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Commutativity has proven to be a powerful tool in reasoning about concurrent programs. Recent work has

shown that a commutativity-based reduction of a program may admit simpler proofs than the program itself.

The framework of lexicographical program reductions was introduced to formalize a broad class of reductions

which accommodate sequential (thread-local) reasoning as well as synchronous programs. Approaches based

on this framework, however, were fundamentally limited to program models with a fixed/bounded number

of threads. In this paper, we show that it is possible to define an effective parametric family of program

reductions that can be used to find simple proofs for parameterized programs, i.e., for programs with an

unbounded number of threads. We show that reductions are indeed useful for the simplification of proofs for

parameterized programs, in a sense that can be made precise: A reduction of a parameterized program may

admit a proof which uses fewer or less sophisticated ghost variables. The reduction may therefore be within

reach of an automated verification technique, even when the original parameterized program is not. As our

first technical contribution, we introduce a notion of reductions for parameterized programs such that the

reduction R of a parameterized program P is again a parameterized program (the thread template of R is

obtained by source-to-source transformation of the thread template of P). Consequently, existing techniques

for the verification of parameterized programs can be directly applied to R instead of P. Our second technical

contribution is that we define an appropriate family of pairwise preference orders which can be effectively

used as a parameter to produce different lexicographical reductions. To determine whether this theoretical

foundation amounts to a usable solution in practice, we have implemented the approach, based on a recently

proposed framework for parameterized program verification. The results of our preliminary experiments on a

representative set of examples are encouraging.
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1 INTRODUCTION
The framework of trace theory (formulated by Mazurkiewicz in 1987) formalizes equivalence

relations for concurrent program runs based on a commutativity relation over the set of atomic

steps taken by individual program threads. Two program statements of different threads commute
if the order in which we execute them is irrelevant to the outcome of the execution. Two program

runs are equivalent up to commutativity if one can be acquired from another through successive
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swaps of adjacent commutative program steps. For any program 𝐴, we call a program 𝐵 a reduction
of 𝐴 if and only if 𝐵 includes at least one representative from each (commutativity) equivalence

class of behaviours in 𝐴. Recent work [Farzan 2023; Farzan et al. 2022; Farzan and Vandikas 2019,

2020] has shown that some reductions of a program admit simpler proofs than the program itself.

More specific versions of this observation had already been made in the literature of concurrent

and distributed program verification. In particular, it is exploited in the context of verification

of distributed programs by favouring the verification of synchronous (or almost synchronous)

programs in place of asynchronous programs with the rationale that the synchronous program

admits a simpler proof [Genest et al. 2007; Kragl and Qadeer 2018; von Gleissenthall et al. 2019].

The common thread in all these contexts is that there is often a lot of redundancy in the set

of behaviours of a concurrent program, and removing redundant behaviours with complicated

proofs in favour of those with simpler proofs simplifies the entire reasoning task. The choice of a

program reduction, then, is a choice of which representatives from equivalence classes of program

behaviours stay and which ones go. Traditionally, people have opted for canonical choices: those

that maximize sequential (local) reasoning in the case of concurrent programs [Elmas et al. 2009;

Kragl and Qadeer 2018], or those that get as close as possible to a synchronous program [Genest

et al. 2007; von Gleissenthall et al. 2019] for distributed protocols. As such, each such framework

makes an a priori assumption about a particular type of reduction. In recent work, however, a

family of parametric lexicographical program reductions [Farzan et al. 2022; Farzan and Vandikas

2019, 2020] were introduced that formalized a broad (infinite) class of reductions that would include

both canonical choices. The idea is that different program verification tasks may respond best to

different strategies for picking representatives. By taking a lexicographic order as a parameter to a

reduction that chooses the (lexicographically) least representative of each equivalence class, one

controls the composition of the reduction.

These frameworks, however, were fundamentally built based on an assumption that the alphabet

of program actions is finite, and therefore, they can only be applied to program models with a

fixed/bounded number of threads. This brings us to the central research question in this paper: “For

programs with unboundedly many threads, is it possible to define an effective parametric family

of program reductions that can be exploited for finding simple proofs?” This paper presents an

affirmative answer to this question for parameterized concurrent programs. A parameterized program
P stands for an infinite family of programs P(𝑛)𝑛∈N. Each program P(𝑛) arises from taking a

number 𝑛 of threads, where 𝑛 is not bounded. Each thread runs an instance of the same given

thread template. This is without the loss of generality, since well-known encoding tricks [Hoenicke

et al. 2017] accommodate the use of multiple thread templates.

It is well-understood, even outside the realm of algorithmic verification, that modular reasoning

techniques for parameterized programs (e.g. Owicki-Gries for parameterized programs [Nieto

2001]) are only complete in the presence of the full power of history variables. Therefore, program

proofs may require highly nontrivial ghost variables, which are notoriously hard to compute and

reason about automatically. In contrast, in the fixed thread case, the canonical choice of program
counters is always available and mainly becomes a time/complexity issue for verification algorithms.

This paper argues that reductions can help simplify proofs of parameterized concurrent programs,

ℓ0

ℓ1 assert x!=0;

{x = 0}

x:=x+1;x:=x-1;

Fig. 1. Template for P±

in a sense that can be made precise based on the ghost variables required

for the proof. We make the observation that a reduction of a parameter-

ized program may admit a proof which uses fewer or less sophisticated
ghost variables and may therefore have a higher chance of being within

the reach of an automated verification technique.

As a simple example to make this observation concrete, consider the

the parameterized program P±
, given by the thread template in Fig. 1.
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The goal is to prove the property that whenever a thread is in location ℓ1, the global variable x
is non-zero, assuming x is initially 0. It can be shown there does not exist a proof (formally, a

proof in the form of an Ashcroft invariant) if one does not introduce a ghost variable [Hoenicke
et al. 2017]. Intuitively, the proof needs to keep track of the number of threads that have already

executed their increment but not yet the matching decrement. Now consider the reduction where

the threads are executed sequentially one after the other (sequential composition). The reduction

is sound because all statements of two different threads commute (since we do not model the

specification assert x!=0 as a statement, we are not concerned with its commutativity). The proof

for the reduction does not need any ghost variables. We will use this program later as a running

example (see Section 4).

Our first technical contribution is a notion of a reduction for a parameterized program. The

reduction R of the parameterized program P can be viewed as a family of lexicographical reductions.
This means that R stands for an infinite family of programs R(𝑛)𝑛∈N where for each 𝑛, R(𝑛) is a
(lexicographical) reduction of P(𝑛). Crucially, the infinite family can be finitely represented. In fact,

the reduction R is again a parameterized program, and the thread template of R is obtained by

source-to-source transformation of the thread template of P. The key benefit of this observation is

that existing techniques for verification of parameterized programs can now be directly applied

to R instead of P.

Reductions that favour program behaviours with long sequential blocks, like the sequential

composition for the example in Fig. 1, can be generated using lexicographical reductions based on

thread orders; i.e. when statements of each thread are grouped together and ordered wrt. statements

of other threads according to their thread identifiers. In Section 2, we present an example that

demonstrates why, in the context of parameterized program verification, other reductions like

lockstep reductions, may be essential if proof simplification is the desired outcome.

Our second technical contribution is that we define an appropriate family of orders, called

pairwise preference orders, that can be effectively used as a parameter to produce many different

lexicographical reductions of the same program given the same commutativity relation (including

the above-mentioned lockstep reduction). This generalizes similar results from the literature on

how reductions for a fixed number threads are generated parametric on order relations [Farzan et al.

2022; Farzan and Vandikas 2019, 2020]. We show that, as in the case of thread orders, reductions of a

parameterized program P parametric on pairwise preference orders can also be finitely represented

as parameterized program R, with the same correspondence between P(𝑛) and R(𝑛) for all 𝑛.
The two technical contributions outlined so far put forward an algorithmic path for verifying

parameterized concurrent programs using a broad family of reductions. To determine whether this

amounts to a usable solution in practice, we selected the proof method based on thread-modular
proofs at many levels [Hoenicke et al. 2017] to instantiate and evaluate this solution. The proof

method encodes the existence of a proof of a specific form (an Ashcroft invariant with a number 𝑘

of universal quantifiers over thread IDs) for an input parameterized program P as a satisfiability

problem of a set of constraints in a specific form (CHC, for Constrained Horn Clauses). To use the

proof method for verifying a reduction of the input parameterized program, we apply the proof

method to our proposed parameterized reduction, i.e., to the parameterized program R.
We implemented the construction of the parameterized program R and the constraint generation

according to Hoenicke et al. [2017]. We evaluated the approach on a set of 19 parameterized

programs taken from the literature, by discharging the generated constraints with several off-the-

shelf CHC solvers. The results are very encouraging: The implementation succeeded in verifying

the reductions of 14 programs, only 4 of which can be verified without the use of reductions.

It is noteworthy that our proposal for parameterized reductions (and therefore, the corresponding

set of CHC constraints) have the desired property that anyAshcroft invariant of the original program
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is also a valid invariant for the reduced program. The converse does not hold; i.e., the reduction R
may admit an Ashcroft invariant that is not a valid invariant of the original program P, and a proof

in the form of an Ashcroft invariant may not exist for P even though it does for R.
The property of the conservative extension of the validity of an Ashcroft invariant from R to

P does not, however, mean that we are (in practice) able to compute a proof in the form of an

Ashcroft invariant for R whenever we are able to compute one for P. In fact, the parameterized

program uses a set of additional variables as the means of encoding the reduction. It is thus natural

to wonder whether the task of the CHC solver could somehow become harder because it has to deal

with constraints over a larger set of variables, and, if so, whether anything can be done to alleviate

this issue. We investigate this question systematically in Section 6 and propose an alternative

encoding with fewer variables. This new encoding is an orthogonal contribution of this paper. It is

inspired by the idea of symmetry reduction [Clarke et al. 1998]. Intuitively, in the encoding based

on Hoenicke et al. [2017], the solver is forced to prove the correctness of symmetry-equivalent

classes of reductions. In Section 6.2 we demonstrate how the CHC encoding can be modified so

that this redundancy is eliminated.

To conclude, this paper proposes a way of incorporating commutativity-based reductions into, in

principle, any existing parameterized verification methodology. In particular, it makes the following

contributions:

• We observe that reductions simplify proofs of parameterized programs in a precise sense:

Proofs of reductions require less complex ghost state than the proofs of original programs; this

can manifest as the need for less complicated information to be recorded in ghost variables,

or that simply fewer ghost variables are needed overall (Section 2).

• The theoretical formulation of a parameterized reduction in two parts:

(1) We formulate a lexicographical reduction of a parameterized program and show that it can

be finitely represented, namely again as a parameterized program (Section 4).

(2) We propose an appropriate notion of preference orders for the parameterized context and

show that the construction of a lexicographical reduction from a parameterized program

can be made parametric on the preference order (Section 5).

• We give an improved formulation of the search problem for an Ashcroft invariant, by breaking

some inherent but redundant symmetries in the search space and the corresponding solution

space without affecting soundness or completeness of the methodology (Section 6.2).

2 MOTIVATING EXAMPLE
We demonstrate the benefits of commutativity for proof simplification using the parameterized

program Pnotify
shown in Fig. 2. This program models a distributed system, in which one thread

(called notifier) generates data through some computation (line 6-9), and broadcasts it to an

unbounded number of listener threads (line 11-13). The threads communicate via a message

queue, which is here modeled via an infinite queue array along with an integer current pointing

to the head of the queue (specifically, to the first invalid entry).

Each listener thread joins the conversation by setting its thread-local idx variable to the value
of current. The listener then continuously waits for new data to appear in the queue (line 22).

When data has arrived, it reads the message from the queue (line 23-24). In the next step, the

listener checks the integrity of the received message. In particular, it checks that the received

value is greater than the previous message (line 26-28).

Showing correctness of this program is non-trivial; even with ghost variables, a proof is challeng-

ing. An unbounded amount of time may pass between the moment when a message is sent by the
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1 notifier () {
2

3 last := 0;
4

5 while (true) {
6 // generate data
7 havoc data;
8 assume data > last;
9 last := data;
10

11 // send new data
12 queue[current] := data;
13 current := current + 1;
14 }
15 }

16 listener () {
17 idx := current;
18 prev := 0;
19

20 while (true) {
21 // receive data
22 assume idx < current;
23 msg := queue[idx];
24 idx := idx + 1;
25

26 // check data
27 assert prev < msg;
28 prev := msg;
29 }
30 }

Fig. 2. The program Pnotify. The variables current (an integer) and queue (an integer array) are global, all
other variables are local. An instance Pnotify (𝑛) consists of a single notifier thread and 𝑛 listener threads.

notifier thread, and when the last listener receives it. Thus, for certain traces, one must keep

track of the idx variables of unboundedly many listener threads, not just a finite subset of them.

There exists however a subset of traces, for which the correctness argument is much simpler.

