhCUm2qSzsCXDBk5NMM5yDKumVa85V7WL+3qlcZlHVIQTOIUqOHANDbiDJrhAYAgv8Apv1rP1bn1Yn/PWgpXPHMOCrK9f1RKWEg==</latexit>

(a)
<latexit sha1_base64="FpWf7TtFNHs6KN1w/NPjgbw/Sho=">AAAB/nicbZDLSsNAFIZP6q3WW9Wlm8Ei1E1JirdlwY3LiqYttKFMppN26GQSZiZCCQVfwK2+gTtx66v4Aj6HkzYL2/rDwM93zuGc+f2YM6Vt+9sqrK1vbG4Vt0s7u3v7B+XDo5aKEkmoSyIeyY6PFeVMUFczzWknlhSHPqdtf3yb1dtPVCoWiUc9iakX4qFgASNYG/RQ9c/75Ypds2dCq8bJTQVyNfvln94gIklIhSYcK9V17Fh7KZaaEU6npV6iaIzJGA9p11iBQ6q8dHbqFJ0ZMkBBJM0TGs3o34kUh0pNQt90hliP1HItg//VuokObryUiTjRVJD5oiDhSEco+zcaMEmJ5hNjMJHM3IrICEtMtElnYUuGDZyaYJzlGFZNq15zrmoX9/VK4zKPqAgncApVcOAaGnAHTXCBwBBe4BXerGfr3fqwPuetBSufOYYFWV+/1quWEw==</latexit>

(b)
<latexit sha1_base64="WShdQZCC0Zg/d/fJ2fMNld5LTyA=">AAAB/nicbZDLSsNAFIZP6q3WW9Wlm8Ei1E1JirdlwY3LiqYttKFMppN26GQSZiZCCQVfwK2+gTtx66v4Aj6HkzYL2/rDwM93zuGc+f2YM6Vt+9sqrK1vbG4Vt0s7u3v7B+XDo5aKEkmoSyIeyY6PFeVMUFczzWknlhSHPqdtf3yb1dtPVCoWiUc9iakX4qFgASNYG/RQJef9csWu2TOhVePkpgK5mv3yT28QkSSkQhOOleo6dqy9FEvNCKfTUi9RNMZkjIe0a6zAIVVeOjt1is4MGaAgkuYJjWb070SKQ6UmoW86Q6xHarmWwf9q3UQHN17KRJxoKsh8UZBwpCOU/RsNmKRE84kxmEhmbkVkhCUm2qSzsCXDBk5NMM5yDKumVa85V7WL+3qlcZlHVIQTOIUqOHANDbiDJrhAYAgv8Apv1rP1bn1Yn/PWgpXPHMOCrK9f2ESWFA==</latexit>

(c)

<latexit sha1_base64="7ilgb79VgVUep8OqTP2a7HYPjm0=">AAAB/nicbZDLSgMxFIZP6q3WW9Wlm2ARXJUZKeqy4MZlxd6gHUomzbShmcyQZIQyFHwBt/oG7sStr+IL+Bxm2lnY1h8CP985h3Py+7Hg2jjONypsbG5t7xR3S3v7B4dH5eOTto4SRVmLRiJSXZ9oJrhkLcONYN1YMRL6gnX8yV1W7zwxpXkkm2YaMy8kI8kDTomx6LE5cAflilN15sLrxs1NBXI1BuWf/jCiScikoYJo3XOd2HgpUYZTwWalfqJZTOiEjFjPWklCpr10fuoMX1gyxEGk7JMGz+nfiZSEWk9D33aGxIz1ai2D/9V6iQluvZTLODFM0sWiIBHYRDj7Nx5yxagRU2sIVdzeiumYKEKNTWdpS4YtnNlg3NUY1k37qupeV2sPtUq9lkdUhDM4h0tw4QbqcA8NaAGFEbzAK7yhZ/SOPtDnorWA8plTWBL6+gUlepZF</latexit>

T1
<latexit sha1_base64="u4lrfWuqNwm22Igyc0GM3dvstbo=">AAAB/nicbZDLSgMxFIbP1Futt6pLN8EiuCozpajLghuXFXuDdiiZNNOGJpkhyQhlKPgCbvUN3IlbX8UX8DnMtLPQ1h8CP985h3PyBzFn2rjul1PY2Nza3inulvb2Dw6PyscnHR0litA2iXikegHWlDNJ24YZTnuxolgEnHaD6W1W7z5SpVkkW2YWU1/gsWQhI9hY9NAa1oblilt1F0LrxstNBXI1h+XvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvrcSCaj9dnDpHF5aMUBgp+6RBC/p7IsVC65kIbKfAZqJXaxn8r9ZPTHjjp0zGiaGSLBeFCUcmQtm/0YgpSgyfWYOJYvZWRCZYYWJsOn+2ZNjCuQ3GW41h3XRqVe+qWr+vVxr1PKIinME5XIIH19CAO2hCGwiM4Rle4NV5ct6cd+dj2Vpw8plT+CPn8wcnEpZG</latexit>

T2

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="ke2MBleVU3xR0QVWA05McHGgV7Y=">AAACCHicbZBLSgNBEIZ74ivGV9Slm8YgxE2YkaAuA25cRjAPSIbQ0+lJmvT0jN01mjDkAl7Ard7Anbj1Fl7Ac9iTzMIk/lDw81UVVfxeJLgG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1hR1qChCFXbI5oJLlkDOAjWjhQjgSdYyxvdpP3WI1Oah/IeJhFzAzKQ3OeUgEFuF9gYAJKnaXl83iuW7Io9E141TmZKKFO9V/zp9kMaB0wCFUTrjmNH4CZEAaeCTQvdWLOI0BEZsI6xkgRMu8ns6Sk+M6SP/VCZkoBn9O9GQgKtJ4FnJgMCQ73cS+F/vU4M/rWbcBnFwCSdH/JjgSHEaQK4zxWjICbGEKq4+RXTIVGEgslp4UqKDZyaYJzlGFZN86LiXFaqd9VSrZpFlEcn6BSVkYOuUA3dojpqIIoe0At6RW/Ws/VufVif89Gcle0cowVZX7+s0ZsG</latexit>

w(x)

<latexit sha1_base64="UVhnFHoEZOCbJCojOmwsxCC62CQ=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4c6KG0BfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN5BEjE3IEPJfU4JGOT2gD0BQPo4qSRn/VLZrtpT4WXj5KaMcjX6pZ/eIKRxwCRQQbTuOnYEbkoUcCrYpNiLNYsIHZMh6xorScC0m06fnuBTQwbYD5UpCXhK/26kJNA6CTwzGRAY6cVeBv/rdWPwr9yUyygGJunskB8LDCHOEsADrhgFkRhDqOLmV0xHRBEKJqe5Kxk2cGKCcRZjWDat86pzUa3d1sr1Wh5RAR2jE1RBDrpEdXSDGqiJKLpHL+gVvVnP1rv1YX3ORlesfOcIzcn6+gWuapsH</latexit>

w(y)

<latexit sha1_base64="UVhnFHoEZOCbJCojOmwsxCC62CQ=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4c6KG0BfwBdzqG7gTt76FL+BzOGmzsK0/HPj5zjmcw+9Fgmuw7W9rZXVtfWOzsFXc3tnd2y8dHLZ0GCvKmjQUoep4RDPBJWsCB8E6kWIk8ARre+PrrN9+YErzUN5BEjE3IEPJfU4JGOT2gD0BQPo4qSRn/VLZrtpT4WXj5KaMcjX6pZ/eIKRxwCRQQbTuOnYEbkoUcCrYpNiLNYsIHZMh6xorScC0m06fnuBTQwbYD5UpCXhK/26kJNA6CTwzGRAY6cVeBv/rdWPwr9yUyygGJunskB8LDCHOEsADrhgFkRhDqOLmV0xHRBEKJqe5Kxk2cGKCcRZjWDat86pzUa3d1sr1Wh5RAR2jE1RBDrpEdXSDGqiJKLpHL+gVvVnP1rv1YX3ORlesfOcIzcn6+gWuapsH</latexit>

w(y)
<latexit sha1_base64="y9m+6PybCYRm8uS+PNkH8vnw5dY=">AAACCHicbZDLSsNAFIYn9VbrrerSzWAR6qYkUtRlwY3LCvYCbSiT6aQdOpnEmRMxhL6AL+BW38CduPUtfAGfw0mbhW394cDPd87hHH4vElyDbX9bhbX1jc2t4nZpZ3dv/6B8eNTWYawoa9FQhKrrEc0El6wFHATrRoqRwBOs401usn7nkSnNQ3kPScTcgIwk9zklYJDbB/YEAKmaVpPzQbli1+yZ8KpxclNBuZqD8k9/GNI4YBKoIFr3HDsCNyUKOBVsWurHmkWETsiI9YyVJGDaTWdPT/GZIUPsh8qUBDyjfzdSEmidBJ6ZDAiM9XIvg//1ejH4127KZRQDk3R+yI8FhhBnCeAhV4yCSIwhVHHzK6ZjoggFk9PClQwbODXBOMsxrJr2Rc25rNXv6pVGPY+oiE7QKaoiB12hBrpFTdRCFD2gF/SK3qxn6936sD7nowUr3zlGC7K+fgGmXpsC</latexit>

r(y)

<latexit sha1_base64="y9m+6PybCYRm8uS+PNkH8vnw5dY=">AAACCHicbZDLSsNAFIYn9VbrrerSzWAR6qYkUtRlwY3LCvYCbSiT6aQdOpnEmRMxhL6AL+BW38CduPUtfAGfw0mbhW394cDPd87hHH4vElyDbX9bhbX1jc2t4nZpZ3dv/6B8eNTWYawoa9FQhKrrEc0El6wFHATrRoqRwBOs401usn7nkSnNQ3kPScTcgIwk9zklYJDbB/YEAKmaVpPzQbli1+yZ8KpxclNBuZqD8k9/GNI4YBKoIFr3HDsCNyUKOBVsWurHmkWETsiI9YyVJGDaTWdPT/GZIUPsh8qUBDyjfzdSEmidBJ6ZDAiM9XIvg//1ejH4127KZRQDk3R+yI8FhhBnCeAhV4yCSIwhVHHzK6ZjoggFk9PClQwbODXBOMsxrJr2Rc25rNXv6pVGPY+oiE7QKaoiB12hBrpFTdRCFD2gF/SK3qxn6936sD7nowUr3zlGC7K+fgGmXpsC</latexit>

r(y)

<latexit sha1_base64="HdWl9oi02bXToQYfMSEE/jRODSY=">AAACCHicbZDLSsNAFIYnXmu9VV26GSxC3ZREirosuHFZwV6gDWUynbRDJ5M4cyItIS/gC7jVN3Anbn0LX8DncNJmYVt/OPDznXM4h9+LBNdg29/W2vrG5tZ2Yae4u7d/cFg6Om7pMFaUNWkoQtXxiGaCS9YEDoJ1IsVI4AnW9sa3Wb/9xJTmoXyAacTcgAwl9zklYJDbAzYBgESllclFv1S2q/ZMeNU4uSmjXI1+6ac3CGkcMAlUEK27jh2BmxAFnAqWFnuxZhGhYzJkXWMlCZh2k9nTKT43ZID9UJmSgGf070ZCAq2ngWcmAwIjvdzL4H+9bgz+jZtwGcXAJJ0f8mOBIcRZAnjAFaMgpsYQqrj5FdMRUYSCyWnhSoYNTE0wznIMq6Z1WXWuqrX7WrleyyMqoFN0hirIQdeoju5QAzURRY/oBb2iN+vZerc+rM/56JqV75ygBVlfv6TFmwE=</latexit>

r(x)

<latexit sha1_base64="vLb4JgKfdia07mtyihTMKPyH578=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GmaSyXYLePEY0SyQDKGn0zNp0rPQ3SOEIZ/gxYMiXv0ib/6NnUVQ0QcFj/eqqKrnJZxJZVkfRm5jc2t7J79b2Ns/ODwqHp90ZZwKQjsk5rHoe1hSziLaUUxx2k8ExaHHac+bXi383j0VksXRnZol1A1xEDGfEay0dBuM7FGxZJl2s9JsWsgynUa9blc0qdbK1WYD2aa1RAnWaI+K78NxTNKQRopwLOXAthLlZlgoRjidF4appAkmUxzQgaYRDql0s+Wpc3ShlTHyY6ErUmipfp/IcCjlLPR0Z4jVRP72FuJf3iBVfsPNWJSkikZktchPOVIxWvyNxkxQovhME0wE07ciMsECE6XTKegQvj5F/5Nu2bRrpnPjlFrOOo48nME5XIINdWjBNbShAwQCeIAneDa48Wi8GK+r1pyxnjmFHzDePgF7TY3q</latexit>g1

<latexit sha1_base64="x5zreKRzua2m4Xme7SyKhVrw+mI=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GmaSyXYLePEY0SyQDKGn00ma9PQM3T1CGPIJXjwo4tUv8ubf2FkEFX1Q8Hiviqp6QcyZ0o7zYWU2Nre2d7K7ub39g8Oj/PFJW0WJJLRFIh7JboAV5UzQlmaa024sKQ4DTjvB9Grhd+6pVCwSd3oWUz/EY8FGjGBtpNvxQAzyBcd266V63UGO7dWqVbdkSLlSLNdryLWdJQqwRnOQf+8PI5KEVGjCsVI914m1n2KpGeF0nusnisaYTPGY9gwVOKTKT5enztGFUYZoFElTQqOl+n0ixaFSszAwnSHWE/XbW4h/eb1Ej2p+ykScaCrIatEo4UhHaPE3GjJJieYzQzCRzNyKyARLTLRJJ2dC+PoU/U/aRdut2N6NV2h46ziycAbncAkuVKEB19CEFhAYwwM8wbPFrUfrxXpdtWas9cwp/ID19gnXwY4n</latexit>gn

<latexit sha1_base64="GbMjNnn+wp1LuOe8zDNUDNFvpDM=">AAAB7HicdVDLSgMxFL3js9ZX1aWbYBFcDTPt9LUruHFZwWkL7VAyadqGZjJDkhHK0G9w40IRt36QO//G9CGo6IHA4Zx7yL0nTDhT2nE+rI3Nre2d3dxefv/g8Oi4cHLaVnEqCfVJzGPZDbGinAnqa6Y57SaS4ijktBNOrxd+555KxWJxp2cJDSI8FmzECNZG8vvDWKtBoejYbqPcaDjIsb16reaWDalUS5VGHbm2s0QR1mgNCu8mR9KICk04VqrnOokOMiw1I5zO8/1U0QSTKR7TnqECR1QF2XLZObo0yhCNYmme0Gipfk9kOFJqFoVmMsJ6on57C/Evr5fqUT3ImEhSTQVZfTRKOdIxWlyOhkxSovnMEEwkM7siMsESE236yZsSvi5F/5N2yXartnfrFZveuo4cnMMFXIELNWjCDbTABwIMHuAJni1hPVov1utqdMNaZ87gB6y3T3r6jx0=</latexit>

...

<latexit sha1_base64="GbMjNnn+wp1LuOe8zDNUDNFvpDM=">AAAB7HicdVDLSgMxFL3js9ZX1aWbYBFcDTPt9LUruHFZwWkL7VAyadqGZjJDkhHK0G9w40IRt36QO//G9CGo6IHA4Zx7yL0nTDhT2nE+rI3Nre2d3dxefv/g8Oi4cHLaVnEqCfVJzGPZDbGinAnqa6Y57SaS4ijktBNOrxd+555KxWJxp2cJDSI8FmzECNZG8vvDWKtBoejYbqPcaDjIsb16reaWDalUS5VGHbm2s0QR1mgNCu8mR9KICk04VqrnOokOMiw1I5zO8/1U0QSTKR7TnqECR1QF2XLZObo0yhCNYmme0Gipfk9kOFJqFoVmMsJ6on57C/Evr5fqUT3ImEhSTQVZfTRKOdIxWlyOhkxSovnMEEwkM7siMsESE236yZsSvi5F/5N2yXartnfrFZveuo4cnMMFXIELNWjCDbTABwIMHuAJni1hPVov1utqdMNaZ87gB6y3T3r6jx0=</latexit>

...

<latexit sha1_base64="4VaEPZdAPNwZX9U8TaSFkHZoAPc=">AAAB6nicdVDLSsNAFL2pr1pfVZduBovgKiQ1jemu4MZlRfuANpTJdNIOnTyYmQgl9BPcuFDErV/kzr9x+hBU9MCFwzn3cu89QcqZVJb1YRTW1jc2t4rbpZ3dvf2D8uFRWyaZILRFEp6IboAl5SymLcUUp91UUBwFnHaCydXc79xTIVkS36lpSv0Ij2IWMoKVlm77KRuUK5Zp1V3vooYss+o5ru1oUnPrXrWKbNNaoAIrNAfl9/4wIVlEY0U4lrJnW6nycywUI5zOSv1M0hSTCR7RnqYxjqj088WpM3SmlSEKE6ErVmihfp/IcSTlNAp0Z4TVWP725uJfXi9ToefnLE4zRWOyXBRmHKkEzf9GQyYoUXyqCSaC6VsRGWOBidLplHQIX5+i/0m7atqu6dw4lYaziqMIJ3AK52DDJTTgGprQAgIjeIAneDa48Wi8GK/L1oKxmjmGHzDePgHN1o4g</latexit>⇡

Fig. 6. The challenges of monitoring with scattered grains: (a) Unboundedly many active grains, (b) Minimal
grains, and (c) Retroactive paths.

simultaneously, can be unbounded (i.e., not constant). Consider the run and the scattered grains

𝐺 = {𝑔1, . . . , 𝑔𝑛} marked in Fig. 6(a). Observe that all grains 𝑔1, 𝑔2, . . . 𝑔𝑛 are active in the prefix

𝜋 . The unboundedness of the number of active grains is problematic because one expects that a

monitoring algorithm for checking concurrency would need to at least keep track of all active

grains. This is the first challenge that has to be overcome in designing a constant space monitor for

scattered grain concurrency.

The second challenge arises because a single active grain may overlap with many other active grains

through its lifetime, even if at a given point only boundedly many grains are active. This means that

two grains can be observed as ordered witnessed by a path in the grain graph (Definition 6.2), but

this path is completed by a grain that appears long after the lifespan of both the grains have ended.

Consider, for example, the run in Fig. 6(c). Before the grain 𝑔4 appears, there is a path, namely the

direct edge, from 𝑔3 to 𝑔2, but no path from 𝑔1 to 𝑔2. In fact, right before 𝑔4 appears, 𝑔1 and 𝑔2 have

both become inactive. When 𝑔4 appears, a path is formed from 𝑔1 to 𝑔4. Once the r(𝑦) event in 𝑔3
appears, an edge is formed between grain 𝑔4 and grain 𝑔3, which now completes the path from 𝑔1
to 𝑔2 retroactively. Accounting for such retroactive paths is necessary for soundness.

We present solutions to these two challenges in Sections 7.1 and 7.2. We introduce the notion of a

minimal grain to deal with the problem of unboundedly meany active grains and then demonstrate

how a monitor can track retroactive paths by summarizing the paths between active grains when

an intermediate grain has finished.

7.1 Bounding the number of Active Scattered Grains
We start by defining a class of grains that are minimal, with the idea that if all (scattered) grains

are minimal, then the number of active grains in any prefix of the program run is bounded.

Definition 7.1 (Minimal Grain). A (scattered) grain 𝑔 is said to be minimal in program run𝑤 if for

all 𝜌, 𝜎 ≠ 𝜖 such that 𝑔 = 𝜌𝜎 , there is a read event r ∈ 𝜎 where rf𝑤 (r) ∈ 𝜌 . We call a set of grains

minimal in𝑤 if all grains in it are minimal in𝑤 .

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

Coarser Equivalences for Causal Concurrency 21

Intuitively, a grain is minimal if it cannot be broken into simpler grains, without worsening its

commutativity status with respect to other grains. In Fig. 6(a), none of the grains 𝑔1, . . . , 𝑔𝑛 are

minimal, because each of them have a prefix (of size 2) where there is no read event whose

corresponding write event is not in the prefix grain. In contrast, the following regular expression

can produce arbitrarily long minimal grains:

w(𝑥)w(𝑦)r(𝑥)
(
w(𝑥)r(𝑦)w(𝑦)r(𝑥)

)∗
For a valid set𝐺 of grains in𝑤 and a prefix 𝜋 of𝑤 , we use the notation Active𝜋,𝐺 to denote the set

of grains in𝐺 that are active in 𝜋 . If all grains are minimal, then the set of active grains is bounded

in size by the total number of variables:

Lemma 7.1. Let𝑤 be a run and let𝐺 be a set of minimal grains in𝑤 . For a prefix 𝜋 of𝑤 , we have

|Active𝜋,𝐺 | ≤ |X|.

This is implied by the following crucial observation. Assume two minimal grains 𝑔 and 𝑔′ are
active at given prefix 𝜋 of 𝑤 . The minimality 𝑔 (respectively 𝑔′) implies that there is a variable

𝑥 (respectively 𝑥 ′) that is written in 𝜋 and has a corresponding read in the remainder of 𝑤 . The

variables 𝑥 and 𝑥 ′ cannot coincide. Therefore one needs a distinct variable that only belongs to one

of the many active grains at any given point, which puts a bound of |X| on the maximum number

of grains that can be active at any given time.

