
49

Stratified Commutativity in Verification Algorithms

for Concurrent Programs

AZADEH FARZAN, University of Toronto, Canada

DOMINIK KLUMPP, University of Freiburg, Germany

ANDREAS PODELSKI, University of Freiburg, Germany

The importance of exploiting commutativity relations in veri�cation algorithms for concurrent programs is

well-known. They can help simplify the proof and improve the time and space e�ciency. This paper studies

commutativity relations as a �rst-class object in the setting of veri�cation algorithms for concurrent programs.

A �rst contribution is a general framework for abstract commutativity relations. We introduce a general

soundness condition for commutativity relations, and present a method to automatically derive sound abstract

commutativity relations from a given proof. The method can be used in a veri�cation algorithm based on

abstraction re�nement to compute a new commutativity relation in each iteration of the abstraction re�nement

loop. A second result is a general proof rule that allows one to combine multiple commutativity relations, with

incomparable power, in a strati�ed way that preserves soundness and allows one to pro�t from the full power

of the combined relations. We present an algorithm for the strati�ed proof rule that performs an optimal

combination (in a sense made formal), enabling usage of strati�ed commutativity in algorithmic veri�cation.

We empirically evaluate the impact of abstract commutativity and strati�ed combination of commutativity

relations on veri�cation algorithms for concurrent programs.

CCS Concepts: • Theory of computation→ Program veri�cation; Abstraction; Concurrency.

Additional Key Words and Phrases: Commutativity, Partial Order Reduction

ACM Reference Format:

Azadeh Farzan, Dominik Klumpp, and Andreas Podelski. 2023. Strati�ed Commutativity in Veri�cation

Algorithms for Concurrent Programs. Proc. ACM Program. Lang. 7, POPL, Article 49 (January 2023), 28 pages.

https://doi.org/10.1145/3571242

1 INTRODUCTION

In the veri�cation of concurrent programs, commutativity reasoning has been known to be greatly
bene�cial since the seminal work by [Lipton 1975]. Commutativity can be employed to simplify
programs [Elmas et al. 2009; Kragl and Qadeer 2018], resulting in programs that have simpler
proofs [Farzan et al. 2022; Farzan and Vandikas 2019, 2020], and (in the setting of fully automated
veri�cation) it can decrease veri�cation time and space complexity [Cassez and Ziegler 2015; Farzan
et al. 2022; Wachter et al. 2013]. The underlying idea is that for certain pairs of statements, the
order in which they are executed does not matter: Such statements commute. Two interleavings
(sequences of statements from di�erent threads) that only di�er in the ordering between commuting
statements can be considered equivalent. Consequently, it su�ces to prove the correctness of one
interleaving in order to deduce the correctness of the interleaving’s entire equivalence class.

Authors’ addresses: Azadeh Farzan, University of Toronto, Toronto, Canada, azadeh@cs.toronto.edu; Dominik Klumpp,

University of Freiburg, Freiburg im Breisgau, Germany, klumpp@informatik.uni-freiburg.de; Andreas Podelski, University

of Freiburg, Freiburg im Breisgau, Germany, podelski@informatik.uni-freiburg.de.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/1-ART49

https://doi.org/10.1145/3571242

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0001-9005-2653
HTTPS://ORCID.ORG/0000-0003-4885-0728
HTTPS://ORCID.ORG/0000-0003-2540-9489
https://doi.org/10.1145/3571242
https://orcid.org/0000-0001-9005-2653
https://orcid.org/0000-0003-4885-0728
https://orcid.org/0000-0003-2540-9489
https://doi.org/10.1145/3571242
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3571242&domain=pdf&date_stamp=2023-01-11

49:2 Azadeh Farzan, Dominik Klumpp, and Andreas Podelski

Thread)1:

i := 0;

while (i < N) {

x := x + A[i];

i := i + 1;

print(i);

}

Thread)2:

j := 0;

while (j < N) {

y := y + A[j];

j := j + 1;

print(j);

}

Thread)3:

while (*) {

x := x + 1;

y := y - 1;

}

Procedure print:

print(val) {

atomic {

buf[ptr] := val;

ptr := ptr + 1;

}

}

Fig. 1. Example.

A subset of program interleavings that covers all equivalence classes is
called a reduction, and such a reduction soundly represents all program
behaviors. It hence su�ces to prove correctness of a reduction to con-
clude correctness of the program, and because they contain only a subset
of interleavings, reductions can have simpler proofs and more compact
representations.

Commutativity reasoning in this sense crucially relies on the precise no-
tion of commutativity between two statements: What does it mean for two
statements to commute? There exists a wide spectrum of (fundamentally
di�erent) possible answers to this question. As an example, concrete com-
mutativity can be de�ned based on the concrete semantics of statements (as
a transition relation between states): Two statements commute if executing
them in either order de�nes the same transition relation.

Let us consider an example program that shows where concrete commuta-
tivity can be useful to construct a reduction, and under what circumstances
it might be insu�cient. Figure 1 shows a concurrent program with three
threads. Threads)1 and)2 each compute a sum over an array � and store
the result in variables G and ~, respectively. After every iteration of the
respective loops, information about the progress of the computation is
printed. Thread)3 injects noise into the computation by increasing the
value of G and decreasing the value of ~. The speci�cation we want to prove
for this program is that, if initially variables G and ~ are initialized to 0, then
after all threads terminate, it holds that G ≥ ~.

Verifying that the example program satis�es this speci�cation presents a
challenge to veri�cation algorithms, which have to �nd the loop invariants automatically. When all
interleavings are considered, the proof requires complex assertions: Among others, the veri�cation

i := 0;

j := 0;

if (i < N) {

x := x + A[i];

i := i + 1;

print(i);

}

if (j < N) {

y := y + A[j];

j := j + 1;

print(j);

}

if (*) {

x := x + 1;

y := y - 1;

}

assume i >= N;

assume j >= N;

Fig. 2. Reduction

algorithmmust �nd an invariant of the form G ≥
∑8

:=0�[:]∧~ ≤
∑9

:=0
�[:].

Complex assertions like these are out of reach for veri�cation algorithms.
Commutativity (speci�cally, concrete commutativity) allows us to reduce

the program: The statements of thread)3 commute (concretely) against all
statements of threads)1 and)2. We can thus focus on a reduction where
we �rst consider all interleavings of threads)1 and)2, and only after both
these threads have terminated, we allow)3 to execute. This reduction is the
sequential composition of the parallel execution of)1 and)2 with the thread
)3, i.e., ()1 ∥)2) ;)3. Any interleaving of the concurrent program is equivalent
(up to concrete commutativity) to an interleaving in this reduction. Now, it
is possible to prove the postcondition G ≥ ~ for threads)1 and)2, and then
show that the assertion G ≥ ~ is preserved by the subsequent (sequential)
execution of thread)3.

However, to account for all interleavings of)1 ∥)2, we still need a complex
loop invariant. Since the statements print(i) of thread)1 and print(j)

of thread)2 do not commute concretely, no signi�cant further reduction is
possible. Consequently, veri�cation algorithms still will fail to verify this
reduction, which takes advantage of concrete commutativity.
This is unsatisfying. If the statements print(i) and print(j) were

allowed to commute, we could �nd a reduction with a simple proof. Figure 2
illustrates a subset of the interleavings of our example program, namely the

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

Stratified Commutativity in Verification Algorithms for Concurrent Programs 49:3

interleavings where the loops in each thread are executed in lockstep (each loop performs one
iteration in turn). Under the assumption that the statements print(i) and print(j) commute,
this subset of interleavings is a reduction of the concurrent program in Figure 1. And this reduction
has a simple proof: The entire program in Figure 2 can be proven correct using (conjunctions of)
the assertions 8 = 0, 8 = 9 , 8 = 9 + 1, G ≥ ~, G ≥ ~ + �[9], 8 ≤ # , 8 > # , 9 ≤ # and 9 > # . All of
these assertions are simple enough to be discovered by a veri�cation algorithm.

Intuitively, it should be sound to allow the statements print(i) and print(j) to commute:
Their relative ordering is irrelevant to the correctness property. In fact, an even stronger condition
holds: The relative ordering of these statements is irrelevant for the set of assertions given above
(i.e., the set of assertions in the proof for the reduction in Figure 2).

This paper builds on the observation that the success of the veri�cation algorithm depends
crucially on the particular choice of the relation used to de�ne commutativity. Once we depart from
concrete commutativity, there is a large spectrum for notions of abstract commutativity. The crucial
issue here is the soundness of abstract commutativity: The correctness of the interleavings in the
reduction must still imply the correctness of all interleavings of the program. In this paper, we
base de�nitions of abstract commutativity (as well as the notion of its soundness) on a given proof
for a reduction. We observe an apparent circular dependency (abstract commutativity is based on
a proof for a reduction which refers to abstract commutativity) which is vaguely reminiscent of
rely-guarantee reasoning: The proof relies on the reduction de�ned by the abstract commutativity
relation, and in turn the proof guarantees soundness of the abstract commutativity relation.
The idea of abstract commutativity has been used in the literature [Elmas et al. 2009; Kragl

and Qadeer 2018]. Our shared view is that abstraction can help increase commutativity. However,
in [Elmas et al. 2009; Kragl and Qadeer 2018], the increased commutativity is chie�y used for
the construction of larger atomic blocks to exploit local reasoning. Our thesis is that abstract
commutativity can be signi�cantly useful in proving properties of concurrent programs that
concern only a relatively small slice of the program: for example, properties local to a thread, or
safety of memory accesses, or lightweight properties like race detection. The smaller the slice, the
higher the potential for abstract commutativity, namely for many statements outside the relevant
slice. This in turn results in a reduction with a substantially smaller representation to be used by
the veri�cation algorithm. In these cases, abstract commutativity signi�cantly improves the time
and space e�ciency of algorithmic veri�cation. In contrast to (semi-)interactive settings such as
[Elmas et al. 2009; Kragl and Qadeer 2018], where soundness of the abstract commutativity is left
to the user, for a veri�cation algorithm it must hold by construction.

As a �rst contribution, the paper proposes a framework that allows us to investigate the commu-
tativity relation as a parameter to a veri�cation algorithm. We de�ne general soundness conditions
for commutativity relations in this framework to ensure correctness of the veri�cation is preserved.
We introduce several abstract commutativity relations that can be constructed automatically to
admit algorithmic veri�cation, and we investigate their soundness. We show empirically that even
coarse abstractions have signi�cant bene�t for the veri�cation algorithm.

Concrete commutativity and abstract commutativity are incomparable in power; i.e., one does
not subsume the other. They are both useful, and they come with di�erent strengths. Coming back
to our example, we note that the two statements print(i) and print(j) commute under a
suitable abstract commutativity relation, because the property of interest is blind to the order in
which data is printed (formally, to the �nal value of the variable buf). Hence, if we could combine
abstract commutativity with the concrete commutativity discussed before, we could conclude
that Figure 2 soundly represents all program interleavings. Thus, the combination of abstract and
concrete commutativity would lead to the simple proof we outlined.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

49:4 Azadeh Farzan, Dominik Klumpp, and Andreas Podelski

The example thus highlights a challenge for veri�cation algorithms: Neither the concrete nor the
abstract commutativity relation alone may be su�cient for the purpose of constructing a simple
proof. Particularly, neither concrete commutativity in isolation nor the abstract commutativity
presented in this paper in isolation allows us to reduce the example program to the reduction
illustrated in Figure 2 and thus have a simple proof. The question is whether one can leverage the
power of both the concrete and the abstract commutativity relation, to construct a simple proof, in
a veri�cation algorithm: Unlike in an interactive setting, the algorithm cannot rely on the user to
intervene and decide where to apply concrete or abstract commutativity. We show that this problem
is challenging by demonstrating that several straightforward approaches (such as taking the union
of the commutativity relations) are either unsound or unsuitable for veri�cation algorithms.

As second contribution,we introduce the concept of strati�ed reduction, as a way to take advantage
of multiple incomparable notions of commutativity. We introduce a strati�cation-based proof rule
that combines commutativity relations on a declarative level, and show soundness of this proof
rule. Our proof rule is general in nature, and can potentially be applied in many settings, not only
in algorithmic veri�cation.

Intuitively, a strati�ed reduction amounts to applying the two commutativity relations in strata:
To transform a given interleaving of the threads to one in the reduction, one can swap statements
according to the concrete commutativity relation arbitrarily often, but only until one starts swapping
statements according to the abstract commutativity relation (again, arbitrarily often). Formally, a
strati�ed reduction de�nes a subset of interleavings such that, for every interleaving, there exists a
strati�ed sequence of swaps (with the choice of the point of switch from the stratum of concrete
swaps to the stratum of abstract swaps) that transforms the interleaving into an interleaving in the
reduction.
In a sense, the strati�ed reduction is a more powerful combination of concrete and abstract

commutativity than previously found in the literature [Elmas et al. 2009; Kragl and Qadeer 2018]:
There, each statement is either considered under concrete commutativity, or it is abstracted and
then always considered under abstract commutativity. By contrast, a strati�ed sequence of swaps
allows a single statement to be swapped with other statements under concrete as well as under
abstract commutativity. The only restriction is that swaps up to concrete commutativity must
precede swaps up to abstract commutativity; arbitrarily interleaved swaps (as possible with the
union of commutativity relations) lead to unsoundness.