Namely, consider those traces where every message sent by the notifier is immediately received

and checked by all listeners that have already joined the conversation (i.e., all listeners that
will ever receive the message). Let us call these traces synchronous. In synchronous traces, the

difficulty of reasoning about an unbounded number of messages already sent but not yet received

by some listener completely disappears. At any point, there is at most one such message, and

consequently, the proof has to reason only about one message.

Of course, synchronous traces make up only a small fragment of the many interleavings of the

program. To show correctness of the program, we must establish that every trace is correct. Here,

commutativity comes to the rescue: We observe that for many statements of the program, the order

in which they are executed does not affect the outcome. We say that such statements commute
with each other. We exploit this observation by repeatedly swapping commuting statements, and

thereby reorder any arbitrary trace of the program to an equivalent synchronous trace. Through
a meta-argument (i.e., the soundness theorem of our approach), we establish that any trace that

is equivalent to a correct synchronous trace must itself be correct. Thus, it suffices for a proof to

show correctness of synchronous traces, in order to conclude that the program is correct.

Consider for instance the statements last:=data (line 9) and prev:=msg (line 28). Executing

these statements in either order yields the same result, i.e., the statements commute with each other.

Similarly, we can argue that all statements of the notifier thread commute with the statement

prev:=msg . Therefore, we consider for instance the following traces to be equivalent:

havoc data data > last last:=data queue[current]:=data current:=current+1 prev:=msg

∼ havoc data data > last last:=data queue[current]:=data prev:=msg current:=current+1

∼ havoc data data > last last:=data prev:=msg queue[current]:=data current:=current+1

∼ havoc data data > last prev:=msg last:=data queue[current]:=data current:=current+1

∼ havoc data prev:=msg data > last last:=data queue[current]:=data current:=current+1

∼ prev:=msg havoc data data > last last:=data queue[current]:=data current:=current+1
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These equivalences allows us reorder entire iterations of the notifier thread, i.e., the computation

and broadcast of new data, wrt. the statement prev:=msg . We proceed similarly with respect to the

other statements of the listener thread, as well as for statements of different listener threads.

For some of these other statements, we must consider broader notions of commutativity. As an

example, we cannot generally claim that the order in which the statements queue[current]:=data

and msg:=queue[idx] are executed does not affect the outcome. Specifically, if we have current =

idx, the order is in fact crucial. However, observe that the program ensures that, whenever the

statement msg:=queue[idx] is executed, it actually holds that idx < current. In such contexts,

the order in which the statements are executed is indeed irrelevant. Hence we can say that the

statements commute within this particular program.

The essential insight of commutativity reasoning is this: It suffices for a proof to cover a so-called

reduction of a program, i.e., a subset of traces such that each program trace is equivalent to a trace

in the reduction. In our example, the reduction is formed by the set of synchronous traces. By

soundness of commutativity, we can conclude that, if the reduction is proven correct, the entire

program must be correct. In this manner, our approach can verify the program Pnotify
by giving

a proof for synchronous traces. As discussed, a proof for the set of synchronous traces is much

simpler than a proof for all traces, as it does not require complex ghost state or quantified invariants.

As another example where commutativity simplifies the proof, let us consider the program P𝐾±
,

with the thread template shown in Fig. 3. The program has a global variable x, which is initially 0. The
program uses a constant 𝐾 for which we assume a fixed value. Each thread repeatedly checks if the

ℓ0

ℓ1 assert x!=0;

{x = 0}

assume x < K
x:=x+1

x:=x-1

Fig. 3. Template for P𝐾±

current value of x is less than 𝐾 , and if so, increments x. It asserts that
x is non-zero, eventually decrements x again, and begins the loop anew.

This program is similar to the example discussed in the introduction,

yet due to the guard using the constant 𝐾 , the proof is in some sense

simpler: The value of a ghost variable counting the number of threads

in location ℓ1 can never exceed 𝐾 . Thus, we can alternatively consider

the local state of 𝐾 other threads as ghost state. Specifically, if a thread

is in location ℓ1, and some number𝑚 (with 0 ≤ 𝑚 ≤ 𝐾) of the 𝐾 other

threads are also in location ℓ1, we know that x ≥ 𝑚 + 1, and therefore, decrementing x does not
violate the assert statement in any thread: Either we have𝑚 > 0, in which case x is still positive
after the decrement, or𝑚 = 0, in which case none of the threads is in location ℓ1.

It has been shown that for any value of 𝐾 , a proof does indeed need to consider at least 𝐾

additional threads as ghost state (overall considering 𝐾 + 1 threads at a time) to show correctness

of this program [Hoenicke et al. 2017]. However, commutativity simplifies the required ghost state.

Let us investigate the commutativity in P𝐾±
. Two statements x:=x-1 and x:=x-1 of different

threads commute, as do two statements assume x < K; x:=x+1 and assume x < K; x:=x+1 of different

threads. For the statements x:=x-1 and assume x < K; x:=x+1 , the order of execution may indeed

matter. But whenever it is possible to execute the sequence assume x < K; x:=x+1 x:=x-1 , it is

also possible to execute the sequence x:=x-1 assume x < K; x:=x+1 with the same effect (x is not
modified), i.e., the latter sequence allows a strict superset of executions. Thus we can verify traces

containing the sequence x:=x-1 assume x < K; x:=x+1 and conclude that traces containing the

sequence assume x < K; x:=x+1 x:=x-1 are also correct.

Analogously to the example in Fig. 1, we exploit this commutativity (or semi-commutativity)
to reorder any trace of the program such that all statements of a thread are executed in a single

block. For the resulting reduction of the program, it is sufficient to consider the local state of a

single additional thread as ghost state, rather than 𝐾 threads. If a thread is in ℓ1, and the other

thread (which serves as ghost state) is also in ℓ1, we know that x ≥ 2, so x remains positive
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after a decrement. If the “ghost thread” is not in ℓ1, neither thread executes the assert statement.

Commutativity has again simplified the ghost state required to prove correctness of the program.

3 PARAMETERIZED CONCURRENT PROGRAMS
A parameterized program P is given by its thread template (a control flow graph) and a set of

thread-local variables, i.e., P = ⟨Loc,Δ, ℓinit,Varlocal⟩ with a finite set of locations Loc, a finite

transition relation Δ ⊆ Loc × Stmt × Loc (where Stmt is the set of atomic program statements), an

initial location ℓinit ∈ Loc, and a set of thread-local variables Varlocal. Any variable not in Varlocal is
considered global. We denote the set of global variables as Varglobal.

The enabled statements enabled (ℓ) of a location ℓ are the statements st such that ⟨ℓ, st, ℓ ′⟩ ∈ Δ for

some ℓ ′. We assume that the only case in which enabled (ℓ) contains more than one statement is the

case of a branch (or loop head), and thus enabled (ℓ) = {assume 𝑒, assume¬𝑒} for some branching

condition (or loop guard) 𝑒 . This assumption is only required for the minimality of our reduction

(Proposition 4.10); the soundness of our approach does not rely on it.

A parameterized program describes a family of programs. For each number of threads 𝑛 ∈ N, the
instance of the program with 𝑛 threads is denoted by P(𝑛). The variables of the program instance

P(𝑛) consist of the global variables, as well as indexed local variables 𝑥𝑖 for each 𝑖 ∈ {1, . . . , 𝑛} and
𝑥 ∈ Varlocal. The program instance P(𝑛) uses indexed statements st:𝑖 , where st ∈ Stmt is a statement

as it appears in the thread template, and the thread index 𝑖 ∈ {1, . . . , 𝑛} indicates which thread

executes the statement.

Traces. A thread template defines a languages 𝐿 over the alphabet Stmt, consisting of all sequences
of statements that label any path from the initial location (regardless of the reached location).

The language of an instance P(𝑛) of the parameterized program P is a language of traces, i.e.,
sequences of indexed statements. For the language 𝐿 defined by the thread template of P, let 𝐿[𝑖]
be the language 𝐿 where every statement st has been replaced by the indexed statement st:𝑖 . The
program instance P(𝑛) then defines the language of all traces allowed by the control flow of P:

P(𝑛) = 𝐿[1] ∥ . . . ∥ 𝐿[𝑛],
where ∥ denotes the shuffle operation on languages.

Semantics. We assume that each statement st ∈ Stmt has an associated semantics ⟦st⟧, given
by a binary input/output relation between valuations of the program variables. In particular, the

semantics of assignment statements 𝑥:=𝑒 and assume statements assume 𝑒 is as one would expect.

We extend this semantics to indexed statements. Executing the indexed statement st:𝑖 may modify

the global variables as well as the indexed local variables 𝑥𝑖 , but leaves local variables of other

threads unmodified. Formally, we define the semantics of an indexed statement as follows:

⟦st:𝑖⟧ :=
{
(𝑠1, 𝑠2) | (𝑠1 |𝑖 , 𝑠2 |𝑖 ) ∈ ⟦st⟧ ∧ ∀𝑥 ∈ Varlocal .∀𝑗 ≠ 𝑖 . 𝑠2 (𝑥 𝑗 ) = 𝑠1 (𝑥 𝑗 )

}
,

where 𝑠1, 𝑠2 are valuations of the variables of P(𝑛), and 𝑠 |𝑖 is the unique valuation of the program

variables such that 𝑠 |𝑖 (𝑥) = 𝑠 (𝑥𝑖 ) for local variables 𝑥 and 𝑠 |𝑖 (𝑔) = 𝑠 (𝑔) for global variables 𝑔.
Based on these semantics of atomic statements, we define the semantics of each program instance.

A configuration of P(𝑛) is a pair ⟨®ℓ, 𝑠⟩, where ®ℓ = ⟨ℓ1, . . . , ℓ𝑛⟩ ∈ Loc𝑛 denotes the control locations
of the running threads, and 𝑠 is a valuation of the variables of the program instance P(𝑛). We say

that the configuration ⟨®ℓ, 𝑠⟩ is initial if ®ℓ = ⟨ℓinit, . . . , ℓinit⟩.
Let ⟨®ℓ, 𝑠⟩ be a configuration, such that ⟨ℓ𝑖 , st, ℓ ′𝑖 ⟩ ∈ Δ is a transition of the thread template, and

such that there is a successor valuation 𝑠′ with (𝑠, 𝑠′) ∈ ⟦st:𝑖⟧. From this configuration, the program

can execute st:𝑖 . Thread 𝑖 moves to control location ℓ ′𝑖 , whereas all other threads remain at the same

location (ℓ ′𝑗 = ℓ𝑗 for all 𝑗 ≠ 𝑖). We write ⟨®ℓ, 𝑠⟩ st:𝑖−−→ ⟨®ℓ ′, 𝑠′⟩. A trace 𝜏 = st1:𝑖1 . . . st𝑚:𝑖𝑚 is feasible
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if there exists a corresponding sequence of configurations (called an execution) ⟨®ℓ (1) , 𝑠1⟩
st1:𝑖1−−−→

. . .
st𝑛:𝑖𝑛−−−−→ ⟨®ℓ (𝑚) , 𝑠𝑚⟩, and ⟨®ℓ (1) , 𝑠1⟩ is initial. If a trace is not feasible, it is infeasible.

Synchronous Statements. Our approach uses a particular kind of statements, so-called synchronous
statements [Hoenicke et al. 2017]. A thread executes a synchronous statement to (atomically) update

the local variables of all (unboundedly many) other threads. Synchronous statements have the form

for 𝑗 ≠ 𝑖 :𝑥 𝑗 := 𝑒

where 𝑗 and 𝑖 are symbolic indices representing the threads whose variables are updated ( 𝑗 ) and the

thread that executes the statement (𝑖). The updated variable 𝑥 must be a local variable (𝑥 ∈ Varlocal).
The expression 𝑒 may refer to global variables, as well as local variables 𝑦𝑖 , 𝑦 𝑗 indexed by 𝑖 or 𝑗 .

Additionally, we allow 𝑒 to refer to special variables pci and pcj , which represent the current control

locations of thread 𝑖 resp. 𝑗 .

Correctness and Proofs. A specification for a parameterized program P consists of a precondition

pre, and a partial map assert from program locations to formulae over the program variables.

Both the precondition pre and an assertion assert (ℓ) may refer to global and local variables. The

program P satisfies the specification ⟨pre, assert⟩ if for all numbers of threads 𝑛, the following holds:

For every execution ⟨®ℓ (1) , 𝑠1⟩
st1:𝑖1−−−→ . . .

st𝑛:𝑖𝑛−−−−→ ⟨®ℓ (𝑚) , 𝑠𝑚⟩ of the program instance P(𝑛), such that

𝑠1 |𝑖 |= pre for all 𝑖 ∈ {1, . . . , 𝑛} and such that assert (ℓ (𝑚)
𝑗

) is defined for some 𝑗 ∈ {1, . . . , 𝑛}, we have
that 𝑠𝑚 | 𝑗 |= assert (ℓ (𝑚)

𝑗
). In the remainder of the paper, we always assume that a parameterized

program is accompanied by a specification ⟨pre, assert⟩. For examples, we annotate the specification

in the thread template (as in Fig. 1). We simply say that P is correct if P satisfies this specification.