Ideally, we want all grains to be minimal, since this resolves the problem of having unboundedly

many active grains. Let us argue why this can be achieved without any compromises to the result of

checking causal concurrency. Consider Fig. 6(b) which depicts the same run as in Fig. 6(a) but this

time with a different set of grains which are all minimal. Observe that the set of minimal grains in

Fig. 6(b) witness more causal concurrency than the set of non-minimal grains in Fig. 6(a). In general,

one can argue that for any set of (non-minimal) grains that witnesses the causal concurrency of

two events 𝑒 and 𝑓 , there exists a set of minimal events that does the same. We give a constructive

argument for this claim.

One can argue that any grain 𝑔 is the concatenation of a sequence of minimal grains. Recall

Definition 7.1. For any 𝜌 and 𝜎 that witness non-minimality of 𝑔 = 𝜌𝜎 according to Definition 7.1,

add a split point between 𝜌 and 𝜎 . Let 𝑔 = 𝑔1 . . . 𝑔𝑛 where 𝑔𝑖 ’s are precisely marked by these split

points. By definition, 𝑔𝑖 ’s are all minimal. Define split(𝐺) = {𝑔1, . . . , 𝑔𝑛}.

Given a valid set of grains 𝐺 , we use split(𝐺) = ⋃
𝑔∈𝐺 split(𝑔) to denote the set of grains obtained

by splitting individual grains in 𝐺 . We need to argue that splitting all grains into minimal grains

would result in declaring at least as many pairs of events causally concurrent as before.

Given a commutativity relation I𝐺 on 𝐺 , define split(I𝐺) ⊆ split(𝐺) × split(𝐺) as

split(I𝐺) = {(𝑔′
1
, 𝑔′

2
) | ∃𝑔1, 𝑔2 ∈ 𝐺, (𝑔1, 𝑔2) ∈ I𝐺 and 𝑔′

1
∈ split(𝑔1), 𝑔′2 ∈ split(𝑔2)}

One can prove that split(I𝐺) is sound. This in turn implies that splitting grains does not add spurious

paths in the new grain graph, which did not exist in the original one.

Lemma 7.2. Let𝑤 be a run, 𝐺 be a valid set of scattered grains, and I𝐺 be a sound independence

relation (Definition 4.6). split(I𝐺) is sound, and for every pair of events (𝑒1, 𝑒2), if 𝑒1 and 𝑒2 are grain
graph concurrent under 𝐺 (using commutativity relation I𝐺), then they are grain graph concurrent

under the grains split(𝐺) (using commutativity relation split(I𝐺)).

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

22 Azadeh Farzan and Umang Mathur

Therefore, when checking scattered grain concurrency, it is safe to ignore all sets of grains that

include any non-minimal grains, since the same causal concurrency verdicts can be declared by

other sets of minimal grains.

7.2 Tracking Retroactive Paths
Let us address our second challenge, that is how to keep track of retroactive paths in the grain

graph. We fix the set of minimal grains. Since grains containing only a single event are by definition

minimal, we can assume, without loss of generality, that every event is part of a grain; standalone

events are grains of size one. Like Section 5, the causal concurrency question between events 𝑒1
and 𝑒2 is posed as the causal concurrency between the grains 𝑔⋄1 and 𝑔⋄2 containing these events.

It is clear that to design a constant space monitor, we cannot store the entire grain graph in the

memory of the monitor. The idea is to forget all grains that are no longer active and summarize
their effect instead. Under the assumption that all grains are minimal, the number of active grains

are bounded by |X|. This guarantees that the monitor keeps track of constantly many grains. We

can annotate events with a finite set of grain identifiers {1, 2, . . . , |X|}. Identifiers are reused for

grains that do not overlap.

The monitor maintains a graph where the nodes are precisely the set of active grains. We call this

graph the summarized grain graph. Recall that the key information a monitor wants from a grain

graph is whether two grains are connected by a directed path in the grain graph. Paths from the

grain graph are represented as edges in the summarized grain graph. In particular, the edges in the

summarized grain graph capture paths in the original grain graph whose intermediate grains have

become inactive.

More formally, let 𝜋 be a prefix of run 𝑤 and let 𝐺 be a valid set of grains. For grains (active or

otherwise) 𝑔,𝑔′ that overlap with 𝜋 , use the notation 𝑔⇝𝜋,𝐺 𝑔′ to say that there is a path through
inactive grains from 𝑔 to 𝑔′, i.e., there are grains 𝑔1, 𝑔2 . . . , 𝑔𝑘 ∈ 𝐺 (with 𝑘 > 1, 𝑔 = 𝑔1 and 𝑔

′ = 𝑔𝑘),

such that 𝑔2, . . . , 𝑔𝑘−1 ⊆ 𝜋 are inactive (i.e., have started and completed) in 𝜋 , and (𝑔𝑖 , 𝑔𝑖+1) is an
edge of the original grain graph, for each 1 ≤ 𝑖 ≤ 𝑘 − 1. In essence, a path in the grain graph can be

split into successive paths (through inactive grains) between the active grains.

The summarized grain graph is maintained by the monitor for answering a specific causal concur-

rency query between two grains 𝑔⋄1 and 𝑔⋄2 . Formally:

Definition 7.2 (Summarized Grain Graph). Let𝑤 be a run,𝐺 be a valid set of scattered grains and

let 𝜋 be a prefix of𝑤 . The summarized conflict graph of 𝜋 is SG𝜋,𝐺 = (𝑉𝜋 , 𝐸𝜋), where

(1) 𝑉𝜋 = Active𝜋,𝐺 ∪ {𝑔⋄1 , 𝑔⋄2 } is the set containing the active grains at the end of 𝜋 as well as the

focal grains,

(2) (𝑔,𝑔′) ∈ 𝐸𝜋 if 𝑔⇝𝜋,𝐺 𝑔′,

Summarized grain graphs sufficiently capture the reachability information between the focal grains:

Proposition 7.1. Let𝑤 be a run and let 𝐺 be a valid set of scattered grains in𝑤 . There is a path

from 𝑔⋄1 to 𝑔⋄2 in G𝑤,𝐺 iff there is a prefix 𝜋 of𝑤 such that there is a path from 𝑔⋄1 to 𝑔⋄2 in SG𝜋,𝐺 .

It remains to argue that a constant-space streaming algorithm (that reads an input run in one pass

from left to right) can successfully construct the summarized grain graph for the run. Intuitively,

every time an active grain 𝑔 is about to end, and as such become inactive and disappear, its summary

is added to all its predecessors 𝑔′; that is, all nodes in the summarized grain graph that have a

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

Coarser Equivalences for Causal Concurrency 23

incoming edge to 𝑔. This way, a future active grain 𝑔′′, that would be a successor of 𝑔 in the grain

graph, will now become the successor of all 𝑔′’s, since the summary information stored in them

will trigger the formation of an edge from them to 𝑔′′. We make this idea formal in the detailed

description of the monitors in the next sections.

For example, recall Fig. 6(c) and assume we want to query causal concurrency between 𝑔1 and 𝑔2.

As such, both 𝑔1 and 𝑔2 have dedicated nodes in the summarized grain graph independent of their

activeness status. The dashed edge appears in the summarized grain graph in place of the path

from 𝑔1 to 𝑔4, while 𝑔4 is active. Once 𝑔4 is finished, as a predecessor of 𝑔4, 𝑔1 would remember the

w(𝑦) access so that it can add an edge to 𝑔3 when its r(𝑦) appears.

7.3 Monitoring for a Fixed set of Minimal Scattered Grains
The description of the monitor that checks grain graph concurrency (under a given set of minimal

grains) is now straightforward as it essentially tracks and updates the summarized grain graph

after each prefix of the run that is seen. We assume that the run contains symbols ▷ and ◁ denoting
start and end of grains. For ease of presentation, let us assume that the run labels the focal grains
𝑔⋄1 and 𝑔⋄2 with fresh identifiers identifiers ⋄1 and ⋄2. Thus, the set of grain identifiers is thus

gIDs = {1, 2, . . . , |X|} ⊎ {⋄1,⋄2}.

The commutativity status of a grain depends on the pending variables of a grain, i.e., for each grain

𝑔, we identify the set of variables 𝑥 such that 𝑥 is read at some event 𝑒 ∈ 𝑔 but not written to in 𝑔 (i.e.,

rf𝑤 (𝑒) ∉ 𝑔), or 𝑥 is written at some event 𝑒 ∈ 𝑔 to but is read outside of𝑔 i.e., ∃𝑒′, rf𝑤 (𝑒′) = 𝑒∧𝑒′ ∉ 𝑔).

While this information can be guessed non-deterministically and checked later on, for simplifying

the presentation of our monitor, we will also assume that the alphabet encodes this information as

part of the ▷ marker of grain. Thus, the alphabet of runs can be assumed to be

Σ̂ = gIDs × (Σ ⊎ {▷} × P(X) ⊎ {◁}) .

For the purpose of this section, we will assume that the runs we consider are valid strings over the al-

phabet Σ̂ that areminimal, and use the language𝐿VMG = {𝑤 ∈ Σ̂∗ |𝑤 represents a valid minimal grain
annotation with focal grains} to denote the set of all such annotated runs. Below, we present the

annotated version of the run in Fig. 3(a) with all grains 𝑔1, 𝑔2, 𝑔3, 𝑔4, assuming the two focal grains

are 𝑔2 and 𝑔4 is presented below.

𝑤 = (▷,∅)⋄1 ⟨𝑇2, w(𝑥)⟩⋄1 (▷,∅)1 ⟨𝑇1, w(𝑧)⟩1 ⟨𝑇2, r(𝑧)⟩1 ◁1 (▷,∅)1 ⟨𝑇3, w(𝑧)⟩1 ⟨𝑇3, r(𝑧)⟩1◁1
⟨𝑇3, r(𝑥)⟩⋄1 ◁⋄1 (▷,∅)⋄2 ⟨𝑇1, w(𝑥)⟩⋄2 ⟨𝑇1, r(𝑥)⟩⋄2 ◁⋄2

In the above, we use the notation 𝑎𝑖 as shorthand for (𝑖, 𝑎) ∈ Σ̂. Observe that the (unique) grains
with grain identifier ⋄1 (namely grain 𝑔2) overlaps with both the grains with identifier 1 (i.e., grains

𝑔1 and 𝑔3). Also observe that 𝐿VMG is a regular language. Thus, a monitor that works correctly for

runs in this language also works for non-annotated runs because the language of a constant space

monitor is regular and thus closed under projection.

As discussed in Section 5, it suffices to consider the largest sound commutativity relation on a

given set of grains. In fact, the largest commutativity relation also has a succinct representation —

the dependence between any two scattered grains in this relation can be checked only using the

signatures 𝑔1 = ⟨𝐸1,𝑉1⟩ and 𝑔2 = ⟨𝐸2,𝑉2⟩ of these grains:

depend (𝑔1, 𝑔2) ⇐⇒ ∃𝑒1 ∈ 𝐸1, 𝑒2 ∈ 𝐸2 ·
(

thr(𝑒1) = thr(𝑒2)
∨ var(𝑒1) = var(𝑒2) ∉ 𝑉1 ∩𝑉2 ∧ w ∈ {op(𝑒1), op(𝑒2)}

)
Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

24 Azadeh Farzan and Umang Mathur

Recall that the signatures are bounded sized, and so is their dependence relationship. Thus, in order

to maintain the summarized graph inductively, states stores additional information to correctly

infer commutativity with other grains, including those that have finished.

Our monitor essentially tracks grain signatures of interest to infer edges between relevant grains.

Let 𝜋 be a prefix of 𝑤 and let 𝑔 be some grain that is active in 𝜋 . Then, we use the notation

C𝜋 (𝑔) = {𝑤 [𝑒] | 𝑒 ∈ 𝑔 ∩ [1..|𝜋 |]} to denote the Contents of 𝐺 in 𝜋 . Likewise, we denote the set of

Pending variables of𝑔 by P(𝑔) = {𝑥 ∈ X | ∃𝑒 ∈ 𝑔, var(𝑒) = 𝑥,¬complete(𝑔, 𝑥)}. For each active grain
𝑔 that we track in ourmonitor, wewill alsomaintain summarized information about those grains that

are no longer active but can be reached from 𝑔, to accurately infer edges in the summarized graph

(alternatively retroactive paths in the grain graph). The first such information is the Summarized
Contents of the inactive but reachable grains: SC𝜋 (𝑔) =

⋃{C𝜋 (𝑔′) | ∃𝑔′ ⊆ 𝜋,𝑔⇝𝜋,𝐺 𝑔′}. Likewise,
we use SP𝜋 (𝑔) =

⋃{P𝜋 (𝑔′) | ∃𝑔′ ⊆ 𝜋,𝑔⇝𝜋,𝐺 𝑔′} to denote the Summarized Pending variables that

𝑔 must keep track of.

We are now ready to formally describe ourGrainGraph concurrencymonitorAGG = (𝑄GG, 𝑞0, 𝛿GG, 𝐹GG).
The states 𝑄GG of AGG are tuples of the form ⟨𝑉 , 𝐸,C, P, SC, SP⟩ where

• 𝑉 ⊆ gIDs represents the set of active and focal grains of the summarized graph.

• 𝐸 ⊆ 𝑉 ×𝑉 represents the edges of the summarized graph.

• C : 𝑉 → P(Σ) maintains the contents of active grains. For each grain 𝑔 tracked as a vertex 𝑢,

we will have C(𝑢) = C𝜋 (𝑔) after having processed the prefix 𝜋 .

• P : 𝑉 → P(X) to track the set P𝜋 (𝑔) for each grain 𝑔 (at the end of prefix 𝜋) tracked as some

vertex in 𝑉 .

• SC : 𝑉 → P(Σ) is such that SC𝜋 (𝑢) tracks the set SC𝜋 (𝑔) at the end of prefix 𝜋 , where 𝑢

represents the grain 𝑔.

• SP : 𝑉 → P(X) to track the set SP𝜋 (𝑔) for each grain 𝑔 (at te end of prefix 𝜋) tracked as some

vertex in 𝑉 .

The start state of the monitor is 𝑞0 = ⟨∅,∅, 𝜆𝑖 · ∅, 𝜆𝑖 · ∅, 𝜆𝑖 · ∅, 𝜆𝑖 · ∅⟩. All states ⟨𝑉 , 𝐸,C, P, SC, SP⟩
in which ⋄1,⋄2 ∈ 𝑉 and further ⋄2 is reachable from ⋄1 via a path using edges in 𝐸 are marked

rejecting, and others are accepting (i.e., belong to 𝐹GG). The transitions of the monitor are described

in Fig. 7. When we see an event 𝑒 = (𝑖, (▷, 𝑌)) that demarcates the beginning of a grain with

identifier 𝑖 , we also know upfront the set of pending variables in the grain. At this point, we create

a new node labeled 𝑖 in the graph and also track this set 𝑌 . When we see the end of a grain (marked

◁) with identifier 𝑖 , then we garbage collect the node 𝑖 from the graph. As part of this garbage

collection, we add an edge from the immediate predecessors of 𝑖 to its immediate successors; this is

captured by the operation mrg(·, ·). Further, the maps C and P reset the entry corresponding to 𝑖 ,

and SC and SP entries of the predecessors of 𝑖 are updated to include C(𝑖), SC(𝑖), P(𝑖) and SP(𝑖);
this is captured using mrgSm(·, ·, ·, ·). When we see a read or a write event 𝑎 = ⟨𝑇, 𝑜, 𝑥⟩ in grain

corresponding to the node 𝑖 , we add edges from all nodes 𝑗 to 𝑖 such that 𝑗 conflicts with 𝑎, i.e.,

either the contents or the summary of 𝑗 contains a letter that conflicts with 𝑎, or one of 𝑗 or an

inactive grain reachable from 𝑗 has 𝑥 as a pending variable.

One can prove that the monitor in Fig. 7 correctly maintains⇝𝜋,𝐺 between each pair of active/focal

grains after every prefix 𝜋 of𝑤 , and as such, it can correctly decide whether the two focal grains

are scattered grain concurrent or not:

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

Coarser Equivalences for Causal Concurrency 25

State Event State Update

⟨𝑉 , 𝐸,C, P, SC, SP⟩ 𝑒 = (𝑖, (▷, 𝑌)) ⟨𝑉 ⊎ {𝑖}, 𝐸,C, P[𝑖 ↦→ 𝑌], SC, SP⟩
⟨𝑉 , 𝐸,C, P, SC, SP⟩ 𝑒 = (𝑖,◁), 𝑖 ∈ {⋄1,⋄2} ⟨𝑉 , 𝐸,C, P, SC, SP⟩

⟨𝑉 , 𝐸,C, P, SC, SP⟩ 𝑒 = (𝑖,◁), 𝑖 ∉ {⋄1,⋄2}

⟨𝑉 ′, 𝐸′,C′, P′, SC′, SP′⟩, where,
𝑉 ′ = 𝑉 − {𝑖}, 𝐸′ = mrg(𝐸, 𝑖)
C′ = C[𝑖 ↦→ ∅], P′ = P[𝑖 ↦→ ∅],
SC′ = mrgSm(SC,C, 𝐸, 𝑖),
SP′ = mrgSm(SP, P, 𝐸, 𝑖)

⟨𝑉 , 𝐸,C, P, SC, SP⟩ 𝑒 = (𝑖, 𝑎), 𝑎 ∈ Σ

⟨𝑉 , 𝐸′,C ∪ {𝑎}, SC, SP⟩, where,
𝐸′ = 𝐸 ∪ {(𝑗, 𝑖) | 𝑗 ≠ 𝑖 and

Dep(C(𝑗)∪SC(𝑗), 𝑎, P(𝑗)∪SP(𝑗)∪P(𝑖)) }

mrg(𝐸, 𝑖) = (𝐸 − {(𝑖, 𝑗), (𝑗, 𝑖) | 𝑗 ≠ 𝑖}) ∪ {(𝑗, 𝑘) | (𝑗, 𝑖) ∈ 𝐸, (𝑖, 𝑘) ∈ 𝐸}

mrgSm(𝑆𝑀,𝑀, 𝐸, 𝑖) = 𝜆 𝑗 ·


∅ if 𝑗 = 𝑖

𝑆𝑀 (𝑗) ∪𝑀 (𝑖) ∪ 𝑆𝑀 (𝑖) if 𝑗 ≠ 𝑖, (𝑗, 𝑖) ∈ 𝐸

𝑆𝑀 (𝑗) owise

Dep(𝑆, 𝑎, 𝑍) ⇐⇒ ∃𝑏 ∈ 𝑆 ·
(
thr(𝑎) = thr(𝑏) ∨

(
var(𝑎) = var(𝑏) ∈ 𝑍 ∧ w ∈ {op(𝑎), op(𝑏)}

))
Fig. 7. Grain Graph Concurrency Monitor for Annotated Runs AGG: The monitor rejects if it is in a state
(𝑉 , 𝐸,C, P, SC, SP) such that (⋄1,⋄2) ∈ 𝐸∗ at the end of the run, and accepts otherwise.

.

Theorem 7.1. Given a run𝑤 ∈ 𝐿VMG annotated with grains 𝐺 ,𝑤 is accepted by AGG iff the two

focal grains are grain graph concurrent under 𝐺 .

7.4 Monitoring Scattered Grain Concurrency
Similar to the case for grain concurrency, themonitor for scattered grain concurrency (Definition 6.4)

can non-deterministically guess the choice of scattered grains and check, using the monitor in

Fig. 7, if any of these guesses is valid and declares the two focal grains to causally concurrent.

Theorem 7.2. There exists a monitor A that uses 2
𝑂 (|X | · |Σ |)

space and accepts the word 𝑤 ∈
Σ∗ ⋄1 Σ+ ⋄2 Σ+

iff events that appear immediately after ⋄1 and ⋄2 are scattered grain concurrent in

𝑤 . Consequently, scattered grain concurrency can be checked in constant space.

The proof of the above theorem relies on Theorem 7.1 and the observations that given a run𝑤 ∈ Σ
(with ⋄1 and ⋄2), we can guess the grains on 𝑤 in constant space, validate whether the guessed

grains are minimal and valid, and finally if the resulting annotated run is accepted by AGG. The

number of states in AGG is 2
|X |2 · (2 |Σ |) |X | · (2 |X |) |X | · (2 |Σ |) |X | ∈ 2

𝑂 (|X | · |Σ |)
can can be obtained

by counting the different ways to construct graphs on |X| vertices and deciding on the contents,

pending variables and summaries and summarized pending variables for these vertices. Since the

scattered grain concurrency monitors essentially adds non-determinism on top of this DFA, its

deterministic version has exponentially many states, and each state thus has size 2
𝑂 (|X | · |Σ |)

.

8 RELATEDWORK
There is little work in the literature in the general area of generalizing commutativity-based analysis

of concurrent programs. On the theoretical side, some generalizations of Mazurkiewicz traces have

been studied before [Bauget and Gastin 1995; Kleijn et al. 1998; Maarand and Uustalu 2019; Sassone

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

26 Azadeh Farzan and Umang Mathur

et al. 1993]. The focus has mostly been on incorporating the concept of contextual commutativity,

that is, when two events can be considered commutative in some contexts but not in all. This

is motivated, among other things, by send/receive or producer/consumer models in distributed

systems where send and receive actions commute in contexts with non-empty message buffers.