We investigate the concept of a strati�ed reduction for the pair of two commutativity relations,
where the �rst is the concrete commutativity relation and second is the abstract commutativity
relation. We establish that the same principle applies to the general case of a strati�ed reduction for
a tuple of = commutativity relations (where the sequence of commutativity relations in the tuple is
again ordered, with the �rst one being more abstract than the second etc.).

In the context of algorithmic veri�cation, the question arises whether there exists an algorithm
that constructs a strati�ed reduction. Formally, given a candidate proof, and given a sound abstract
commutativity relation wrt. the proof, the algorithm has to compute an e�ective representation of
the corresponding subset of interleavings. E�ectiveness here refers to the check of the validity of a
candidate proof (not for all interleavings but) for the corresponding subset of interleavings.

As the third main contribution of the paper, we present such an e�ective construction for strati�ed
reduction, for which we prove that it is optimal (in a sense that is made formal): Intuitively, it
squeezes the last bit of theoretically feasible advantage from the combination. The key insight
from this construction is that the optimal selection of “switch points” between strata (i.e., between
di�erent commutativity relations) for an in�nite number of traces in an in�nite number of equiva-
lence classes can be �nitely represented. We also present a schematic algorithm that allows for

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

Stratified Commutativity in Verification Algorithms for Concurrent Programs 49:5

the exploration of other selections of switch points which may sacri�ce theoretical optimality for
practical performance, while still guaranteeing soundness.

We have implemented a veri�cation algorithm that can be parametrized in the reduction for
the concrete commutativity relation, or the sequence of reductions for the sequence of abstract
commutativity relations (one for each of the candidate proofs constructed during the execution
of the veri�cation algorithm), or the strati�ed reduction (as discussed above). The experimental
results indicate the potential practical value of our main contributions.

Contributions. To summarize, our conceptual contribution is to single out the importance of the
commutativity relation as a parameter in veri�cation algorithms for concurrent programs. Previous
work [Farzan et al. 2022; Farzan and Vandikas 2019, 2020] has shown the potential in a systematic
investigation of reductions through di�erent choices of representative interleavings. However,
these works (like many others) always assume a �xed commutativity relation underlying the
reduction. The commutativity relation is never investigated in its own right, though the paramount
importance of its role is obvious – perhaps because it has not been considered that there exists a
wide (and systematically describable) space of choices. This can be put in stark contrast to, e.g., static
analysis or, formally, abstract interpretation, where the central parameter (the abstract domain) is
investigated in its own right.
Our �rst technical contribution is a general soundness condition for commutativity relations

that allows them to be soundly used in veri�cation algorithms based on abstraction re�nement. We
present a method to derive sound commutativity relations as well as two instances, and empirically
show the bene�t of abstract commutativity.

Our second technical contribution is a new proof rule based on strati�ed commutativity that com-
bines multiple incomparably powerful commutativity relations in a way that preserves soundness
and allows one to pro�t from the full power of the combined relations.

Finally, our third technical contribution is an algorithmic realization of strati�ed commutativity,
allowing its usage in algorithmic veri�cation. We prove that our algorithm is theoretically optimally
(in a sense made formal). We show the practical potential of this combination approach in an
empirical evaluation.

2 BACKGROUND: CONCURRENT PROGRAMS AND COMMUTATIVITY

Let us �x the basic notions concerning concurrent programs and commutativity.

Programs. We assume that Stmt denotes the set of all atomically executed program statements, e.g.
assignments like x:=y+1 , nondeterministic updates x:=* and conditions / assume statements

like x>=10 and x==y+1 (we use di�erent colors to indicate that statements belong to di�erent

threads). An assume statement like x>=10 blocks unless the condition is ful�lled. A trace g is a
sequence of statements; i.e., g ∈ Stmt

∗. A program % is a set of traces; i.e., % ⊆ Stmt
∗. Intuitively,

we identify a program % with the set of traces that correspond to paths in the program’s control
�ow graph (a path may not correspond to any actual execution; in this case, the corresponding
trace g is infeasible).
In this work we are concerned with concurrent programs % . That is, % is the set of traces that

correspond to all interleavings of traces taken from the control �ow graphs of individual threads.
We require that the set of traces representing % forms a regular language. We address programs
with a bounded number of threads. Our model is general enough to accommodate concurrent
programs that dynamically fork and join threads (as long as the number of threads can be bounded).
Throughout the paper, we assume that the program % is �xed.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

49:6 Azadeh Farzan, Dominik Klumpp, and Andreas Podelski

We sometimes use a deterministic �nite automaton (DFA) to represent the program % . A state @
of the DFA is then called a location, and encodes the program counter of all running threads. Our
approach does not require the DFA to be explicitly constructed (it is exponentially large in the
number of threads); it su�ces that the DFA’s transition function can be computed. It will always be
clear from the context whether % refers to a DFA or a set of traces.
Each statement BC ∈ Stmt is associated with a semantics ⟦BC⟧, a binary relation between states

of the program % (i.e., variable assignments). We extend the semantics function from statements
BC ∈ Stmt to traces g ∈ Stmt

∗ through relational composition in the usual way, i.e., ⟦g BC⟧ = ⟦g⟧◦⟦BC⟧
and ⟦Y⟧ = id. We use the standard notation for (valid) Hoare triples {i} BC {k } for a statement BC
and for assertions i andk (similarly {i} g {k } for a trace g) .

Correctness. Throughout the paper, we assume that the speci�cation of correctness for the
program % is given as a �xed precondition-postcondition pair (ipre, ipost) of assertions. We use
correct for the set of all traces that are correct; i.e., correct = {g ∈ Stmt

∗ | {ipre} g {ipost} }. Then
the program % is correct if all program traces g ∈ % are correct, i.e., if % ⊆ correct.
The setting is general enough to accommodate correctness speci�ed by an assert statement

in the program. In this case, we de�ne % as a set of error traces and specify correctness by the
precondition-postcondition pair (⊤,⊥). Correctness then states the infeasibility of each error trace.
Intuitively, an error trace corresponds to a path leading to an auxiliary error location; an error trace
always ends with the assume statement !e which uses the negation of the expression 4 in the
assert statement.
We distinguish the notion of a proof and the notion of a proof for the program % . A proof Π

is simply a set of valid Hoare triples over statements. We often identify Π with the set of traces
which can be proven correct by combinations of the Hoare triples in Π. It will be clear from context
whether Π refers to a set of Hoare triples or to a set of traces.

The proof Π is a proof for the program % if all traces of % can be proven correct by Π, i.e., if % ⊆ Π

(which is decidable, via DFAs). Not every proof Π is a proof for the program % . The existence of a
proof for % implies that % is correct (by transitivity of inclusion).

Commutativity and Closure. A commutativity relation � is a symmetric binary relation over
statements (in the literature, � is often referred to as independence relation). Intuitively, membership
of a pair (BC1, BC2) in a commutativity relation � captures that in some sense (which sense precisely
depends on �), the ordering in which BC1 and BC2 are executed “does not matter”. Formally, this is
captured by the Mazurkiewicz equivalence ∼� induced by � , i.e., an equivalence relation over traces
de�ned as the least congruence ∼� such that (0, 1) ∈ � implies 01 ∼� 10 (the congruence refers to
the monoid Stmt

∗; i.e., if 01 ∼� 10 then D 01 E ∼� D 10 E for all sequences D and E in Stmt
∗).

We denote by cl� (!) the closure of a set of traces ! under the equivalence relation ∼� , i.e., the set
of all traces that are equivalent to some trace in !.

3 ABSTRACT COMMUTATIVITY

A suitable notion of commutativity between statements is a key ingredient in many veri�cation
algorithms for concurrent programs. In this section, we discuss several possible ways to de�ne
notions of commutativity. In particular, we investigate a wide spectrum of commutativity relations
that allow for proof simpli�cation and e�ciency gains in proof checking. In contrast to previous
work, our approach is parametrized in a commutativity relation (or in fact, multiple commutativity
relations), and clearly identi�es the properties such relations must satisfy to guarantee soundness.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

Stratified Commutativity in Verification Algorithms for Concurrent Programs 49:7

The �rst commutativity relation we de�ne is based on the concrete semantics of statements. If
executing the statements in either order has the exact same e�ect (the same semantics), then we
declare the statements commutative. Formally, this relation is de�ned by

�� := { (BC1, BC2) ∈ Stmt × Stmt | ⟦BC1BC2⟧ = ⟦BC2BC1⟧ }

A su�cient condition for two statements to commute under the concrete commutativity �� is that
neither statement writes to a variable read or written by the other statement.

The concrete commutativity relation �� can be soundly used in the veri�cation of any program
and for any safety property: Correctness of a trace implies that all traces equivalent to �� are
also correct. Consequently, it su�ces to prove correctness of one representative trace in each
equivalence class to conclude correctness of the entire program.

As explained in the introduction, concrete commutativity does not take into account the program
being veri�ed, nor the property being proven. We go beyond this simple notion of commutativity
and, given a program, a property to be proven, and a candidate proof Π for this program and
property, we de�ne commutativity relations that take Π into account and are safe wrt. Π. Under
such commutativity relations, statements may commute that do not commute concretely. We call
such commutativity relations abstract commutativity relations, to re�ect that they are not tightly
bound to the statements’ concrete semantics but rather to the abstraction inherent in the proof Π.

Definition 3.1 (Proof-Specific Safety). Given a proof Π, a commutativity relation � is safe wrt.
Π if the closure of Π under the Mazurkiewicz-equivalence ∼� contains only correct traces.

cl� (Π) ⊆ correct

Safety of a commutativity relation � wrt. a proof Π means that whenever a trace g has a proof in
Π and g is equivalent to g ′ up to � (g ∼� g

′), then g ′ satis�es the given correctness property as well
– even though g ′ may not have a proof in Π. Our observation above that concrete commutativity
can be soundly used for any program and property can now be restated: �� is safe wrt. any proof
Π. The fact that safety is in general relative to the proof is crucial in this work, it is precisely this
restriction that allows us to let statements commute that do not commute concretely.
In a veri�cation algorithm based on abstraction re�nement, we begin with an empty proof

(Π = ∅). Every commutativity relation is safe wrt. this proof. The algorithm then successively
constructs a proof that covers more and more correct traces. For each proof, we have a new notion
of safety. The following proof rule allows us to conclude correctness of the veri�ed program and
terminate the veri�cation.

Proposition 3.2 (Commutativity Proof Rule). If the commutativity relation � is safe wrt. the
proof Π, and all traces of a program % are in the closure of Π, then the program % is correct.

% ⊆ cl� (Π) =⇒ % is correct

The proof rule states that, for any safe commutativity relation � , it is su�cient if each program
trace is equivalent (up to �) to a trace proven by Π in order to conclude that the program is correct;
just like for concrete commutativity above.
Next, we present a general scheme to derive a safe commutativity relation from a proof Π,

based on statement abstractions. In Section 3.2 we instantiate the scheme to a particular statement
abstraction that we use for examples throughout the paper and in the evaluation. We conclude
Section 3 with the presentation of another safe commutativity relation in Section 3.3 which does
not fall into the scheme of Section 3.1.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

49:8 Azadeh Farzan, Dominik Klumpp, and Andreas Podelski

3.1 Commutativity of Abstractions

One approach to derive a commutativity relation is via statement abstraction: Consider two state-
ments that do not commute concretely, i.e., the order in which they are executed a�ects the
behaviour. Intuitively, this di�erence in behaviour is often irrelevant to the correctness of the
program. Statement abstraction allows us to formally capture this intuition, and eliminate such
dependencies between statements. In particular, we here consider functions U : Stmt → Stmt that
map program statements to other program statements. We call U a statement abstraction if it is
conservative, i.e., the semantics of the abstracted statement allows all behaviours that are part of
the original semantics.

⟦BC⟧ ⊆ ⟦U (BC)⟧ for all BC ∈ Stmt

As an intuition, a nondeterministic assignment x:=* is a conservative abstraction of a (determin-

istic) assignment x:=y ; and the statement x>=0 is a conservative abstraction of the statement

x>=10 . On the other hand, x>=10 would not be a conservative abstraction of the statement

x:=10 . Given a statement abstraction U , we de�ne a commutativity relation �U
�
, building on the

notion of concrete commutativity:

Definition 3.3 (Commutativity induced by Statement Abstraction). Let U be a statement
abstraction. We de�ne �U

�
as the set of all pairs of statements (BC1, BC2) where (U (BC1), U (BC2)) ∈ �� .