As an aside, our approach can be extended to more general notions of (safety) specifications,

e.g. a set of error states given by a generator set as in [Hoenicke et al. 2017]. Such specifications

allow for instance a direct encoding of mutual exclusion. However, since this is orthogonal to our

contributions, we focus here on the simpler notion of specification as defined above.

In Section 6, as well as several examples, we consider a particular notion of proofs for parameter-

ized programs: Ashcroft invariants. An Ashcroft invariant is a formula of the form

∀𝑖1, . . . , 𝑖𝑘 . (
∧

1≤𝑟<𝑠≤𝑛
𝑖𝑟 ≠ 𝑖𝑠 ) → 𝜑

where 𝜑 is a quantifier-free formula, whose variables range over the global program variables,

indexed local variables 𝑥𝑖𝑟 (for 𝑥 ∈ Varlocal, 𝑟 ∈ {1, . . . , 𝑘}) and variables pcir (for 𝑟 ∈ {1, . . . , 𝑘}) rep-
resenting the current control location of thread 𝑖𝑟 . The quantified variables symbolically represent

𝑘 threads of the program. The premise

∧
1≤𝑟<𝑠≤𝑛 𝑖𝑟 ≠ 𝑖𝑠 expresses the fact that 𝑖1, . . . , 𝑖𝑘 indeed

refer to 𝑘 distinct threads. Thus, the conclusion 𝜑 expresses a relation between the global variables,

as well as the locations and local variables of any subset of 𝑘 distinct threads of the program. We

call the number of quantified variables 𝑘 the width of the Ashcroft invariant.

An Ashcroft invariant is inductive for the parameterized program P, if it is an inductive invariant

for every instance P(𝑛), assuming the precondition pre initially holds for every thread. Since we

only consider inductive Ashcroft invariants, we omit the adjective from now on.

Finally, let us define what it means for an Ashcroft invariant to prove correctness of a parameter-

ized program P. We say that an Ashcroft invariant ∀𝑖1, . . . , 𝑖𝑘 . (
∧
𝑟≠𝑠 𝑖𝑟 ≠ 𝑖𝑠 ) → 𝜑 is safe, if it is

inductive, and for every location ℓ where assert (ℓ) is defined, the following entailment holds:

∀𝑖1, . . . , 𝑖𝑘 . (
∧

1≤𝑟<𝑠≤𝑛
𝑖𝑟 ≠ 𝑖𝑠 ) → 𝜑 |= ∀𝑖 . pci = ℓ → assert (ℓ)
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If a safe Ashcroft invariant for a program P and a specification ⟨pre, assert⟩ exists, then P satisfies

the specification ⟨pre, assert⟩. However, the reverse is not true.

Other Program Models. Parameterized programs are a natural model for certain classes of concur-

rent programs, e.g. GPU code and distributed protocols. More generally, most classes of concurrent

programs can be encoded in parameterized programs. Hence our theoretical results can be expected

to hold for a wide class of concurrent programs. In practical terms, such encodings may present a

challenge for verification algorithms. For example, for structured parallel programs with sophisti-

cated dependence graphs implemented using fork/join, the best practice would not be to encode the

program in this model and try to verify it with our verification algorithm. The main burden in these

cases is that the inductive invariant for the program may have to recover part or all of the structure

lost from the original model, and this can be unreasonable to expect from an automated invariant

generator. Smaller extensions of the model, such as allowing a finite number of different thread

templates, as in Fig. 2, are more straightforward and are indeed supported by our implementation.

4 REDUCTIONS OF PARAMETERIZED PROGRAMS
In this section, we discuss commutativity-based reductions. We introduce the underlying formalism,

which has previously been used for fixed-thread programs, and discuss how it generalizes to

parameterized programs. Then we present our first key contribution: a finite representation of an

infinite family of commutativity-based reductions.

To begin, let us quickly summarize the basics of commutativity theory. The most fundamental

notion is a commutativity relation between statements. Specifically, in this work we say that two

(indexed) statements st1:𝑖 and st2: 𝑗 (with 𝑖 ≠ 𝑗 ) commute, denoted st1:𝑖 ↷↷st2: 𝑗 , if executing them in

either order yields the same semantics, i.e., ⟦st1:𝑖 st2: 𝑗⟧ = ⟦st2: 𝑗 st1:𝑖⟧. We discuss broader notions

of sound commutativity in Section 7.

The commutativity relation over statements defines an equivalence relation on traces. We say

that two traces 𝜏1 and 𝜏2 are equivalent if 𝜏2 can be derived from 𝜏1 by repeatedly swapping adjacent

commuting statements. Note that, by repeated application of the definition of commutativity,

equivalent traces have the same semantics. Consequently, it suffices to show that one trace satisfies

a specification in order to conclude that all equivalent traces are correct as well.

Motivated by this observation, one can introduce the concept of a reduction. A set of traces 𝐿′ is
a reduction of another set of traces 𝐿 if 𝐿′ ⊆ 𝐿, and for each trace in 𝐿 there exists an equivalent

trace in 𝐿′. It follows that if we prove that all traces in a reduction 𝐿′ are correct, we can soundly

conclude that all traces in the set 𝐿 are correct. Specifically, we are interested in reductions of the

language of traces given by a program instance P(𝑛) for a fixed number of threads 𝑛.

4.1 A Family of Reductions
It has been shown that commutativity-based reduction can lead to simpler proofs for concurrent

programs with a fixed number of threads. In particular, the proof for a (suitably chosen) reduction

of a program may be within reach of algorithmic verification, even when a proof for the entire

program is not.

Example 4.1. Let us consider the program P±
as discussed in the introduction, with the template

shown in Fig. 1. For any fixed number of threads 𝑛, the instance P± (𝑛) is correct. In this case, the

proof for the (unreduced) program is comparatively simple: The instance P± (𝑛) can be proven

correct with the assertions x ≥ 0, x ≥ 1, . . . , up to x ≥ 𝑛. Note however that the proof size, i.e., the
required number of assertions, grows with the number of threads.
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Since the increment and decrement of x commute, as do two increments resp. two decrements,

we can apply commutativity to simplify the proof. We define, for each number of threads 𝑛, a

reduction R± (𝑛): a set of traces that contains, for each equivalence class of traces in P± (𝑛), the
representative trace in which each thread executes all its statements in the trace in a single block.

Thus R± (𝑛) can be written as R± (𝑛) = 𝐿1𝐿2 . . . 𝐿𝑛 , where 𝐿𝑖 =
(
x:=x+1:𝑖 x:=x-1:𝑖

)∗ (
Y + x:=x+1:𝑖

)
.

In traces of this reduction, the value of x reaches a value ≥ 2 only if the last statement executed by

some thread 𝑖 is an increment without a matching decrement. In this case, x never falls below 2

again, as every future decrement is preceded by a matching increment. The reduction R± (𝑛) can
be proven correct with only the assertions x ≥ 0, x ≥ 1, x ≥ 2, for any number of threads 𝑛.

In this work, we are concerned with proof simplification for parameterized concurrent programs,

with an unbounded number of threads. Thus, we are searching for one uniform proof that proves a

program P correct for all numbers of threads 𝑛. A key insight is that commutativity can similarly

lead to proof simplification in this setting.

Specifically, suppose that for each 𝑛, we have proven correctness of a reduction R(𝑛) of the
program instance P(𝑛) with 𝑛 threads. Then, by soundness of commutativity for a fixed number of

threads, we can conclude that each P(𝑛) is correct, i.e., the parameterized program P is correct.

Furthermore, if the proofs of reductions for different 𝑛 have a similar structure, we can hope to

find one uniform, finite proof for the parameterized program P.

Example 4.2 (continued from Example 4.1). Let us consider again the program P±
, and the claim

that each reduction R± (𝑛) can be proven correct with the assertions x ≥ 0, x ≥ 1 and x ≥ 2.

Specifically, each trace in the reduction R± (𝑛) can be given a correctness proof (an annotation of

the trace) using the following Hoare triples, instantiated for all 𝑖 ∈ {1, . . . , 𝑛}:
{x ≥ 0} x:=x+1:𝑖 {x ≥ 1}, {x ≥ 1} x:=x+1:𝑖 {x ≥ 2},
{x ≥ 2} x:=x+1:𝑖 {x ≥ 2}, {x ≥ 1} x:=x-1:𝑖 {x ≥ 0}

The proof simplification is significant: Without reduction, a proof of the program P±
requires a

ghost variable that counts the number of threads that have incremented but not yet decremented x.

Up to this point, the basis for our considerations has been an infinite family of reductions

R(𝑛)𝑛∈N. In order to arrive at an effective proof method for parameterized programs, one crucial

step is missing: We need a way to effectively construct a finite representation of this family.

4.2 Parameterized Reductions
The key insight behind our first contribution is this:

Observation 4.3. For every parameterized program P, there exists an infinite family of reductions
R(𝑛)𝑛∈N such that the entire family can again be represented as a parameterized program.

Representing a family of reductions as a parameterized program enables us to reuse the many

mature existing methods for verification of parameterized programs, and to combine them with

commutativity-based reduction.

For a fixed 𝑛, a finite automaton recognizing a reduction R(𝑛) can be constructed using the con-

cept of sleep sets [Farzan et al. 2022]: In addition to the control locations of the threads, the sleep set
automaton tracks a set of (indexed) program statements, the eponymous sleep set. In each state, the

sleep set automaton prevents transitions labeled by statements in the state’s sleep set. After each tran-

sition, the sleep set is updated, i.e., statements are removed and added depending on their commuta-

tivity with the statement labeling the transition. Consider the illustration of an automaton for R(2)
in Fig. 4. Initially, the sleep set is empty. When traversing the edge labeled st2: 2 , we add st1: 1 to the
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{}

{st1: 1}

{st1: 1}

...

st1: 1 st2: 2

st1: 1
st3: 2

st1: 1

Fig. 4. Illustration of the sleep set mecha-
nism. Sleep sets (blue) are updated after ev-
ery edge, and lead to removal of transitions.

sleep set, because it has a smaller thread index than st2: 2 ,
and because we assume in this example that st1: 1 and

st2: 2 commute. In the next state, as st1: 1 is in the sleep

set, we prune the corresponding edge. Any trace that

would be accepted via this edge is equivalent to a trace

where st2: 2 and st1: 1 are swapped, and this trace is al-

ready accepted by a run via the left-most st1: 1 -transition.
If we assume that st1: 1 also commutes with st3: 2 , we
can keep st1: 1 in the sleep set after traversing st3: 2 , and
again prune the corresponding edge in the right-most

state. If on the other hand st1: 1 and st3: 2 did not com-

mute, we would instead remove st1: 1 from the sleep set

and preserve the transition.

The sleep set technique as explained here can be applied for any fixed number of threads 𝑛. How-

ever, each 𝑛 yields a different language, and this approach does not lead to a uniform representation

for the family of reductions. The key insight which enables such a uniform finite representation

is the observation that for the correctness, we are only interested in feasible traces. Thus, we
can encode the family of reductions through an instrumentation of the original program’s thread

template. For each thread instance 𝑖 , we add a boolean variable sleep𝑖 , which keeps track of whether

thread 𝑖 (resp. its currently enabled statements) are in the sleep set. Consequently, when sleep𝑖 is
true, thread 𝑖 must not make a move. In other words, any trace where thread 𝑖 makes a move while

sleep𝑖 is true must be infeasible. By shifting from an explicit mechanism (computing sleep sets, and

removing edges from an automaton) to a symbolic approach, we thus arrive at a uniform finite

representation of the family of reductions.

This instrumentation deviates slightly from the explanation above. Instead of tracking statements

in the sleep set, we track the threads that would execute these statements. I.e., the variable sleep𝑖 of
a thread 𝑖 is true, if the thread’s next enabled statements enabled (ℓ𝑖 ) are in the sleep set. (In case

multiple statements are enabled, i.e., at a branch or loop head with enabled statements assume 𝑒

and assume¬𝑒 , either both statements are in the sleep set, or neither is.) This shift from tracking

individual letters in the sleep set to tracking the threads pays off in terms of the complexity added

to the state space of the instrumented program: We need only a single boolean variable, rather than

one variable for each statement that appears in the thread template.

We define a formula which expresses that thread 𝑗 is in a control location whose enabled

statements commute with a given statement st:𝑖 executed by a different thread 𝑖 .

Definition 4.4 (Commutativity Test). The commutativity test comm( 𝑗, st:𝑖) is the formula

comm( 𝑗, st:𝑖) :≡
∨

{ pcj = ℓ | ℓ ∈ Loc ∧ ∀st′ ∈ enabled (ℓ) . st′: 𝑗 ↷↷st:𝑖 }.

The commutativity test is used in the instrumentation of statements.