On the practical side, similar ideas were used in [Desai et al. 2014; Farzan et al. 2022; Farzan

and Vandikas 2020; Genest et al. 2007] to reason about equivalence classes of concurrent and

distributed programs under contextual commutativity. There is a close connection between this

notion of contextual commutativity and the concept of conditional independence in partial order

reduction [Godefroid and Pirottin 1993; Katz and Peled 1992] which is used as a weakening of the

independence (commutativity) relation by making it parametric on the current state to increase the

potential for reduction.

This work points out that, in general, the coarsest notion of equivalence may not yield monitoring-

style algorithms for analyzing runs of concurrent programs, and puts forward an alternative

notion of equivalence, coarser than trace equivalence, that can be efficiently used in monitoring

causal concurrency. Below, we briefly survey some application domains relevant to programming

languages research where our proposed equivalences can have an immediate positive impact.

Concurrency Bug Prediction. Dynamic analysis techniques for detecting concurrency bugs such as

data races [Flanagan and Freund 2009], deadlocks [Samak and Ramanathan 2014] and atomicity

violations [Farzan and Madhusudan 2008; Flanagan et al. 2008; Sorrentino et al. 2010] suffer from

poor coverage since their bug detection capability is determined by the precise thread scheduling

observed during testing. Predictive techniques [Said et al. 2011; Sen et al. 2005;Wang et al. 2009] such

as those for detecting data races [Huang et al. 2014; Kini et al. 2017; Mathur et al. 2021; Pavlogiannis

2019; Roemer et al. 2018; Smaragdakis et al. 2012] or deadlocks [Kalhauge and Palsberg 2018;

Tunç et al. 2023] enhance coverage by exploring equivalent runs that might yield a bug. The

core algorithmic problems involved in such approaches are akin to checking causal concurrency.

Coarser yet tractable equivalence relations can yield better analysis techniques with more accurate

predictions. Recent work [Kulkarni et al. 2021] explores hardness results for data race prediction,

including Mazurkiewicz-style reasoning, when the alphabet is not assumed to be of constant size.

Dynamic Partial Order Reduction for Stateless Model Checking. There has been a rising interest in

developing dynamic partial order based [Flanagan and Godefroid 2005] stateless model checking

techniques [Godefroid 1997] that are optimal, in that they explore as few program runs as possible

from the underlying program. Coming up with increasingly coarser equivalences is the go-to

approach for this. The notion of reads-from equivalence we study has received a lot of attention in

this context [Abdulla et al. 2019; Chalupa et al. 2017; Kokologiannakis et al. 2022, 2019]. Recent

works also consider an even coarser reads-value-from [Agarwal et al. 2021; Chatterjee et al. 2019]

equivalence. Events encode variable values and two runs are equivalent if every read observes the

same value across the two runs. The problem of verifying sequential consistency, which is one of

the key algorithmic questions underlying such approaches, was proved to be intractable in general

by Gibbons and Korach [Gibbons and Korach 1997].

9 CONCLUSION AND FUTUREWORK
This paper demonstrates that reads-from equivalence, the most relaxed sound notion of equivalence

on concurrent program runs, does not share the nice algorithmic properties of (Mazurkiewicz)

trace equivalence. This poses the following research questions: “Are there other notions of equiva-

lence, which remain sound, relax trace equivalence, and yet maintain its key desirable algorithmic

properties? And, what design principles bring about algorithmic simplicity?”. We propose two new

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

Coarser Equivalences for Causal Concurrency 27

notions of equivalence in this paper under which causal concurrency can be decided by a streaming

algorithm in constant space. Equivalence based on contiguous grains shares the characteristic

with trace equivalence, in that it is definable purely in terms of commutativity. Remarkably, while

this characteristic is lost with scattered grains, the algorithmic simplicity remains. The point of

commonality between the two notions is that each individual event can only move in one role:

either individually, or as part of a grain. As we demonstrate in Theorem 4.1, algorithmic hardness

kicks in when this rule is broken in the simplest of syntactic settings. It would be interesting to

investigate whether one can further relax the notion of grain equivalence by breaking this barrier.

As we note in Section 7, the straightforward determinization of the (scattered) grain concurrency

monitor can result in an exponential blowup on the number of threads and shared variables. We treat

these parameters as constants, in a manner similar to trace theory’s reliance on a finite (constant-

sized) alphabet of actions. There seems to be a tradeoff between how coarse the equivalence relation

is and how efficiently causal concurrency can be monitored. The research question of how to

devise a practical monitor when the number of threads or variables is not very small remains an

interesting direction for future research.

Finally, this paper studies coarser equivalences in the context of a causal concurrency query. In
several application domains, the standard oracle for causal concurrency based on trace equivalence

can be replaced with the (scattered) grain concurrency from this paper. Yet, there remain other

application domains in which trace equivalence is used in completely different ways: for example,

proof simplification [Farzan 2023] by verifying a commutativity-based reduction of a concurrent

program. The notion of soundness used in this paper suffices when the object of study is a single

program run. In proof simplification, however, a set of program runs must be considered together,

and, as we argued, different grain commutativity relations may be sound in different program

runs. Moreover, the alphabet of actions for proof simplification typically includes atomic program

statements rather than shared variable reads and writes. As such, the theoretical results presented

in this paper do not immediately offer a solution in such domains. It will be interesting to explore

how similar coarse equivalences, based on commutativity of words (rather than symbols), can be

designed to be exploited for proof simplification.

REFERENCES
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, Magnus Lång, Tuan Phong Ngo, and Konstantinos Sagonas.

2019. Optimal Stateless Model Checking for Reads-from Equivalence under Sequential Consistency. Proc. ACM Program.
Lang. 3, OOPSLA, Article 150 (oct 2019), 29 pages. https://doi.org/10.1145/3360576

Pratyush Agarwal, Krishnendu Chatterjee, Shreya Pathak, Andreas Pavlogiannis, and Viktor Toman. 2021. Stateless

Model Checking Under a Reads-Value-From Equivalence. In Computer Aided Verification: 33rd International Conference,
CAV 2021, Virtual Event, July 20–23, 2021, Proceedings, Part I. Springer-Verlag, Berlin, Heidelberg, 341–366. https:

//doi.org/10.1007/978-3-030-81685-8_16

Serge Bauget and Paul Gastin. 1995. On congruences and partial orders. In Mathematical Foundations of Computer Science
1995, Jiří Wiedermann and Petr Hájek (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 434–443.

Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Nishant Sinha, and Kapil Vaidya. 2017. Data-Centric Dynamic

Partial Order Reduction. Proc. ACM Program. Lang. 2, POPL, Article 31 (dec 2017), 30 pages. https://doi.org/10.1145/

3158119

Krishnendu Chatterjee, Andreas Pavlogiannis, and Viktor Toman. 2019. Value-centric Dynamic Partial Order Reduction.

Proc. ACM Program. Lang. 3, OOPSLA (2019), 124:1–124:29. https://doi.org/10.1145/3360550

Ankush Desai, Pranav Garg, and P. Madhusudan. 2014. Natural proofs for asynchronous programs using almost-synchronous

reductions. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages
& Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014. 709–725.

Volker Diekert and Grzegorz Rozenberg (Eds.). 1995. The Book of Traces. World Scientific.

Cezara Drăgoi, Thomas A. Henzinger, and Damien Zufferey. 2016. PSync: A Partially Synchronous Language for Fault-

Tolerant Distributed Algorithms. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

https://doi.org/10.1145/3360576
https://doi.org/10.1007/978-3-030-81685-8_16
https://doi.org/10.1007/978-3-030-81685-8_16
https://doi.org/10.1145/3158119
https://doi.org/10.1145/3158119
https://doi.org/10.1145/3360550

28 Azadeh Farzan and Umang Mathur

Programming Languages (St. Petersburg, FL, USA) (POPL ’16). Association for Computing Machinery, New York, NY,

USA, 400–415. https://doi.org/10.1145/2837614.2837650

Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. 2007. Goldilocks: A Race and Transaction-aware Java Runtime. In Proceedings
of the 28th ACM SIGPLAN Conference on Programming Language Design and Implementation (San Diego, California, USA)

(PLDI ’07). ACM, New York, NY, USA, 245–255. https://doi.org/10.1145/1250734.1250762

Azadeh Farzan. 2023. Commutativity in Automated Verification. In LICS. 1–7. https://doi.org/10.1109/LICS56636.2023.

10175734

Azadeh Farzan, Dominik Klumpp, and Andreas Podelski. 2022. Sound sequentialization for concurrent program verification.

In PLDI ’22: 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation, San Diego,
CA, USA, June 13 - 17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM, 506–521. https://doi.org/10.1145/3519939.3523727

Azadeh Farzan and P. Madhusudan. 2006. Causal Atomicity. In Computer Aided Verification, Thomas Ball and Robert B.

Jones (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 315–328.

Azadeh Farzan and P. Madhusudan. 2008. Monitoring Atomicity in Concurrent Programs. In Computer Aided Verification,
Aarti Gupta and Sharad Malik (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 52–65.

Azadeh Farzan, P. Madhusudan, and Francesco Sorrentino. 2009. Meta-analysis for Atomicity Violations Under Nested

Locking. In Proceedings of the 21st International Conference on Computer Aided Verification (Grenoble, France) (CAV ’09).
Springer-Verlag, Berlin, Heidelberg, 248–262. https://doi.org/10.1007/978-3-642-02658-4_21

Azadeh Farzan and Anthony Vandikas. 2019. Automated Hypersafety Verification. In Computer Aided Verification - 31st
International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part I (Lecture Notes in Computer
Science, Vol. 11561), Isil Dillig and Serdar Tasiran (Eds.). Springer, 200–218. https://doi.org/10.1007/978-3-030-25540-4_11

Azadeh Farzan and Anthony Vandikas. 2020. Reductions for safety proofs. Proc. ACM Program. Lang. 4, POPL (2020),

13:1–13:28. https://doi.org/10.1145/3371081

Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Efficient and Precise Dynamic Race Detection. In Proceedings of
the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation (Dublin, Ireland) (PLDI ’09).
ACM, New York, NY, USA, 121–133. https://doi.org/10.1145/1542476.1542490

Cormac Flanagan, Stephen N. Freund, and Jaeheon Yi. 2008. Velodrome: A Sound and Complete Dynamic Atomicity Checker

for Multithreaded Programs. In Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Tucson, AZ, USA) (PLDI ’08). ACM, New York, NY, USA, 293–303. https://doi.org/10.1145/1375581.

1375618

Cormac Flanagan and Patrice Godefroid. 2005. Dynamic Partial-Order Reduction forModel Checking Software. In Proceedings
of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Long Beach, California, USA)
(POPL ’05). Association for Computing Machinery, New York, NY, USA, 110–121. https://doi.org/10.1145/1040305.1040315

Blaise Genest, Dietrich Kuske, and Anca Muscholl. 2007. On Communicating Automata with Bounded Channels. Fundam.
Inform. 80, 1-3 (2007), 147–167.

Phillip B. Gibbons and Ephraim Korach. 1994. On Testing Cache-Coherent Shared Memories. In Proceedings of the Sixth
Annual ACM Symposium on Parallel Algorithms and Architectures (Cape May, New Jersey, USA) (SPAA ’94). Association
for Computing Machinery, New York, NY, USA, 177–188. https://doi.org/10.1145/181014.181328

Phillip B. Gibbons and Ephraim Korach. 1997. Testing Shared Memories. SIAM J. Comput. 26, 4 (1997), 1208–1244.

https://doi.org/10.1137/S0097539794279614 arXiv:https://doi.org/10.1137/S0097539794279614

Patrice Godefroid. 1997. Model Checking for Programming Languages Using VeriSoft. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Paris, France) (POPL ’97). Association for Com-

puting Machinery, New York, NY, USA, 174–186. https://doi.org/10.1145/263699.263717

Patrice Godefroid and Didier Pirottin. 1993. Refining Dependencies Improves Partial-Order Verification Methods (Extended

Abstract). In Computer Aided Verification, 5th International Conference, CAV ’93, Elounda, Greece, June 28 - July 1, 1993,
Proceedings. 438–449.

Michel Hack. 1976. Petri net language. Massachusetts Institute of Technology.

Charles Antony Richard Hoare. 1978. Communicating sequential processes. Commun. ACM 21, 8 (1978), 666–677.

Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. 2014. Maximal Sound Predictive Race Detection with Control Flow

Abstraction. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation
(Edinburgh, United Kingdom) (PLDI ’14). ACM, New York, NY, USA, 337–348. https://doi.org/10.1145/2594291.2594315

Russell Impagliazzo and Ramamohan Paturi. 2001. On the complexity of k-SAT. J. Comput. System Sci. 62, 2 (2001), 367–375.
Ayal Itzkovitz, Assaf Schuster, and Oren Zeev-Ben-Mordehai. 1999. Toward Integration of Data Race Detection in DSM

Systems. J. Parallel Distrib. Comput. 59, 2 (Nov. 1999), 180–203. https://doi.org/10.1006/jpdc.1999.1574

Christian Gram Kalhauge and Jens Palsberg. 2018. Sound Deadlock Prediction. Proc. ACM Program. Lang. 2, OOPSLA,
Article 146 (Oct. 2018), 29 pages. https://doi.org/10.1145/3276516

Shmuel Katz and Doron A. Peled. 1992. Defining Conditional Independence Using Collapses. Theor. Comput. Sci. 101, 2
(1992), 337–359.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

https://doi.org/10.1145/2837614.2837650
https://doi.org/10.1145/1250734.1250762
https://doi.org/10.1109/LICS56636.2023.10175734
https://doi.org/10.1109/LICS56636.2023.10175734
https://doi.org/10.1145/3519939.3523727
https://doi.org/10.1007/978-3-642-02658-4_21
https://doi.org/10.1007/978-3-030-25540-4_11
https://doi.org/10.1145/3371081
https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1145/1375581.1375618
https://doi.org/10.1145/1375581.1375618
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1145/181014.181328
https://doi.org/10.1137/S0097539794279614
https://arxiv.org/abs/https://doi.org/10.1137/S0097539794279614
https://doi.org/10.1145/263699.263717
https://doi.org/10.1145/2594291.2594315
https://doi.org/10.1006/jpdc.1999.1574
https://doi.org/10.1145/3276516

Coarser Equivalences for Causal Concurrency 29

Dileep Kini, Umang Mathur, and Mahesh Viswanathan. 2017. Dynamic Race Prediction in Linear Time. In Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017).
ACM, New York, NY, USA, 157–170. https://doi.org/10.1145/3062341.3062374

H.C.M. Kleijn, R. Morin, and B. Rozoy. 1998. Event Structures for Local Traces. Electronic Notes in Theoretical Computer
Science 16, 2 (1998), 98–113. https://doi.org/10.1016/S1571-0661(04)00120-3 EXPRESS ’98, Fifth International Workshop

on Expressiveness in Concurrency (Satellite Workshop of CONCUR ’98).

Michalis Kokologiannakis, IasonMarmanis, Vladimir Gladstein, and Viktor Vafeiadis. 2022. Truly Stateless, Optimal Dynamic

Partial Order Reduction. Proc. ACM Program. Lang. 6, POPL, Article 49 (jan 2022), 28 pages. https://doi.org/10.1145/3498711
Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019. Model Checking for Weakly Consistent Libraries. In

Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (Phoenix, AZ,

USA) (PLDI 2019). Association for Computing Machinery, New York, NY, USA, 96–110. https://doi.org/10.1145/3314221.

3314609

Rucha Kulkarni, Umang Mathur, and Andreas Pavlogiannis. 2021. Dynamic Data-Race Detection Through the Fine-

Grained Lens. In 32nd International Conference on Concurrency Theory (CONCUR 2021) (Leibniz International Proceedings
in Informatics (LIPIcs), Vol. 203), Serge Haddad and Daniele Varacca (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für

Informatik, Dagstuhl, Germany, 16:1–16:23. https://doi.org/10.4230/LIPIcs.CONCUR.2021.16

Hendrik Maarand and Tarmo Uustalu. 2019. Certified normalization of generalized traces. Innovations in Systems and
Software Engineering (2019).

Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan. 2020. The Complexity of Dynamic Data Race Prediction.

In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (Saarbrücken, Germany) (LICS ’20).
Association for Computing Machinery, New York, NY, USA, 713–727. https://doi.org/10.1145/3373718.3394783

Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan. 2021. Optimal Prediction of Synchronization-Preserving

Races. Proc. ACM Program. Lang. 5, POPL, Article 36 (Jan. 2021), 29 pages. https://doi.org/10.1145/3434317

Umang Mathur and Mahesh Viswanathan. 2020. Atomicity Checking in Linear Time Using Vector Clocks. In Proceedings of
the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems
(Lausanne, Switzerland) (ASPLOS ’20). Association for Computing Machinery, New York, NY, USA, 183–199. https:

//doi.org/10.1145/3373376.3378475

A Mazurkiewicz. 1987. Trace Theory. In Advances in Petri Nets 1986, Part II on Petri Nets: Applications and Relationships to
Other Models of Concurrency. Springer-Verlag New York, Inc., 279–324.

Robin Milner. 1980. A calculus of communicating systems. Springer.
Andreas Pavlogiannis. 2019. Fast, Sound, and Effectively Complete Dynamic Race Prediction. Proc. ACM Program. Lang. 4,

POPL, Article 17 (Dec. 2019), 29 pages. https://doi.org/10.1145/3371085

Jake Roemer, Kaan Genç, and Michael D. Bond. 2018. High-coverage, Unbounded Sound Predictive Race Detection. In

Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (Philadelphia,

PA, USA) (PLDI 2018). ACM, New York, NY, USA, 374–389. https://doi.org/10.1145/3192366.3192385

Grigore Roşu and Mahesh Viswanathan. 2003. Testing Extended Regular Language Membership Incrementally by Rewriting.

In Rewriting Techniques and Applications, Robert Nieuwenhuis (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,

499–514.

Mahmoud Said, Chao Wang, Zijiang Yang, and Karem Sakallah. 2011. Generating Data Race Witnesses by an SMT-

based Analysis. In Proceedings of the Third International Conference on NASA Formal Methods (Pasadena, CA) (NFM’11).
Springer-Verlag, Berlin, Heidelberg, 313–327. http://dl.acm.org/citation.cfm?id=1986308.1986334

Malavika Samak and Murali Krishna Ramanathan. 2014. Trace Driven Dynamic Deadlock Detection and Reproduction. In

Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (Orlando, Florida, USA)
(PPoPP ’14). Association for Computing Machinery, New York, NY, USA, 29–42. https://doi.org/10.1145/2555243.2555262

Vladimiro Sassone, Mogens Nielsen, and Glynn Winskel. 1993. Deterministic behavioural models for concurrency. In

Mathematical Foundations of Computer Science 1993, Andrzej M. Borzyszkowski and Stefan Sokołowski (Eds.).

Koushik Sen, Grigore Roşu, and Gul Agha. 2005. Detecting Errors in Multithreaded Programs by Generalized Predictive

Analysis of Executions. In Formal Methods for Open Object-Based Distributed Systems, Martin Steffen and Gianluigi

Zavattaro (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 211–226.

Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, and Cormac Flanagan. 2012. Sound Predictive Race Detection

in Polynomial Time. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (Philadelphia, PA, USA) (POPL ’12). ACM, New York, NY, USA, 387–400. https://doi.org/10.1145/2103656.

2103702

Francesco Sorrentino, Azadeh Farzan, and P. Madhusudan. 2010. PENELOPE: Weaving Threads to Expose Atomicity

Violations. In Proceedings of the Eighteenth ACM SIGSOFT International Symposium on Foundations of Software Engineering
(Santa Fe, New Mexico, USA) (FSE ’10). ACM, New York, NY, USA, 37–46. https://doi.org/10.1145/1882291.1882300

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

https://doi.org/10.1145/3062341.3062374
https://doi.org/10.1016/S1571-0661(04)00120-3
https://doi.org/10.1145/3498711
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.4230/LIPIcs.CONCUR.2021.16
https://doi.org/10.1145/3373718.3394783
https://doi.org/10.1145/3434317
https://doi.org/10.1145/3373376.3378475
https://doi.org/10.1145/3373376.3378475
https://doi.org/10.1145/3371085
https://doi.org/10.1145/3192366.3192385
http://dl.acm.org/citation.cfm?id=1986308.1986334
https://doi.org/10.1145/2555243.2555262
https://doi.org/10.1145/2103656.2103702
https://doi.org/10.1145/2103656.2103702
https://doi.org/10.1145/1882291.1882300

30 Azadeh Farzan and Umang Mathur

Hünkar Can Tunç, Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan. 2023. Sound Dynamic Deadlock

Prediction in Linear Time. Proc. ACM Program. Lang. 7, PLDI (2023), 1733–1758. https://doi.org/10.1145/3591291

Hünkar Can Tunç, Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan. 2023. Sound Dynamic Deadlock

Prediction in Linear Time. Proc. ACM Program. Lang. 7, PLDI, Article 177 (jun 2023), 26 pages. https://doi.org/10.1145/

3591291

Chao Wang, Sudipta Kundu, Malay Ganai, and Aarti Gupta. 2009. Symbolic Predictive Analysis for Concurrent Programs.