To determine if two statements commute under U (or simply, commute abstractly), we check if
their respective abstractions (as given by U) commute concretely. Because U changes the semantics
of statements, these abstractions may commute when the original statements do not. Naturally, we
require certain conditions on the abstraction U to guarantee that the induced commutativity is safe.

Definition 3.4 (Proof-Preserving Abstraction). Given a proof Π, we say that a statement
abstraction U preserves Π (U is proof-preserving) if for each Hoare triple {i} 0 {k } in Π, the Hoare
triple {i} U (0) {k } is also valid.

Intuitively, proof preservation states that we must make sure to not over-approximate the
behaviour of statements so far as to invalidate the proof. This is particularly crucial in an automated
setting: In an interactive setting (such as [Elmas et al. 2009]), we could leave it to the user to choose
a statement abstraction, and accordingly make the user responsible for choosing the abstraction
such that the abstracted program still satis�es the speci�cation they wish to verify. In the automated
setting, it instead falls to the approach itself to ensure soundness. We here use the proof as a “guard
rail” against abstracting too far. Proof-preservation is su�cient to ensure safety of the induced
commutativity relation:

Theorem 3.5 (Proof-Preservation implies Safety). If the statement abstraction U preserves the
proof Π, then the induced commutativity relation �U

�
is safe wrt. to Π.

Proof. Given traces g1, g2 with g1 ∈ Π and g1 ∼�U
�
g2, we must prove that g2 ∈ correct. By proof

preservation, the statement-wise abstracted trace U (g1) can be proven correct using the assertions
from Π (just like g1). We have U (g1) ∼�

�
U (g2), and because ∼�

�
preserves correctness, this implies

U (g2) ∈ correct. But because U is conservative, ⟦g2⟧ ⊆ ⟦U (g2)⟧, and so g2 ∈ correct. □

To give a general perspective: The abstraction re�nement loop of a veri�cation algorithm
generates various proofs. Given a scheme to construct a statement abstraction U from the current
proof, such that U is (by construction) proof-preserving, the algorithm may then use the proof rule
above (Proposition 3.2) with the commutativity induced by U to determine if the veri�cation can
terminate and conclude that the analyzed program is correct.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

Stratified Commutativity in Verification Algorithms for Concurrent Programs 49:9

3.2 Case Study: Projection to the Proof

In this section, we present a scheme to construct statement abstractions from a given proof, and we
investigate the commutativity induced (in the sense of Section 3.1) by the constructed statement
abstractions. This commutativity relation is used in examples throughout the paper, and forms the
basis for our evaluation.

Given a proof Π, we de�ne a statement abstraction that can be automatically constructed through
projection to the proof Π. Intuitively, the idea behind projection to the proof is this: Suppose two
statements, say x:=17 and x:=y , do not commute under the concrete commutativity relation �� .
In a sense, we can say that a reason for non-commutativity is the variable x: Depending on the order
in which the statements are executed, the �nal value of x changes. However, if we observe that the
proof “does not care” about the value of x, then we might reasonably expect the two statements to
commute under a proof-speci�c commutativity relation. Formally, if none of the proof assertions
contains x as a free variable, the idea is to abstract the statements x:=17 and x:=y such that
the abstracted statements commute.
Consider another example: The statements x:=17 and y:=2*x do not commute under the

concrete commutativity �� . The variable x is again involved in causing this non-commutativity, but
in a di�erent sense than before: Depending on the ordering of the two statements, the data �ow
through x changes, a�ecting the �nal value of y. Once again, we can imagine a setting in which
the proof does not constrain the value of x at any point (but the value of y is constrained, perhaps
through an assertion ~ ≠ 1). We expect the two statements to commute wrt. to such a proof.

The statement abstraction de�ned through projection to the proof allows the statements in both
of these examples to commute. We achieve this by replacing every occurrence of x (the variable
not mentioned in the proof) in a statement by a non-deterministically chosen value.
For the formal presentation, it is convenient to represent statements through logical formulae.

As is standard, we translate statements to transition formulae, �rst-order formulae over logical
variables G and G ′ for every program variable x. For instance, the statement x:=x+1 is expressed

through the transition formula G ′ = G + 1 ∧ ~′ = ~; and the compound statement x==0;x:=y

is expressed as G = 0 ∧ G ′ = ~ ∧ ~′ = ~ (assuming x and y are the only program variables). The
statement abstraction by projection to a proof is then de�ned as follows:

Definition 3.6 (Projection to a Proof). Given a proof Π, let . be the set of all free variables
occurring in assertions in Π, along with their primed version (. = fvars(Π) ∪ {E ′ | E ∈ fvars(Π)}).
We de�ne the proof-projection UΠ to Π of a transition formula C5 as the projection of C5 to . , i.e., the
existential quanti�cation of all other free variables.

UΠ (C5) := ∃−. . C5

The abstraction existentially quanti�es all (input or output) variables in the transition formula
whose corresponding program variable does not appear in the proof Π. Intuitively, the existential
quanti�cation of an input variable G means that the abstracted transition formula reads a nondeter-
ministic value rather than the value of x. The quanti�cation of an output variable G ′ means that the
abstracted transition formula modi�es the value of program variable x to a nondeterministically
chosen value.

Example 3.7. Consider the statements in the explanation above. We assume that the only Hoare
triple used by Π is the triple {⊤} y:=2*x {~ ≠ 1}. The statement x:=17 is abstracted to the

nondeterministic assignment x:=* . The statement x:=y is similarly abstracted to x:=* . Finally,

y:=2*x is abstracted to the statement x:=* ; y:=* ; y%2==0 , which nondeterministically assigns

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

49:10 Azadeh Farzan, Dominik Klumpp, and Andreas Podelski

both x and y but preserves the constraint that the new value of y is even. Below, we give the
representation of both the original and the abstracted statements as transition formulae.

x:=17 ≡ G ′ = 17 ∧ ~′ = ~ UΠ (x:=17) ≡ ∃G, G ′ . G ′ = 17 ∧ ~′ = ~ ≡ ~′ = ~

x:=y ≡ G ′ = ~ ∧ ~′ = ~ UΠ (x:=y) ≡ ∃G, G ′ . G ′ = ~ ∧ ~′ = ~ ≡ ~′ = ~

y:=2*x ≡ G ′ = G ∧ ~′ = 2G UΠ (y:=2*x) ≡ ∃G, G ′ . G ′ = G ∧ ~′ = 2G ≡ 2 | ~′

The �rst two statements are abstracted to the same statement, and trivially commute under this
abstraction (either ordering of the abstracted statements has the same semantics). The abstracted
second and third statements also commute: The second statement preserves the value of y (while
nondeterministically updating x), and the third statement updates y to a nondeterministically
chosen even value (and also nondeterministically updates x).

Closer examination of the abstracted statements also shows that they are conservative abstrac-
tions of the original statements, and they preserve the Hoare triple used by the proof. In fact, this
holds for all statements and all proofs Π:

Proposition 3.8. Let Π be a proof. Then the commutativity relation �UΠ

�
induced by proof-projection

to Π is safe wrt. Π.

Proof. We �rst show that proof-projection UΠ is a conservative statement abstraction, and that
it preserves the proof Π (De�nition 3.4). Then we apply Theorem 3.5 to conclude the result. □

Consequently, one might think it is a good idea to employ the commutativity induced by proof-
projection as a drop-in replacement for the concrete commutativity relation: We can guarantee
that the commutativity relation is always safe, and we have seen that in some cases it allows more
statements to commute (Example 3.7). However, there exist statements that commute concretely
but do not commute under proof-projection.

Example 3.9. Consider the statements A[i]:=3 and A[i+1]:=4 . These statements commute
concretely, because 8 ≠ 8 + 1 always holds and hence disjoint portions of the array A are updated.
However, if the proof does not make reference to the variable i (although it does reference A), the
statements are abstracted to A[*]:=3 and A[*]:=4 , respectively: statements that update the
array at nondeterministically chosen positions. Hence one update could overwrite the change made
by the other. Thus the order in which the abstracted statements are executed a�ects the semantics,
and they do not commute. In transition formula notation:

A[i]:=3 ≡ �′
= �[8 ⊳ 3] ∧ 8′ = 8

A[i+1]:=4 ≡ �′
= �[8 + 1 ⊳ 4] ∧ 8′ = 8

UΠ (A[i]:=3) ≡ ∃8, 8′ . �′
= �[8 ⊳ 3] ∧ 8′ = 8 ≡ ∃E . �′

= �[E ⊳ 3]

UΠ (A[i+1]:=4) ≡ ∃8, 8′ . �′
= �[8 + 1 ⊳ 4] ∧ 8′ = 8 ≡ ∃E . �′

= �[E ⊳ 4]

As witnessed by Example 3.7 and Example 3.9, concrete commutativity and commutativity
induced by statement abstraction (such as proof-projection) are incomparable: In general, neither
relation subsumes the other. Section 5 introduces our approach to obtain the bene�ts from both.
Section 7 shows how commutativity induced by proof-projection behaves in a practical evaluation.

3.3 Case Study: Proof-Stu�ering Commutativity

While (proof-preserving) statement abstractions represent a general recipe for abstract commu-
tativity relations, there is a wider space of commutativity relations that are safe wrt. a proof. To
showcase this, we present such a commutativity relation not based on statement abstractions in

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

Stratified Commutativity in Verification Algorithms for Concurrent Programs 49:11

this section. The underlying idea is as follows: When verifying a program, certain statements may
turn out to be completely irrelevant to the proof of correctness. Speci�cally, we may observe that
such statements do not contribute anything to the proof (they do not modify or constrain variables
in a way useful to establish correctness), nor do they disturb the proof (they do not invalidate
proof assertions on the program variables established by other statements). Such statements can be
executed at any point in the program and any number of times (or even omitted), without a�ecting
the proof of correctness. These statements may implement non-functional aspects of the program
(say, logging), or the veri�ed speci�cation may not express full functional correctness.

Definition 3.10 (Stuttering modulo Proof). Given a proof Π, we call a statement BC stuttering
modulo Π if the following two conditions hold:

• If {i} BC {k } is a Hoare triple used by the proof Π, then it holds that i |= k .
• If the assertion i is used by the proof Π, then the Hoare triple {i} BC {i} is valid.

Let StutterΠ denote the set of all such statements.

Example 3.11. Consider a proof Π that uses only the three Hoare triples {⊤} x:=y {G ≥ ~},
{G ≥ ~} x:=x+1 {G ≥ ~} and {G ≥ ~} x<y {⊥}. The statement x:=x+1 is stuttering modulo Π.

To capture the idea that the ordering of stutter statements relative to other statements does not
matter, we de�ne the following commutativity relation:

Definition 3.12 (Stutter Commutativity). Given a proof Π, the stutter commutativity relation
�(is the set of all pairs of statements, where at least one of the two statements is stuttering modulo Π.

�(= { (BC1, BC2) ∈ Stmt × Stmt | BC1 ∈ StutterΠ ∨ BC2 ∈ StutterΠ }

Example 3.13 (continued from Example 3.11). Up to the stutter commutativity relation �(, the
statement x:=x+1 commutes against both the statement x:=y and against the statement x<y .

Though the stutter commutativity relation �(is not de�ned via a statement abstraction (following
the scheme introduced in Section 3.1), we can show that it is indeed safe (De�nition 3.1):

Proposition 3.14 (Stutter Commutativity Safety). Given a proof Π, the stutter commutativity
relation �(is safe wrt. Π.

Proof. Given traces g1, g2 with g1 ∈ Π and g1 ∼�(g2, we must prove that g2 ∈ correct. Let Π+

be the Hoare triples from Π enriched with all valid Hoare triples of the form {i} BC {i} for all
assertions i used by Π and all statements BC . We know that g1 can be proven correct using the Hoare
triples in Π

+. By induction over the number of swaps, we show that the same holds for all traces
equivalent to g1: The assertions before and after a stuttering statement are the same, and a swap
simply means one assertion is no longer repeated, and another is instead repeated once more. □

Stutter commutativity is in general incomparable with concrete commutativity as well as commu-
tativity induced by projection to the proof. For instance, the statements i:=3 and j:=3 commute

concretely, but under a proof using the Hoare triples {⊤} i:=3 {8 = 3} and {8 = 3} j:=3 {8 = 9},
neither of the statements is stuttering.