Definition 4.5 (Instrumented Statements). Let st be a statement. We define the instrumented

statement ] (st) as the atomically executed block of statements

] (st) :=

assume¬sleep
for 𝑗 ≠ 𝑖 : sleep 𝑗 := (sleep 𝑗 ∨ id 𝑗 < id𝑖 ) ∧ comm( 𝑗, st:𝑖)
st


An instrumented statement ] (st) first checks if its thread is in the sleep set, and if so, blocks.

Otherwise, i.e., if the statement is allowed to execute, the instrumentation performs the update

of the sleep set through a synchronized statement [Hoenicke et al. 2017] that modifies the sleep
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ℓ0 ℓ1

assert x!=0

{x = 0}


assume¬sleep
for 𝑗 ≠ 𝑖 : sleep 𝑗 := (sleep 𝑗 ∨ id 𝑗 < id𝑖 ) ∧ (pcj = ℓ0 ∨ pcj = ℓ1 )
x:=x+1




assume¬sleep
for 𝑗 ≠ 𝑖 : sleep 𝑗 := (sleep 𝑗 ∨ id 𝑗 < id𝑖 ) ∧ (pcj = ℓ0 ∨ pcj = ℓ1 )
x:=x-1


Fig. 5. Template for P±

sleep

variables of all (unboundedly many) other threads 𝑗 . Finally, the original statement st executes.
Recall that the symbols 𝑖 and 𝑗 are part of the syntax of synchronized statements rather than logical

variables: 𝑖 represents the thread executing the statement, and 𝑗 represents any other thread.

Note that the instrumentation refers to a thread-local integer variable id . We add such a (nonde-

terministically initialized) ID variable to the thread template to serve as a tie-break. If two threads

can move, but allowing both to execute statements would result in equivalent traces, we must

identify which thread should go first. We assume that all thread IDs are pairwise distinct. Thus,

these thread IDs allow us to distinguish the thread instances and to decide: If the enabled statements

of two threads commute, the thread with a smaller ID moves first.

Definition 4.6 (Sleep-Instrumented Program). Let P = ⟨Loc,Δ, ℓinit,Varlocal⟩ be a parameterized

program. We define the sleep-instrumented program Psleep := ⟨Loc,Δsleep , ℓinit,Var′local⟩ with local

variables Var′local := Varlocal ∪ {id , sleep}, and the transitions given by

Δsleep := { ⟨ℓ, ] (st), ℓ ′⟩ | ⟨ℓ, st, ℓ ′⟩ ∈ Δ } .

Example 4.7 (Continued from Example 4.2). Figure 5 shows the thread template for the sleep-

instrumented program P±
sleep corresponding to the program P±

shown in Fig. 1. Since all statements

of P±
commute, the commutativity tests comm( 𝑗, x:=x+1:𝑖 ) and comm( 𝑗, x:=x-1:𝑖 ) both resolve

to the formula pcj = ℓ0 ∨ pcj = ℓ1.

The sleep-instrumented program Psleep serves as uniform finite representation for the family of

reductions R(𝑛)𝑛∈N. To formalize this relationship, let 𝜋 be the inverse of ], i.e., a mapping between

statements such that 𝜋 (] (st)) = st. We extend this mapping to indexed statements, traces, and sets of

traces in the natural way. The following key result formally expresses that the sleep-instrumented

program describes a family of reductions R(𝑛)𝑛∈N of the original program, modulo feasibility.

Theorem 4.8 (Reduction). Let Feas be the set of all feasible traces. For each number of threads 𝑛,
the set of traces 𝜋 (Psleep (𝑛) ∩ Feas) is a reduction of P(𝑛) ∩ Feas, i.e., the feasible traces of P(𝑛).

We consider only feasible traces, since the reduction works based on the guards (¬sleep) added
to each transition. This is necessary to describe the reduction as a parameterized program: Only

when we fix the number of threads 𝑛, the sleep guards and updates can be evaluated.

Theorem 4.9 (Soundness). The sleep-instrumented program Psleep is correct iff P is correct.

The reduction achieved by the instrumentation is minimal: We retain only one representative

per equivalence class, and hence a strict subset cannot be a reduction. This means that we do not

unnecessarily burden the verification with the proof of redundant traces; the instrumentation fully

realizes the benefit of commutativity.
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Proposition 4.10 (Minimality). For every feasible trace 𝜏 of P, the sleep-instrumented program
Psleep has exactly one feasible trace 𝜏 ′ such that 𝜋 (𝜏 ′) is equivalent to 𝜏 .
As demonstrated in Section 2, there exist programs such that no proof of the program without

non-trivial ghost state exists, but where some reduction of the program has a simple proof. We

investigate this phenomenon for the sleep-instrumented program. To make this precise, we fix

Ashcroft invariants as our notion of proof, and consider a simple example.

∀𝑖, 𝑗 . 𝑖 ≠ 𝑗 →
(
𝑥 ≥ 0

∧(pci = ℓ1 → 𝑥 ≥ 1)
∧(pcj = ℓ1 → 𝑥 ≥ 1)
∧(pci = ℓ1 ∧ pcj = ℓ1 → 𝑥 ≥ 2 ∨ (sleep𝑖 ∧ sleep 𝑗 ) )
∧(id𝑖 < id 𝑗 ∧ pcj = ℓ1 → sleep𝑖 )
∧(id𝑖 > id 𝑗 ∧ pci = ℓ1 → sleep 𝑗 )

)
Fig. 6. Safe Ashcroft invariant for P±

sleep

Example 4.11 (continued from Example 4.7).
Consider again the program P±

, with the

template shown in Fig. 1. There does not ex-

ist a safe Ashcroft invariant of any width for

the program P±
[Hoenicke et al. 2017]. Intu-

itively, the invariant would have to express

the information that the value of the global

variable 𝑥 is always greater than or equal

to the number of threads that have executed the increment but not yet the decrement. Ashcroft

invariants cannot express this information (for a formal argument, see [Hoenicke et al. 2017]).

Figure 6 shows a safe Ashcroft invariant (of width 2) for the sleep-instrumented program P±
sleep

(shown in Fig. 5). This invariant uses the fact that, in the traces of the reduction, if the value of x
exceeds 2, it never falls below 2 again. Any trace of the original program is equivalent to a trace in

the reduction, since increments and decrements commute and can be arbitrarily reordered.

Let us examine some traces of P±
sleep (2) to see how the Ashcroft invariant proves the correctness

of traces in R± (2) as well as outside R± (2) by using the variables sleep𝑖 and sleep 𝑗 . We assume

that id1 < id2. Given a trace of P±
sleep (2), we instantiate 𝑖 := 1 and 𝑗 := 2 in the Ashcroft invariant,

insert concrete values for pc1 and pc2 , and simplify the formula to get an inductive annotation of

the trace. For instance, the trace x:=x+1: 1 x:=x+1: 2 x:=x-1: 1 of P± (2) is not included in the

reduction R± (2). We get the following annotation for the corresponding instrumented trace:

{x ≥ 0} ] (x:=x+1): 1 {x ≥ 1} ] (x:=x+1): 2 {x ≥ 1 ∧ (x ≥ 2 ∨ sleep
2
) ∧ sleep

1
} ] (x:=x-1): 1 {x ≥ 1}

Consider in particular the last Hoare triple. Since sleep
1
holds, and ] (x:=x-1): 1 assumes ¬sleep

1
, the

last statement cannot be executed, i.e., the trace is infeasible (hence, any postcondition holds after-

wards). By contrast, consider the annotated trace corresponding to x:=x+1: 1 x:=x+1: 2 x:=x-1: 2 :

{x ≥ 0} ] (x:=x+1): 1 {x ≥ 1} ] (x:=x+1): 2 {x ≥ 1 ∧ (x ≥ 2 ∨ sleep
2
) ∧ sleep

1
} ] (x:=x-1): 2 {x ≥ 1}

Note again the last Hoare triple. The assumption ¬sleep
2
by the statement ] (x:=x-1): 2 together

with the precondition ensures that x ≥ 2, and thus x ≥ 1 still holds after the decrement. The final

postcondition x ≥ 1 however does not prevent us from extending the trace with the statement

] (x:=x-1): 1 , yielding the postcondition x ≥ 0. While the resulting trace would not correspond to

a trace in the reduction R± (2), the Ashcroft invariant does not prove its infeasibility. Instead, it
simply proves that the trace satisfies the specification.

Even in cases where a safe Ashcroft invariant of some width 𝑘 exists, sleep instrumentation can

simplify the proof. Specifically, sleep instrumentation can reduce the minimum width of a safe

Ashcroft invariant.

Example 4.12. Consider the program P𝐾±
with the template shown in Fig. 3, where x is a global

integer variable. Given a fixed value for the constant 𝐾 , a safe Ashcroft invariant for this program

must have at least width 𝐾 + 1 [Hoenicke et al. 2017]. However, the Ashcroft invariant shown in

Fig. 6 has width 2, and is safe for the sleep-instrumented program P𝐾±
sleep , for every value of 𝐾 .
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The following theorem states that, if we already have a proof (i.e., a safe Ashcroft invariant)

for the original program P, there also exists a safe Ashcroft invariant for the sleep-instrumented

program. Hence, more (and by Example 4.11, strictly more) programs can be proven correct with

our instrumentation than without. Additionally, the theorem shows that a proof of the sleep-

instrumented programPsleep need never bemore complicated than a proof of the original programP;

and in cases such as Example 4.12, it may be strictly simpler.

Theorem 4.13 (Conservative Extension). Every safe Ashcroft invariant for a program P is a
safe Ashcroft invariant for the corresponding sleep-instrumented program Psleep .

5 REDUCTIONS BEYOND SEQUENTIAL COMPOSITION
Up to this point, we have considered a very restricted class of reductions based on thread ordering:

A thread 𝑖 could only change sleep 𝑗 from false to true if id 𝑗 < id𝑖 . If all statements of different

threads commute, the resulting reduction is the sequential composition of threads: As soon as a

thread with a higher ID takes a step, all threads with lower ID are “put to sleep” and never awakened

again. If not all statements commute, the reduction overapproximates sequential composition.

Recall the program Pnotify
discussed in Section 2 (shown Fig. 2). For this program, it is crucial to

align the “sends” (i.e., writes to the queue array) in the notifier thread with all the “receives” (i.e.,

reads from the queue array) in the listener threads in order to find a simple proof. The (approxi-

mation of) sequential composition would not provide sufficient opportunity for simplification. In

this section, we widen our view to consider the larger class of lexicographical reductions, which
have been shown to be practically useful reductions for program verification [Farzan et al. 2022].

Farzan et al. [2022] use preference orders to describe different reductions of fixed-thread programs.

A preference order is a total order over program traces (or, more generally, words over some

alphabet). It can be used to define a reduction as follows:

Definition 5.1 (Definition 4.2 in [Farzan et al. 2022]). Let 𝐿 be a language over an alphabet Σ, and
let ⪯ be a total order over Σ∗

. The reduction of 𝐿 induced by ⪯ is denoted red⪯ (𝐿) and contains, for

each equivalence class, only the minimal trace wrt. the preference order.

red⪯ (𝐿) = {min⪯ [𝑤] | 𝑤 ∈ 𝐿 }
In this work, we focus on the class of positional lexicographic preference orders [Farzan et al.

2022]. Positional lexicographic preference orders are a generalization of a lexicographic orders over

program traces, where the underlying order on statements may differ depending on the current

program locations of all threads. The reductions induced by positional lexicographic preference

orders are called lexicographical reductions.
We extend the concept of (positional lexicographic) preference orders to parameterized programs.

Definition 5.2 (Parameterized Preference Order). A parameterized preference order is a family of

functions (≼𝑛)𝑛∈N, where ≼𝑛 : Loc𝑛 → TO{1,...,𝑛} maps 𝑛-tuples of locations ®ℓ to total orders ≼𝑛®ℓ
over thread indices {1, . . . , 𝑛}. For ®ℓ ∈ Loc𝑛 , we write ≼®ℓ instead of ≼𝑛®ℓ

(we omit the superscript 𝑛).

A parameterized preference order is thus given by the choice of the underlying ordering of

threads (all statements of the same thread are ordered the same). As the threads move to different

control locations, the ordering of threads assigned by a parameterized preference order may change.

Thus the reduction may differ significantly from the sequential composition of threads.