In Proceedings of the 2Nd World Congress on Formal Methods (Eindhoven, The Netherlands) (FM ’09). Springer-Verlag,
Berlin, Heidelberg, 256–272. https://doi.org/10.1007/978-3-642-05089-3_17

Ryan Williams. 2005. A new algorithm for optimal 2-constraint satisfaction and its implications. Theoretical Computer
Science 348, 2-3 (2005), 357–365.

GlynnWinskel. 1987. Event structures. In Petri Nets: Applications and Relationships to Other Models of Concurrency, W. Brauer,

W. Reisig, and G. Rozenberg (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 325–392.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

https://doi.org/10.1145/3591291
https://doi.org/10.1145/3591291
https://doi.org/10.1145/3591291
https://doi.org/10.1007/978-3-642-05089-3_17

Coarser Equivalences for Causal Concurrency 31

A PROOFS FROM SECTION 3
In the following we will use the notation causallyOrdered≡rf

(𝑤, 𝑖, 𝑗) to denote that the events 𝑖 and
𝑗 are causally ordered in𝑤 under ≡rf

A.1 Proof of Theorem 3.1 and Theorem 3.2
We first state some properties of reads-from equivalence. We first define additional notation. For

an execution𝑤 ∈ Σ∗
, we define the relation <𝑤

≡rf
defined as follows:

<𝑤
≡rf

= {(𝑖, 𝑗) | 𝑖, 𝑗 ∈ [1..|𝑤 |], causallyOrdered≡rf
(𝑤, 𝑖, 𝑗)}

Proposition A.1. Let 𝑤 ∈ Σ∗
be an execution. The relation <𝑤

≡rf
defined above satisfies the

following properties.

(Partial order). <𝑤
≡rf

is a partial order. That is, <𝑤
≡rf

is irreflexive and transitive.

(Intra-thread order). <𝑤
≡rf

orders events of𝑤 in the same thread. That is, for every 𝑖 < 𝑗 ∈ [1..|𝑤 |],
if thr(𝑤 [𝑖]) = thr(𝑤 [𝑗]), then 𝑖 <𝑤

≡rf
𝑗 .

(Reads-from). <𝑤
≡rf

𝑤 orders events if there is a reads-from dependency between them. That is,

for every 𝑖 < 𝑗 ∈ [1..|𝑤 |], if rf𝑤 (𝑗) = 𝑖 , then 𝑖 <𝑤
≡rf

𝑗 .

(Implied orders). Let 𝑖, 𝑗, 𝑘 ∈ [1..|𝑤 |] be distinct indices such that such that var(𝑖) = var(𝑗) =
var(𝑘), op(𝑖) = op(𝑘) = w and op(𝑗) = r and rf𝑤 (𝑗) = 𝑖 .

• If 𝑖 <𝑤
≡rf

𝑘 , then 𝑗 <𝑤
≡rf

𝑘 .

• If 𝑘 <𝑤
≡rf

𝑗 , then 𝑘 <𝑤
≡rf

𝑖 .

Proof. Follows from the definition of <𝑤
≡rf

. □

The proof of Theorem 3.1 relies on a reduction from the following language, parametrized by

𝑛 ∈ N>0:

𝐿=𝑛 = {𝑎#𝑏 | 𝑎,𝑏 ∈ {0, 1}𝑛 and 𝑎 = 𝑏}

We first observe that there is a linear space lowerbound for the problem of recognition of this

language.

Lemma A.1. Any streaming algorithm that recognizes 𝐿=𝑛 uses Ω(𝑛) space.

Proof. Assume towards contradiction otherwise, i.e., there is a streaming algorithm that uses 𝑜 (𝑛)
space. Hence the state space of the algorithm is 𝑜 (2𝑛). Then, there exist two distinct 𝑛-bit strings

𝑎 ≠ 𝑎′, such that the streaming algorithm is in the same state after parsing 𝑎 and 𝑎′. Hence, for any

𝑛-bit string 𝑏, the algorithm gives the same answer on inputs 𝑎#𝑏 and 𝑎′#𝑏. Since the algorithm is

correct, it reports that 𝑎#𝑎 belongs to 𝐿𝑛 . But then the algorithm reports that 𝑎′#𝑎 also belongs to

𝐿𝑛 , a contradiction. The desired result follows. □

Proof of Theorem 3.1. We will now show that there is a linear-space lower bound for Problem 3.2

by showing a reduction from {0, 1}𝑛#{0, 1}𝑛 to Σ∗
in one pass streaming fashion using constant

space. The constructed string will be such that there are unique indices 𝑖 and 𝑗 whose labels

correspond to the symbols 𝑐 an 𝑑 in the causal concurrency problem.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

32 Azadeh Farzan and Umang Mathur

𝑡1 𝑡2

1 w(𝑥¬𝑎1)
2 w(𝑐)
3 w(𝑥𝑎1)

𝜋1

4 w(𝑦𝑎2)
5 r(𝑐)
6 w(𝑐)
7 r(𝑦𝑎2)

𝜋2

8 w(𝑦𝑎3)
9 r(𝑐)
10 w(𝑐)
11 r(𝑦𝑎3)

𝜋3

12 w(𝑦𝑎4)
13 r(𝑐)
14 w(𝑐)
15 r(𝑦𝑎4)

𝜋4

16 w(𝑢)
17 r(𝑐)
18 r(𝑢)
19 w(𝑢)

𝜅

20 r(𝑥𝑏1)
21 w(𝑐)

𝜂1

22 w(𝑦𝑏2)
23 w(𝑐)

𝜂2

24 w(𝑦𝑏3)
25 w(𝑐)

𝜂3

26 w(𝑦𝑏4)
27 w(𝑐)

𝜂4

28 r(𝑢) 𝛿

(a) Run constructed for 𝑛 = 4.

𝑡1 𝑡2

1 w(𝑢)
2 w(𝑥¬𝑎1)
3 w(𝑐)
4 w(𝑥𝑎1)
5 r(𝑥𝑏1)
6 w(𝑦𝑎2)
7 r(𝑐)
8 w(𝑐)
9 w(𝑐)
10 r(𝑦𝑎2)
11 w(𝑦𝑏2)
12 w(𝑦𝑎3)
13 r(𝑐)
14 w(𝑐)
15 w(𝑦𝑏3)
16 w(𝑐)
17 w(𝑐)
18 r(𝑦𝑎3)
19 w(𝑦𝑏4)
20 w(𝑦𝑎4)
21 r(𝑐)
22 w(𝑐)
23 w(𝑐)
24 r(𝑦𝑎4)
25 r(𝑢)
26 w(𝑢)
27 r(𝑐)
28 r(𝑢)

(b) Reordering for 𝑎 = 1100 and 𝑏 = 1110.

Fig. 8. Reduction from 𝐿=
4

= {𝑎1𝑎2𝑎3𝑎4#𝑏1𝑏2𝑏3𝑏4 | ∀𝑖, 𝑎𝑖 = 𝑏𝑖 ∈ {0, 1}}. Trace construction (on left) and

example of equivalent trace when 𝑎 ≠ 𝑏.

Consider the language 𝐿𝑛 for some 𝑛. We describe a transducer M𝑛 such that, on input a string

𝑣 = 𝑎#𝑏, the output M𝑛 (𝑣) is an execution𝑤 with 2 threads 𝑡1 and 𝑡2, 𝑂 (𝑛) events and 6 variables

such that𝑤 is of the form

𝑤 = 𝜋𝜅𝜂𝛿

We fix the letters 𝑐 and 𝑑 for which we want to check for causl concurrency to be 𝑐 = ⟨𝑡1, r, 𝑢⟩ and
𝑑 = ⟨𝑡2, w, 𝑢⟩, where 𝑢 ∈ X. The fragments 𝜋 and 𝜂 do not contain any access to the variable 𝑢. The

fragments 𝜅 and 𝛿 contain accesses to 𝑢. Fig. 8a describes our construction for 𝑛 = 4.

Our reduction ensures the following:

(1) If 𝑣 ∈ 𝐿=𝑛 , then there are𝜃1, 𝜃2 ∈ [1..|𝑤 |] such that thr(𝑤 [𝜃1]) = 𝑡1, thr(𝑤 [𝜃2]) = 𝑡2, var(𝑤 [𝜃1]) =
var(𝑤 [𝜃2]) = 𝑢 and causallyOrdered≡rf

(𝑤, 𝜃1, 𝜃2).

(2) If 𝑣 ∉ 𝐿=𝑛 , then there are no such 𝜃1 and 𝜃2.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

Coarser Equivalences for Causal Concurrency 33

Moreover,M𝑛 will use 𝑂 (1) working space.

Let us now describe the construction of𝑤 . At a high level, the sub-execution 𝜋 corresponds to the

prefix 𝑎 = 𝑎1𝑎2 · · ·𝑎𝑛 of 𝑣 and the sub-execution 𝜂 corresponds to the suffix 𝑏 = 𝑏1𝑏2 · · ·𝑏𝑛 of 𝑣 .

Both these sub-executions have 𝑂 (𝑛) events. The sub-executions 𝜅 and 𝛿 have 𝑂 (1) (respectively
4 and 1) events. The sequences of events in the two sub-executions 𝜋 and 𝜂 ensure that there is

a ‘chain’ of conditional dependencies, that are incrementally met until the point when the two

substrings 𝑎 and 𝑏 match. If 𝑎 = 𝑏 (i.e., full match), then the dependency chain further ensures

that there are events, at indices 𝜃1 and 𝜃2, both in 𝜅 (accessing the variable 𝑢 in threads 𝑡3 and 𝑡2
respectively) such that causallyOrdered≡rf

(𝑤, 𝜃1, 𝜃2).

The execution fragment 𝜋 is of the form

𝜋 = 𝜋1𝜋2 · · · 𝜋𝑛 .

Here, the fragment 𝜋𝑖 corresponds to the 𝑖th bit 𝑎𝑖 of 𝑎, and only contains events performed by the

thread 𝑡1. The fragment 𝜂 is of the form

𝜂 = 𝜂1𝜂2 · · ·𝜂𝑛
Here, 𝜂𝑖 corresponds to 𝑏𝑖 , the 𝑖

th
bit in 𝑏 and only contains events of thread 𝑡2. The variables used

in the construction are {𝑐, 𝑥0, 𝑥1, 𝑦0, 𝑦1, 𝑢}, where 𝑢 is the special variable whose events will be

ordered or not based on the input. In the rest of the construction, we will use the notation ⟨𝑡, 𝑜, 𝑣, 𝛾⟩
to denote the unique index 𝛼 occuring within the fragment 𝛾 for which𝑤 [𝛼] = ⟨𝑡, 𝑜, 𝑣⟩. We next

describe each of the fragments 𝜋1, . . . , 𝜋𝑛 , 𝜂1, . . . , 𝜂𝑛 and the fragments 𝜅 and 𝛿 .

Fragment 𝜋1. The first fragment 𝜋1 of 𝜋 is as follows:

𝜋1 = ⟨𝑡1, w, 𝑥¬𝑎1⟩⟨𝑡1, w, 𝑐⟩⟨𝑡1, w, 𝑥𝑎1⟩
That is, the last (resp. first) event writes to 𝑥0 (resp. 𝑥1) if 𝑎1 = 0, otherwise it writes to the variable

𝑥1 (resp. 𝑥0).

Fragment 𝜂1. The first fragment 𝜂1 of 𝜂 is as follows:

𝜂1 = ⟨𝑡2, r, 𝑥𝑏1⟩⟨𝑡2, w, 𝑐⟩

In the entire construction, the variables 𝑥0 and 𝑥1 are being written-to only in fragment 𝜋1, and

(potentially) read only in 𝜂1. This means that, either rf𝑤 (⟨𝑡2, r, 𝑥𝑏1 , 𝜂1⟩) = ⟨𝑡1, r, 𝑥𝑎1 , 𝜋1⟩ (if 𝑎1 = 𝑏1)

or rf𝑤 (⟨𝑡2, r, 𝑥𝑏1 , 𝜂1⟩) = ⟨𝑡1, r, 𝑥¬𝑎1 , 𝜋1⟩ (if 𝑎1 ≠ 𝑏1). In summary,

𝑎1 = 𝑏1 =⇒ causallyOrdered≡rf
(𝑤, ⟨𝑡1, w, 𝑐, 𝜋1⟩, ⟨𝑡2, w, 𝑐, 𝜂1⟩) (3)

Fragment 𝜋𝑖 (𝑖 ≥ 2). For each 𝑖 ≥ 2, the fragment 𝜋𝑖 is the following

𝜋𝑖 = ⟨𝑡1, w, 𝑦𝑎𝑖 ⟩⟨𝑡1, r, 𝑐⟩⟨𝑡1, w, 𝑐⟩⟨𝑡1, w, 𝑟𝑎𝑖 ⟩.
Let us list some reads-from dependencies introduced due to 𝜋𝑖 (𝑖 ≥ 2):

rf𝑤 (⟨𝑡1, r, 𝑦𝑎2 , 𝜋𝑖⟩) = ⟨𝑡1, w, 𝑦𝑎2 , 𝜋𝑖⟩ and rf𝑤 (⟨𝑡3, r, 𝑐, 𝜋𝑖⟩) = ⟨𝑡3, w, 𝑐, 𝜋𝑖−1⟩
The reads-from mapping rf𝑤 (⟨𝑡1, r, 𝑐, 𝜋2⟩) = ⟨𝑡1, w, 𝑐, 𝜋1⟩, together with Equation (3), implies that

⟨𝑡1, r, 𝑐, 𝜋2⟩ <𝑤
≡rf

⟨𝑡2, w, 𝑐, 𝜂1⟩ (see Proposition A.1), in the case 𝑎1 = 𝑏1. Finally, the read-from

dependency from 𝑡1 to 𝑡3 due to 𝑓 gives us:

𝑎1 = 𝑏1 =⇒ causallyOrdered≡rf
(𝑤, ⟨𝑡1, w, 𝑦𝑎2 , 𝜋2⟩, ⟨𝑡2, w, 𝑐, 𝜂1⟩) (4)

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

34 Azadeh Farzan and Umang Mathur

Fragment 𝜂𝑖 (𝑖 ≥ 2). For each 𝑖 ≥ 2, the fragment 𝜂𝑖 is the following

𝜂𝑖 = ⟨𝑡2, w, 𝑦𝑏𝑖 ⟩⟨𝑡2, w, 𝑐⟩.
It is easy to see from Equation (4) that if 𝑎1 = 𝑏1 then the intra-thread dependency between 𝜂1 and

𝜂2 further implies that ⟨𝑡1, w, 𝑦𝑎2 , 𝜋2⟩ <𝑤
≡rf

⟨𝑡2, w, 𝑦𝑏2 , 𝜂2⟩. Now, if additionally 𝑎2 = 𝑏2, we get:

(∀𝑖 ≤ 2, 𝑎𝑖 = 𝑏𝑖) =⇒ causallyOrdered≡rf
(𝑤, ⟨𝑡1, r, 𝑦𝑎2 , 𝜋2⟩, ⟨𝑡2, w, 𝑦𝑏2 , 𝜂2⟩) (5)

.

In fact, the same reasoning can be inductively extended for any 2 ≤ 𝑘 ≤ 𝑛:

(∀𝑖 ≤ 𝑘, 𝑎𝑖 = 𝑏𝑖) =⇒ causallyOrdered≡rf
(𝑤, ⟨𝑡1, r, 𝑦𝑎𝑘 , 𝜋𝑘⟩, ⟨𝑡2, w, 𝑦𝑏𝑘 , 𝜂𝑘⟩). (6)

The base case of 𝑘 = 2 follows from Equation (5). For the inductive case, assume that the statement

holds for some 𝑘 < 𝑛, and that (∀2 ≤ 𝑖 ≤ 𝑘, 𝑎𝑖 = 𝑏𝑖). Together with intra-thread dependen-

cies, we have causallyOrdered≡rf
(𝑤, ⟨𝑡1, w, 𝑐, 𝜋𝑘⟩, ⟨𝑡2, w, 𝑐, 𝜂𝑘⟩). It follows from Proposition A.1 that

⟨𝑡1, w, 𝑐, 𝜋𝑘+1⟩ <𝑤
≡rf

⟨𝑡2, w, 𝑐, 𝜂𝑘⟩ This, in turn implies that ⟨𝑡1, w, 𝑦𝑎𝑘+1 , 𝜋𝑘+1⟩ is causally ordered before

⟨𝑡2, w, 𝑦𝑏𝑘+1 , 𝜂𝑘+1⟩. Thus, causallyOrdered≡rf
(𝑤, ⟨𝑡1, r, 𝑦𝑎𝑘+1 , 𝜋𝑘+1⟩, ⟨𝑡2, w, 𝑦𝑏𝑘+1 , 𝜂𝑘+1⟩) if 𝑎𝑘+1 = 𝑏𝑘+1.

Fragments 𝜅 and 𝛿 . The sequence 𝜅 and 𝛿 are:

𝜅 = ⟨𝑡1, w, 𝑢⟩⟨𝑡1, r, 𝑐⟩⟨𝑡1, r, 𝑢⟩⟨𝑡2, w, 𝑢⟩ and 𝛿 = ⟨𝑡2, r, 𝑢⟩

The reads-from dependencies induces due to 𝜅 and 𝛿 are:

rf𝑤 (⟨𝑡1, r, 𝑐, 𝜅⟩) = ⟨𝑡1, w, 𝑐, 𝜋𝑛⟩, rf𝑤 (⟨𝑡1, r, 𝑢, 𝜅⟩) = ⟨𝑡1, w, 𝑢, 𝜅⟩, rf𝑤 (⟨𝑡2, r, 𝑢, 𝛿⟩) = ⟨𝑡2, w, 𝑢, 𝜅⟩

Correctness. Let us make some simple observations. First, every read event has a write event on

the same variable prior to it, and thus, rf𝑤 (𝑖) is well defined for every 𝑖 ∈ Reads𝑤 Second, it is easy

to see that the construction can be performed by a transducer M𝑛 in 𝑂 (1) space.

(⇒) Let us first prove that if ∀𝑖 ∈ [𝑛], 𝑎𝑖 = 𝑏𝑖 , then causallyOrdered≡rf
(𝑤, 𝜃1, 𝜃2), where 𝜃1 is the

index of the ⟨𝑡1, r, 𝑢⟩ event in 𝜅 and 𝜃2 is the index of the ⟨𝑡2, w, 𝑢⟩ event in 𝜅. Recall that if 𝑎𝑖 = 𝑏𝑖
for every 𝑖 ≤ 𝑛, then causallyOrdered≡rf

(𝑤, ⟨𝑡3, r, 𝑦𝑎𝑛 , 𝜋𝑛⟩, ⟨𝑡2, w, 𝑦𝑏𝑛 , 𝜂𝑛⟩) (see Equation (6)). As a

result, ⟨𝑡1, w, 𝑐, 𝜋𝑛⟩ <𝑤
≡rf

⟨𝑡2, w, 𝑐, 𝜂𝑛⟩. Next, due to Proposition A.1, we get ⟨𝑡1, r, 𝑐, 𝜅⟩ <𝑤
≡rf

⟨𝑡2, w, 𝑐, 𝜂𝑛⟩.
This, together with intra-thread dependency further gives ⟨𝑡1, w, 𝑢, 𝜅⟩ <𝑤

≡rf
⟨𝑡2, r, 𝑢, 𝛿⟩. If we next

apply Proposition A.1, we get ⟨𝑡1, w, 𝑢, 𝜅⟩ <𝑤
≡rf

⟨𝑡2, w, 𝑢, 𝜅⟩. Applying Proposition A.1 once again, we

conclude that causallyOrdered≡rf
(𝑤, 𝜃1, 𝜃2)

(⇐) Let us now prove that if there is an index 𝑖 for which 𝑎𝑖 ≠ 𝑏𝑖 , then 𝜃1 ≮
𝑤
≡rf

𝜃2 and 𝜃2 ≮
𝑤
≡rf

𝜃1.

To show this, we will construct an execution𝑤 ′
such that𝑤 ′ ≡rf 𝑤 and 𝜃2 ≤𝑤′

tr 𝜃1. In the rest, we

assume 𝑖 is the least such index.

First, consider the case when 𝑖 = 1. In this case, ¬𝑎1 = 𝑏1. Then,𝑤
′
is the following concatenated

sequence (𝜅′ is the second largest prefix of 𝜅):

𝑤 ′ = ⟨𝑡2, w, 𝑢⟩⟨𝑡1, w, 𝑥¬𝑎1⟩𝜂𝛿 ⟨𝑡1, w, 𝑥⟩⟨𝑡1, w, 𝑥𝑎1⟩𝜋2 · · · 𝜋𝑛𝜅′

First, observe that, the thread-wise projections of𝑤 and𝑤 ′
are the same. Next, we note that the

reads-from dependencies of each read access to either 𝑦0, 𝑦1, 𝑐 or 𝑢 are the same in both𝑤 and𝑤 ′
:

• The only read accesses to 𝑦0 or 𝑦1 are in thread 𝑡1, and so are their corresponding write events

(as per𝑤). In the new sequence𝑤 ′
, we ensure that all write access to 𝑦0 or 𝑦1 in 𝑡2 occur before

any access to 𝑦0 or 𝑦1 in thread 𝑡1.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

Coarser Equivalences for Causal Concurrency 35

• The same reasoning as above applies to the accesses to 𝑐 .