Stutter commutativity can help in e�ciently checking a proof, intuitively because it allows the
proof check to soundly prune parts of the state space. However, stutter commutativity is not very
useful for simplifying proofs: All traces equivalent to a representative proven correct by a proof Π
can be proven correct using the same assertions (see the proof sketch for Proposition 3.14). Only
the number of required Hoare triples may be lower.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

49:12 Azadeh Farzan, Dominik Klumpp, and Andreas Podelski

4 THE CHALLENGE OF COMBINING COMMUTATIVITY RELATIONS

We introduced two instances of safe commutativity relations. Since both turned out to be incompa-
rable with concrete commutativity, the question arises: How can we gain the full bene�t of both
concrete and abstract commutativity? It turns out that such a combination is challenging: Several
reasonable approaches do not provide satisfying solutions. The subsequent sections then present
our combination approach and show that it does not su�er from the same limitations.

For the remainder of this section, we assume a �xed proof Π, and let �♭ and � ♯ be commutativity

relations that are safe wrt. Π. Intuitively, we have in mind the case where �♭ = �� is the concrete

commutativity, and � ♯ is an abstract commutativity relation (such as presented in Section 3.2 or
Section 3.3). Ideally we want a combination of these commutativity relations such that:

(G1) The combination allows us to soundly conclude program correctness. The approaches

presented in this section combine the relations � ♯ and �♭ into a single commutativity relation,
hence we can use safety wrt. the proof Π to judge the combined commutativity relation.

(G2) The combination allows us to gain the full bene�ts of both relations. As a minimum, we
require that, if our proof rule (Proposition 3.2) instantiated with either commutativity relation

� ♯ or �♭ alone allows us to conclude that the program is correct, then the combination should
also allow us to conclude correctness.

(G3) The combination is suitable for automated veri�cation. That is, it does not require user
input to determine which commutativity relation is applied in each context.

The most straightforward idea to combine the two commutativity relations �♭ and � ♯ would be
to take their union. Unfortunately, the union of two safe commutativity relations can be unsafe:

Observation 4.1. Even if the commutativity relations � ♯ and �♭ are safe wrt. Π, the commutativity

relation � ♯ ∪ �♭ obtained by union is not necessarily safe wrt. Π.

Example 4.2. Consider a program with three threads, in which thread 1 only executes the
statement x:=1 , thread 2 executes x==1;z:=1 , and thread 3 executes x==2;z:=2 . We want to

prove the postcondition I = 2, and the current proof Π is given by the Hoare triples {⊤} x:=1 {⊤},
{⊤} x==1;z:=1 {⊤}, and {⊤} x==2;z:=2 {I = 2}.
The statements x==1;z:=1 and x==2;z:=2 commute concretely: Executing them in either

order is infeasible, because the guard of the statements are contradictory. On the other hand, the
statements x:=1 and x==2;z:=2 commute under proof-projection: Since x does not appear in
the proof, the guard x==2 is abstracted away. Consequently, if � = �� ∪ �UΠ

�
, we have

x:=1 x==1;z:=1 x==2;z:=2 ∼� x:=1 x==2;z:=2 x==1;z:=1

∼� x==2;z:=2 x:=1 x==1;z:=1

But the trace x==2;z:=2 x:=1 x==1;z:=1 violates the postcondition I = 2. In other words, a
trace proven correct by the proof is equivalent to an incorrect trace, i.e., � is not safe wrt. Π.

The soundness problem can be partially circumvented under some conditions. For instance, if we
commit to applying the commutativity relations only to disjoint sets of statements (say, in di�erent
parts of the program), a form of sound combination is possible:

Definition 4.3 (Mixed Commutativity Relation). Let", # be disjoint sets of statements. The

mixed commutativity relation �♭ "▷◁# � ♯ is the union of �♭ (restricted to") and � ♯ (restricted to #).

�♭ "▷◁# � ♯ := (�♭ ∩"2) ∪ (� ♯ ∩ # 2)

The mixed commutativity relation is safe wrt. the proof Π (G1), but under a stronger premise

that implies safety of both � ♯ and �♭.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

Stratified Commutativity in Verification Algorithms for Concurrent Programs 49:13

Proposition 4.4 (Safety of Mixed Commutativity). Let ", # be disjoint sets of statements.

Assume that the commutativity relations � ♯ and �♭ satisfy the inclusion cl�♭ (cl� ♯ (Π)) ⊆ correct. Then

the mixed commutativity relation �♭ "▷◁# � ♯ is safe wrt. the proof Π.

Proof. If two traces are equivalent up to �♭ "▷◁# � ♯, we can (by disjointness of" and #) �rst

make all swaps up to � ♯, yielding a trace in cl� ♯ (Π). We then make all swaps up to �♭, which by
assumption yields a correct trace. □

We study the additional premise in this result further in Section 5, and connect it to a formal

notion of being “more abstract”. For now we simply note that it is always ful�lled if � ♯ is safe wrt.

to Π, and �♭ = �� is the concrete commutativity.
Note that the restriction to disjoint sets of statements is quite severe: Traces with di�erent

interleaving between statements from " and # are never considered equivalent up to mixed
commutativity. Consequently, mixed commutativity does not allow us to fully bene�t from both
commutativity relations (G2). For the case where our commutativity relations are induced by
statement abstractions, the restriction to disjoint sets of statements is in fact unnecessary:

Proposition 4.5 (Selective Abstraction). Let U, V be statement abstractions that preserve the
proof Π, and let", # be disjoint sets of statements. Then the commutativity relation induced by the

selective abstraction U " ⊲⊳# V is safe wrt. Π and subsumes the mixed commutativity �U
� "▷◁# �

V

�
.

�
U"⊲⊳# V

�
⊇ �U� "▷◁# �

V

�

Here, (U " ⊲⊳# V) (BC) = U (BC) for BC ∈ " , (U " ⊲⊳# V) (BC) = V (BC) for BC ∈ # , and (U " ⊲⊳# V) (BC) = BC

otherwise.

In particular, note that the commutativity relation �
U"⊲⊳# V

�
induced by selective abstraction may

allow commutativity of statements in " with statements in # , so the inclusion can be strict.
Furthermore, we do not need the additional premise of Proposition 4.4. Hence, any commutativity
that can be achieved by mixing commutativity relations induced by statement abstractions can also
be achieved with a single statement abstraction.
However, commutativity induced by selective abstraction su�ers from some of the same draw-

backs as mixed commutativity: Firstly, both combinations rely on the choice of suitable sets of
statements" and # . This is challenging particularly in an automated setting, where we can not
delegate responsibility for an optimal choice to a user (G3). Secondly, neither combination in
general subsumes the commutativity a�orded by the two inputs individually (G2), for any choice
of", # . Next, we present an alternative approach for combining commutativity relations that does
not su�er from these limitations, and achieves our three goals (G1), (G2) and (G3).

5 THE STRATIFIED COMMUTATIVITY PROOF RULE

Section 4 presents several approaches to combine two commutativity relations, and discusses
their limitations. A key takeaway is this: Composing two commutativity relations into a single
relation requires tradeo�s to ensure safety. Making the best choice for this tradeo� presents an
obstacle in automated veri�cation setting. Hence we explore the idea of maintaining two separate
commutativity relations, and present a new proof rule that incorporates both relations.

We observed before (in Example 4.2) that the union of two safe commutativity relations, say the
concrete commutativity relation �� and a commutativity relation �U

�
induced by a proof-preserving

statement abstraction, can be unsafe. The reason for this lies in the fact that taking the union allows
us to interleave swaps of statements up to concrete and abstract commutativity arbitrarily. We
show that imposing a de�nite order in which the two commutativity relations are applied leads to
a sound proof rule.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

49:14 Azadeh Farzan, Dominik Klumpp, and Andreas Podelski

Let us �rst explain the intuition behind this emphasis on the order in which the commutativity
relations are applied, before arriving at the formal de�nition (De�nition 5.1). To this end, we
examine Example 4.2 more closely. Given a trace proven correct by the proof Π, we �rst swapped
the statements x==1;z:=1 and x==2;z:=2 , which commute concretely. However, note that these
statements do not commute under projection to the proof (the guards are abstracted away, and
the updates to z do not commute). We then subsequently swapped two statements that commute
under projection to the proof, but not concretely. Note that the order in which these two swaps
were performed was crucial; the statements swapped in the second step are not even adjacent in
the �rst step. By safety of the concrete commutativity �� , we know that the trace obtained after

the �rst swap, x:=1 x==2;z:=2 x==1;z:=1 , is correct. However, this trace is not proven by Π.
Consequently, even though the abstract commutativity �UΠ

�
induced by projection to the proof is

safe wrt. Π, we can not guarantee that the trace obtained after the second swap is still correct – in
fact, it is incorrect.

Π

cl� ♯ (Π)

cl�
�
(cl� ♯ (Π))

Fig. 3. Commutativity Strata

Had we �rst applied a swap up to the commutativity �UΠ

�
induced

by proof-projection, safety of �UΠ

�
wrt. Π would have guaranteed that

the resulting trace is correct. The concrete commutativity �� always
preserves correctness, hence any subsequent swaps up to �� would still
yield correct traces. This suggests that we should obey a certain order
in which we swap statements up to the two commutativity relations:
Starting from a trace proven by Π, we �rst swap statements up to �UΠ

�
,

and only afterwards we swap statements up to �� . In the following
de�nition of a strati�ed proof, the idea of applying our commutativity
relations in this precise order is our guiding principle. Note that we

�x here (and for the remainder of this section) the “more concrete” commutativity relation �♭ to be

precisely the concrete commutativity �� , while still allowing any safe abstract commutativity � ♯

(since this combination is our main application). Further below, we discuss in more detail under
which conditions two (or more) commutativity relations can be combined in this way.

Definition 5.1 (Stratified Proof). Let Π be a proof. The corresponding strati�ed proof is the
set of traces derived by (1) taking the traces proven by Π, (2) adding all traces equivalent up to the

abstract commutativity � ♯, and (3) adding to the set resulting from (2) all traces equivalent to the
concrete commutativity �� . Formally, we denote this set by cl�

�
(cl� ♯ (Π)).

Figure 3 illustrates the strata of commutativity applied around the proof. The following proof
rule allows us to conclude correctness from a strati�ed proof.

Theorem 5.2 (Stratified Proof Rule). Let Π be a proof. If all program traces of a program % are
covered by the strati�ed proof corresponding to Π, then % is correct.

% ⊆ cl�
�
(cl� ♯ (Π)) =⇒ % is correct

The order in which the two commutativity relations are applied – �rst abstract commutativity,
then concrete commutativity – is absolutely crucial for the soundness of this proof rule. Notably,
simply reordering the strata (i.e., inverting the order in which the two closure operations are
applied) in Theorem 5.2 results in unsoundness:

Observation 5.3. There exist a program % and a proof Π such that the inclusion % ⊆ cl� ♯ (cl�� (Π))
holds, but % is incorrect. Example 4.2 shows such a case.

The idea is that oncewe swap any two statements up to the concrete commutativity, we only know
that the resulting trace is still correct. However, we lose any connection between the resulting

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

Stratified Commutativity in Verification Algorithms for Concurrent Programs 49:15

trace and the proof Π: The trace may not be proven correct by Π, and intuitively the implicit
abstraction inherent in the proof Π may be too liberal to show correctness of the trace. Formally,

safety of � ♯ wrt. Π only guarantees correctness of traces equivalent (up to � ♯ alone) to a trace

proven by Π. It is precisely this limitation that enables � ♯ to declare statements as commutative
that do not commute concretely; and it is precisely this limitation that requires us to impose an
order on the commutativity relations. Fortunately, it turns out that this seeming limitation is still
quite permissive and yields a powerful proof rule. In fact, it is straightforward to show (using only
the monotonicity and extensivity of closure) that the strati�ed proof rule generalizes the proof
rule based on a single commutativity relation: If the premise of Proposition 3.2 holds for either
commutativity relation, then the premise of Theorem 5.2 holds as well.

% ⊆ cl�
�
(Π) =⇒ % ⊆ cl�

�
(cl� ♯ (Π)) % ⊆ cl� ♯ (Π) =⇒ % ⊆ cl�

�
(cl� ♯ (Π))

We have seen already in the introduction that the generalization can be strict. Furthermore, it
follows directly from the proof of Proposition 4.4 that the strati�ed proof rule subsumes the mixing
of commutativity relations with disjoint domains:

% ⊆ cl�
�"▷◁# � ♯ (Π) =⇒ % ⊆ cl�

�
(cl� ♯ (Π))

Similarly, there always exist adversarial choices of " and # such that the selective abstraction
is less powerful than the strati�ed proof rule (though in general they are incomparable). The
strati�ed proof rule does not require us to select sets" and # and is thus well suited for automated
veri�cation.