We focus on a subclass of finitely describable parameterized preference orders:

Definition 5.3 (Pairwise Preference Order). Let 𝑅 ⊆ Loc2 be a total and transitive relation. The

pairwise preference order induced by 𝑅 is the parameterized preference order (≼𝑛)𝑛∈N such that

𝑖 ≼®ℓ 𝑗 ⇐⇒ ⟨ℓ𝑖 , ℓ𝑗 ⟩ ∈ 𝑅 ∧ (⟨ℓ𝑗 , ℓ𝑖⟩ ∈ 𝑅 → id𝑖 ≤ id 𝑗 )
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Thus, the ordering of threads 𝑖, 𝑗 wrt. a pairwise preference order only depends on the control

locations ℓ𝑖 , ℓ𝑗 of 𝑖 and 𝑗 in the tuple ®ℓ . The locations of other threads do not play a role. If the pair

⟨ℓ𝑖 , ℓ𝑗 ⟩ is in 𝑅, and the reversed pair ⟨ℓ𝑗 , ℓ𝑖⟩ is not in 𝑅, we prefer thread 𝑖 . If both the pairs ⟨ℓ𝑖 , ℓ𝑗 ⟩ and
⟨ℓ𝑗 , ℓ𝑖⟩ are in 𝑅, we prefer the thread with a smaller ID. By totality of 𝑅 (i.e., ⟨ℓ, ℓ ′⟩ ∈ 𝑅 or ⟨ℓ ′, ℓ⟩ ∈ 𝑅
for all ℓ, ℓ ′ ∈ Loc), one of two compared threads must always be preferable over the other.

Proposition 5.4. Each total, transitive relation 𝑅 ⊆ Loc2 defines a parameterized preference order.

Proof. We have to show that for every 𝑛 and ®ℓ ∈ Loc𝑛 , the induced relation ≼®ℓ is a total order
over the set of thread indices {1, . . . , 𝑛}.

Reflexivity Follows from totality, which is shown below.

Antisymmetry Let 𝑖 ⪯®ℓ 𝑗 and 𝑗 ⪯®ℓ 𝑖 . It follows that ⟨ℓ𝑖 , ℓ𝑗 ⟩ ∈ 𝑅, ⟨ℓ𝑗 , ℓ𝑖⟩ ∈ 𝑅, and, by the

respective implications, also id𝑖 ≤ id 𝑗 and id 𝑗 ≤ id𝑖 . Thus we have id𝑖 = id 𝑗 , and by

uniqueness of thread IDs, we conclude 𝑖 = 𝑗 .

Transitivity Let 𝑖 ⪯®ℓ 𝑗 ⪯®ℓ 𝑘 . Thus we have ⟨ℓ𝑖 , ℓ𝑗 ⟩ ∈ 𝑅 and ⟨ℓ𝑗 , ℓ𝑘⟩ ∈ 𝑅, and we know that the

implications ⟨ℓ𝑗 , ℓ𝑖⟩ ∈ 𝑅 → id𝑖 ≤ id 𝑗 and ⟨ℓ𝑘 , ℓ𝑗 ⟩ ∈ 𝑅 → id 𝑗 ≤ id𝑘 hold.
By transitivity of 𝑅 we know that ⟨ℓ𝑖 , ℓ𝑘⟩ ∈ 𝑅. It remains to show that the implication

⟨ℓ𝑘 , ℓ𝑖⟩ ∈ 𝑅 → id𝑖 ≤ id𝑘 holds. Suppose that ⟨ℓ𝑘 , ℓ𝑖⟩ ∈ 𝑅. By transitivity of 𝑅, we have

⟨ℓ𝑘 , ℓ𝑗 ⟩ ∈ 𝑅 and thus id 𝑗 ≤ id𝑘 . Furthermore, again by transitivity, we have ⟨ℓ𝑗 , ℓ𝑖⟩ ∈ 𝑅 and

thus id𝑖 ≤ id 𝑗 . It follows that indeed id𝑖 ≤ id 𝑗 ≤ id𝑘 .
Totality Let 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, and wlog. id𝑖 ≤ id 𝑗 . By totality of 𝑅, we must have ⟨ℓ𝑖 , ℓ𝑗 ⟩ ∈ 𝑅 or

⟨ℓ𝑗 , ℓ𝑖⟩ ∈ 𝑅. If ⟨ℓ𝑖 , ℓ𝑗 ⟩ ∈ 𝑅, we have that 𝑖 ⪯®ℓ 𝑗 (the implication ⟨ℓ𝑗 , ℓ𝑖⟩ ∈ 𝑅 → id𝑖 ≤ id 𝑗 holds,
because the conclusion holds). Otherwise, if ⟨ℓ𝑗 , ℓ𝑖⟩ ∈ 𝑅 but ⟨ℓ𝑖 , ℓ𝑗 ⟩ ∉ 𝑅, we have 𝑗 ⪯®ℓ 𝑖 (the
implication ⟨ℓ𝑖 , ℓ𝑗 ⟩ ∈ 𝑅 → id 𝑗 ≤ id𝑖 holds, because the premise does not hold). □

Section 4 considers the special case that 𝑅 = Loc2, such that we have 𝑖 ≼®ℓ 𝑗 ⇐⇒ id𝑖 ≤ id 𝑗 . The
class of pairwise preference orders also includes other interesting orders.

Example 5.5 (Lockstep Order). For each ℓ ∈ Loc, let 𝑑 (ℓ) be the minimum length of a path (in

the thread template) from the initial location to ℓ . We define the transitive and total relation

𝑅 = { ⟨ℓ, ℓ ′⟩ | 𝑑 (ℓ) ≤ 𝑑 (ℓ ′) }. The induced pairwise preference order mimics lock-step execution:

Whenever a thread 𝑖 has “fallen behind” a thread 𝑗 (i.e., 𝑑 (ℓ𝑖 ) < 𝑑 (ℓ𝑗 )), thread 𝑖 is preferred over

thread 𝑗 and is thus allowed to “catch up”. When the locations of both threads have the same depth,

i.e., ⟨ℓ𝑖 , ℓ𝑗 ⟩ ∈ 𝑅 and ⟨ℓ𝑗 , ℓ𝑖⟩ ∈ 𝑅, the thread with the smaller ID is preferred and takes the next step.

Let us once again consider the program Pnotify
. For this program, the reduction which admits

the simple proof discussed in Section 2 is induced by lockstep order.

The construction of our instrumented program Psleep can be generalized to arbitrary pairwise

preference orders. To this end, and for the remainder of the paper, let 𝑅 ⊆ Loc2 be a total and
transitive relation. In order to represent the reduction wrt. any pairwise preference order again as

a parameterized program, we define:

Definition 5.6 (Preference Test). The preference test for the pairwise preference order induced by

the total and transitive relation 𝑅 ⊆ Loc2 is defined as the following formula:

pref (𝑖, 𝑗) :≡ ⟨𝑝𝑐𝑖 , 𝑝𝑐 𝑗 ⟩ ∈ 𝑅 ∧ (⟨𝑝𝑐 𝑗 , 𝑝𝑐𝑖⟩ ∈ 𝑅 → id𝑖 ≤ id 𝑗 )

The preference test pref (𝑖, 𝑗) evaluates to true if, in the current program configuration ⟨®ℓ, 𝑠⟩, our
pairwise preference order prefers the statements of thread 𝑖 over the statements of thread 𝑗 , i.e., if

𝑖 ⪯®ℓ 𝑗 . We modify the instrumentation of statements (Definition 4.5) to use the preference test.
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Definition 5.7 (Instrumented Statement with Preference Test). Let st be a statement. We define the

instrumented statement ] (st) as the atomically executed block of statements

] (st) :=

assume¬sleep
for 𝑗 ≠ 𝑖 : sleep 𝑗 := (sleep 𝑗 ∨ pref ( 𝑗, 𝑖)) ∧ comm( 𝑗, st:𝑖)
st


Our results in Section 4 (Theorems 4.8, 4.9 and 4.13 and Proposition 4.10) still hold for the

modified instrumentation, and for every pairwise preference order.

6 FINDING ASHCROFT INVARIANTS FOR A REDUCTION
We apply the approach of thread-modular verification at many levels [Hoenicke et al. 2017] to find

proofs of parameterized programs in the form of Ashcroft invariants. We show how this approach

can be applied to sleep-instrumented programs to verify reductions of parameterized programs.

6.1 Thread-Modular Verification of Reductions
In thread-modular verification at many levels [Hoenicke et al. 2017], the existence of a safe Ashcroft

invariant of some fixed width 𝑘 for a program P is encoded through a constrained Horn clause

(CHC) system. This CHC system, which we denote by TM(P, 𝑘), uses a single uninterpreted

predicate symbol Inv(𝑔, pc1, 𝑥1, . . . , pck, 𝑥𝑘 ). The parameter 𝑔 represents the global variables of the

program. The parameters pci and 𝑥𝑖 represent the current control locations resp. the thread-local
variables of 𝑘 different thread instances.

We can apply an off-the-shelf CHC solver to check satisfiability of this CHC system. If the system

is unsatisfiable, there does not exist a safe Ashcroft invariant of width 𝑘 . However, this does not

mean that the program is incorrect. It might simply be that every safe Ashcroft invariant has a

width larger than 𝑘 , or that there does not exist a safe Ashcroft invariant of any width, yet the

program is still correct. If on the other hand the CHC system is satisfiable, we can construct an

Ashcroft invariant from a solution.

Lemma 6.1 (Lemmas 1 and 3 in [Hoenicke et al. 2017]). If ΦInv is a solution of TM(P, 𝑘), then

∀𝑖1, . . . , 𝑖𝑘 . (
∧

1≤𝑟<𝑠≤𝑛 𝑖𝑟 ≠ 𝑖𝑠 ) → ΦInv (𝑔, pci1 , 𝑥𝑖1 , . . . , pcik , 𝑥𝑖𝑘 )

is a safe Ashcroft invariant (of width 𝑘) for the program P.

We apply the same methodology to the sleep-instrumented program Psleep , yielding the CHC

system TM(Psleep , 𝑘). Since Psleep is again a parameterized program, no conceptual changes are re-

quired. In particular, the thread-modular CHC encoding supports the synchronized statements
used by our instrumentation to update the sleep variables of all (unboundedly many) other

threads [Hoenicke et al. 2017]. Figure 7 shows the resulting CHC encoding for TM(Psleep , 𝑘). We

call the encoding TM(Psleep , 𝑘) the symbolic-sleep encoding, to distinguish it from the explicit-sleep
encoding introduced in Section 6.2.

Intuitively, the clauses describe an invariant predicate Inv that must hold for any subset of 𝑘

distinct threads (mirroring the structure of Ashcroft invariants). The clause Initial establishes that
the invariant holds initially. For any 𝑘 threads 𝑖1, . . . , 𝑖𝑘 , the Inductivity clauses demand that the

invariant must be preserved if any of the threads 𝑖1, . . . , 𝑖𝑘 makes a step, whereas Non-Interference
imposes that the invariant is preserved if another thread (denoted★) makes a step. Replacing any of

the threads 𝑖𝑟 by the thread ★ yields another set of 𝑘 distinct threads, and we may assume that the

invariant Inv holds for any of these sets. This yields the additional premises in theNon-Interference
clause. Finally, Safety ensures that a solution to the CHC system describes a safe Ashcroft invariant.
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Initial:(∧𝑘
𝑖=1 pre (𝑔, 𝑥1 )

)
∧
(∧𝑘

𝑖=1 pci = ℓinit
)
∧
(∧𝑘

𝑖=1 ¬sleep𝑖
)
∧
(∧

𝑖≠𝑗 id𝑖 ≠ id 𝑗
)

→ Inv (𝑔, id1, pc1, sleep1, 𝑥1, . . . , id𝑘 , pck, sleep𝑘 , 𝑥𝑘 )

(1)

Inductivity (for each edge ⟨ℓ, st, ℓ ′ ⟩ ∈ Δ and each 𝑖 ∈ {1, . . . , 𝑘 }):
Inv (𝑔, id1, pc1, sleep1, 𝑥1, . . . , id𝑘 , pck, sleep𝑘 , 𝑥𝑘 ) ∧ pci = ℓ ∧ pci ′ = ℓ ′ ∧ st (𝑔, 𝑥𝑖 , 𝑔′, 𝑥 ′𝑖 )

∧ ¬sleep𝑖 ∧
∧

𝑗≠𝑖

(
sleep 𝑗

′ ↔
(
sleep 𝑗 ∨ pref ( 𝑗, 𝑖 )

)
∧ comm( 𝑗, st:𝑖 )

)
→ Inv (𝑔′, id1, pc1, sleep1′, 𝑥1, . . . , id𝑖 , pci ′, sleep𝑖 , 𝑥 ′𝑖 , . . . , id𝑘 , pck, sleep𝑘 , 𝑥𝑘 )

(2)

Non-Interference (for each edge ⟨ℓ, st, ℓ ′ ⟩ ∈ Δ):

Inv (𝑔, id1, pc1, sleep1, 𝑥1, . . . , id𝑘 , pck, sleep𝑘 , 𝑥𝑘 )
∧ Inv (𝑔, id★, pc★, sleep★, 𝑥★, . . . , id𝑘 , pck, sleep𝑘 , 𝑥𝑘 ) ∧ . . . ∧ Inv (𝑔, id1, pc1, sleep1, 𝑥1, . . . , id★, pc★, sleep★, 𝑥★)
∧ pc★ = ℓ ∧ pc★′ = ℓ ′ ∧ st (𝑔, 𝑥★, 𝑔′, 𝑥 ′★)

∧ ¬sleep★ ∧∧
𝑗

(
sleep 𝑗

′ ↔
(
sleep 𝑗 ∨ pref ( 𝑗,★)

)
∧ comm( 𝑗, st:★)

)
→ Inv (𝑔′, id1, pc1, sleep1′, 𝑥1, . . . , id𝑘 , pck, sleep𝑘 ′, 𝑥𝑘 )

(3)

Safety (for each 𝑖 ∈ {1, . . . , 𝑘 } and ℓ ∈ Loc where assert (ℓ ) is defined):
Inv (𝑔, id1, pc1, sleep1, 𝑥1, . . . , id𝑘 , pck, sleep𝑘 , 𝑥𝑘 ) ∧ pci = ℓ ∧ ¬assert (ℓ ) → ⊥ (4)

Fig. 7. Symbolic-sleep CHC encoding TM(Psleep , 𝑘) for the existence of a safe Ashcroft invariant of width 𝑘
for the sleep-instrumented program Psleep . Differences from the CHC encoding TM(P, 𝑘) for the unreduced
program are highlighted in red.