• The read access to 𝑢 in 𝑡2 appears before the write access to 𝑢 in 𝑡1 in the new sequencd𝑤 ′
.

Finally, the reads-from dependency of ⟨𝑡2, r, 𝑥𝑏1⟩ is also preserved. Hence,𝑤 ′ ≡rf 𝑤 . Finally, observe

that the corresponding events 𝜃2 = ⟨𝑡2, r, 𝑢, 𝜅⟩ and 𝜃1 = ⟨𝑡1, w, 𝑢, 𝜅⟩ appear in inverted order.

Next, consider the case of 𝑖 > 1. Then, we construct𝑤 ′
as the following interleaved sequence:

𝛾1𝛾2 · · ·𝛾𝑛𝜅′

where:

𝛾1 = ⟨𝑡2, w, 𝑢⟩⟨𝑡1, w, 𝑥¬𝑎1⟩⟨𝑡1, w, 𝑐⟩⟨𝑡1, w, 𝑥𝑎1⟩⟨𝑡2, r, 𝑥𝑏1⟩
𝛾 𝑗 = ⟨𝑡1, w, 𝑦𝑎 𝑗

⟩⟨𝑡1, r, 𝑐⟩⟨𝑡2, w, 𝑐⟩⟨𝑡1, w, 𝑐⟩⟨𝑡1, r, 𝑦𝑎 𝑗
⟩⟨𝑡2, w, 𝑦𝑏 𝑗

⟩ (2 ≤ 𝑗 < 𝑖)
𝛾𝑖 = ⟨𝑡1, w, 𝑦𝑎𝑖 ⟩⟨𝑡1, r, 𝑐⟩⟨𝑡2, w, 𝑐⟩⟨𝑡2, w, 𝑦𝑏𝑖 ⟩⟨𝑡2, w, 𝑐⟩⟨𝑡1, w, 𝑐⟩⟨𝑡1, r, 𝑦𝑎𝑖 ⟩
𝛾 𝑗 = ⟨𝑡2, w, 𝑦𝑏 𝑗

⟩⟨𝑡1, w, 𝑦𝑎 𝑗
⟩⟨𝑡1, r, 𝑐⟩⟨𝑡2, w, 𝑐⟩⟨𝑡1, w, 𝑐⟩⟨𝑡1, r, 𝑦𝑎 𝑗

⟩ (𝑗 > 𝑖)
𝜅′ = ⟨𝑡2, r, 𝑢⟩⟨𝑡1, w, 𝑢⟩⟨𝑡1, r, 𝑐⟩⟨𝑡1, r, 𝑢⟩

Here again, we observe that the new trace𝑤 ′
is such that its thread-wise projections are the same

as in 𝑤 . Further, every read event reads-from the same corresponding events in both 𝑤 and 𝑤 ′
.

That is,𝑤 ≡rf 𝑤
′
. Further, observe that the positions of 𝜃1 and 𝜃2 have been inverted. This trace𝑤 ′

for a special case is shown in Fig. 8b.

This finishes our proof of Theorem 3.1. □

Let us now turn to the proof of Theorem 3.2. This time, we focus on the following language.

𝐿=
pad,𝑛 = {𝑎#𝑛𝑏 | 𝑎, 𝑏 ∈ {0, 1}𝑛 and 𝑎 = 𝑏}

Lemma A.2. For any streaming algorithm that recognizes 𝐿=
pad,𝑛

in time 𝑇 (𝑛) and space 𝑆 (𝑛), we
have 𝑇 (𝑛) · 𝑆 (𝑛) ∈ Ω(𝑛2).

Proof. We first observe that the communication complexity of checking equality between two

𝑛-bit strings is Ω(𝑛). Consider a Turing Machine𝑀 that recognizes 𝐿=
pad,𝑛

in time 𝑇 (𝑛) and space

𝑆 (𝑛), by possibly going back and forth on the input tape. Since 𝑀 takes 𝑇 (𝑛) time, it must only

traverse ‘across’ the central padding ‘#
𝑛
’ atmost

𝑇 (𝑛)
𝑛

times. Since the space usage is 𝑆 (𝑛), each
time 𝑀 crosses the padding completely, it communicates at most 𝑆 (𝑛) bits across the padding.
Thus, the total number of bits that can be communicated is atmost

𝑇 (𝑛) ·𝑆 (𝑛)
𝑛

and thus we have

𝑇 (𝑛) ·𝑆 (𝑛)
𝑛

∈ Ω(𝑛), giving us 𝑇 (𝑛) · 𝑆 (𝑛) ∈ Ω(𝑛2). □

Proof Sketch for Theorem 3.2. The reduction in the proof of Theorem 3.1 can be modified to

prove the time-space tradeoff. This time, we can show a reduction from 𝑇 (𝑛) · 𝑆 (𝑛) ∈ Ω(𝑛2) as
we did in the proof of Theorem 3.1. The only difference will be to add extra events in the run,

corresponding to the padding string #
𝑛
, for which we can use 𝑛 write events w(𝑑) in the fragment

𝜅 in thread 𝑡1 after the r(𝑢) event of 𝑡1; here 𝑑 is a fresh memory location. Observe that none of the

w(𝑑) events are read by any read events. Thus, the answer of causallyOrdered≡rf
(𝑤, 𝜃1, 𝜃2) does

not get affected. Besides the reduction itself is a streaming one pass reduction that takes 𝑂 (𝑛) time

and 𝑂 (1) space. □

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

36 Azadeh Farzan and Umang Mathur

A.2 Proof of Theorem 3.3
We will use the pumping lemma to establish Theorem 3.3. Recall that, a context-free language 𝐿

satisfies the following property:

Pumpable(𝐿) ≡ There is a 𝑛 ≥ 1 s.t. forall 𝑠 ∈ 𝐿 with |𝑠 | > 𝑛, there are strings 𝑢, 𝑣,𝑤, 𝑥,𝑦 s.t.

𝑠 = 𝑢𝑣𝑤𝑥𝑦, |𝑣𝑤𝑥 | ≤ 𝑛, |𝑣𝑥 | ≥ 1, and for all 𝑖 ≥ 0, 𝑢𝑣𝑖𝑤𝑥𝑖𝑦 ∈ 𝐿

We will show that Pumpable(𝐿𝑐,𝑑ordered) does not hold:

𝐿
𝑐,𝑑

ordered = {𝑤 ∈ Σ∗𝑐Σ∗𝑑Σ∗ | 𝑐 and 𝑑 are not causally concurrent in𝑤 under ≡rf }

To argue this, we will construct a class of strings {𝑠𝑛}𝑛≥1 such that 𝑠𝑛 ∈ 𝐿
𝑐,𝑑

ordered (for all 𝑝 ≥ 1) and

satisfies |𝑠𝑛 | > 𝑛, but every way of splitting 𝑠𝑛 can be pumped down to a language that is not in

𝐿
𝑐,𝑑

ordered.

Construction. Our construction of the string 𝑠𝑛 essentially mimics the construction for the proof

of Theorem 3.1. Thus, we will have 2 threads 𝑡1 and 𝑡2 in 𝑠𝑛 , and the same set of variables as in this

proof. Without loss of generality, we will take 𝑐 = ⟨𝑡1, r, 𝑢⟩ and 𝑑 = ⟨𝑡2, w, 𝑢⟩.

More concretely, 𝑠𝑛 will be the run corresponding to the instance 0
𝑛
#0

𝑛 ∈ 𝐿=𝑛 . The idea behind

the construction stems from the observation that the construction is tight, and removing one or

more events from the run results into one of: (a) non well-formed run, (b) the two focal events

𝑒𝑐 = ⟨𝑡1, r, 𝑢⟩ and 𝑒𝑑 = ⟨𝑡2, w, 𝑢⟩ being unordered, or (c) the focal events to completely vanish. Any

of these cases result in a string outside of 𝐿
𝑐,𝑑

ordered.

Formally, given 𝑛 ≥ 1, we construct the run 𝑠𝑛 = 𝜋𝜅𝜂𝛿 as shown in Fig. 8a, where 𝜋 = 𝜋 ′
1
𝜋2 . . . 𝜋𝑛

and 𝜂 = 𝜂1𝜂2 . . . 𝜂𝑛 as described. Here, 𝜋 ′
1
is the same string as 𝜋1 but does not contain the event

⟨𝑡1, w, 𝑥¬𝑎1⟩. Now, we make the following observations; we use the notation 𝜎 \𝑒 and 𝜎 \𝑋 to denote

the sequence obtained by removing from 𝜎 , the event 𝑒 and the set of events 𝑋 respectively.

Claim A.1. Let 𝑋 ⊆ Events𝑠𝑛 be a set of events such that 𝑋 ≠ ∅ and |𝑋 | ≤ 𝑛 and 𝑋 contains

events only from the segment 𝜋𝜅. The sequence 𝑠𝑛 \ 𝑋 does not belong to 𝐿
𝑐,𝑑

ordered.

Proof. First, if 𝑋 contains a write event but not an event that reads from it, then clearly 𝑠𝑛 \ 𝑋 is

not well-formed, and thus cannot belong to 𝐿
𝑐,𝑑

ordered. In the rest of the proof, we assume that for

every write event in 𝑋 , the corresponding read event is also in 𝑋 .

If 𝑋 contains the event ⟨𝑡1, w, 𝑥𝑎1⟩, then 𝑋 must also contain ⟨𝑡2, r, 𝑥𝑏1⟩ which is not in 𝜋𝜅; so 𝑋

cannot contain this event. If 𝑋 contains the event ⟨𝑡, w, 𝑦𝑎𝑖 ⟩ for some 𝑖 ≥ 2, then it must also contain

⟨𝑡,r, 𝑦𝑎𝑖 ⟩. More importantly, the proof of Theorem 3.1 argues that in fact in this case the write

events in 𝑡2 can be carefully reordered so that the resulting reordering is ≡rf equivalent to 𝑠𝑛 \ 𝑋
and thus 𝑐 and 𝑑 can be reordered. For example, if 𝑋 contains ⟨𝑡1, w, 𝑦𝑎1⟩, then the reordering that

places ⟨𝑡2, r, 𝑥𝑏1⟩ after ⟨𝑡1, w, 𝑥𝑎1⟩ but places ⟨𝑡2, w, 𝑐⟩⟨𝑡2, w, 𝑦𝑏2⟩⟨𝑡2, w, 𝑐⟩ after ⟨𝑡2, r, 𝑥𝑏1⟩ but before
⟨𝑡1, w, 𝑦𝑎3⟩ is the correct reordering that witnesses reordering of 𝑐 and 𝑑 . The same argument also

shows why 𝑋 cannot contain any ⟨𝑡1, r, 𝑦𝑎𝑖 ⟩, w𝑡1, w, 𝑐 or w𝑡1, r, 𝑐 . Also, ⟨𝑡1, w, 𝑢⟩ cannot be in 𝑋 ; if so,

then ⟨𝑡1, r, 𝑢⟩ ∈ 𝑋 and thus 𝑠𝑛 \ 𝑋 does not contain 𝑐 . □

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

Coarser Equivalences for Causal Concurrency 37

Claim A.2. Let 𝑋 ⊆ Events𝑠𝑛 be a set of events such that 𝑋 ≠ ∅ and |𝑋 | ≤ 𝑛 and 𝑋 contains

events only from the segment 𝜂𝛿 . The sequence 𝑠𝑛 \ 𝑋 does not belong to 𝐿
𝑐,𝑑

ordered.

Proof. If 𝑋 contains ⟨𝑡2, w, 𝑢⟩ = 𝑑 , then 𝑠𝑛 \ 𝑋 trivially is not in 𝐿
𝑐,𝑑

ordered. If 𝑋 contains ⟨𝑡2, r, 𝑥𝑏1⟩,
then there is no ordering from the event ⟨𝑡1, w, 𝑥𝑎1⟩ to an event of thread 𝑡2, as a result of which 𝑑

can be reordered before 𝑐 as show in Fig. 8b. If 𝑋 contains any ⟨𝑡2, w, 𝑐⟩ of 𝜅𝑖 , then we do not get an

ordering from ⟨𝑡1, r, 𝑦𝑎𝑖+1⟩ to ⟨𝑡2, w, 𝑦𝑏𝑖+1⟩. As a result, we can reorder 𝑐 and 𝑑 . The same reasoning

can be used to argue why 𝑋 cannot contain ⟨𝑡2, w, 𝑦𝑏𝑖 ⟩ for any 𝑖 ≥ 2. □

Now, we consider a case-by-case analysis of how the substrings 𝑢, 𝑣,𝑤, 𝑥,𝑦 of 𝑠𝑛 are picked subject

to the constraints 𝑠𝑛 = 𝑢𝑣𝑤𝑥𝑦, |𝑣𝑤𝑥 | ≤ 𝑛, |𝑣𝑥 | ≥ 1.

Case 𝑣𝑤𝑥 ⊆ 𝜋𝜅 or 𝑣𝑤𝑥 ⊆ 𝜂𝛿 . In this case, we can pump down (choose 𝑖 = 0) and the resulting

string 𝑠′𝑛 = 𝑢𝑤𝑦 ∉ 𝐿
𝑐,𝑑

ordered due to Claim A.1 and Claim A.2.

Case 𝑣𝑤𝑥 spans 𝜋𝜅𝜂. In this case, observe that there is no 𝑗 such that 𝑣𝑤𝑥 intersects with both 𝜋 𝑗

and 𝜂 𝑗 because of the restriction that |𝑣𝑤𝑥 | ≤ 𝑛. Hence, choosing 𝑖 = 0 (pumping down) again

leads to a run 𝑠′𝑛 = 𝑢𝑤𝑦 ∉ 𝐿
𝑐,𝑑

ordered, and this can be established using arguments similar to the

proofs of Claim A.1 and Claim A.2.

A.3 Proof of Theorem 3.4
The proof of this theorem can be proved in a similar manner as an analogous result of [Mathur

et al. 2020] in the context of data race detection. Given a set of events 𝑋 ⊆ Events𝑤 , a partial order
𝑃 ⊆ 𝑋 × 𝑋 which totally orders events of each thread, and a reads-from relation 𝑅𝐹 : 𝑋 ↩→ 𝑋 that

maps each read event in 𝑋 to a write event in 𝑋 with the same variable, the RF-Poset realizability

problem for (𝑋, 𝑃, 𝑅𝐹) asks if there is a linearization of 𝑃 whose reads-from function matches 𝑅𝐹 .

The following is the statement of the analogous result in [Mathur et al. 2020]:

Theorem A.1 (Lemma 5.6 in [Mathur et al. 2020]). Assuming SETH holds. RF-Poset realizability

for posets with 𝑛 events cannot be solved in time 𝑂 (𝑛2−𝜖) for every 𝜖 > 0, even for inputs with 2

threads and 7 variables.

The proof of the above statement in fact constructs a simple RF-Poset with only two threads, and is

such that the RF-Poset can be translated into a simple linearizartion (that first linearizes the events

of the first thread, followed by the events of the second thread). This means that the RF-Poset

realizability holds iff the linearization can be reordered so that the two focal events (read and write

of 𝑧) can be flipped. Since our proof is not a direct reduction from RF-Poset realizability, we need to

prove our result separately. However, since most parts of the proof are identical, we skip the entire

construction and only outline the high level details, and highlight the low level details about where

our construction differs.

Consider the sequence of threads 𝜏𝐴 and 𝜏𝐵 constructed by Theorem A.1 (dependin upon the two

sequence of Boolean vectors 𝐴 and 𝐵 given as part of the OV instance). We will use two fresh

variables 𝑧 and 𝑢. Let 𝜏 ′
𝐴
be the sequence obtained by (a) inserting a w(𝑧) event after the event

w𝑎1
1
(𝑥1), and (b) inserting a w(𝑢) event before the event r

𝑎𝑛/2
1

(𝑥2) in 𝜏𝐴. Likewise, 𝜏 ′𝐵 be the sequence

obtained by (a) inserting the event r(𝑧) before the event r𝑏1
1
(𝑥1), and (b) inserting w(𝑢) event after

w
𝑏𝑛/2
1

(𝑥2) in 𝜏𝐵 . Observe that when the entire 𝜏 ′
𝐴
appears after 𝜏 ′

𝐵
, we have (w𝑎1

1
(𝑥1), r𝑏1

1
(𝑥1)) ∈ rf

and this imposes one of the desired orderings of the construction in [Mathur et al. 2020]. However

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

38 Azadeh Farzan and Umang Mathur

the other ordering is not imposed, but this can be imposed when we instead ask the check order

question.

Formally, let 𝜎 = 𝜏 ′
𝐴
𝜏 ′
𝐵
. We claim that in 𝜎 , the two events 𝑒1 = ⟨𝜏𝐴, w(𝑢)⟩ and 𝑒2 = ⟨𝜏𝐵, w(𝑢)⟩

are reorderable under ≡rf iff the partial order 𝑃 constructed in [Mathur et al. 2020] is realizable.

For the forward direction, consider the witness reordering 𝜎 ′
in which 𝑒1 and 𝑒2 are reordered.

Consider the run 𝜌 obtained by removing from 𝜎 ′
the events of variables 𝑧 and 𝑢. Observe that this

is a witness to the realizability of the RF poset constructed in [Mathur et al. 2020] because 𝜎 ′
is

rf-equivalent to 𝜎 and further 𝑒2 appears before 𝑒1 in 𝜎 ′
, and thus 𝜎 ′

satisfies all the constraints

of the RF poset instance. For the reverse direction, suppose that the RF poset instance of [Mathur

et al. 2020] is realizable, then, consider the trace that realizes the poset, say 𝜌 . In 𝜌 , we can add

the two write events on 𝑢 and the read-write pair on 𝑧 as described above. We remark that the

resulting trace 𝜎 ′
is rf-equivalent to 𝜎 — the order between all thread-wise events is preserved as

it was also a constraint in the poset. Further, the reads-from of all the events on 𝑥1, 𝑥2, . . . , 𝑥7 is

preserved since this 𝜌 is an instance of RF-poset and adding events on 𝑧 and 𝑢 doesnt change any

other variables’ reads-from. Since the ordering on 𝑓1 = w𝑎1
1
(𝑥1) and 𝑓2 = r

𝑎𝑛/2
1

(𝑥1) was preserved
(as 𝑓1 <

𝜌 𝑓2) because of the constraint in the poset, it implies that the event immediately preceding

𝑓1 (namely 𝑔1 = ⟨𝜏𝐴, w(𝑧)⟩) and immediately succeeding 𝑓2 (namely 𝑔1 = ⟨𝜏𝐵, r(𝑧)⟩)) must also be

preserved as 𝑔1 <
𝜎 ′

𝑔2, and since these two are the only two events on 𝑧, they are also a RF pair.

Finally, the two focal events get reversed because of the other ordering in the poset. his means 𝜎 ′

thus obtained is a witness of the reoderability of 𝑒1 and 𝑒2 in 𝜎 .

A.4 Proof of Theorem 3.5
Overview. Our proof is derived from similar statements in [Gibbons and Korach 1994] and [Mathur

et al. 2020]. The idea behind the algorithm is to search for a path over an abstract representation

of the search space. The search space will be represented as a graph, also called the ‘frontier

graph’ [Gibbons and Korach 1994]. The nodes of this graph are subsets of Events𝑤 which are

downward closed subsets of (po𝑤 ∪ rf𝑤 ∪ (𝑒, 𝑓))∗, assuming this is a partial order (if not, we can

directly say NO). The edges represent ‘extensions’ by one event. The existence of a witnessing

rf -equivalent run𝑤 ′
can then be checked by checking if there is a path from the node representing

the empty subset to the (unique) node corresponding to the set Events𝑤 . The proof of correctness
will argue the correctness of this abstraction.

Definition A.1 (Ideal). Let 𝑃 be a partial order on Events𝑤 such that (po𝑤 ∪ rf𝑤) ⊆ 𝑃 . An ideal 𝑋

of 𝑃 is a subset of Events𝑤 such that for every pair of events 𝑒, 𝑓 ∈ Events𝑤 such that (𝑒, 𝑓) ∈ 𝑃 , if

𝑓 ∈ 𝑋 , then 𝑒 ∈ 𝑋 .

Remark 3. Observe that an ideal contains no information about relative ordering (linearization)

of events, but just the set of events. Further, the empty set ∅ is also an ideal of 𝑃 .

Definition A.2 (Extension). Given two ideals 𝑋1, 𝑋2 of a partial order 𝑃 , we say that 𝑋2 extends

𝑋1 if there is an event 𝑒 such that

(1) 𝑋2 = 𝑋1 ⊎ {𝑒},

(2) if 𝑒 is a write event (on variable 𝑥), and if there is another write event 𝑒′ ≠ 𝑒 on variable 𝑥 in 𝑋1,

then we must have 𝑟 ∈ 𝑋1 for every 𝑟 such that rf𝑤 (𝑟) = 𝑒′.

We also say that the event 𝑒 extends 𝑋1 to 𝑋2.