Beyond Two Commutativity Relations. Our approach generalizes from two to any number of
commutativity relations. This requires a closer look at the conditions under which commutativity
relations can be combined in a strati�ed manner. The following de�nition formulates a general
condition for soundness:

Definition 5.4 (Stratifiability). Given a proof Π, we say that the sequence of commutativity
relations (�1, �2, . . . , �=) is strati�able if iteratively applying the corresponding closures to the proof Π
yields a set that contains only correct traces, i.e., if

cl�= (cl�=−1 (. . . cl�1 (Π) . . .)) ⊆ correct.

If a sequence of commutativity relations (�1, �2, . . . , �=) is strati�able, then each commutativity
relation �8 in the sequence is safe wrt. the proof Π (this can be shown using the monotonicity of
closure). The presentation above is based on a special case of strati�ability:

Observation 5.5. Given a proof Π and an abstract commutativity relation � ♯ that is safe wrt. Π,

the pair (� ♯, ��) formed by the abstract commutativity relation � ♯ and the concrete commutativity
relation �� is strati�able.

For other strati�able sequences of (possibly more than two) commutativity relations, we again

turn to statement abstractions. In Section 4, given the two commutativity relations � ♯ and �♭, we

�x the terminology to call � ♯ “more abstract” and �♭ “more concrete”. In this section, given the
sequence of commutativity relations �1, . . . , �= , we generalize the terminology and call �8 “more
abstract” than � 9 if 8 < 9 . The terminology stems from the following statement:

Proposition 5.6 (Stratifiability on Statement Abstractions). Let U1, U2, . . . , U= be a se-
quence of proof-preserving statement abstractions and let �U8

�
be the commutativity relation induced

by the statement abstraction U8 . If each statement abstraction U8 is more abstract than U8+1, i.e.,
⟦U8 (BC)⟧ ⊇ ⟦U8+1 (BC)⟧ for all statements BC , then the sequence of induced commutativity relations
(�U1

�
, �U2

�
, . . . , �U=

�
) is strati�able.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

49:16 Azadeh Farzan, Dominik Klumpp, and Andreas Podelski

Proof. Let correctU = { g | U (g) ∈ correct }. From Π ⊆ correctU1
, the fact that correctU

is closed under �U , and correctU8 ⊆ correctU8+1 , it inductively follows that the iterated closure
cl�U= (. . . cl�U1 (Π) . . .) is a subset of correctU= , which in turn is a subset of correct. □

As another example (not covered by the above proposition), the sequence (�(, �
UΠ

�
, ��) formed

by the stutter commutativity relation �((see Section 3.3), the commutativity induced by proof-
projection �UΠ

�
(see Section 3.2), and the concrete commutativity relation �� is strati�able.

The proof rule based on strati�ed commutativity, stated in Theorem 5.2 speci�cally for the

strati�able pair (� ♯, ��), generalizes to every strati�able sequence of commutativity relations:

Definition 5.7 (=-Stratified Proof). Let Π be a proof, and let (�1, . . . , �=) be a strati�able
sequence of commutativity relations. The =-strati�ed proof corresponding to Π is the set of traces
cl�= (. . . cl�1 (Π) . . .) which is obtained by iteratively applying the corresponding closures to the proof Π.

Theorem 5.8 (=-Stratified Proof Rule). Let Π be a proof, and let (�1, . . . , �=) be a strati�able
sequence of commutativity relations. If all program traces of a program % are covered by the =-strati�ed
proof corresponding to Π, then % is correct.

% ⊆ cl�= (. . . cl�1 (Π) . . .) =⇒ % is correct

6 EFFECTIVE COMMUTATIVITY STRATIFICATION

While the strati�ed proof rule (Theorem 5.2) and its generalization to = relations (Theorem 5.8) are
theoretically powerful, they are not directly amenable to algorithmic veri�cation: A veri�cation
algorithm that constructs candidate proofs Π in an abstraction re�nement loop must be able to
automatically check whether a given proof Π is su�cient to conclude correctness of the analyzed
program. We call this step the proof check, and it amounts to deciding the premise of a proof
rule. However, already the premise of our single-relation proof rule (Proposition 3.2) presents a
challenge: Even though the program % and the proof Π can be represented as regular languages,
the closure cl� (Π) induced by a commutativity relation � may not be regular. In fact, the premise of
Proposition 3.2 is known to be undecidable [Ochmanski 1995]. The premise of our new strati�ed
proof rule Theorem 5.2 is similarly undecidable (for instance, it collapses to the undecidable

single-relation case if �� ⊆ � ♯).
In the following, we study a strengthening of the strati�ed commutativity proof rule’s premise

to a decidable condition. For clarity of presentation, we again discuss this �rst for the case of some

“abstract” commutativity relation � ♯ (that is safe wrt. the proof Π) and the concrete commutativity
�� . Further below, we generalize to an arbitrary strati�able sequence of commutativity relations.

6.1 Towards Decidable Proof Checking

It is a well-known result [Ochmanski 1995] that the single-relation case can be made decidable by
strengthening the premise of the proof rule (Proposition 3.2) through the introduction of certain
normal forms for equivalence classes, which are de�ned via lexicographic orders. The premise of
Proposition 3.2 states that for every trace g of the program % , there exists a trace g ′ that is equivalent
(up to a commutativity relation �), such that g ′ is proven correct by the proof Π.

∀g ∈ % . ∃g ′ ∈ Π . g ′ ∼� g

Given a lexicographic total order ⪯ over traces, this condition can be strengthened by requiring
that the trace g ′ is less than the trace g up to this order:

∀g ∈ % . ∃g ′ ∈ Π . g ′ ∼� g ∧ g ′ ⪯ g (1)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

Stratified Commutativity in Verification Algorithms for Concurrent Programs 49:17

It follows that in fact, the ⪯-minimal trace in the equivalence class of g must be proven correct by
Π. We call this minimal trace the representative for g . To conclude that condition (1) holds, it then
su�ces to show that the set of all such representatives for traces of % is subsumed by the proof Π.

We generalize a de�nition from recent work [Farzan et al. 2022] and de�ne the set of representa-
tives (called a reduction) wrt. a single commutativity relation as follows:

Definition 6.1 (Generalized Reduction). Let � be a commutativity relation, and let ! be a set
of traces (not necessarily closed under �). The reduction of ! wrt. � is de�ned as the set of minimal
representatives present in !, for each equivalence class of a trace in !.

red�⪯ (!) := {min⪯ ([g]� ∩ !) | g ∈ ! }

Our generalization allows the reduction operator red�⪯ (·) to be applied to sets of traces ! that
are not closed under � : We �rst intersect each equivalence class [g]� with the language !, before

taking the minimum of the resulting set. This intersection ensures that red�⪯ (!) is always a subset
of !. For closed sets !, our de�nition exactly coincides with the de�nition of [Farzan et al. 2022].

The ability to de�ne the reduction of a non-closed language is of relevance below. However, for

now let us take the reduction red�⪯ (%) of the set of program traces % . As intuitively argued above,

the set red�⪯ (%) is subsumed by Π if and only if condition (1) holds. It is a known result [Ochmanski

1995] that the reduction red�⪯ (%) is a regular language (taking advantage of the fact that the program
% is closed under �). Hence condition (1) amounts to an inclusion between regular languages, which
can be e�ectively decided.

We apply the same reasoning to �nd an analogous, decidable su�cient condition for the strati�ed
proof rule, Theorem 5.2. The premise of the proof rule allows us, for every trace g of the program

% , to �rst �nd an �� -equivalent trace g
′′, and then �nd a trace g ′ that is � ♯-equivalent to g ′′, such

that g ′ is proven correct by the proof Π. In other words, it is equivalent to the following:

∀g ∈ % . ∃g ′ ∈ Π, g ′′ ∈ Stmt
∗ . g ′ ∼� ♯ g

′′ ∼�
�
g

We strengthen this condition by ordering the traces g , g ′′ and g ′ with a total lexicographic order:

∀g ∈ % . ∃g ′ ∈ Π, g ′′ ∈ Stmt
∗ . g ′ ∼� ♯ g

′′ ∼�
�
g ∧ g ′ ⪯ g ′′ ⪯ g (2)

Finally, in order to �nd an algorithm to decide condition (2), we again frame the problem as a
language inclusion, using the reduction operator de�ned above.

Proposition 6.2. Condition (2) holds if and only if red�
♯

⪯ (red
�
�

⪯ (%) ∪ Π) ⊆ Π holds.

We arrive at a new proof rule. Below, in Section 6.2 and Section 6.3, we present an algorithm
that e�ectively decides the premise of this proof rule.

Theorem 6.3 (Decidable Proof Rule). Let Π be a proof, and let ⪯ be a lexicographic order on
traces. If the inclusion below holds, then the program % is correct.

red�
♯

⪯ (red
�
�

⪯ (%) ∪ Π) ⊆ Π (3)

Proof. Suppose the inclusion (3) holds. From Proposition 6.2 and the reasoning above, it follows
that % ⊆ cl�

�
(cl� ♯ (Π)) holds. The correctness of % then follows by Theorem 5.2. □

Let us examine the premise of Theorem 6.3 more closely. We �rst take the reduction of the
program up to the concrete commutativity relation �� . Then we take the union with the proof Π,
and �nally we take the reduction of the resulting set of traces up to the abstract commutativity

relation � ♯. The reduction operators up to the two commutativity relations are here applied to the
program % in exactly the reverse order to the application of the corresponding closure operators to
Π in Theorem 5.2.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

49:18 Azadeh Farzan, Dominik Klumpp, and Andreas Podelski

%

red
�
�

⪯ (%)

red�
♯

⪯ (%)
g1

g2

g3

g4

��

� ♯

� ♯

� ♯

Fig. 4. Reduction up to two commutativity relations � ♯ and �
�

The addition of the traces proved correct by the proof Π before applying the second reduction is
perhaps counterintuitive. To understand this, examine the illustration in Figure 4: Given a trace g1
in the program, the �rst reduction (shown in green) contains an �� -equivalent representative g2 for

the trace g1. Next, we apply the second reduction up to the abstract commutativity � ♯. However,

the input language for this reduction operator is not closed under � ♯, hence the minimal trace g3
in the � ♯-equivalence class of g2 may not be available as representative for g2. If we did not add
the traces proved correct by Π, De�nition 6.1 would choose the minimal available trace g4 as the
representative for g2. However, if g3 is already proven correct, adding it back before we apply the
second reduction allows us to choose g3 as the representative for both g2 and g4. The following
proposition states that indeed, adding back the traces of Π yields a weaker criterion than merely
applying both reductions: I.e., the proof check based on Theorem 6.3 succeeds more often than a

proof check based on the inclusion red�
♯

⪯ (red
�
�

⪯ (%)) ⊆ Π. Furthermore, Theorem 6.3 is still a more
general proof rule than the decidable variants of the single-relation proof rule.

Proposition 6.4. Each of the inclusions below de�nes a stronger condition than the inclusion (3).

red�
♯

⪯ (red
�
�

⪯ (%)) ⊆ Π red�
♯

⪯ (%) ⊆ Π red
�
�

⪯ (%) ⊆ Π

Let us re�ect on the role of the proof Π in our proof rule. Suppose for the moment that we

instantiate the abstract commutativity � ♯ with the commutativity induced by projection to the
proof UΠ (Section 3.2). Now, the proof Π appears three times in the premise of our proof rule:

red
�
UΠ
�

⪯ (red
�
�

⪯ (%) ∪ Π) ⊆ Π

Our veri�cation hence amounts to searching a proof Π that is a post-�xpoint of the function

_- . red
�
U-
�

⪯ (red
�
�

⪯ (%) ∪ -)

Even if instead of the commutativity �UΠ

�
induced by projection to the proof UΠ , one were to use

some other abstract commutativity relation � ♯, this relation � ♯ would still have to (implicitly) depend

on the proof Π, in order to ensure that � ♯ is safe wrt. the proof Π. Consequently, and in contrast
to previous proof rules, a “good proof” (i.e., a proof for which the veri�cation succeeds) must
not only cover a large set of traces, it must also allow powerful abstract commutativity. What
characterizes such a proof is an open question, and likely highly dependent on the strategy to
derive commutativity from the proof.

Before we move on to present an algorithm capable of deciding the premise of Theorem 6.3, let
us complete this discussion by again considering the generalization to any strati�able sequence of
commutativity relation (�1, . . . , �=). Again, the results for two relations generalize directly:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

Stratified Commutativity in Verification Algorithms for Concurrent Programs 49:19

Theorem 6.5 (Decidable=-Stratified Proof Rule). LetΠ be a proof, and let ⪯ be a lexicographic
order on traces. If the inclusion below holds, then the program % is correct.

red�1⪯ (. . . red
�=−1
⪯ (red�=⪯ (%) ∪ Π) . . . ∪ Π) ⊆ Π (4)

Analogous to Proposition 6.4, the above proof rules generalizes the corresponding rule for any
of the commutativity relations in isolation:

Proposition 6.6. Each inclusion red�8⪯ (%) ⊆ Π de�nes a stronger condition than inclusion (4).