Proposition 6.2. If the CHC system TM(Psleep , 𝑘) is satisfiable, the program P is correct.

Proof. Follows from Lemma 6.1 and Theorem 4.9. □

In analogy to Theorem 4.13, the symbolic-sleep CHC encoding TM(Psleep , 𝑘) behaves conserva-
tively wrt. the encoding TM(P, 𝑘) of the original program.

Observation 6.3. Any solution to TM(P, 𝑘) is also a solution to TM(Psleep , 𝑘). Moreover, there
are cases where TM(P, 𝑘) has no solution, but TM(Psleep , 𝑘) does.

6.2 Breaking Symmetry with the Explicit-Sleep Encoding
Despite Observation 6.3, it is not clear that a CHC solver will be faster to find a solution when

applied to the symbolic-sleep encoding TM(Psleep , 𝑘) than when applied to the encoding TM(P, 𝑘).
In order to gain a systematic understanding of how easy or difficult it is for a CHC solver to find a

solution, let us introduce the notions of search and solution space.

Definition 6.4 (Search and Solution Space). Let C be a CHC system over a single predicate symbol

𝑝 (𝑣1, . . . , 𝑣𝑚) of arity 𝑚. The search space Search(C) of possible solutions to C is the set of all

first-order formulae Φ𝑝 (𝑣1, . . . , 𝑣𝑚) whose free variables lie in { 𝑣1, . . . , 𝑣𝑚 }.
The solution space Sol(C) denotes the subset of the search space Search(C) containing exactly

all those predicates Φ𝑝 (𝑣1, . . . , 𝑣𝑚) that satisfy the given CHC system C.

A larger solution space means that a solver is more likely to find a satisfying solution to a CHC

system, whereas a larger search space is indicative of potential additional effort to rule out other

predicates. In particular, while sleep instrumentation does somewhat increase the search space (it

introduces new variables), it leads to a significantly and qualitatively larger solution space: Most

importantly, for some programs, Sol(TM(P, 𝑘)) is empty while Sol(TM(Psleep , 𝑘)) is not.
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Our evaluation (Section 8) shows that for some programs which can be proven without reduction,

we observe a notable overhead for the instrumented version, due to the increased search space. To

minimize this overhead, we further improve upon the CHC system TM(Psleep , 𝑘), by decreasing
the search space. The improvement is quantitative, i.e., does not increase the expressivity of the

approach, but rather serves to allow CHC solvers to find a solution faster.

We observe that solutions to the symbolic-sleep encoding TM(Psleep , 𝑘) typically include redun-

dant information due to symmetry: Since the ordering of threads expressed by the thread IDs is

nondeterministic, solutions often need to make case distinctions covering all possible orderings.

Intuitively, we force the solver to prove correctness of a symmetry-equivalence class of reductions.

To illustrate this, consider again the Ashcroft invariant in Fig. 6. In the last two conjuncts, the

invariant makes a case distinction over the ordering of thread IDs. While this is a small example,

and the Ashcroft invariant in Fig. 6 is still relatively simple, in general (for larger programs, and

larger 𝑘), such case distinctions can result in a factorial (in 𝑘) number of symmetric conjuncts.
In order to avoid paying this additional cost, we take advantage of the symmetry between threads.

Symmetry reductions [Clarke et al. 1998] have been widely used for parameterized systems to reduce

the search space of analyses. The idea behind symmetry reductions is closely connected to our

observations: Instead of naïvely enumerating all possible cases of a nondeterministically chosen

order, and recovering symmetric results for each case, one focuses on a single fixed order.

In our case, we fix the ordering of the 𝑘 threads considered by the CHC predicate symbol

Inv(𝑔, id1, pc1, 𝑥1, . . . , id𝑘 , pck, 𝑥𝑘 ) such that we always have id1 < . . . < id𝑘 . This allows us to
simplify the CHC system. In particular, we resolve the comparisons of thread IDs in the preference

test (Definition 5.6) statically.

Definition 6.5 (Explicit-sleep Preference Test). For 𝑖 ∈ {1, . . . , 𝑘}, 𝑗 ∈ {1, . . . , 𝑘,★} and 𝑗 ′ ∈ {1, . . . , 𝑘},
we define the explicit-sleep preference test as the formula

p̃ref (𝑖, 𝑗/ 𝑗 ′) :≡
{
⟨pci, pcj⟩ ∈ 𝑅 if 𝑖 ≤ 𝑗 ′

⟨pci, pcj⟩ ∈ 𝑅 ∧ ¬⟨pcj, pci⟩ ∉ 𝑅 otherwise

Recall that 𝑅 is a total and transitive relation which induces a pairwise preference order (Defini-

tion 5.3). We pass two parameters 𝑗, 𝑗 ′ for the second thread, in order to account for the arbitrary

ordering (represented by 𝑗 ′) of the interfering thread (represented by 𝑗 = ★) wrt. to the 𝑘 other

threads (represented by 𝑖). We could have id★ < id1 (i.e., 𝑗 ′ = 1), or id1 < id★ < id2 (i.e., 𝑗 ′ = 2), . . . ,

or id𝑘 < id★ (i.e., 𝑗 ′ = 𝑘 + 1). To cover all cases, we introduce one non-interference clause for each

of these 𝑘 + 1 possible orderings. Thanks to this explicit case distinction, all comparisons between

thread IDs are resolved statically, and we eliminate the thread IDs from the CHC system.

Furthermore, we must take care to reorder the variables in the second line of Eq. (3), such that

we preserve the assumption that the threads to whose variables the predicate symbol Inv is applied

are in increasing order of their ID. To this end, we define a permutation: For 𝑖 ∈ {1, . . . , 𝑘 + 1},
𝑟 ∈ {1, . . . , 𝑘}, let 𝜎𝑟𝑖 : {1, . . . , 𝑘} → {1, . . . , 𝑘,★} \ {𝑟 } be the bijective mapping such that

• for all 𝑗1 ≠ 𝑗2 with 𝜎
𝑟
𝑖 ( 𝑗1) ≠ ★ and 𝜎𝑟𝑖 ( 𝑗2) ≠ ★, we have 𝑗1 < 𝑗2 ⇐⇒ 𝜎𝑟𝑖 ( 𝑗1) < 𝜎𝑟𝑖 ( 𝑗2), and

• for all 𝑗1 ≠ 𝑗2 with 𝜎
𝑟
𝑖 ( 𝑗1) = ★ and 𝜎𝑟𝑖 ( 𝑗2) ≠ ★, we have 𝑗1 < 𝑗2 ⇐⇒ 𝑖 ≤ 𝑗2.

Intuitively, 𝜎𝑟𝑖 describes the sequence 1, 2, . . . , 𝑘 , where we insert ★ at position 𝑖 and then delete the

number 𝑟 from the sequence. The index 𝑖 here represents the preference ordering of the interfering

thread ★wrt. the other threads 1, . . . , 𝑘 ; index 𝑟 represents the thread that is replaced by ★.

Figure 8 shows the resulting explicit-sleep CHC encoding TMsleep (P, 𝑘), for a program P and

width 𝑘 . Note that the explicit-sleep encoding receives the original program P as input; the sleep

instrumentation is performed as part of the encoding. Nevertheless, we semantically connect this

encoding to the sleep-instrumented program Psleep , in a manner analogous to Lemma 6.1.
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Initial: (∧𝑘
𝑖=1 pre (𝑔, 𝑥1 )

)
∧
(∧𝑘

𝑖=1 pci = ℓinit
)
∧
(∧𝑘

𝑖=1 ¬sleep𝑖
)

→ Inv (𝑔, pc1, sleep1, 𝑥1, . . . , pck, sleep𝑘 , 𝑥𝑘 )

(5)

Inductivity (for each edge ⟨ℓ, st, ℓ ′ ⟩ ∈ Δ and each 𝑖 ∈ {1, . . . , 𝑘 }):
Inv (𝑔, pc1, sleep1, 𝑥1, . . . , pck, sleep𝑘 , 𝑥𝑘 ) ∧ pci = ℓ ∧ pci ′ = ℓ ′ ∧ st (𝑔, 𝑥𝑖 , 𝑔′, 𝑥 ′𝑖 )

∧ ¬sleep𝑖 ∧
∧

𝑗≠𝑖

(
sleep 𝑗

′ ↔ (sleep 𝑗 ∨ p̃ref ( 𝑗, 𝑖/𝑖 ) ) ∧ comm( 𝑗, st:𝑖 )
)

→ Inv (𝑔′, pc1, sleep1′, 𝑥1, . . . , pci ′, sleep𝑖 , 𝑥 ′𝑖 , . . . , pck, sleep𝑘 , 𝑥𝑘 )

(6)

Non-Interference (for each edge ⟨ℓ, st, ℓ ′ ⟩ ∈ Δ and each 𝑖 ∈ {1, . . . , 𝑘 + 1}):
Inv (𝑔, pc1, sleep1, 𝑥1, . . . , pck, sleep𝑘 , 𝑥𝑘 )

∧
(∧𝑘

𝑟=1 Inv (𝑔, pc𝜎 r
i (1)

, sleep𝜎𝑟
𝑖
(1) , 𝑥𝜎𝑟

𝑖
(1) , . . . , pc𝜎 r

i (k)
, sleep𝜎𝑟

𝑖
(𝑘 ) , 𝑥𝜎𝑟

𝑖
(𝑘 ) )

)
∧ pc★ = ℓ ∧ pc★′ = ℓ ′ ∧ st (𝑔, 𝑥★, 𝑔′, 𝑥 ′★)

∧ ¬sleep★ ∧∧
𝑗≠𝑖

(
sleep 𝑗

′ ↔ (sleep 𝑗 ∨ p̃ref ( 𝑗,★/𝑖 ) ) ∧ comm( 𝑗, st:★)
)

→ Inv (𝑔′, pc1, sleep1′, 𝑥1, . . . , pck, sleep𝑘 ′, 𝑥𝑘 )

(7)

Safety (for each 𝑖 ∈ {1, . . . , 𝑘 } and ℓ ∈ Loc where assert (ℓ ) is defined):
Inv (𝑔, pc1, sleep1, 𝑥1, . . . , pck, sleep𝑘 , 𝑥𝑘 ) ∧ pci = ℓ ∧ ¬assert (ℓ ) → ⊥ (8)

Fig. 8. Explicit-sleep CHC encoding TMsleep (P, 𝑘) for the existence of a safe Ashcroft invariant of width 𝑘 for
the sleep-instrumented program Psleep . The encoding does not include the id variables. Further differences
to the symbolic-sleep encoding are highlighted in red.

Proposition 6.6 (Explicit-Sleep Soundness). Let ΨInv be a solution to TMsleep (P, 𝑘). Then
∀𝑖1, . . . , 𝑖𝑘 . id𝑖1 < . . . < id𝑖𝑘 → ΨInv (𝑔, pci1 , sleep𝑖1 , 𝑥𝑖1 , . . . , pcik , sleep𝑖𝑘 , 𝑥𝑖𝑘 )

is a safe Ashcroft invariant (of width 𝑘) for Psleep .

Corollary 6.7. If the explicit-sleep encoding TMsleep (P, 𝑘) is satisfiable, the program P is correct.

Proof. Follows from Proposition 6.6 and Theorem 4.9. □

The following proposition states that the symbolic-sleep encoding and the explicit-sleep encoding

are equi-satisfiable. Consequently, the explicit-sleep encoding still encodes the existence of an

Ashcroft invariant of width 𝑘 for the sleep-instrumented program.

Proposition 6.8 (Eqisatisfiability). The explicit-sleep encoding TMsleep (P, 𝑘) is satisfiable iff
the symbolic-sleep encoding TM(Psleep , 𝑘) is satisfiable.