Proposition A.2. Observe that for an ideal 𝑋 , there are at most |T | ideals that are extensions of 𝑋 .

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

Coarser Equivalences for Causal Concurrency 39

Remark 4. The notion of extension above is ‘conservative’ in the sense that it is aware of the

future. In particular, our goal is to incrementally construct extensions, all the way until we reach

the set Events𝑤 . As a result, some write 𝑒′ is not allowed to be added to an ideal because that will

disable a future read 𝑟 . If on the other hand, our goal was to not reach the ideal Events𝑤 but only

to reach a subset that does not contain the read 𝑟 , then 𝑒′ could be added.

Definition A.3 (Frontier Graph). Let 𝑃 be a partial order on Events𝑤 . The frontier graph 𝐺𝑃 =

(𝑉𝑃 , 𝐸𝑃) of 𝑃 is a directed graph such that:

(1) 𝑉𝑃 is the set of ideals of 𝑃

(2) (𝑋1, 𝑋2) ∈ 𝐸𝑃 if 𝑋2 is an extension of 𝑋1.

Edges in this graph are implicitly labeled by events. For the edge (𝑋1, 𝑋2) ∈ 𝐸𝑃 such that {𝑒} =

𝑋2 − 𝑋1, the label is 𝑒 and we will denote this as 𝑋1 →𝑒 𝑋2.

Remark 5. The size of 𝐺𝑃 is 𝑂 (|T | · |𝑤 | | T |) because there are at most |𝑤 | | T |
nodes, each having

at most |T | outgoing edges. The time to construct it is 𝑂 (|T | · |𝑤 | | T |) because for every edge you

spend time 𝑂 (|𝑤 |) to check if the edge corresponds to an extension.

Definition A.4 (Respecting a partial order). Let 𝑆 be a set and let 𝑃 be a partial order over 𝑆 . Let

𝑆 ′ ⊆ 𝑆 and let 𝜌 be a permutation of elements of 𝑆 ′. We say that 𝜌 respects 𝑃 if for every (𝑒, 𝑓) ∈ 𝑃 ,

if 𝑓 ∈ 𝑆 ′ then 𝑒 ∈ 𝑆 ′ and further, 𝑒 appears before 𝑓 in 𝜌 .

Definition A.5 ((po, rf)-preserving subrun). Given a run 𝜌 , we say that 𝜌 is (po, rf)-preserving
subrun of𝑤 if

(1) Events𝜌 ⊆ Events𝑤 ,

(2) Events𝜌 respects po𝑤 ∪ rf𝑤

(3) For every read event 𝑟 ∈ Events𝑤 , with 𝑤 = rf𝑤 (𝑟), there is no other write event 𝑤 ′ ≠ 𝑤 on

the same variable as 𝑟 that appears between𝑤 and 𝑟 in 𝜌 .

Remark 6. If 𝜌 is a (po, rf)-preserving-subrun of𝑤 , and further if Events𝜌 = Events𝑤 , then 𝜌 is

rf-equivalent to𝑤 .

Remark 7. Not every (po, rf)-preserving-subrun of𝑤 can be extended to an rf -equivalent run. In
other words, there is a𝑤 and a (po, rf)-preserving-subrun 𝜌 of𝑤 for which every extension 𝜌 ·𝛾 is

not rf-equivalent to𝑤

Lemma A.3. Let 𝑃 be a partial order over Events𝑤 and let 𝐺𝑃 = (𝑉𝑃 , 𝐸𝑃) be the frontier graph of

𝑃 . For every ideal 𝑋 ∈ 𝑉𝑤 such that 𝑋 is reachable from ∅ ∈ 𝑉𝑃 , there is a run 𝜌 such that 𝜌 is a

(po, rf)-preserving-subrun of 𝑤 and 𝜌 respects 𝑃 (i.e., for every two events 𝑒, 𝑓 ∈ Events𝜌 such

that (𝑒, 𝑓) ∈ 𝑃 , we also have that 𝑒 appears before 𝑓 in the run 𝜌).

Proof. We prove the following stronger statement that, in fact, every path 𝑋0, 𝑋1, . . . , 𝑋𝑛 from ∅ to

𝑋 labeled 𝜎𝑋 = 𝑒1𝑒2 . . . 𝑒𝑛 is indeed a (po, rf)-preserving-subrun of𝑤 that respects 𝑃 . Here, where

𝑒𝑖 is the 𝑖
th
event in the path, i.e., 𝑋𝑖 →𝑒𝑖+1 𝑋𝑖+1. Observe that 𝑋 = {𝑒1, . . . , 𝑒𝑛}.

We prove this by inducting on the length of𝑤𝑋 (alternatively on the size of 𝑋).

Base case: In this case 𝑋 = ∅ and𝑤𝑋 = 𝜖 and the statement holds vacuously.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

40 Azadeh Farzan and Umang Mathur

Inductive case: Suppose we have that for every labeled path of length ≤ 𝑖 , the statement holds

true. Consider now a labeled path𝑤𝑋 of length 𝑖 + 1. Let 𝑒 be the last event in this path. We consider

two cases based on the type of 𝑒 .

𝑒 = ⟨𝑡, w(𝑥)⟩. That is, 𝑒 is a write event. Suppose on the contrary that𝑤𝑋 is not (po, rf)-preserving-
subrun of 𝑤 that respects 𝑃 . Consider the penultimate prefix 𝑤𝑌 such that 𝑤𝑋 = 𝑤𝑌 ◦ 𝑒; we
will also use 𝑌 = 𝑋 \ {𝑒}. By inductive hypothesis,𝑤𝑌 is a (po, rf)-preserving-subrun of𝑤 that

also respects 𝑃 . T hen, there is an event 𝑓 ∈ 𝑌 such that (𝑒, 𝑓) ∈ po𝑤 ∪ rf𝑤 ∪ 𝑃 . But this means

that 𝑌 is not an ideal of 𝑃 , a contradiction.

𝑒 = ⟨𝑡, r(𝑥)⟩. That is, 𝑒 is a read event. Suppose on the contrary that𝑤𝑋 is not (po, rf)-preserving-
subrun of𝑤 that respects 𝑃 . Then either we have that the penultimate set 𝑌 = 𝑋 \ {𝑒} is not an
ideal, as in the previous case giving a contradiction, or we have the more interesting case where

𝑤𝑋 is not a (po, rf)-preserving-subrun of𝑤 becuase there is a write 𝑓 ′ ≠ 𝑓 (where 𝑓 = rf𝑤 (𝑒))
such that 𝑓 ′ appears later than 𝑓 in 𝑤𝑌 . Consider the largest prefix 𝑤𝑍 of 𝑤𝑌 that does not

contain 𝑓 ′. Also, let𝑤𝑈 be the immediately longer path, i.e.,𝑤𝑈 = 𝑤𝑍 ◦ 𝑓 ′. We will use 𝑍 and

𝑈 to denote the ideals r eached after taking the paths 𝑤𝑍 and 𝑤𝑈 respectively. Observe that

𝑈 = 𝑍 ⊎ {𝑓 ′}, 𝑒 ∉ 𝑍 , 𝑓 = rf𝑤 (𝑒) ∈ 𝑍 and 𝑍 →𝑓 ′ 𝑈 . This contradicts that𝑈 is an extension of 𝑍 .

□

Remark 8. The graph 𝐺𝑃 defined above does not capture all (po, rf)-preserving-subruns of 𝑤 .

It only captures those that are prefixes of some run that is rf-equivalent to𝑤 . Thus the converse

of Lemma A.3, as stated, is not true. The following lemma is true though (since it talks about

rf-equivalent executions).

Lemma A.4. Let 𝑃 be a partial order over Events𝑤 and let 𝐺𝑃 = (𝑉𝑃 , 𝐸𝑃) be the frontier graph of

𝑃 . Let 𝜌 = 𝑓1 𝑓2 . . . 𝑓𝑁 be a run that is rf-equivalent to𝑤 such that 𝑒2 appears before 𝑒1 in 𝜌 . Then

there is a path in 𝐺𝑃 that is labeled with 𝜌 .

Proof. We establish that 𝜌 is a path in the graph 𝐺𝑃 by inductively establishing that 𝑋𝑖 is a node

of 𝐺𝑃 and 𝑋𝑖−1 →𝑓𝑖 𝑋𝑖 is an edge of 𝐺𝑃 for every 𝑖 ≥ 1.

Base Case (i=1). Since 𝜌 is rf-equivalent to 𝑤 , 𝑓1 must be the first event of its own thread and

further it must be a write event. Also, 𝑓1 cannot be the focal event 𝑒1. Thus, the set 𝑋1 = {𝑓1} is
indeed an ideal of 𝑃 and thus 𝑋1 ∈ 𝑉𝑃 is a node of the graph 𝐺𝑃 . Next, since there is no other write

event in 𝑋0 = ∅, 𝑓1 trivially extends 𝑋0 to 𝑋1. Thus, 𝑋0 →𝑓1 𝑋1 is an edge in 𝐺𝑃 .

Inductive Case. Suppose that 𝑋𝑖 is an ideal of 𝐺𝑃 . Consider the set 𝑋𝑖 = 𝑋𝑖−1 ⊎ {𝑓𝑖 }. Since 𝜌 is

rf-equivalent to𝑤 , all events po-ordered before 𝑓𝑖 must be in the prefix 𝑓1, . . . , 𝑓𝑖−1 and thus in the

set 𝑋𝑖−1. Likewise, if 𝑓𝑖 is a read event, then rf𝑤 (𝑓𝑖) is also in 𝑋𝑖−1. Finally since 𝜌 does not execute

𝑒1 before executing 𝑒1, if 𝑓𝑖 = 𝑒1, then 𝑒1 ∈ 𝑋𝑖−1. In other words, 𝑋𝑖 is an ideal of 𝑃 and thus a node

in 𝐺𝑃 . Next, consider the case when 𝑓𝑖 and suppose on thae contrary that there is a write event

𝑤 ≠ 𝑓𝑖 and a read event 𝑟 with rf𝑤 (𝑟) = 𝑤 such that𝑤 ∈ 𝑋𝑖−1, 𝑟 ∉ 𝑋𝑖−1. This will contradict that 𝜌
is rf-equivalent to𝑤 as 𝑓𝑖 appears between𝑤 and 𝑟 in 𝜌 . Hence, 𝑓𝑖 extends 𝑋𝑖−1 to 𝑋𝑖 . As a result,

𝑋𝑖−1 →𝑓𝑖 𝑋𝑖 is an edge in 𝐺𝑃 □

A.4.1 Algorithm for solving causallyOrdered≡rf
(·, ·, ·).

Theorem A.2. Algorithm 1 runs in time𝑂 (|T | · |𝑤 | | T |+1) for an input run𝑤 . Further, Algorithm 1

returns YES iff ¬causallyOrdered≡rf
(𝑤, 𝑒1, 𝑒2)

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

Coarser Equivalences for Causal Concurrency 41

Algorithm 1: Polynomial time algorithm for Checking Causal Orderedness under ≡rf

Input: Run𝑤 ∈ Σ∗
, events 𝑒1, 𝑒2 ∈ Events𝑤 such that 𝑒1 appears before 𝑒2 in𝑤

Output: YES iff there is a run𝑤 ′
which is rf-equivalent to𝑤 in which 𝑒2 appears before 𝑒1.

1 Construct the transitive reduction of the quasi order 𝑃 = (po𝑤 ∪ rf𝑤 ∪ {𝑒2, 𝑒1});
2 if 𝑃 has a cycle then return NO;

3 Construct the frontier graph 𝐺𝑃 = (𝑉𝑃 , 𝐸𝑃) as in Definition A.3 ;

4 if (∅, Events𝑤) ∈ 𝐸+
𝑃
then

5 return YES

6 else
7 return NO

Proof. The time spent in constructing 𝑃 and checking cycles in it is 𝑂 (|𝑤 |). The time taken to

build 𝐺𝑃 is 𝑂 (|T | · |𝑤 | | T |+1) and the time taken to check reachability in 𝐺𝑃 is 𝑂 (|T | · |𝑤 | | T |)

Let us now argue correcntess.

(⇒) Suppose the algorithm says YES. Then 𝑃 is a partial order. Further the node 𝑋 = Events𝑤 is

reachable from ∅ in𝐺𝑃 . Then by Lemma A.3, there is a run 𝜌 that is rf -equivalent to𝑤 and flips 𝑒1
and 𝑒2.

(⇐) Suppose there is an rf-equivalent run 𝜌 = 𝑓1 𝑓2 . . . 𝑓 |𝑤 | of𝑤 such that 𝑒2 appears before 𝑒1 in 𝜌 .

First, observe that 𝜌 respects po𝑤 ∪ rf𝑤 ∪ (𝑒2, 𝑒1) and thus 𝑃 must be acyclic. By Lemma A.4, we

must have that 𝑋 = Events𝑤 = {𝑓1, . . . , 𝑓 |𝑤 | } is reachable from ∅ in𝐺𝑃 . Thus the algorithm returns

YES. □

A.5 Proof of Theorem 3.6
Proof. At a high level, the algorithm enumerates permutations of the given run𝑤 , one at a time,

and checks if each such permutation is rf-equivalent to𝑤 and contains 𝑒 and 𝑓 appearing in the

reverse order. Further, this task can be performed in total additional space (besides the input𝑤)

that is linear in |𝑤 |. In the following, we explain how these two tasks can be performed by a

deterministic Turing machine𝑀 with a linearly bounded work tape.

Generating permutations in linear space. Given the run𝑤 ,𝑀 first stores the lexicographically

minimum permutation 𝑤min of 𝑤 into a separate worktape. This can be done by maintaining a

counter that counts the number of occurences of each symbol in Σ and copying the required copies

of each letter to the work tape. Next, given the current contents 𝑢 of the work tape,𝑀 identifies the

longest non-increasing suffix 𝑣 of 𝑢, identifies the symbol 𝑎 right before it (and thus 𝑢 = 𝑢1 · 𝑎 · 𝑣 for
some 𝑢). Next,𝑀 identifies the rightmost symbol 𝑏 of 𝑣 that is lexicographically larger than 𝑎 (and

thus 𝑣 = 𝑣1 · 𝑓 · 𝑣2), swaps 𝑎 and 𝑏 to obtain the string 𝑥 = 𝑢1 · 𝑏 · 𝑣1 · 𝑎 · 𝑣2, and finally reverses the

suffix 𝑣1 · 𝑎 · 𝑣2 to obtain the next permutation 𝑢′ = 𝑢1 · 𝑏 · 𝑣 rev
2

· 𝑎 · 𝑣 rev
1

. Clearly, all this operations

can be performed in place on the worktape.

Checking each permutation. Given a string 𝑢 on the worktape,𝑀 also needs to check if 𝑢 ≡rf 𝑤

and whether the order of occurence of 𝑒 and 𝑓 is different in 𝑢 and 𝑤 . This can also be checked

using no additional space as follows. First, 𝑀 checks if 𝑢 and 𝑤 have the same program order

(i.e., po𝑤 = po𝑢) by making |T | many passes over 𝑢 and 𝑤 , one for each 𝑡 ∈ T , checking if the

projection of 𝑢 and𝑤 to 𝑡 match. Next,𝑀 checks if rf𝑤 = rf𝑢 by making a separate pass for each

read event 𝑟 , and verifying if the corresponding last write event𝑤 on the same variable as 𝑟 and

occuring before 𝑟 is performed by the same thread, and at the same local index in that thread.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

42 Azadeh Farzan and Umang Mathur

Finally, checking if 𝑒 and 𝑓 appear reversed corresponds to checking if the 𝑖th event of thread 𝑡

appears after the 𝑗 th event of thread 𝑡 ′ in 𝑢, where 𝑡, 𝑡 ′ are respectively the threads performing 𝑒, 𝑓 ,

and 𝑖, 𝑗 are their respective local indices in 𝑡, 𝑡 ′. The check of whether some two occurences of 𝑐

and 𝑑 can be reversed is analgous.𝑀 performs each of these checks in place on the worktape, using

only log |𝑤 | many extra bits to keep track of counters and local indices. □

B PROOFS FROM SECTION SECTION 4
B.1 Proof of Theorem 4.1

Proof. Let us focus only on words𝑤 where𝑤 is of the form 𝑎𝑏𝑛𝑐𝑚 . Given the relation 𝐼 , we claim

that 𝑎 and last 𝑐 are concurrent iff 𝑛 < 𝑚, and ordered otherwise. It is clear that if𝑚 ≤ 𝑛, then 𝑐

can be reordered to before 𝑎 using a swap sequence like this:

𝑎𝑏𝑛𝑐𝑚 → 𝑎𝑏𝑐𝑏𝑛−1𝑐𝑚−1 → · · · → 𝑎(𝑏𝑐)𝑚𝑏𝑛−𝑚 → 𝑏𝑐𝑎(𝑏𝑐)𝑚−1𝑏𝑚−1 → · · · → (𝑏𝑐)𝑚𝑎𝑏𝑚−1

where each arrow in the first group corresponds to a (𝑏, 𝑏𝑐) swap and each arrow in the second

group corresponds to a an (𝑎, 𝑏𝑐) swap. Let us argue why otherwise, the last 𝑐 is ordered wrt 𝑎. The

only way that the last occurrence of 𝑐 can be reordered against 𝑎 is that all occurrences of 𝑐 have

already been moved behind 𝑎; since occurrences of 𝑐 do not commute against each other. Every

time an occurrence of 𝑐 is reordered with 𝑎, it must be through a swap . . . 𝑎𝑏𝑐 → 𝑏𝑐𝑎, because

those are the only elements of 𝐼 that involve an 𝑎 and a 𝑐 on the two sides of a swap. This swap

consumes one 𝑏, and this 𝑏 cannot move back, unless it moves back together with a 𝑐 , which would

be counterproductive. Therefore, we need at least as many 𝑏’s as 𝑐’s to swap all the 𝑐’s behind the 𝑎.

A monitor, therefore, should be able to distinguish the two sets of strings 𝑎𝑏𝑛𝑐𝑚 where 𝑛 < 𝑚 and

where 𝑛 ≥ 𝑚 from each other. But, this involves counting and therefore is not regular. □

B.2 Proof of Theorem 4.2

Proof. ⇐ direction: If 𝑔𝑔′ .rf 𝑔′𝑔 for some pair of grains, then it is straightforward to see that if

they are consecutive and swapped, the soundness will be violated. For the additional conditions,

the grains from the run in Example 4.1 satisfy 𝑔𝑔′ ≡rf 𝑔
′𝑔 but violate the extra condition on the

grains for the theorem and as argued the corresponding commutativity relation is not sound in the

context of the run.

⇒ direction: We have to show that if [𝑤]𝐺 ⊈ [𝑤]rf , then at least one of the conditions of the

theorem is violated. Assume there exists 𝑢 ∈ [𝑤]𝐺 where 𝑢 ∉ [𝑤]rf . The latter can happen only

if in 𝑢, either the program order or the reads-from relation are changed compared to 𝑤 . Since

𝑔𝑔′ ≡𝐺 𝑔′𝑔 implies that program order is never changed (and any standard Mazurkiewicz swap

preserves program order), the only point of change can be in the reads-from relation.

We prove, by contradiction, that the reads-from relation cannot change. Let us consider the sequence

of swaps that would get us from𝑤 to 𝑢:

𝑤
𝑠1→ 𝑣1

𝑠2→ 𝑣2
𝑠3→ . . .

𝑠𝑛→ 𝑢

Let us assume 𝑣𝑖 is the first word in the sequence such that 𝑣𝑖 .rf 𝑤 , and as such 𝑣𝑖 .rf 𝑣𝑖−1.
Therefore, the swap 𝑠𝑖 is to blame. By definition, this cannot be a Mazurkiewicz swap. Therefore, it

is a swap of two grains 𝑔 and 𝑔′ where (𝑔,𝑔′) ∈ 𝐼𝐺 . Note that any pair of w(𝑥) and r(𝑥) that are
both on one side of this swap will be unaffected by the swap. Therefore, a change in the reads-from

relation must be of one of the following forms, for a given variable 𝑥 :

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

Coarser Equivalences for Causal Concurrency 43

• w(𝑥) is before 𝑔𝑔′ in 𝑣𝑖−1 and the corresponding r(𝑥) is somewhere in 𝑔𝑔′. A swap can brake

such a relation only if r(𝑥) is in 𝑔, there are no other writes to 𝑥 before r(𝑥) in 𝑔, and 𝑔′ contains
a write to 𝑥 . This is however in violation of the condition stated in the theorem.

• w(𝑥) is before 𝑔𝑔′ in 𝑣𝑖−1 and the corresponding r(𝑥) is after 𝑔𝑔′: This means that 𝑔𝑔′ contains
no write to variable 𝑥 , and therefore, the swap cannot affect the fact that r(𝑥) reads from w(𝑥).

• w(𝑥) is in 𝑔𝑔′ in 𝑣𝑖−1 and the corresponding r(𝑥) is also in 𝑔𝑔′: This would contradict 𝑔𝑔′ ≡rf 𝑔
′𝑔.

• w(𝑥) is in 𝑔𝑔′ in 𝑣𝑖−1 and the corresponding r(𝑥) is after 𝑔𝑔′. This is in violation of the condition

stated in the theorem.