Accordingly, the proof rules based on the respective single reductions are weaker than the proof
rule based on strati�ed reduction. In fact, we have an in�nite hierarchy of strati�ed reductions:
(= + 1)-strati�ed reductions can be more powerful than =-strati�ed reductions, for any =.

6.2 A Schematic Construction of Stratified Reductions

In the previous section, we have introduced a new proof rule (Theorem 6.5, and the special case of
Theorem 6.3) for concurrent programs based on the idea of strata of commutativity. In this section,
we show that the premise of this new proof rule is decidable, i.e., we present an algorithm that
decides the inclusion (4). Our algorithm takes the following parameters as inputs:

(1) the program % : As explained in Section 2, we think of the program % as a deterministic �nite
automaton whose alphabet is made up of program statements.

(2) a proof Π: As de�ned in Section 2, a proof is a set of Hoare triples. In this section, we
identify the proof Π with a �nite automaton whose states are given by assertions, with the
precondition ipre the initial and the postcondition ipost the (only) accepting state, and each
transition from a state i to a statek labeled by a statement BC corresponds to a Hoare triple
{i} BC {k } in Π. We assume wlog. that the automaton Π is deterministic and total.

(3) a lexicographic order ⪯ on traces: The notion of the order can be generalized from “normal”
lexicographic orders to the larger class of positional lexicographic orders [Farzan et al. 2022]:
We assume that ⪯ is given by an underlying total order on statements <@ for each location @
of the program % .

(4) a strati�able sequence of commutativity relations (�1, . . . , �=): We assume that the program % ,
viewed as a set of program traces, is closed under all these commutativity relations. This
assumption is justi�ed, as we can always restrict the relations such that this is the case.
Intuitively, this amounts to only considering commutativity between statements of di�erent
threads.

Given these parameters, the algorithm to decide the inclusion (4) constructs a �nite automaton
ℜopt . The language recognized by this automaton ℜopt is equivalent to the language

! := red�1⪯ (. . . red
�=−1
⪯ (red�=⪯ (%) ∪ Π) . . . ∪ Π) (5)

modulo the set Π of traces covered by the proof: ℜopt is a subset of Π if and only if ! is a subset of
Π (i.e., inclusion (4) holds). Thereby we decide the inclusion (4) by deciding the inclusion ℜopt ⊆ Π,
an inclusion between deterministic �nite automata.
There is an inherent nondeterminism in the idea of strati�ed commutativity: To get from a

trace g of the program % to its representative trace g ′ in the proof, we must �rst swap statements
up to concrete commutativity, and then at some point nondeterministically decide to now swap
statements up to abstract commutativity instead – or, in the general case, decide to switch from
swaps according to �8 to swaps according to �8+1. In this section, we present a schematic construction
of a reduction automaton ℜ5 that is parametrized in a strategy 5 (called a budget function) that
resolves this nondeterminism. Identifying the budget function as a parameter allows us to compare
di�erent strategies, and compare the quality of the resulting reductions. Each strategy corresponds

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

49:20 Azadeh Farzan, Dominik Klumpp, and Andreas Podelski

to a su�cient condition for the inclusion (4). Section 6.3 then presents a deterministic strategy (a
budget function opt) that optimally resolves the nondeterminism, and furthermore allows us to
precisely decide the inclusion (4), rather than some strictly stronger condition.

The construction of strati�ed reductions takes inspiration from the work on sleep sets [Godefroid
1996] in the partial order reduction literature. The constructed automaton assigns to each state a set
of letters (the sleep set). Intuitively, outgoing transitions labeled by a letter in a state’s sleep set
can be safely pruned. Our construction additionally stores for each letter in the sleep set which
commutativity relations justify the letter’s presence in the sleep set: In case we have only the two

relations � ♯ and �� , this is either just the abstract commutativity relation � ♯ in isolation, or the

abstract and concrete commutativity relations (� ♯ and ��) in combination. In the general setting
of a strati�able sequence (�1, . . . , �=), a letter’s presence in the sleep set can be justi�ed with any
pre�x (�1, . . . , �:), for : ≤ =, of the sequence. Hence, our construction essentially replaces sleep
sets by sleep maps, partial functions from letters into the set {1, . . . , =}. If a statement 0 is in the
sleep map<, we call<(0) the price of 0.
Storing the price of each letter in the sleep map is crucial to avoid arbitrary interleavings of

swaps up to the di�erent commutativity relations and thus precisely implement the idea of strati�ed
commutativity. Once we use a swap based on the commutativity relation �8+1 to justify pruning a
transition, we must not subsequently justify pruning a transition (at a successor state) labeled by
the same letter based on a swap allowed only by the commutativity �8 .
Our construction resolves the nondeterminism inherent in the idea of strati�ed commutativity

through a concept called budget functions. Intuitively, in cases where a transition can be pruned
based on the “more concrete” commutativity relation �8+1, a budget function decides if the transition
should be pruned (limiting future applications of the “more abstract” commutativity relation �8) or
if the transition should be kept. This connects with the discussion following Theorem 6.3: “Adding
back” traces to the inner (concrete) reduction (or here, not removing them in the �rst place), allows
more freedom in choosing the representatives for the outer (abstract) reduction. Formally, budget
functions are de�ned as follows:

Definition 6.7 (Budget Function). Let the program be given as DFA % = (&, Σ, X, @init, �). A
budget function 5 for % takes a location @ ∈ & of the program % , a sleep map< : Σ ⇀ {1, . . . , =}, an
upper bound : ∈ {1, . . . , =} and a letter 0 ∈ Σ, and returns a “budget” 5 (@,<, :, 0) ∈ {1, . . . , =} such
that 5 (@,<, :, 0) ≤ : .

The idea behind a budget function is this: If the price<(0) for a letter 0 in the current sleep
map< is less or equal to the budget 5 (@,<, :, 0) for the current state @ and upper bound : , we may
prune transitions labeled with this letter 0. If the price<(0) exceeds the budget (or is unde�ned),
transitions labeled 0 must not be pruned. Formally, the construction is de�ned as follows:

Definition 6.8 (Stratified Reduction). Let the program be given as DFA % = (&, Σ, X, @init, �)
with Σ ⊆ Stmt, and let 5 be a budget function. The reduction automaton for 5 is de�ned as the DFA

ℜ5 := (&̂, Σ, X̂ 5 , @̂init, �̂)

where

• each state ⟨@,<, :⟩ consists of a location @, a sleep map<, and a budget : ,

&̂ = & × (Σ ⇀ {1, . . . , =}) × {1, . . . , =}

• the alphabet Σ is the set of statements occurring in the program % ,

• the transition function X̂ 5 is de�ned below,

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

Stratified Commutativity in Verification Algorithms for Concurrent Programs 49:21

• the initial state consists of the initial location, the empty sleep map, and the maximum budget,

@̂init = ⟨@init, ∅, =⟩

• and a state ⟨@,<, :⟩ is accepting if @ is accepting.

�̂ = � × (Σ ⇀ {1, . . . , =}) × {1, . . . , =}

The transition function is given as follows:

X̂ 5 (⟨@,<, :⟩, 0) =

{
unde�ned if X (@, 0) unde�ned, or<(0) de�ned and<(0) ≤ : ′

⟨@′,<′, : ′⟩ else

where @′ = X (@, 0), : ′ = 5 (@,<, :, 0) and<′ = constrain: ′ (transfer0 (cost 5)) with

cost 5 (1) :=





min
(
<(1), 5 (@,<, :, 1)

)
if 1 <@ 0 and<(1) de�ned

5 (@,<, :, 1) else if 1 <@ 0

<(1) else if<(1) de�ned

unde�ned else

transfer0 (<̂) (1) :=

{
min{8 | <̂(1) ≤ 8 ∧ (1, 0) ∈ �8 } if <̂(1) de�ned

unde�ned else

constrain: ′ (<̂) (1) :=

{
<̂(1) if <̂(1) de�ned and <̂(1) ≤ : ′

unde�ned else

A state ⟨@,<, :⟩ of the reduction automaton stores the sleep map< as well as the budget : . This

budget is determined by the budget function 5 (see the de�nition of the transition function X̂ 5),
and represents the maximum price that can be “paid” (the maximum commutativity relation that
can be used to prune transitions) in the state and all (transitively) reachable successor states.
In case a transition is not pruned, the computation of the new sleep map proceeds in multiple

steps: First, the sleep map cost 5 contains statements that are either already in the sleep map<, or
are ordered before the current statement 0. This is analogous to classical sleep sets. The price of a
statement 1 in cost 5 is determined by the minimum of the price in< and the budget assigned to 1.
This means that if the budget is lower than the price in< (and thus, the transition labeled 1 was
not pruned), the price for 1 decreases: This has precisely the e�ect that we can once again prune
transitions labeled 1 according to the “more abstract” relation, because we “added back” traces
beginning with 1. This is illustrated in Figure 5.
In the next step, i.e., for the sleep map transfer0 (cost 5), we must possibly increase the price of

each letter in the sleep map to a level 8 such that 0 and 1 commute under relation �8 . Implicitly we
are here reasoning about swapping statements 0 and 1 in a trace. In the classical (single-relation)
case, this corresponds simply to checking if 0 and 1 commute under the given relation. In our
construction, the cases where the price strictly increases correspond precisely to the points where
the construction switches from “more abstract” commutativity to “more concrete” commutativity.

Finally, through constrain: ′ , we evict all statements from the sleep map whose price exceeds our
assigned budget : ′. This ensures that we indeed obey the upper limit imposed by the budget, i.e., if
the budget is : ′, we do not use the more concrete commutativity relations �: with : > : ′ to prune
transitions from the successor state.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

49:22 Azadeh Farzan, Dominik Klumpp, and Andreas Podelski

<′ (1) unde�ned

g1 5 (@,<,:, 0) ≥ < (0)

0g2

g3

�1

�2 1 g4
�1

<′ (1) de�ned

g1 5 (@,<,:, 0) << (0)

0g2

g3

�1

�2 1 g4
�1

Fig. 5. The reduction automaton on the le� accepts the traces {g1, g4}. The rejected trace g2 is �1-equivalent

to g1, and the rejected trace g3 is �2-equivalent to g2. Though g4 is �1-equivalent to g3, it must be included

in the reduction because we already used �2. But g4 is not proven by Π (indicated by the red state), so the

reduction is not covered by the proof. On the right, an alternative budget function prevents us from pruning

the transition labeled 0, so g3 is included in the reduction. In turn, we can later prune the transition labeled 1

(because 1 is in the sleep map), and the resulting reduction {g1, g3} is covered by the proof.

All instances of this schematic construction (for di�erent choices of 5) correspond to some
su�cient condition for inclusion (4):

Theorem 6.9 (Reduction). For all budget functions 5 , if the language recognized by the reduction
automaton ℜ5 is covered by the proof Π (i.e., ℜ5 ⊆ Π), then inclusion (4) holds.

Hence, deciding the automata inclusion ℜ5 ⊆ Π allows us to soundly conclude program correct-
ness (using Theorem 6.5). However, depending on the budget function 5 , the inclusion ℜ5 ⊆ Π

might represent an unnecessarily strong su�cient condition. For instance, if 5 returns 1 for all

inputs, then the computed reduction is exactly the reduction up to �1, i.e., ℜ5 = red�1⪯ (%). In this
case, we do not truly bene�t from applying strati�ed commutativity. There is a wide spectrum of
budget functions that may lead to less or more useful reductions. In the next section, we propose a
particular budget function that allows us to bene�t from each commutativity relation.

6.3 Resolving Nondeterminism with Optimism

Our proposed budget function is based on two observations:

(1) Assigning a higher budget for a letter allows us to prune more transitions in the successor
state (and all transitively reachable states). This can be crucial to exclude an unproven trace
from the reduction.

(2) Assigning a lower budget (preventing usage of “more concrete” commutativity) for a letter 0
yields a more powerful sleep map for other successor states (i.e., a sleep map more likely to
contain 0 at a lower price). This allows us to exclude more traces starting from such successor
states.

Hence, the best budget function would be one that assigns as low a budget as possible, as long as it
excludes all unproven traces from the reduction. In order to de�ne this budget function precisely,
we modify the input given to the automaton construction: Rather than applying it directly to the
program automaton % , we �rst construct a product automaton % ⊗ Π of the program and the proof.
Here, the proof acts as a kind of monitor: It never blocks (its transition function is total), and
acceptance in the product is purely determined by the location of % . Thus, the product automaton

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

Stratified Commutativity in Verification Algorithms for Concurrent Programs 49:23

recognizes precisely the language of % ; only the structure is modi�ed. States of this automaton now
have the form ⟨@, i⟩ for a location @ of % and an assertion i from Π. We de�ne the budget function:

Definition 6.10 (Optimistic Budget). The optimistic budget function opt for % ⊗ Π assigns
the lowest budget such that the successor state can not reach an accepting location of % without also
reaching the assertion ⊥ in Π. If no such budget exists, we default to the highest possible budget.
Formally, let

" =
{
8 | 8 < : ∧ ¬∃@5 ∈ �, i ≠ ⊥,<′, : ′ .⟨X%⊗Π (⟨@, i⟩, 0),<8 , 8⟩ →

∗
ℜ>?C

⟨⟨@5 , i⟩,<
′, : ′⟩

}

where<8 = constrain8 (transfer0 (costopt)). If" ≠ ∅, we de�ne opt (⟨@, i⟩,<, :, 0) := min("), other-
wise opt (⟨@, i⟩,<, :, 0) := : .