Proof idea. If ΦInv is a solution for the symbolic-sleep encoding, then

ΨInv (𝑔, pc1, sleep1, 𝑥1, . . . , pck, sleep𝑘 , 𝑥𝑘 )
:≡ ∃id1, . . . , id𝑘 .

(
id1 < . . . < id𝑘 ∧ ΦInv (𝑔, id1, pc1, sleep1, 𝑥1, . . . , id𝑘 , pck, sleep𝑘 , 𝑥𝑘 )

)
is a solution for the explicit-sleep encoding. If ΨInv is a solution for the explicit-sleep encoding, then

ΦInv (𝑔, id1, pc1, sleep1, 𝑥1, . . . , id𝑘 , pck, sleep𝑘 , 𝑥𝑘 )

:≡
∨
𝜎∈S𝑘

(
id𝜎 (1) < . . . < id𝜎 (𝑘 ) ∧ ΨInv (𝑔, pc𝜎 (1) , sleep𝜎 (1) , 𝑥𝜎 (1) , . . . , pc𝜎 (k) , sleep𝜎 (𝑘 ) , 𝑥𝜎 (𝑘 )

)
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is a solution for the symbolic-sleep encoding, where S𝑘 denotes the set of all permutations over

the set {1, . . . , 𝑘}. □

The factorial explosion inherent in the case distinction over all permutations of threads is

precisely the cost we seek to avoid through the explicit-sleep encoding. Because the explicit-sleep

encoding does not use variables for the thread IDs, the search space Search(TMsleep (P, 𝑘)) for
the explicit-sleep encoding is a strict subset of the search space Search(TM(Psleep , 𝑘)) for the
symbolic-sleep encoding. The above proposition clarifies that we neither lose expressivity, nor do

we gain qualitative proof simplification, i.e., the solution space Sol(TM(Psleep , 𝑘)) is empty if and

only if the solution space Sol(TMsleep (P, 𝑘)) is empty. Beyond that, the solution spaces are difficult

to compare, as solutions range over different sets of variables. However, symmetry reduction has

been shown to be practically beneficial in many settings [Clarke et al. 1998]. And indeed, Section 8

confirms empirically that the explicit-sleep encoding has significant practical benefit over the

symbolic-sleep encoding when using state-of-the-art CHC solvers.

6.3 Inductive Invariants of Reduction Families
Proposition 4.10 states that the sleep-instrumented program represents a family of minimal reduc-
tions: Every equivalence class of traces is represented by a single trace in the reduction; if that

representative is removed, the remaining set of traces is no longer a reduction. The intention is to

not burden the verification with the proof of any redundant traces.

However, this “minimality” refers to the family of infinite-state programs Psleep (𝑛)𝑛∈N. When we

fix a notion of finite proofs for the parameterized program Psleep , we are settled with a particular

expressiveness to describe this infinite family of programs. It is not clear a priori that a certain kind

of proof is expressive enough to fully benefit from the minimality of the reduction. And in fact,

if we consider Ashcroft invariants, we observe that the expressiveness Ashcroft invariants gain

through sleep instrumentation depends crucially on the invariants’ width. Specifically, for Ashcroft

invariants of width 1, no expressivity is gained through the reduction.

Proposition 6.9 (Collapse at width 1). Suppose there exists an Ashcroft invariant of width 1
for the sleep-instrumented program Psleep . Then there also exists an Ashcroft invariant of width 1 for
the original program P.

Intuitively, the additional expressive power through sleep instrumentation can only be harnessed

through relational assertions, i.e., assertions that relate the local variables (including program

counter and sleep variables) of different threads. An Ashcroft invariant of width 1 does not include

such relational assertions. It cannot even distinguish two threads. Hence, the Ashcroft invariant

can either claim that all threads are asleep (which is unsound, as there is always at least one thread

awake), or that none of the threads are asleep (i.e., there is no reduction).

By contrast, we have seen that for Ashcroft invariants of width 2 (and consequently, any higher

width), we gain expressivity through sleep instrumentation. However, the fact that such invariants

can benefit from reduction does not imply that they can precisely capture the infinite family of

minimal reductions R(𝑛)𝑛∈N corresponding to a sleep-instrumented program Psleep . An Ashcroft

invariant may simply capture overapproximations of the minimal reductions, which nevertheless

allows for significant (qualitative) proof simplification (as in Example 4.11). Indeed we observe:

Observation 6.10. There exist programs for which no Ashcroft invariant of any width precisely
captures the reachable configurations of the reduction.
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Explanation. Consider a program P with the template

ℓ0 ℓ1 ℓ2st1 st2

such that all statements (of different threads) commute, except for the fact that st2:𝑖 ↷↷/ st2: 𝑗 .
An Ashcroft invariant of width 𝑘 would have to capture that, when the program P(𝑘) reaches the
control locations ⟨ℓ1, . . . , ℓ1⟩, all threads except one are in the sleep set. The last thread to take a

step must have had the maximal thread ID, otherwise it would have been added to the sleep set

earlier. But then, in the last step, the next enabled statement of every other thread (st2) commutes

with the executed statement st1, thus all threads with a lower thread ID are added to the sleep set.

Thus, if an Ashcroft invariant ∀𝑖1, . . . , 𝑖𝑘 . 𝜑 precisely captures the reduction, we must have

𝜑 ∧ (𝑖𝑑𝑖1 < . . . < id𝑖𝑘 ) ∧ pci1 = ℓ1 ∧ . . . ∧ pcik = ℓ1 |= sleep𝑖1 ∧ . . . ∧ sleep𝑖𝑘−1 (9)

However, in the program P(𝑘 + 1), we can reach a configuration with the control locations

⟨ℓ1, . . . , ℓ1, ℓ2⟩, such that the sleep set is empty. In particular, if the last step is the execution of

st2:𝑘 + 1, this statement does not commute with the enabled statements of all other threads, thus the

sleep set is emptied. We instantiate the Ashcroft invariant ∀𝑖1, . . . , 𝑖𝑘 . 𝜑 such that it considers the

first 𝑘 threads ({𝑖1, . . . , 𝑖𝑘 } = {1, . . . , 𝑘}) in increasing order of IDs (id𝑖1 < . . . < id𝑖𝑘 ). Equation (9)

prescribes that the sleep variables sleep𝑖1 , . . . , sleep𝑖𝑘−1 are true, when indeed for this configuration,

they are all false. Thus the configuration, while reachable, does not satisfy the Ashcroft invariant. □

Note that the key obstacle to precisely capturing the reduction in the above proof was the

non-commutativity of statements st2:𝑖 and st2: 𝑗 . We observe:

Observation 6.11. If all statements of different threads commute, an Ashcroft invariant of width 2
can capture a tight overapproximation of the reduction inherent in Psleep .

Explanation. The following Ashcroft invariant precisely captures the control flow:

∀𝑖, 𝑗 . id𝑖 < id 𝑗 ∧ pcj ≠ ℓinit → sleep𝑖
In other words, as soon as a thread 𝑗 takes a step, all threads with smaller IDs are put to sleep

and never awakened again. This is satisfied by all reachable configurations of Psleep , and the

Ashcroft invariant is precise: While it may include unreachable configurations ⟨®ℓ, 𝑠⟩ of Psleep , such

configurations are either (i) unreachable due to data constraints (not due to the reduction), or

(ii) there is a reachable configuration ⟨®ℓ, 𝑠′⟩ with the same control locations and variable values,

except that 𝑠 may assign more sleep variables to ⊥. The latter case is not problematic however,

because ⟨®ℓ, 𝑠⟩ and ⟨®ℓ, 𝑠′⟩ satisfy the same invariants over program variables, and all executions

possible from ⟨®ℓ, 𝑠⟩ are also possible from ⟨®ℓ, 𝑠′⟩. □

7 BROADER NOTIONS OF SOUND COMMUTATIVITY
We have so far focused on one particular notion of commutativity (see Section 4): Executing com-

muting statements in either order must yield the same semantics. The framework of commutativity

theory however admits more general notions of commutativity, from which verification can benefit.

Specifically, we extend our approach along two lines:

Contextual Commutativity. The position of statements inside a program, and in an execution,

provides a rich context which can benefit commutativity. Consider for instance the statements

queue[current]:=data (line 12) and msg:=queue[idx] (line 23) from the program Pnotify
shown

in Fig. 2. These statements do not, in general, commute; in the case that idx = current, executing
the statements in different orders yields different semantics.
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However, it is clear from the code of Pnotify
that, in every state where these statements are

enabled, it holds that idx < current. In such contexts, the order of execution does indeed not

matter. Hence, we say that the statements commute in the context idx < current (or, more broadly,

in the context idx ≠ current).

Semi-Commutativity. Commutativity as in Section 4 defines a symmetric relation: If st1:𝑖 com-

mutes with st2: 𝑗 , then st2: 𝑗 commutes with st1:𝑖 . The semantics of both execution orders are equal,

and consequently we can swap the statements in either direction to get an equivalent trace. Let us

entertain a non-symmetric variation. Consider for instance the statements current:=current+1

(line 13) and assume idx < current (line 22) from the program Pnotify
shown in Fig. 2. These state-

ments do not commute. Specifically, the execution of assume idx < current:𝑖 current:=current+1:𝑗

blocks if we have idx = current, the execution of current:=current+1:𝑗 assume idx < current:𝑖

does not. Generally, executing the increment of current first allows a strict superset of executions.

Thus, it is sound to eliminate a trace in which the increment happens after the assume statement

in favor of a trace with the opposite order, but the reverse is not true.

Without these generalized notions of commutativity, the program Pnotify
would not admit a

simple proof. We thus extend our approach.

Definition 7.1 (Contextual Semi-Commutativity). Let 𝜑 be a formula over global program variables

and local variables indexed by 𝑖 or 𝑗 . Statements st1:𝑖 and st2: 𝑗 semi-commute in the context𝜑 , denoted
st1:𝑖 ↷𝜑 st2: 𝑗 , if for all states 𝑠, 𝑠′ such that 𝑠 satisfies 𝜑 , the following implication holds:

(𝑠, 𝑠′) ∈ ⟦st1st2⟧ ⇒ (𝑠, 𝑠′) ∈ ⟦st2st1⟧

The general framework of commutativity theory is adapted accordingly. In place of an equivalence

relation, we now consider a preorder over traces (i.e., we lose symmetry). Specifically, we say that

a trace 𝜏1 is covered by a trace 𝜏2 if 𝜏2 can be derived from 𝜏1 by a sequence of swaps of adjacent

statements, where for every swap from a trace 𝜏 ′ (st1:𝑖) (st2: 𝑗) 𝜏 ′′ to a trace 𝜏 ′ (st2: 𝑗) (st1:𝑖) 𝜏 ′′,
we must have st1:𝑖 ↷𝜑 st2: 𝑗 for some 𝜑 that always holds after the execution of the prefix 𝜏 ′. A
reduction language of traces 𝐿 is then a subset 𝐿′ where for every trace 𝜏 ∈ 𝐿, there exists some

trace 𝜏 ′ ∈ 𝐿′ such that 𝜏 is covered by 𝜏 ′.
We modify the sleep instrumentation to account for contextual semi-commutativity by redefining

the commutativity test. To this end, we assume the existence of mapping from indexed statements

st1:𝑖, st2: 𝑗 to commutativity conditions 𝜑comm (st1:𝑖, st2: 𝑗), i.e., formulae over global variables as well

as local variables of threads 𝑖 and 𝑗 , such that st1:𝑖 ↷𝜑comm (st1:𝑖,st2: 𝑗 ) st2: 𝑗 .

Definition 7.2 (Contextual Semi-Commutativity Test). The contextual semi-commutativity test
comm( 𝑗, st:𝑖) is defined as the formula

comm( 𝑗, st:𝑖) :≡
∨
ℓ∈Loc

©«pcj = ℓ ∧
∧

st′∈enabled (ℓ )
𝜑comm (st′: 𝑗, st:𝑖)ª®¬ .

At this point it is crucial that in the instrumentation ] (st) of a statement st, the update of the sleep
variables, including the evaluation of the contextual semi-commutativity test, is performed before
the original statement st. Otherwise the instrumentation would not faithfully reflect contextual

semi-commutativity and might become unsound.

In the implementation of our approach (see Section 8), we generate commutativity conditions

𝜑comm (st1:𝑖, st2: 𝑗) by encoding semi-commutativity as a first-order logic formula and applying an

abduction algorithm to find sufficient conditions to guarantee it.
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The modified sleep set instrumentation with contextual semi-commutativity tests still represents

a reduction (Theorem 4.8) and satisfies soundness (Theorem 4.9) as well as conservative exten-

sion (Theorem 4.13). Furthermore, the CHC encodings introduced in Section 6 can be used with the

contextual semi-commutativity test in place of the commutativity test, and remain sound. However,

the represented lexicographical reductions are not necessarily minimal [Farzan and Vandikas 2020],

i.e., Proposition 4.10 does not hold. This is because the covering relation is not symmetric. There

may exist traces 𝜏1, 𝜏2 such 𝜏1 is not covered by any lexicographically smaller trace, 𝜏2 covers 𝜏1,

and 𝜏2 is only covered by itself. Then both 𝜏1 and 𝜏2 appear in the lexicographical reduction, yet

including 𝜏2 would suffice.