□

C PROOFS OF SECTION 5
C.1 Proof of Theorem 5.1
The proof sketch we provided in the text, through a two-pass construction is formal enough to

convince a reader with a good command of automata theory. Alternatively, one can give the full

construction to this monitor as follows.

The state of the grain monitor is conceptually the same as the trace concurrency monitor, except

that 𝐸 is no longer a set of events, but rather a set of grain signatures. Additionally, the state includes
one grain signature 𝑔 that maintains information about the current grain, a flag 𝑖 : 𝐵𝑜𝑜𝑙 that is true

whenever the monitor is in the middle of reading a grain, and a flag 𝐶 : X → 𝐵𝑜𝑜𝑙 which is the

set of variables wrt which some previously closed grain was (nondeterministically) assumed to

satisfy the part of condition 2 which assumes all the reads, that correspond to a write in some grain,

also belong to the grain; therefore, the monitor does not expect to see any reads on these variables

before it sees a write. The monitor makes a nondeterministic guess in the second component of

a grain signature, for each variable on whether all the reads of a given write are included in the

grain, and later checks the (right) context of the grain to verify this guess. In effect, the monitor

is able to make both choices about the grain and therefore, try its luck with both versions of the

(sound) commutativity relations that are implied by the choice. A wrong choice will later result in

a halt. Fig. 9 lists the transitions of the monitor, and the definitions of the operators used.

Proof. The full proof of why the detailed monitor is correct is long and tedious, through case

analysis. We sketch the high level idea behind the most interesting case of the proof. The proof

is by induction on the length of the portion of the input run so far processed by the monitor. We

assume that the monitor has processed the prefix 𝜎 (which includes 𝑒 but not 𝑒′) and is about to

read the next entity 𝑎, and assume that it satisfies the following induction hypothesis:

There exists a resolution of nondeterministic choices such that:

• For any entity 𝑏 (event or grain) in 𝜎 :

(grain(𝑏) ⊆ 𝐸 ⇐⇒ 𝑏 is ordered wrt 𝑒)

• 𝐸 ⊆ {grain(𝑑) | 𝑑 ∈ 𝜎}

• For every entity in 𝐸, the monitored has correctly guessed the status of condition 2.

and any error in underestimating 𝐸 will eventually result in a halt.

We split the proof on whether 𝑎 is concurrent or ordered wrt 𝑒:

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

44 Azadeh Farzan and Umang Mathur

State Event State Update

⟨−, 𝐸, 𝑔∅, 𝑖,𝐶⟩ 𝑒 ∈ Σ ⟨−, 𝐸, 𝑔∅, 𝑖,𝐶⟩
⟨−, 𝐸, 𝑔∅, 𝑖,𝐶⟩ ⋄1 ⟨⋄1, 𝐸, 𝑔∅, 𝑖,𝐶⟩
⟨⋄1, 𝐸, 𝑔, 𝑖,𝐶⟩ 𝑒 = ⟨𝑖, w(𝑥)⟩ ⟨⋄1−, {grain(𝑒)}, 𝑔, false,𝐶 [𝑥 ↦→ nondet]⟩
⟨⋄1, 𝐸, 𝑔, 𝑖,𝐶⟩ 𝑒 = ⟨𝑖, r(𝑥)⟩ ⟨⋄1−, {grain(𝑒)}, 𝑔, false,𝐶⟩
⟨⋄1, 𝐸, 𝑔, 𝑖,𝐶⟩ ▷ ⟨⋄1−,∅, 𝑔∅, true,𝐶⟩
⟨⋄1−, 𝐸, 𝑔, true,𝐶⟩ 𝑒 = ⟨𝑖, w(𝑥)⟩ ⟨⋄1−, 𝐸, update(𝑔, 𝑒), true,𝐶⟩
⟨⋄1−, 𝐸, 𝑔, true,𝐶⟩ 𝑒 = ⟨𝑖, r(𝑥)⟩ ⟨⋄1−, 𝐸, update(𝑔, 𝑒), true,𝐶⟩
⟨⋄1−, 𝐸, 𝑔, true,𝐶⟩ ◁ ⟨⋄1−, 𝐸 ⊙ ND(𝑔), 𝑔∅, false,𝐶 ⊗ ND(𝑔)⟩
⟨⋄1−, 𝐸, 𝑔, false,𝐶⟩ 𝑒 = ⟨𝑖, w(𝑥)⟩ ⟨⋄1−, 𝐸 ⊙ grain(𝑒), 𝑔, false,𝐶 [𝑥 ↦→ nondet]⟩
⟨⋄1−, 𝐸, 𝑔, false,𝐶 [𝑥 ↦→ false]⟩ 𝑒 = ⟨𝑖, r(𝑥)⟩ ⟨⋄1−, 𝐸 ⊙ grain(𝑒), 𝑔, false,𝐶⟩
⟨⋄1−, 𝐸, 𝑔, 𝑖,𝐶⟩ ⋄2 ⟨⋄1 − ⋄2, 𝐸, 𝑔, 𝑖,𝐶⟩
⟨⋄1 − ⋄2, 𝐸, 𝑔, 𝑖,𝐶⟩ 𝑒 ∈ Σ ⟨Ord (𝐸,ND(grain(𝑒))), 𝐸, 𝑔, 𝑖,𝐶 ⊗ ND(grain(𝑒))⟩
⟨⋄1 − ⋄2, 𝐸, 𝑔, 𝑖,𝐶⟩ ▷ ⟨⋄1 − ⋄2▷, 𝐸, 𝑔∅, true,𝐶⟩
⟨⋄1 − ⋄2▷, 𝐸, 𝑔, 𝑖,𝐶⟩ 𝑒 = ⟨𝑖, w(𝑥)⟩ ⟨⋄1 − ⋄2▷, 𝐸, update(𝑔, 𝑒), true,𝐶⟩
⟨⋄1 − ⋄2▷, 𝐸, 𝑔, 𝑖,𝐶 [𝑥 ↦→ false]⟩ 𝑒 = ⟨𝑖, r(𝑥)⟩ ⟨⋄1 − ⋄2▷, 𝐸, update(𝑔, 𝑒), true,𝐶⟩
⟨⋄1 − ⋄2▷, 𝐸, 𝑔, 𝑖,𝐶⟩ ◁ ⟨Ord (𝐸,ND(𝑔)), 𝐸, 𝑔∅, false,𝐶 ⊗ ND(𝑔)⟩
⟨false, 𝐸, 𝑔, 𝑖,𝐶⟩ 𝑒 = ⟨𝑖, w(𝑥)⟩ ⟨false, 𝐸, 𝑔, 𝑖,𝐶⟩
⟨false, 𝐸, 𝑔, 𝑖,𝐶 [𝑥 ↦→ false]⟩ 𝑒 = ⟨𝑖, r(𝑥)⟩ ⟨false, 𝐸, 𝑔, 𝑖,𝐶⟩

update(𝑔, ⟨𝑖, op(𝑥)⟩) =
{
𝑔.𝐸 = 𝑔.𝐸 ∪ {𝑒}, 𝑔.𝑉 = 𝑔.𝑉 ∪ {𝑥} if (op = r ∧ w(𝑥) ∉ 𝑔.𝐸)
𝑔.𝐸 = 𝑔.𝐸 ∪ {𝑒} owise

Ord (𝐸,𝑔) ⇐⇒ ∃𝑔′ ∈ 𝐸 : depend (𝑔,𝑔′) 𝐶 ⊗ 𝑔 = 𝐶 − {𝑥 |⟨𝑖, w(𝑥)⟩ ∈ 𝑔.𝐸} ∪ 𝑔.𝑉

𝐸 ⊙ 𝑔 =

{
𝐸 ∪ 𝑔 if Ord (𝐸,𝑔)
𝐸 owise

ND(𝑔) = ⟨𝑔.𝐸, 𝑔.𝑉 ∪ {𝑥 | ⟨𝑖, w(𝑥)⟩ ∈ 𝑔.𝐸 ∧ nondet}⟩

Fig. 9. Grain Concurrency Monitor: The monitor starts in ⟨−,∅, 𝑔∅, false,∅⟩ and accepts if it is in a state
⟨false, . . . ⟩ once the input run is read. 𝑔∅ corresponds to an empty grain signature. grain(𝑒) is syntactic sugar
for update(𝑔∅, 𝑒). With ND, the monitor nondeterministically decides for which of the writes that appear in
the grain, all the read operations are also assumed to be in the grain.

• Ordered: Consider the definition of [𝜎𝑎]𝐺 . It is simpler to move to the corresponding grain

monoid and consider the equivalence class of [ℎ𝐺 (𝜎𝑎)] 𝐼̂𝐺 . By definition, 𝑒 and 𝑎 are always

ordered the same way in [ℎ𝐺 (𝜎𝑎)] 𝐼̂𝐺 .

In the grain monoid, this implies the existence of a path in the partial order representation of

the class. Let this path be:

𝑒 → 𝑎1 → · · · → 𝑎𝑚 → 𝑎

where each 𝑎𝑖 is either in Σ or in Σ𝐺 . The induction hypothesis implies that:

{𝑒} ∪ events(𝑎1) ∪ . . . events(𝑎𝑚) ⊆ 𝐸

Since 𝑎𝑚 → 𝑎, we know the two items do not commute. The reasons for this could be that:

– They share a thread: then the monitor correctly decides that the new event 𝑎 is ordered and

adds its signature to 𝐸.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

Coarser Equivalences for Causal Concurrency 45

– They share a variable 𝑥 , at least one writes to 𝑥 , and condition 2 does not hold. Since the

grain summaries of 𝑎𝑚 in 𝐸 is correctly computed (and guessed) by the induction hypothesis,

and the correct guess for 𝑎 is an option, we correctly see 𝑎 as ordered with respect to the

summary 𝐸.

As such, the monitor adds 𝑎 to 𝐸 and re-established all the hypotheses.

If as result of a wrong guess (with ND), we incorrectly establish that 𝑎 and 𝑎𝑚 commute, then

we have under-estimated 𝐸 and have to argue that the computation will eventually halt.

The wrong guess implies that there exists a r(𝑥) in the remainder of the concurrent run that is

matched with a w(𝑥) in 𝑎. The monitor made the mistake of not including 𝑥 in the𝑉 component

of he grain signature of 𝑎, and therefore commute issued the wrong verdict. The same choice

(with ND) is reflected in the 𝐶 component of the monitor’s state as 𝐶 [𝑥 ↦→ true]. Therefore,
when the monitor eventually reaches this r(𝑥), it halts because it does not have any transitions

defined for this configuration.

• Concurrent: By definition, 𝑎 cannot be ordered against any entity 𝑏 outlined in the induction

hypothesis. Let us assume that the monitor correctly guesses all the relevant components of the

grain for 𝑎. If the monitor incorrectly decides that 𝑎 is ordered wrt 𝐸, then it means that it does

not commute with at least one grain signature in 𝐸. By induction hypothesis, this signature

must belong to some entity (grain or event) that has already been observed in 𝜎 and is ordered

wrt 𝑒 . Therefore, by definition, 𝑎 is also ordered wrt 𝑒 .

If the monitored correctly sees 𝑎 as concurrent, then it does not update 𝐸 and therefore maintains

the invariants. If 𝑎 is concurrent, but the monitor incorrectly sees it dependent on 𝐸, then this is

an over-estimation of 𝐸, which can be dismissed. There exists another nondeterministic choice

(as outlined above) that will get 𝐸 right.

□

C.2 Proof of Theorem 5.2
Let 𝐿WF be the set of words described by the regular expression in Equation (WF). Conside the set:

𝐿concurrent-marked-grains = {𝑤 ∈ 𝐿WF | The two focal events demarcated by ⋄1 and ⋄2
are concurrent under the marked grains in𝑤}.

From Theorem 5.1, we have that 𝐿concurrent-marked-grains is a regular set.

We will now focus on the set of words of the form 𝐿WF-unmarked-grains = Σ∗ ⋄1 Σ∗ ⋄2 Σ∗
and the

following subset of it:

𝐿concurrent-unmarked-grains = {𝑤 ∈ 𝐿WF-unmarked-grains | The two focal events demarcated by ⋄1 and ⋄2
are concurrent under any choice of grains in𝑤}.

Observe that the set𝐿concurrent-unmarked-grains is obtained by projecting the language𝐿concurrent-unmarked-grains
from the alphabet Σ ⊎ {⋄1,⋄2,▷,◁} to the sub-alphabet Σ ⊎ {⋄1,⋄2}. Since 𝐿concurrent-marked-grains
is regular, and since regular languages are closed under projection, we immediately get that

𝐿concurrent-unmarked-grains is also regular and hence there is a constant space monitor that recognizes

it.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

46 Azadeh Farzan and Umang Mathur

D PROOFS OF SECTION 6
D.1 Proof of Theorem 6.1

Proof. The high level idea is to try to linearize the graph G𝑤,𝐺 , with the addition of an extra

directed edge from the node whose grain contains 𝑒2 to the one whose node contains 𝑒1. Since

there is no path from 𝑒1 to 𝑒2 in the graph, the addition of the edge cannot put the pair of events in

the same strongly connected component. Moreover, the addition of the edge ensures that in every

linearization of the graph 𝑒2 appears before 𝑒1.

The claim is that the step-by-step linearization succeeds and produces an rf-equivalent run.

At each step, let 𝜎 be the linearization so far and let 𝑅 be the set of residual vertices left in the

graph. Let G|𝑅 be the graph induced on the vertices in 𝑅 through the edges of G.

Induction Hypothesis:

(i) 𝜎 contains everything in a maximal strongly connected component completely, or not at all,

never partially. As such, the same is true about each grain, which is the smallest strongly

connected component in the absence of a larger one.

(ii) Every event from𝑤 is either in 𝜎 or in some grain in 𝑅.

(iii) 𝜎 preserves po and rf of𝑤 .

(iv) There does not exist an edge between a node in 𝑅 to a note containing any element in 𝜎 in

graph G.

Base case: 𝜎 = 𝜖 , and all invariants hold.

Induction step: depending on the composition of 𝑅, we extend 𝜎 and reprove the induction hypoth-

esis. Consider G|𝑅 , and the condensation of Ĝ|𝑅 in which every edge in every maximally strongly

connected component has been contracted. Observe that Ĝ|𝑅 is acyclic. Therefore, there exists a

node in it with no predecessors. Let us call this node 𝑣 :

• Case 1: 𝑣 is not a contracted node, and it corresponds to a node in G|𝑅 . We let 𝜎 = 𝜎𝑣 , with

the understanding that 𝑣 is a word that represents the corresponding grain; the grain can

correspond to a single letter and the word can be that letter. Remove the node 𝑣 from G|𝑅 (and

all its adjacent edges).

Let us reprove the induction hypothesis:

(i) By definition of G|𝑅 , 𝑣 is in a strongly connected component of size 1, and therefore this

assumption holds again.

(ii) Trivially true, because we just shift events from one side to the other.

(iii) Any predecessors (through po∪ rf) of the events in 𝑣 would have a path to 𝑣 . If 𝑣 is a minimal

element, that means that all predecessors should be in 𝜎 or in 𝑣 . Inside the word in 𝑣 , we do

not change the order of any events, and therefore po and rf cannot be broken inside 𝑣 . By

induction hypothesis, inside 𝜎 , we have maintained po and rf . Therefore, it remains to argue

that po and rf are not broken when we concatenate the two.

If po is broken, this means that some element in 𝜎 must have been po ordered after some

element in 𝑝 . But, this is a contradiction to induction hypothesis (iv).

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

Coarser Equivalences for Causal Concurrency 47

It remains to argue that any dangling reads in 𝑣 (i.e. reads whose matching writes do not

belong to 𝑣) are matched with the correct write as a result of concatenating 𝜎 and 𝑣 . Assume

that is not the case; dangling read r(𝑥) is matched with w1 (𝑥) in 𝜎𝑣 , while it was matched

with w2 (𝑥) in𝑤 . We argued that w2 (𝑥) is in 𝜎 . Therefore, it must be the case that w2 (𝑥) appears
before w1 (𝑥) in 𝜎 . There are two possibilities for the original arrangement of the three events

in𝑤 :

∗ w1 (𝑥) . . . w2 (𝑥) . . . r(𝑥): This means that as a result of our linearization of 𝜎 so far, we ended

up reordering the two writes. This is only possible if their corresponding grains commute.

Otherwise, there would be an edge between them that would prevent us from linearizing

them in the new order. But, since the dangling r(𝑥) is not part of the grain of w2 (𝑥), by
definition, it cannot commute against any other grain with which it shares the variable;

specifically, not the grain that includes w1 (𝑥). Contradiction!

∗ w2 (𝑥) . . . r(𝑥) . . . w1 (𝑥): This means that as a result of our linearization of 𝜎 so far, we ended

up reordering r(𝑥) and w1 (𝑥). This is only possible if their corresponding grains commute.

Otherwise, there would be an edge between them that would prevent us from linearizing

them in the new order. But, since the dangling r(𝑥) is not part of the grain of the write

operation that it reads from (i.e. w2 (𝑥)), by definition, it cannot soundly commute against

another grain with which it shares 𝑥 and the other grain writes to 𝑥 ; specifically, not the

grain that includes w1 (𝑥). Contradiction!

(iv) It is implied by the choice of 𝑣 as a node with no predecessors in the remaining graph.

• Case 2: 𝑣 is a contracted node, and therefore corresponds to a set of nodes 𝑉𝑣 from G|𝑅 . We

reference induction hypothesis (i) to state the fact that all nodes in 𝑉𝑣 belong in G|𝑅 . Let 𝑢 be

the subsequence of𝑤 that includes precisely all the events from the grains in 𝑉𝑣 . Let 𝜎 = 𝜎𝑢.

Remove the node 𝑣 from G|𝑅 .

Let us reprove the induction hypothesis:

(i) By definition of G|𝑅 , this holds

(ii) Trivially true, because we just shift events from one side to the other.

(iii) Any predecessors (through po∪ rf) of the events in 𝑢 would have a path to 𝑣 . If 𝑣 is a minimal

element, then all such predecessors are either in 𝜎 or inside 𝑢.

Inside the word in 𝑢, we do not change the order of any events (compared to how they appear

in𝑤), and therefore po and rf cannot be broken inside 𝑢.

It remains to argue that po and rf are not broken when we concatenate 𝜎 and𝑢. The argument

for po is similar to the previous case.

We must argue that any dangling reads in 𝑢 are matched to the correct write as a result of

concatenating 𝜎 and 𝑢. Assume that is not the case; dangling read r(𝑥) is matched with w1 (𝑥)
in 𝜎𝑢, while it was matched with w2 (𝑥) in𝑤 .

w1 (𝑥) and w2 (𝑥)must both be in𝜎 , because we are not reordering anything in𝑢 and r(𝑥) would
not otherwise be a dangling read. Therefore, it must be the case that w2 (𝑥) appears before
w1 (𝑥) in 𝜎 and neither belongs to 𝑢. There are two possibilities for the original arrangement

of the three events in𝑤 :

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

48 Azadeh Farzan and Umang Mathur

∗ w1 (𝑥) . . . w2 (𝑥) . . . r(𝑥): This means that as a result of our linearization of 𝜎 so far, we ended

up reordering the two writes. This is only possible if their corresponding grains commute.

Otherwise, there would be an edge between them that would prevent us from linearizing

them in the new order. But, since the dangling r(𝑥) is not part of the grain of w2 (𝑥), by
definition, it cannot commute against any other grain with which it shares the variable;

specifically, not the grain that includes w1 (𝑥). Contradiction!

∗ w2 (𝑥) . . . r(𝑥) . . . w1 (𝑥): This means that as a result of our linearization of 𝜎 so far, we ended

up reordering r(𝑥) and w1 (𝑥). This is only possible if their corresponding grains commute.

Otherwise, there would be an edge between them that would prevent us from linearizing

them in the new order. But, since the dangling r(𝑥) is not part of the grain of the write

operation that it reads from (i.e. w2 (𝑥)), by definition, it cannot soundly commute against

another grain with which it shares 𝑥 and the other grain writes to 𝑥 ; specifically, not the

grain that includes w1 (𝑥). Contradiction!

(iv) It is implied by the choice of 𝑣 as a node with no predecessors in the remaining graph.

□

D.2 Proof of Theorem 6.2

Proof. Observe that G𝑤,𝐺 is an acyclic graph for a valid set of contiguous grains 𝐺 , and as such

the condensed graph Ĝ and G𝑤,𝐺 coincide. Therefore, the proof of the theorem says that any

linearization of G𝑤,𝐺 , in which the grains appear as contiguous subwords is rf-equivalent to the

original run𝑤 . It remains to argue that any such linearization can be acquired through a sequence

of swaps.

The graph G𝑤,𝐺 coincides with the partial order that represents the the equivalence class of 𝑤

under the grain monoid induced by𝐺 . More precisely, [𝐻𝐺 (𝑤)]
𝐼̂𝐺

is an equivalence class in a classic

partially commutative monoid, and therefore precisely coincides with all the linearization of the

partial order induced on the elements of𝐻𝐺 (𝑤) by 𝐼̂𝐺 . Observe that the edges ofG𝑤,𝐺 coincide with

the constraints in this partial order, by construction. Therefore, any linearization 𝑢 ∈ (Σ ∪ Σ𝐺)∗ of
the graph, with the view of noting down every grain as 𝑎𝑔 (its corresponding alphabet symbol in

Σ𝐺) can be obtained from 𝐻𝐺 (𝑤) through a sequence of swaps from 𝐼̂𝐺 . Since every such swap has

a corresponding swap at the level of Σ∗
, one can mirror the same swap sequence and transform

𝐻−
1𝐺 (𝑢) to𝑤 . □

E PROOFS FROM SECTION 7
E.1 Proof of Proposition ??