The de�nition of the optimistic budget is recursive: opt appears in the de�nition of<8 and in the
reachability relation→∗

ℜopt
. In the de�nition of<8 , opt will only be applied to letters 1 < 0. And the

reachability relation →∗
ℜopt

is here only applied to states with a budget strictly lower than : . Hence

the function is well-de�ned. Also note that in cases where<(0) is de�ned, we can further restrict

8 < <(0) without changing the reduction automaton, as the transition function X̂opt (speci�cally
costopt) will ignore higher values anyway.
The optimistic budget function can be implemented by always �rst (“optimistically”) choosing

the lowest budget 1. We then recursively check if the successor state under this budget �nds an
unproven trace. If not, then we stick to the chosen budget. If on the other hand, we �nd an unproven
trace, and the chosen budget was strictly less than the state’s maximum budget, we increment the
budget, and check again if it is now su�cient. For e�ciency, our implementation avoids repeatedly
exploring the same parts of the automaton.

We show that among all budget functions, the optimistic budget opt is optimal, in the sense that
it gives us the weakest possible inclusion:

Proposition 6.11 (Optimality). Let 5 be a budget function. If the inclusion ℜ5 ⊆ Π holds, then
the inclusion ℜopt ⊆ Π also holds.

Moreover, the automaton ℜopt for the optimistic budget function opt is equivalent modulo Π to

the language ! := red�1⪯ (. . . red
�=−1
⪯ (red�=⪯ (%) ∪ Π) . . . ∪ Π), allowing us to decide inclusion (4).

Theorem 6.12 (Correctness). The automaton ℜopt accepts a subset of the proven traces, i.e.,
ℜopt ⊆ Π holds, if and only if inclusion (4) holds.

Proof. We prove the inclusions ℜopt ⊆ ! ∪ Π and ! ⊆ ℜopt ∪ Π. The result then follows. For
details, we refer to the extended version of our paper [Farzan et al. 2023]. □

7 EXPERIMENTAL RESULTS

We implemented a prototype of the veri�cation approach based on abstract commutativity and
strati�ed reduction in order to demonstrate its practical applicability. To this end, we based our
implementation on the open-source software model checker Ultimate GemCutter [Klumpp et al.
2022], which veri�es programs using an approach based on reduction and concrete commuta-
tivity [Farzan et al. 2022]. Our implementation augments GemCutter with support for abstract
commutativity and strati�ed reductions. Speci�cally, we implemented abstract commutativity based
on projection to the proof (Section 3.2). We evaluate the implementation empirically on a standard
set of benchmarks. In our evaluation, we are interested in answering the following questions:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

49:24 Azadeh Farzan, Dominik Klumpp, and Andreas Podelski

Q1 What is the impact of using abstract commutativity as compared to concrete commutativity?
Does abstract commutativity allow us to successfully analyse more programs? Does it simplify
proofs or decrease veri�cation time? And in which scenarios does it perform best?

Q2 Is the strati�ed commutativity approach practically feasible? Can the overhead involved in
computing strati�ed reductions be made manageable?

Q3 What advantage can be gained from strati�ed commutativity? Compared to applying concrete
or abstract commutativity in isolation, is there further potential for proof simpli�cation?

To investigate these questions, we analysed benchmarks from three benchmark sets:

(1) First, we veri�ed the 732 programs in the ConcurrencySafety category of the Software Veri�-
cation Competition (SV-COMP’22) [Beyer 2022]. Each of these programs is written in C and
comes with a reachability speci�cation.

(2) Second, we veri�ed the same programs against a more light-weight property, namelymemory
safety: The program only dereferences valid pointers to allocated memory, and does not
invoke free() on an invalid pointer. Violations of this property would constitute unde�ned
behaviour in C.

(3) Third, we veri�ed 50 custom benchmark programs. Some of these programs showcase the
limitations of concrete commutativity, others are challenging for abstract commutativity.

The evaluation was performed using the BenchExec benchmarking tool [Beyer et al. 2019] on a
Debian 10.10 machine with a AMD Ryzen Threadripper 3970X 32-Core Processor. Each veri�cation
run was given a timeout of 15min and a memory limit of 8 GB.

Discussion: Checking Abstract Commutativity. Our experiments showed a severe practical limita-
tion for the commutativity induced by projection to the proof: If SMT solvers are used to check
commutativity of the abstracted statements, timeouts frequently occur due to the quanti�cation
introduced by the projection to the proof. In many cases, unsuccessful commutativity checks
consume a large part of the given time. To make abstract commutativity as given by projection
to the proof practical, we instead check a su�cient condition. Recall from Section 3 that a su�-
cient condition for two statements to commute concretely is that neither statement writes to a
variable read or written by the other statement. This criterion can be relaxed further to account
for nondeterministic writes: We allow both statements to write to some variable, as long as both
statements nondeterministically assign the variable (without any restriction of the new value). Let
read (BC) denote the set of program variables read by a statement BC , write(BC) the set of variables
possibly modi�ed by BC , and havoc(BC) the set of variables nondeterministically assigned (without
restrictions) by BC . The following condition implies that BC1 and BC2 commute concretely:

read (BC1) ∩write(BC2) = write(BC1) ∩ read (BC2) = ∅ ∧write(BC1) ∩write(BC2) ⊆ havoc(BC1) ∩ havoc(BC2)

Applying this criterion to the abstractions UΠ (BC1) and UΠ (BC2) given by projection to a proof Π (in
place of BC1 and BC2) yields the following e�ciently checkable su�cient condition for commutativity
under projection to the proof:

read (UΠ (BC1)) ∩ write(UΠ (BC2)) = write(UΠ (BC1)) ∩ read (UΠ (BC2)) = ∅

∧ write(UΠ (BC1)) ∩ write(UΠ (BC2)) ⊆ havoc(UΠ (BC1)) ∩ havoc(UΠ (BC2))

This is not a departure from the concept of abstract commutativity: It merely represents one possible
way (an alternative to using SMT solvers) to e�ectively check commutativity of the abstracted
statements, a problem which – for complex statements involving arrays and nonlinear arithmetic –
is in any case undecidable in general. Soundness of our implementation follows from the fact that
commutativity under projection to a proof Π is safe wrt. Π (which implies safety of any subrelation)
and the theoretical developments presented in this paper.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

Stratified Commutativity in Verification Algorithms for Concurrent Programs 49:25

Table 1. Number (#) of successful benchmarks, CPU time, memory (mem), and number of refinement rounds.

Concrete Abstract Strati�ed

#
time

(s)

mem

(GB)
rounds #

time

(s)

mem

(GB)
rounds #

time

(s)

mem

(GB)
rounds

SV-COMP Benchmarks: Original Speci�cation

successful 432 13 465 493 3 937 429 12 806 576 4 036 434 14 595 697 4 027

- correct 145 5 081 131 1 419 142 4 216 150 1 397 147 5 977 178 1 469

- incorrect 287 8 384 362 2 518 287 8 545 426 2 639 287 8 617 519 2 558

SV-COMP Benchmarks: Memory Safety

successful 486 19 589 443 6 107 504 17 056 514 8 156 505 17 590 578 8 251

- correct 485 19 523 442 6 025 503 16 970 512 8 074 504 17 527 577 8 169

- incorrect 1 65 1 82 1 85 1 82 1 64 1 82

Custom Benchmarks

successful 24 1 197 30 229 18 861 22 131 30 1 426 48 283

- correct 23 1 192 30 228 17 854 22 130 29 1 421 48 282

- incorrect 1 5 <1 1 1 7 <1 1 1 5 <1 1

Results. Table 1 shows evaluation data for the veri�cation using concrete commutativity in
isolation (the classical GemCutter setup), with abstract commutativity in isolation, and with
strati�ed commutativity. We observe that abstract commutativity is particularly powerful when
we check the lightweight memory safety property: It allows us to successfully verify 18 additional
programs, compared to concrete commutativity. This corresponds to our intuition (explained in the
introduction) that such properties allow for a lot of abstract commutativity. For the more complex
reachability properties speci�ed in the SV-COMP benchmarks, concrete commutativity is superior,
though only slightly. The similar results are likely due to the fact that the proof involves most
program variables and does not permit for much abstraction (at least, through projection to the
proof). The slight disadvantage for abstract commutativity is to be expected, considering that
our implementation of abstract commutativity is limited to the syntactic criterion above. For the
custom benchmarks, strati�ed commutativity is able to verify the largest number of programs,
fully bene�ting from the need for both abstract and concrete commutativity. For both SV-COMP
benchmark sets, strati�ed commutativity successfully analyzes approximately as many benchmarks
as the better of the two commutativity relations. Over all three benchmarks sets, the veri�cation
using strati�ed commutativity successfully analyzes the largest number of programs.

Implementation of Strati�ed Commutativity. Despite its theoretical advantage, the optimal al-
gorithm for strati�ed commutativity has signi�cant overhead in in time and space required to
compute a strati�ed reduction. However, in Section 6, we de�ned a class of algorithms for strati�ed
reductions. While the instance based on the optimistic budget function (Section 6.3) is theoretically
optimal in terms of the reduction, another algorithm that strikes a tradeo� between the quality of
the reduction and the time required for the computation may fare better in practice. Particularly,
we ran three instances of the schematic algorithm: the optimal instance in Section 6.3, as well as
two randomized variants of the reduction algorithm that, if the optimistic budget is 2, randomly
decide (with a bias of 10 % resp. 90 %) whether they assign a budget of 1 or 2. The data presented in
Table 1 refers to a portfolio aggregation of these three algorithms, and di�ers signi�cantly from the
data for the individual algorithms, as shown in Table 2.

Over all benchmarks, the optimal algorithm was the fastest of the three strati�ed reductions in
310 cases (including 18 unique benchmarks only it could solve within the time limit), the algorithm
that is biased towards abstract commutativity (“bias 10 %”) was the fastest in 704 cases (including 7
unique benchmarks), and the algorithm that is biased towards concrete commutativity (“bias 90 %”)
was the fastest in 407 cases (including 5 unique benchmarks). This opens up an avenue for future
work on improving the practical bene�t of strati�ed reductions: Further investigation of suitable

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

49:26 Azadeh Farzan, Dominik Klumpp, and Andreas Podelski

Table 2. Number (#) of successful benchmarks, CPU time, memory (mem), and number of refinement rounds

for 3 di�erent budget functions.

Optimal Bias 10 % Bias 90 %

#
time

(s)

mem

(GB)
rounds #

time

(s)

mem

(GB)
rounds #

time

(s)

mem

(GB)
rounds

SV-COMP Benchmarks: Original Speci�cation

successful 426 15 900 785 3 821 426 13 230 648 3 958 420 14 471 743 3 703

- correct 144 5 324 194 1 366 139 4 123 142 1 319 139 4 501 162 1 332

- incorrect 282 10 576 591 2 455 287 9 107 506 2 639 281 9 970 581 2 371

SV-COMP Benchmarks: Memory Safety

successful 495 20 016 544 7 341 498 15 585 528 7 437 498 17 506 544 7 812

- correct 494 19 928 543 7 259 497 15 522 527 7 355 497 17 442 543 7 730

- incorrect 1 88 1 82 1 64 1 82 1 64 1 82

Custom Benchmarks

successful 26 1 304 37 249 19 1 120 35 145 19 1 195 35 157

- correct 25 1 298 37 248 18 1 113 34 144 18 1 190 34 156

- incorrect 1 6 <1 1 1 7 <1 1 1 5 <1 1

budget functions, or adaptation of the budget function across re�nement rounds, could strike a
compromise between theoretical optimality and practical e�ciency.