8 EVALUATION
As a proof of concept, we have developed a tool that integrates reduction in parameterized verifica-

tion. In particular, we implemented the different CHC encodings for the existence of an Ashcroft

invariant for the sleep-instrumented program Psleep , as discussed in Section 6. Our tool reads

Boogie [Leino 2008] programs, generates the CHC clauses, and executes different CHC solvers to

check if the CHC system is satisfiable. In particular, we used the state-of-the-art CHC solvers Eldar-

ica (github.com/uuverifiers/eldarica),Golem (verify.inf.usi.ch/Golem) and Z3/Spacer (github.com/Z3Prover/z3).

We evaluated the tool on a number of parameterized programs from the literature as well as custom

benchmarks. The purpose of this evaluation is to answer the following questions:

Q1: Can the modular approach of (1) encoding reductions through sleep instrumentation and

(2) subsequently verifying the resulting parameterized program work in practice?

Q2: Can we observe a practical benefit of the symmetry-aware explicit-sleep CHC encoding in

comparison to the default symbolic-sleep encoding?

We executed the benchmarks on a Debian 10.10 machine with a AMD Ryzen Threadripper 3970X

32-Core Processor using the BenchExec benchmarking tool [Beyer et al. 2019]. Each verification

run was given a timeout of 30min and a memory limit of 15GB. Our suite of 19 benchmarks is

comprised of a number of variations (inc-b?dec-*) of the program P±
(see Fig. 1), where a variable

is incremented and decremented by each thread and compared with 0; we also included variants

where a nondeterministic value is added to and subtracted from the variable (add-sub-*). Several
examples (namely lock, ticket, and mutex-*) are taken from [Hoenicke et al. 2017]; the mutex-*
examples correspond to the program P𝐾±

(see Fig. 3). As more complex programs, we included the

bluetooth example in the form presented in [Farzan et al. 2014], the example presented in Section 2

(notify-listeners), the thread-pooling example from [Farzan et al. 2015], a program in which

each thread computes the same sum of array elements (equalsum-ghost), and a custom example

involving communication via queues (line-queue). All benchmarks, as well as the generated CHC

encodings, can be found on zenodo [Farzan et al. 2023a].

Table 1 shows the benchmark results. The reported CPU time encompasses both the time required

to generate the CHC clauses (typically quite small) and the time required by the fastest successful

CHC solver, if any solver is successful.

Regarding Q1, we observe that the approach (in the explicit-sleep configuration) is able to verify

14 out of 19 benchmarks. In particular, we successfully show correctness of non-trivial benchmarks

such as bluetooth and notify-listeners. Without reductions, these programs do not have a

safe Ashcroft invariant; a proof would require complex ghost state and/or quantified invariants.

At the same time, even for the most successful configuration (explicit-sleep), three state-of-

the-art CHC solvers are unable to solve 5 of our benchmarks. Beyond the possibility of general

improvements in CHC solving, a possible way to improve the situation may be to guide the solvers

to specifically take advantage of the reduction. This could be beneficial in two scenarios: First,
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Table 1. Benchmark results. sat indicates that an Ashcroft invariant (of width 𝑘) was found, unsat indicates
that a CHC solver proved that no such Ashcroft invariant exists, “TO” indicates a timeout (> 30min).

no reduction symbolic-sleep explicit-sleep

Program 𝑘 status CPU time (s) status CPU time (s) status CPU time (s)

add-sub-nondet 2 unsat 20.5 sat 416.0 sat 74.5

add-sub-positive-nondet 2 unsat 51.1 sat 1 590.0 sat 144.0

bluetooth 2 unsat 6.5 TO – sat 532.5

equalsum-ghost 2 TO – TO – TO –

inc-bdec 2 unsat 5.8 sat 76.3 sat 51.3

inc-dec-eq0-locked-assert 2 sat 59.6 TO – sat 726.0

inc-dec-eq0-locked 2 unsat 110.0 TO – TO –

inc-dec-eq0 2 unsat 8.9 sat 112.0 sat 24.7

inc-dec-geq0 2 unsat 4.3 sat 5.8 sat 5.7

line-queue 2 TO – TO – TO –

lock 1 sat 4.0 sat 4.6 sat 4.7

mutex-3 2 unsat 5.2 sat 5.3 sat 4.5

4 sat 8.7 sat 95.5 TO –

mutex-4 2 unsat 3.5 sat 5.6 sat 4.3

5 sat 57.4 sat 723.0 TO –

mutex-5 2 unsat 4.5 sat 5.3 sat 4.0

6 sat 354.0 TO – TO –

mutex-unbounded 2 unsat 4.5 sat 6.6 sat 4.2

notify-listeners 1 TO – TO – sat 379.0

numbered-array 2 sat 4.0 sat 5.8 sat 5.4

thread-pooling 2 TO – TO – TO –

ticket 2 sat 332.0 TO – TO –

for programs which do not have an Ashcroft invariant without reduction, one could prevent the

solver from considering solutions that ignore the instrumentation. Second, one could try to prevent

the solver from considering solutions that use the sleep variables in “exotic” ways unsuitable to

express reduction. The second case could also reduce the overhead from the instrumentation

for programs where an Ashcroft invariant exists without reduction. As an example, consider the

program inc-dec-eq0-locked-assert, which has an Ashcroft invariant even without reduction.

Here, the CHC solvers spend significantly longer to find a solution when the instrumentation

is present. For the program ticket, the solvers even time out, even though the program can be

proven without reduction.

The evaluation data clearly shows the performance advantage of the explicit-sleep encoding.

With this encoding, our tool is able to verify 13 programs, compared to only 11 programs with

the symbolic-sleep encoding. Notice in particular that the complex program notify-listeners
is only proved correct by the explicit-sleep encoding. Furthermore, for programs solved by both

the symbolic-sleep and explicit-sleep encoding, the explicit-sleep encoding can lead to significant

speedup, up to a factor of 10x in the most extreme case (add-sub-positive-nondet). Despite the
increased number of clauses, we do not observe any overhead for the explicit-sleep encoding.

9 RELATEDWORK
There is a huge body of work on verification of parameterized programs. It is noteworthy that this

paper does not put forward a new (algorithmic) framework for verifying parameterized programs,

but rather suggests a generic way of incorporating commutativity into any existing framework. As

such, we will only very briefly survey a few techniques only to justify why we chose a particular

one as the framework to use for our proof of concept application.
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9.1 Parameterized Program Verification
In invisible invariants [Arons et al. 2001; Pnueli et al. 2001], a candidate for an Ashcroft invariant is

constructed by first computing the set of reachable states of the instance of the program with 𝑘

threads, and then generalizing the concrete thread identifiers in the reachable states. The candidate

(a universally quantified formula with 𝑘 variables over thread identifiers) is then verified using

a syntactic cutoff theorem. This approach, as well as other heuristic searchers [Emmi et al. 2010]

for Ashcroft invariants, do not have a guarantee of completeness. Therefore they suffer from the

problem that, if they fail, one does not know whether there is no proof with 𝑘 quantifiers or whether

the heuristic did not find it. This is why we opted to build our reduction framework on top of

thread-modular proofs [Hoenicke et al. 2017], which come with the guarantee of finding Ashcroft

invariants when one exists (modulo incompleteness of the Horn clause solver) or proving that

no Ashcroft invariant exists. This allows for a more principled comparison of the power of the

framework in proving the original program or a lexicographical reduction of it.

In [Farzan et al. 2014; Kaiser et al. 2014], counting proofs are constructed automatically. This can

be viewed as a partial solution to the problem of discovering the required ghost state automatically;

partial, in the sense that only ghost counters can be discovered. Such techniques are complementary

to the proposal in this paper; the simpler the proof, the more likely that a combination of this

technique can succeed in discovering it automatically.

Grebenshchikov et al. [2012], Hojjat et al. [2014], Gurfinkel et al. [2016], and Monniaux and

Gonnord [2016] study Horn constraints for 𝑘-thread-modular proofs, closely related to the frame-

work we chose to demonstrate our approach [Hoenicke et al. 2017].

9.2 Commutativity for Proof Simplification
There has been extensive work in incorporating commutativity into verification of concurrent

programs. One big cluster of such work appears under the title of partial order reduction (POR)

[Abdulla et al. 2014; Flanagan and Godefroid 2005; Godefroid 1996; Kahlon et al. 2009], and much

of this work is concerned with finite-state systems or executions of bounded length.

In the context of proofs of infinite-state programs, the focus of commutativity reasoning in

algorithmic verification so far has been on programs with a bounded number of threads [Chu and

Jaffar 2014; Farzan et al. 2022; Farzan and Vandikas 2019, 2020; Wachter et al. 2013].

Popeea et al. [2014] integrate the theory of Lipton’s movers [Lipton 1975] with compositional

proofs in the style of Owicki and Gries, to verify programs with a bounded number of threads.

The approach defines a complex Horn clause system that combines compositional reasoning, the

determination of mover annotations (i.e., commutativity checks) and the search for reducible blocks.

In interactive proofs [Elmas et al. 2009; Kragl and Qadeer 2018], commutativity reasoning based

on the principle of Lipton’s movers has been incorporated in a way applicable to programs with a

bounded number of threads as well as programs with an unbounded number of threads, despite not

explicitly using the modeling formalism of parameterized programs. Essentially, the input program

is alternatingly reduced and further abstracted. Each abstraction step may allow more statements to

commute, which enables further reduction. Since being a mover can be viewed as a local property

of an atomic problem step, the size of the environment (finite vs unbounded number of threads)

makes no difference in how larger atomic blocks are formed out of smaller ones by reasoning about

movers, and thus a successfully verified program is correct for any number of threads.

Flanagan and Freund [2020] also apply mover reasoning to simplify verification of programs with

an unbounded number of threads. Data structures are annotated with synchronization specifications
that indicate mover types (i.e., semi-commutativity) of read and write accesses to the data structure.

Users specify a reduction of a concurrent program by manually instrumenting the program with
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yield points indicating where interleaving with other threads may occur in the reduction. The

verifier then checks if this instrumentation is indeed sound, i.e., encodes a reduction of the program.

As discussed in [Farzan and Vandikas 2020], however, the kinds of program reductions that result

from Lipton’s movers are not comparable with those that are produced as lexicographical reductions

of (binary) commutativity relations. Besides, the locality advantages of movers disappear in the

context where the goal is anything but large block reasoning: for example, a lockstep reduction.
Such reductions are by definition not local to a single thread/process.

In inductive sequentialization [Kragl et al. 2020], a vaguely similar philosophy about proof

simplification is used: Rather than reason about arbitrarily complicated executions of distributed

protocol, one can reason about their equivalence to simpler ones and as such only give a proof of

correctness for the simpler ones. It is important to note that the notion of equivalence employed is

not the simple syntactic one (based on commutativity) used in this paper. As such, even the reasoning

about such equivalences may involve the use of invariants, and other proof-type constructs. The

final product is a proof of refinement between the complex and the simple protocols, and the

ingredients of the proof are provided by a user.

10 CONCLUSION AND FUTUREWORK
This paper proposes a methodology for incorporating commutativity reasoning into algorithmic

verification of parameterized programs. We put forward the thesis that this is a worthwhile cause,

because commutativity-based reductions can simplify the proofs of these programs in a precise

sense: a possible substantial complexity reduction in the nature of the ghost state required for the

proof. The solution was devised with an eye on practical concerns, in the sense that rather than

devising a whole new algorithmic framework, one should be able to use existing frameworks for

parameterized program verification with little effort.

Our investigation of this problem has led us to several new research questions that would be

interesting to explore in the future. Our results from Section 6.3 highlight the fact that Ashcroft

invariants, as a standard family of global invariants for parameterized programs, lack the expressive

power to encode optimal reductions for the entire family of programs represented by the param-

eterized program for an arbitrary commutativity relation. It would be interesting to investigate

whether this lack of expressivity is shared by other ways of giving a finitely-representable proof to

a parameterized program, for instance proof spaces [Farzan et al. 2015].

Classical trace theory, which studies commutativity in a principled way, relies on a finite alphabet
of program actions. For parameterized programs, one needs an infinite (indexed) alphabet of actions

to model the program behaviour faithfully. Most of the work on program reductions relies on a

classic result from trace theory that says “the set of lexicographical representatives of a regular

and (commutativity) closed language is regular”. The notion of regularity for indexed alphabets is

less standard, and can be defined based on a number of data automata like register, nominal, or

predicate automata. It will be interesting to investigate if an analogous result for these automata

exists and whether it can suggest fundamentally different ways of incorporating commutativity in

verification of parameterized programs.
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