Proof Sketch. A straightforward induction on 𝑖 can be used to establish that 𝑔 (𝑖) is minimal. □

E.2 Proof of Lemma 7.2

Proof. First, let’s establish soundess of I𝐺 ′ using the characterization of Theorem 4.2. Suppose on

the contrary that I𝐺 ′ is not sound. This means, by Theorem 4.2, we have a pair of grains (𝑔′
1
, 𝑔′

2
) ∈ I𝐺 ′

that violate one of the conditions of Theorem 4.2; without loss of generality, we assume that 𝑔′
1

appears before 𝑔′
2
in𝑤 . Let 𝑔1, 𝑔2 ∈ be the larger grains in 𝐺 such that 𝑔′𝑖 ∈ split(𝑔𝑖) for 𝑖 ∈ {1, 2}.

The violations witnessed by (𝑔′
1
, 𝑔′

2
) can be one of the following.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

Coarser Equivalences for Causal Concurrency 49

• 𝑔′
1
𝑔′
2
̸≡rf 𝑔

′
2
𝑔′
1
. In this case, there must be a variable 𝑥 and events 𝑒 = r(𝑥), 𝑓 = rf𝑒 and 𝑓 ′ = w(𝑥)

(𝑓 ′ ≠ 𝑓) such that one of the following holds: (a) 𝑒 ∈ 𝑔′
1
but 𝑓 ∉ 𝑔1 and 𝑓 ′ ∈ 𝑔′

2
, (b) 𝑒 ∈ 𝑔′

1

but 𝑓 ∈ 𝑔1 − 𝑔′
1
and 𝑓 ′ ∈ 𝑔′

2
, (c) 𝑒 ∈ 𝑔′

2
but 𝑓 ∉ 𝑔2 and 𝑓 ′ ∈ 𝑔′

1
, or (d) 𝑒 ∈ 𝑔′

2
but 𝑓 ∈ 𝑔2 − 𝑔′

2

and 𝑓 ′ ∈ 𝑔′
1
,. In cases (a) and (c), we have 𝑔1𝑔2 ̸≡rf 𝑔2𝑔2, contradicting soundness of I𝐺 In case

(b) (resp. case (d)), we have that 𝑔′
1
∉ split(𝑔1) (resp. 𝑔′2 ∉ split(𝑔2)) since the minimal grain

containing 𝑓 must also contain 𝑒 , contradicting minimality of splity grains (Proposition ??).

• There is a variable 𝑥 ∈ var(𝑔′
1
) ∩ var(𝑔′

2
) such that w ∈ op(𝑔′

1
, 𝑥) ∪ op(𝑔′

2
, 𝑥) and an event

𝑒 = r(𝑥) (with 𝑓 = rf𝑒) such that one of the following holds: (a) 𝑓 ∈ 𝑔′
1
and 𝑒 ∈ 𝑔1 − 𝑔′

1
, (b)

𝑓 ∈ 𝑔′
1
and 𝑒 ∉ 𝑔1, (c) 𝑒 ∈ 𝑔′

1
and 𝑓 ∉ 𝑔1 − 𝑔′

1
, (d) 𝑒 ∈ 𝑔′

1
and 𝑓 ∉ 𝑔1, (e) 𝑓 ∈ 𝑔′

2
and 𝑒 ∈ 𝑔2 − 𝑔′

2
, (f)

𝑓 ∈ 𝑔′
2
and 𝑒 ∉ 𝑔2, (g) 𝑒 ∈ 𝑔′

2
and 𝑓 ∉ 𝑔2 − 𝑔′

2
, or (h) 𝑒 ∈ 𝑔′

2
and 𝑓 ∉ 𝑔2. In cases (a), (c), (e) and (g),

minimality of either 𝑔′
1
or 𝑔′

2
is violated. In cases (b), (d), (f) and (h), soundness of I𝐺 is violated.

Let us now prove that any two events that are declared grain graph concurrent using 𝐺 will also

be declared so using 𝐺 ′
. Towards this, let G𝑤,𝐺 = (𝑉 , 𝐸) and G𝑤,𝐺 ′ = (𝑉 ′, 𝐸′) be the respective

grain graphs. Observe that for any two grains 𝑔′
1
, 𝑔′

2
∈ 𝐺 ′

, if (𝑔′
1
, 𝑔′

2
) ∈ 𝐸′

, then (𝑔′
1
, 𝑔′

2
) ∉ Î𝐺 ′ and

there exist events 𝑒1 ∈ 𝑔′
1
and 𝑒2 ∈ 𝑔′

2
such that 𝑒1 appears before 𝑒2 and (𝑒1, 𝑒2) ∉ IM . This means

(𝑔′
1
, 𝑔′

2
) ∉ I𝐺 ′ and thus (𝑔1, 𝑔2) ∉ I𝐺 , where 𝑔1 and 𝑔2 are the corresponding grains of 𝐺 from

which 𝑔′
1
∈ 𝑔1 and 𝑔

′
2
∈ 𝑔2 are obtained after splitting. Since we have 𝑒1 ∈ 𝑔1 and 𝑒2 ∈ 𝑔2, we can

conclude that (𝑔1, 𝑔2) ∈ 𝐸. As a result, if there is a path (ℎ′
1
, ℎ′

2
), (ℎ′

2
, ℎ′

3
) . . . (ℎ′

𝑘
, ℎ′

𝑘+1) in G𝑤,𝐺 ′ , then

the following is a path in G𝑤,𝐺 : (ℎ1, ℎ2), (ℎ2, ℎ3) . . . (ℎ𝑘 , ℎ𝑘+1), where ℎ′𝑖 ∈ ℎ𝑖 is the corresponding

larger grain. Hence, if 𝑒1 and 𝑒2 are declared grain graph concurrent by𝐺 , they will also be declared

so using 𝐺 ′ □

E.3 Proof of Lemma 7.1

Proof. Let 𝜋 be a prefix. For a grain 𝑔 that is active at the end of 𝜋 , we let X𝑔 be the set of variables

𝑥 such that there is a read of 𝑥 which is not in 𝑔, but its corresponding write event is in 𝑔. Observe

that since each of the grains in 𝐺 is minimal, we must have X𝑔 ≠ ∅ for each 𝑔 ∈ Active𝜋,𝐺 . Now,
consider two distinct grains 𝑔,𝑔′ ∈ Active𝜋,𝐺 . We must have X𝑔 ∩ X𝑔′ = ∅, as otherwise two

different write events on the same variable will be pending in 𝜋 which is impossible. This gives us

|Active𝜋,𝐺 | ≤ |X|. □

E.4 Proof of Proposition 7.1
(⇐). It is easy to see that if there is a path from 𝑔⋄1 to 𝑔⋄2 in SG𝜋,𝐺 , then there must also be a path

from 𝑔⋄1 to 𝑔⋄2 in G𝜋,𝐺 and thus a paths in G𝑤,𝐺 . This is because edges of SG𝜋,𝐺 are paths of G𝜋,𝐺 .

(⇒). Consider a path 𝜌 from𝑔⋄1 to𝑔⋄2 in G𝑤,𝐺 . This path can be expressed as 𝜌 = 𝜌1𝜌2 . . . 𝜌𝑘 , where

for each sub-path 𝜌𝑖 , the start and the end vertices are vertices ofSG𝜋,𝐺 , and each of the intermediate

vertices are not. In other words, source(𝜌𝑖) ⇝𝜋,𝐺 target(𝜌𝑖). As a result, (source(𝜌𝑖), target(𝜌𝑖))
is an edge in SG𝜋,𝐺 . This gives a path from 𝑔⋄1 to 𝑔⋄2 in SG𝑤,𝐺 .

E.5 Proof of Theorem 7.1
We will prove this theorem by proving that after having processed prefix 𝜋 of the input word

𝑤 , the state 𝑞 of the automaton AGG reflects the summarized graph SG𝜋,𝐺 . Towards this, let us

define the notation proj(𝜋,𝐺) to denote the finite projection of SG𝜋,𝐺 = (𝑉𝜋 , 𝐸𝜋), i.e., proj(𝜋,𝐺) =
⟨𝑉 , 𝐸,𝐶, 𝑃, 𝑆𝐶, 𝑆𝑃⟩ such that the following holds. In the following, we use ID(𝑔) to denote the grain
identifer of a grain 𝑔. Also, we use 𝑔𝜋,𝑢 to denote the grain identifier of the latest grain in 𝜋 with

identifier 𝑢.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

50 Azadeh Farzan and Umang Mathur

• 𝑉 = {ID(𝑔) | 𝑔 ∈ 𝑉𝜋 }.

• 𝐸 = {(ID(𝑔1), ID(𝑔2)) | (𝑔1, 𝑔2) ∈ 𝐸𝜋 }.

• For each 𝑢 ∈ 𝑉 , C(𝑢) = C𝜋 (𝑔𝑢,𝜋).

• For each 𝑢 ∈ 𝑉 , P(𝑢) = P𝜋 (𝑔𝑢,𝜋).

• For each 𝑢 ∈ 𝑉 , SC(𝑢) = SC𝜋 (𝑔𝑢,𝜋).

• For each 𝑢 ∈ 𝑉 , SP(𝑢) = SP𝜋 (𝑔𝑢,𝜋).

The invariant that the automaton maintains is the following:

Claim E.1. Let𝑤 ∈ 𝐿VMG and let𝐺 be the corresponding grains. Let 𝜋 be some prefix of𝑤 . Let 𝑞

be the state of AGG after processing 𝜋 . We have, 𝑞 = proj(𝜋,𝐺).

Proof. We establish this by inducting on the length of 𝜋 . In the base case, 𝜋 = 𝜖 is the empty trace

and thus SG𝜋,𝐺 is the empty graph and the corresponding state of the automaton reached, namely

𝑞0 also matches 𝑞0 = proj(𝜋,𝐺). Let us now consider the run 𝜋 = 𝜌 · 𝑒 , where 𝑒 ∈ Σ̂ and let 𝑞𝜌 be

the state of AGG after having processed 𝜌 . By the inductive hypothesis, we have 𝑞𝜌 = proj(𝜌,𝐺)
We can now establish the invariant about 𝑞𝜋 = 𝛿GG (𝑞𝜌 , 𝑒) by doing a case-by-case analysis on 𝑒 . In

the following we will use the notation 𝑞𝜌 = ⟨𝑉𝜌 , 𝐸𝜌 ,C𝜌 , P𝜌 , SC𝜌 , SP𝜋 ⟩.

Case 𝑒 = (𝑖, (▷, 𝑌)) . Since 𝑤 belongs to 𝐿VMG, we know that at the end of 𝜌 , there is no active

grain with identifier 𝑖 , and hence 𝑖 ∉ 𝑉 . Clearly, SG𝜋,𝐺 .𝑉 = SG𝜌,𝐺 .𝑉 ⊎ {𝑖}. Also, no new edges

must be added in SG𝜋,𝐺 .𝐸 over SG𝜌,𝐺 .𝐸. Likewise, since the only new event added is the begin

event of a new transaction, the contents of each tracked grain stays the same. The pending

variables of the grain with ID 𝑖 is captured by the set 𝑌 . Finally, since there is no path in G𝜋,𝐺

that originate at 𝑖 , neither the summaries nor the pending vars of reachable grains change. Thus,

𝑞𝜋 = proj(𝜋,𝐺).

Case 𝑒 = (𝑖,◁), 𝑖 ∈ {⋄1,⋄2} . No change in the summarized graph happens and this is also reflected

in 𝑞𝜋 which is the same as 𝑞𝜌 .

Case 𝑒 = (𝑖,◁), 𝑖 ∉ {⋄1,⋄2} . In this case, the grain with identifier 𝑖 is not present in SG𝜋,𝐺 since it

is no longer active. Indeed, we have 𝑖 ∉ 𝑉𝜋 = 𝑉𝜌 − {𝑖}, since 𝑖 is a dead grain at the end of 𝜋 . For

the same reason, P𝜋 (𝑖) = ∅ and C𝜋 (𝑖) = ∅. Now, the set of dead paths are as follows: 𝑔⇝𝜋,𝐺 𝑔′

iff 𝑔𝑖,𝜋 ∉ 𝑔,𝑔′ and either (a) 𝑔⇝𝜌,𝐺 𝑔′ or (b) (𝑔⇝𝜌,𝐺 𝑔𝑖,𝜋 and 𝑔𝑖,𝜋 ⇝𝜌,𝐺 𝑔′). Thus, SG𝜋,𝐺 .𝐸 =

(SG𝜌,𝐺 .𝐸 − {(𝑔𝑖,𝜋 , 𝑔), (𝑔,𝑔𝑖,𝜋) | 𝑔 ≠ 𝑔𝑖,𝜋 }) ∪ {(𝑔,𝑔′) | (𝑔,𝑔𝑖,𝜋) ∈ SG𝜌,𝐺 .𝐸, (𝑔𝑖,𝜋 , 𝑔′) ∈ SG𝜌,𝐺 .𝐸}.
Indeed, the function mrg(𝐸, 𝑖) in the monitor captures this accurately. Finally, the summaries

of a grain 𝑔 in the summarized graph change based on the new dead paths. In particular, for a

grain 𝑔, the set of grains that are reachable from 𝑔 using a dead path are either those that were

already reachable in 𝜌 , or those that were reachable from 𝑔𝑖,𝜋 , given 𝑔⇝𝜌,𝐺 𝑔𝑖,𝜋 . This means

that SG𝜋,𝐺 .SC(𝑔) = SG𝜌,𝐺 .SC(𝑔) ∪ SG𝜌,𝐺 .C(𝑔𝜋,𝑖) ∪ SG𝜌,𝐺 .SC(𝑔𝜋,𝑖) if (𝑔,𝑔𝑖,𝜋) ∈ SG𝜌,𝐺 .𝐸,

and SG𝜋,𝐺 .SC(𝑔) = SG𝜌,𝐺 .SC(𝑔) for other active grains. Indeed this is accurately reflected in

SC𝜋 using mrgSm(𝑆𝑀,𝑀, 𝐸, 𝑖). The reasoning for SP𝜋 follows similar reasoning.

Case 𝑒 = (𝑖, 𝑎), 𝑎 ∈ Σ . In this case, no new active grain is seen. However, new edges may be formed

between active grains. First note that no new edge between grains 𝑔 and 𝑔′ can be added at

this point if 𝑔𝑖,𝜋 ∉ {𝑔,𝑔′} since no new dead paths can be formed at this point. Now consider

a grain 𝑔 in SG𝜌,𝐺 .𝑉 = SG𝜋,𝐺 .𝑉 . An edge from 𝑔 to 𝑔𝑖,𝜋 may be inferred if a new dead path

𝑔⇝𝜋,𝐺 𝑔𝑖,𝜋 may be inferred. This can happen if there is an existing dead path 𝑔⇝𝜌,𝐺 𝑔′ for

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

Coarser Equivalences for Causal Concurrency 51

some 𝑔′ (active or dead) such that there is an event 𝑒 ∈ 𝑔′ (on variable 𝑥) that is dependent with

𝑎 and 𝑥 is either pending in 𝑔′ or in 𝑔𝑖,𝜋 . If 𝑔′ is dead, then inductively we have 𝑒 ∈ SG𝜌,𝐺 .SC(𝑔)
and 𝑥 ∈ SG𝜌,𝐺 .SP(𝑔). Otherwise we would have 𝑔′ = 𝑔 and thus inductively 𝑒 ∈ SG𝜌,𝐺 .C(𝑔)
and 𝑥 ∈ SG𝜌,𝐺 .P(𝑔). This is captured using Dep(C(𝑗)∪SC(𝑗), 𝑎, P(𝑗)∪SP(𝑗)∪P(𝑖)) in the

monitor.

□

As a corollary of Claim E.1, it is easy to see that for a run in𝑤 ∈ 𝐿VMG annotated with grains 𝐺 , if

𝑤 is accepted, then there is a path from 𝑔⋄1 , 𝑔⋄2 in SG𝑤,𝐺 , and further if 𝑔
⋄1 , 𝑔⋄2 in SG𝑤,𝐺 , then the

automaton reaches a state 𝑞 ∈ 𝐹GG where there is a path from node ⋄1 to node ⋄2. This proves the
theorem.

E.6 Proof of Theorem 7.2
First, we outline the language 𝐿VMG and show that it is regular. Observe that 𝐿VMG = 𝐿valid∩𝐿minimal
where 𝐿valid is the set of annotated runs with correctly marked grains and pending variables and

𝐿minimal. We will show that both of these languages are regular, and thus their intersection is regular.

First consider the language 𝐿valid; it can expressed as 𝐿valid = 𝐿valid-grains∩𝐿⋄ , where the first language
is the collection of all words such that for every grain identifier, if we project the word to that grain

identifier, then no two grains overlap, while the second language is the set of all words that contain

exactly one occurrence of the begin event corresponding to each of {⋄1,⋄2}. For a grain identifier

𝑖 ∈ gIDs, let us use𝐿i to denote the set of words that correspond to the contents of a valid grainwhose
identifier is 𝑖 . Then, 𝐿grains, i = (∑𝑌 ⊆X (𝑖, (▷, 𝑌)) · 𝐿i, Y (𝑖,◁))∗ is the set of words that correspond to

valid sequences of grain 𝑖 . Then, consider the homomorphism 𝜋𝑖 that projects all letters whose

grain id is 𝑖 to themselves, and all other letters to 𝜖 . Then, 𝐿valid-grains-non-pending =
⋂

𝑖∈gIDs
(𝜋−1

𝑖 𝐿grains, i)

is the set of words whose projection to any given grain ID is well formed; this is obtained by

intersecting the inverse homomorphic image of regular languages, hence it is regular. Now, a

simple automaton can also check if the pending variables are consistent with the annotation; let

𝐿pending be the langauge of this automaton. Hence, 𝐿valid-grains = 𝐿valid-grains-non-pending ∩ 𝐿pending
and thus regular. Finally, 𝐿⋄ is the set of all words that contain exactly one occurence of a letter

from {(⋄1, (▷, 𝑌)) |𝑌 ⊆ 𝑋 } and one occurence of a letter from {(⋄2, (▷, 𝑌)) |𝑌 ⊆ 𝑋 }; clearly this is

regular.

Now, we consider the set of runs where the grains are minimal. Minimality can also be checked

using an automaton which tracks, for each active grain, whether there is at least one pending read

not yet seen, by guessing this read and later validating it (in a left to right pass). Thus, 𝐿VMG is

regular.

Now, the set of runs in which two given events (marked with ⋄1 and ⋄2) are deemed concurrent are

essentially those that are obtained by the homomorphic image of the words in 𝐿VMG, ensure that

these two events are in the focal grains, and are also accepted by AGG. Here, the homomorphism

we consider maps begin and end letters to 𝜖 , and for other letters it removes their grain identifiers.

This is clearly a regular language.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article . Publication date: August 2023.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Trace Equivalence
	2.2 Concurrent alphabet and dependence
	2.3 Reads-From Equivalence

	3 Causal Concurrency under Reads-From Equivalence
	3.1 Causal Concurrency and Ordering
	3.2 Computational Hardness in Checking Concurrency
	3.3 Upper Bounds for Checking Concurrency

	4 Grain Commutativity
	4.1 Partially-Commutative Grain Monoids
	4.2 Sound Grain Equivalence
	4.3 The Expressive Power of [w]G

	5 Grain Concurrency Monitor
	5.1 A Monitor for a Fixed Set of Grains G
	5.2 Grain Concurrency Monitor

	6 Scattered Grains
	7 Monitoring with Scattered Grains
	7.1 Bounding the number of Active Scattered Grains
	7.2 Tracking Retroactive Paths
	7.3 Monitoring for a Fixed set of Minimal Scattered Grains
	7.4 Monitoring Scattered Grain Concurrency

	8 Related Work
	9 Conclusion and Future Work
	References
	A Proofs from Section 3
	A.1 Proof of Theorem 3.1 and Theorem 3.2
	A.2 Proof of Theorem 3.3
	A.3 Proof of Theorem 3.4
	A.4 Proof of Theorem 3.5
	A.5 Proof of Theorem 3.6

	B Proofs from Section Section 4
	B.1 Proof of Theorem 4.1
	B.2 Proof of Theorem 4.2

	C Proofs of Section 5
	C.1 Proof of Theorem 5.1
	C.2 Proof of Theorem 5.2

	D Proofs of Section 6
	D.1 Proof of Theorem 6.1
	D.2 Proof of Theorem 6.2

	E Proofs from Section 7
	E.1 Proof of Proposition ??
	E.2 Proof of Lemma 7.2
	E.3 Proof of Lemma 7.1
	E.4 Proof of Proposition 7.1
	E.5 Proof of Theorem 7.1
	E.6 Proof of Theorem 7.2