8 RELATED WORK

There has been a variety of previous work on using commutativity for the analysis of concurrent
programs. Many approaches in this �eld do not treat commutativity relations as �rst-class objects,
but rather �x one underlying de�nition of commutativity (or “independence”) for the approach
[Abdulla et al. 2014; Flanagan and Godefroid 2005; Kahlon et al. 2009]. While [Godefroid 1996]
considers the possibility of di�erent commutativity relations, they impose a soundness notion
(“valid dependency relation”) that e�ectively limits these relations to capture the spirit of what
we call concrete commutativity. Di�erent commutativity relations then correspond to e�ciently
checkable su�cient conditions for concrete commutativity. Much of this work is concerned with
�nite-state systems or executions of bounded length, whereas our work focuses on the proof of
correctness for in�nite-state programs.
Commutativity reasoning has been integrated in abstraction-re�nement based veri�cation of

concurrent programs before [Cassez and Ziegler 2015; Chu and Ja�ar 2014; Farzan et al. 2022;
Farzan and Vandikas 2019, 2020; Wachter et al. 2013]. In all these works, commutativity is mostly
equated with concrete commutativity (or with e�ciently checkable su�cient conditions).
[Wachter et al. 2013], [Farzan and Vandikas 2020] and [Farzan et al. 2022] consider forms of

conditional commutativity, where additional knowledge about the program variables’ current values
allows more statements to commute than according to our de�nition of concrete commutativity.
[Wachter et al. 2013] derive this additional information from a separate program analysis, whereas
[Farzan and Vandikas 2020] and [Farzan et al. 2022] take the information from the proof constructed
by the veri�cation itself (“proof-sensitive commutativity”). In some cases the e�ects can be similar,
however the theories underlying conditional commutativity in this style and our notion of abstract
commutativity are quite di�erent: While abstract commutativity is based on allowing more be-
haviour (while preserving safety wrt. the proof), conditional commutativity instead restricts possible
behaviours (to behaviours that can actually appear in the given context). In the case of [Farzan
et al. 2022], the fact that information is taken from the proof is rather incidental (any other reliable
source, such as a separate program analysis, would do), whereas the soundness of our abstract
commutativity is necessarily deeply tied to the proof constructed by the very same veri�cation in

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

Stratified Commutativity in Verification Algorithms for Concurrent Programs 49:27

which the commutativity is applied. Conditional commutativity and abstract commutativity are
two orthogonal techniques, and in fact both can be applied in combination.
[Chu and Ja�ar 2014] de�ne “property-directed commutativity”, a notion of commutativity

speci�c to the given program and property. This is similar in spirit to our idea of de�ning a
commutativity relation speci�c to a given proof (since the proof is obviously speci�c to given
program and property). However, their notion of commutativity is �xed a priori, i.e., before the
execution of the algorithm. More speci�cally, they �rst �x a set of programs (through patterns that
limit the operations that can be performed on certain variables) and a set of properties (e.g. properties
stating that a variable is bounded by a constant). They then de�ne a commutativity relation that is
sound for the �xed set of programs and properties. By contrast, the veri�cation algorithm in our
approach computes abstract commutativity relations from each new proof during the iteration of
the abstraction re�nement loop: This means that the veri�cation algorithm continuously adjusts
the notion of commutativity as it progresses (extracting more and more information needed for the
proof of the property).
[Elmas et al. 2009] present a veri�cation calculus in which abstraction and commutativity-

based reduction are the two key rules. Essentially, the given program is alternatingly reduced and
further abstracted. Each abstraction step may allow more statements to commute, which enables
further reduction. [Kragl and Qadeer 2018] extend this work by providing a notation to describe
the sequence of intermediate programs in a single layered program. This line of research can be
distinguished from our work as follows: (1) Abstractions are not derived by an algorithm but
they are chosen by the user, (2) it is left up to the responsibility of the user that the abstractions
are precise enough so that the abstracted program does not violate the veri�ed property, and (3)
it is left up to the ingenuity of the user to select abstractions that are helpful to commutativity.
These are precisely the three aspects that must be addressed in the setting of veri�cation algorithm
where abstractions must be computed automatically, and that our approach captures through:
(1) projection to the proof or proof-stuttering commutativity, (2) proof-preserving abstractions and
safety of a commutativity relation wrt. a given proof, and (3) strati�ed commutativity.

[Elmas et al. 2009] and [Kragl and Qadeer 2018] are based on the slightly more general setting of
semi-commutativity (or “left” and “right movers”). Previous work [Farzan et al. 2022; Farzan and
Vandikas 2019] has shown semi-commutativity to be equally applicable to applicable for reductions
induced by lexicographic preference orders (as in this paper). Both our proof rule (Section 4) and
our algorithm (Section 6) generalize to semi-commutativity in a straightforward way. However, the
result that our algorithm captures the proof rule precisely (and not just soundly), Theorem 6.12,
depends on the assumption that the commutativity relation is symmetric.
Finally, certain specialized commutativity notions can be found in the literature, for instance

based on a kind of observational equivalence [Koskinen and Bansal 2021]. Many such commutativity
relations can be formulated in our framework for abstract commutativity, and may have a strong
potential for verifying programs in many domains. Generally, there is a wide space of possibilities to
automatically derive more sophisticated commutativity relations and to use them in our approach.

REFERENCES

Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. 2014. Optimal dynamic partial order

reduction. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

’14, San Diego, CA, USA, January 20-21, 2014, Suresh Jagannathan and Peter Sewell (Eds.). ACM, 373–384. https:

//doi.org/10.1145/2535838.2535845

Dirk Beyer. 2022. Progress on Software Veri�cation: SV-COMP 2022. In Tools and Algorithms for the Construction and Analysis

of Systems - 28th International Conference, TACAS 2022, Held as Part of the European Joint Conferences on Theory and

Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part II (Lecture Notes in Computer Science,

Vol. 13244), Dana Fisman and Grigore Rosu (Eds.). Springer, 375–402. https://doi.org/10.1007/978-3-030-99527-0_20

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1007/978-3-030-99527-0_20

49:28 Azadeh Farzan, Dominik Klumpp, and Andreas Podelski

Dirk Beyer, Stefan Löwe, and Philipp Wendler. 2019. Reliable benchmarking: requirements and solutions. Int. J. Softw. Tools

Technol. Transf. 21, 1 (2019), 1–29. https://doi.org/10.1007/s10009-017-0469-y

Franck Cassez and Frowin Ziegler. 2015. Veri�cation of Concurrent Programs Using Trace Abstraction Re�nement. In Logic

for Programming, Arti�cial Intelligence, and Reasoning - 20th International Conference, LPAR-20 2015, Suva, Fiji, November

24-28, 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9450), Martin Davis, Ansgar Fehnker, Annabelle McIver,

and Andrei Voronkov (Eds.). Springer, 233–248. https://doi.org/10.1007/978-3-662-48899-7_17

Duc-Hiep Chu and Joxan Ja�ar. 2014. A Framework to Synergize Partial Order Reduction with State Interpolation. In

Hardware and Software: Veri�cation and Testing - 10th International Haifa Veri�cation Conference, HVC 2014, Haifa, Israel,

November 18-20, 2014. Proceedings (Lecture Notes in Computer Science, Vol. 8855), Eran Yahav (Ed.). Springer, 171–187.

https://doi.org/10.1007/978-3-319-13338-6_14

Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. 2009. A calculus of atomic actions. In Proceedings of the 36th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL 2009, Savannah, GA, USA, January 21-23, 2009, Zhong

Shao and Benjamin C. Pierce (Eds.). ACM, 2–15. https://doi.org/10.1145/1480881.1480885

Azadeh Farzan, Dominik Klumpp, and Andreas Podelski. 2022. Sound sequentialization for concurrent program veri�cation.

In PLDI ’22: 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation, San Diego,

CA, USA, June 13 - 17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM, 506–521. https://doi.org/10.1145/3519939.3523727

Azadeh Farzan, Dominik Klumpp, and Andreas Podelski. 2023. Appendix to: Strati�ed Commutativity in Veri�cation

Algorithms for Concurrent Programs. Technical Report. Uploaded as supplementary material to this paper in the ACM

Digital Library.

Azadeh Farzan and Anthony Vandikas. 2019. Automated Hypersafety Veri�cation. In Computer Aided Veri�cation - 31st

International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part I (Lecture Notes in Computer

Science, Vol. 11561), Isil Dillig and Serdar Tasiran (Eds.). Springer, 200–218. https://doi.org/10.1007/978-3-030-25540-4_11

Azadeh Farzan and Anthony Vandikas. 2020. Reductions for safety proofs. Proc. ACM Program. Lang. 4, POPL (2020),

13:1–13:28. https://doi.org/10.1145/3371081

Cormac Flanagan and Patrice Godefroid. 2005. Dynamic partial-order reduction for model checking software. In Proceedings

of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2005, Long Beach, California,

USA, January 12-14, 2005, Jens Palsberg and Martín Abadi (Eds.). ACM, 110–121. https://doi.org/10.1145/1040305.1040315

Patrice Godefroid. 1996. Partial-Order Methods for the Veri�cation of Concurrent Systems - An Approach to the State-Explosion

Problem. Lecture Notes in Computer Science, Vol. 1032. Springer. https://doi.org/10.1007/3-540-60761-7

Vineet Kahlon, Chao Wang, and Aarti Gupta. 2009. Monotonic Partial Order Reduction: An Optimal Symbolic Partial Order

Reduction Technique. In Computer Aided Veri�cation, 21st International Conference, CAV 2009, Grenoble, France, June 26 -

July 2, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5643), Ahmed Bouajjani and Oded Maler (Eds.). Springer,

398–413. https://doi.org/10.1007/978-3-642-02658-4_31

Dominik Klumpp, Daniel Dietsch, Matthias Heizmann, Frank Schüssele, Marcel Ebbinghaus, Azadeh Farzan, and Andreas

Podelski. 2022. Ultimate GemCutter and the Axes of Generalization - (Competition Contribution). In Tools and Algorithms

for the Construction and Analysis of Systems - 28th International Conference, TACAS 2022, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part

II (Lecture Notes in Computer Science, Vol. 13244), Dana Fisman and Grigore Rosu (Eds.). Springer, 479–483. https:

//doi.org/10.1007/978-3-030-99527-0_35

Eric Koskinen and Kshitij Bansal. 2021. Decomposing Data Structure Commutativity Proofs with mn-Di�erencing.

In Veri�cation, Model Checking, and Abstract Interpretation - 22nd International Conference, VMCAI 2021, Copenhagen,

Denmark, January 17-19, 2021, Proceedings (Lecture Notes in Computer Science, Vol. 12597), Fritz Henglein, Sharon Shoham,

and Yakir Vizel (Eds.). Springer, 81–103. https://doi.org/10.1007/978-3-030-67067-2_5

Bernhard Kragl and Shaz Qadeer. 2018. Layered Concurrent Programs. In Computer Aided Veri�cation - 30th International

Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,

Part I (Lecture Notes in Computer Science, Vol. 10981), Hana Chockler and Georg Weissenbacher (Eds.). Springer, 79–102.

https://doi.org/10.1007/978-3-319-96145-3_5

Richard J. Lipton. 1975. Reduction: A Method of Proving Properties of Parallel Programs. Commun. ACM 18, 12 (1975),

717–721. https://doi.org/10.1145/361227.361234

Edward Ochmanski. 1995. Recognizable Trace Languages. In The Book of Traces, Volker Diekert and Grzegorz Rozenberg

(Eds.). World Scienti�c, 167–204. https://doi.org/10.1142/9789814261456_0006

BjörnWachter, Daniel Kroening, and Joël Ouaknine. 2013. Verifying multi-threaded software with impact. In Formal Methods

in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013. IEEE, 210–217. http://ieeexplore.ieee.

org/document/6679412/

Received 2022-07-07; accepted 2022-11-07

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 49. Publication date: January 2023.

https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-662-48899-7_17
https://doi.org/10.1007/978-3-319-13338-6_14
https://doi.org/10.1145/1480881.1480885
https://doi.org/10.1145/3519939.3523727
https://doi.org/10.1007/978-3-030-25540-4_11
https://doi.org/10.1145/3371081
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/978-3-642-02658-4_31
https://doi.org/10.1007/978-3-030-99527-0_35
https://doi.org/10.1007/978-3-030-99527-0_35
https://doi.org/10.1007/978-3-030-67067-2_5
https://doi.org/10.1007/978-3-319-96145-3_5
https://doi.org/10.1145/361227.361234
https://doi.org/10.1142/9789814261456_0006
http://ieeexplore.ieee.org/document/6679412/
http://ieeexplore.ieee.org/document/6679412/

	Abstract
	1 Introduction
	2 Background: Concurrent Programs and Commutativity
	3 Abstract Commutativity
	3.1 Commutativity of Abstractions
	3.2 Case Study: Projection to the Proof
	3.3 Case Study: Proof-Stuttering Commutativity

	4 The Challenge of Combining Commutativity Relations
	5 The Stratified Commutativity Proof Rule
	6 Effective Commutativity Stratification
	6.1 Towards Decidable Proof Checking
	6.2 A Schematic Construction of Stratified Reductions
	6.3 Resolving Nondeterminism with Optimism

	7 Experimental Results
	8 Related Work
	References

