
1

Reductions for Safety Proofs (Extended Version)

AZADEH FARZAN, University of Toronto

ANTHONY VANDIKAS, University of Toronto

Program reductions are used widely to simplify reasoning about the correctness of concurrent and distributed

programs. In this paper, we propose a general approach to proof simplification of concurrent programs based

on exploring generic classes of reductions. We introduce two classes of sound program reductions, study their

theoretical properties, show how they can be effectively used in algorithmic verification, and demonstrate that

they are very effective in producing proofs of a diverse class of programs without targeting specific syntactic

properties of these programs. The most novel contribution of this paper is the introduction of the concept of

context in the definition of program reductions. We demonstrate how commutativity of program steps in some

program contexts can be used to define a generic class of sound reductions which can be used to automatically

produce proofs for programs whose complete Floyd-Hoare style proofs are theoretically beyond the reach of

automated verification technology of today.

ACM Reference Format:
Azadeh Farzan and Anthony Vandikas. 2020. Reductions for Safety Proofs (Extended Version). Proc. ACM
Program. Lang. 1, POPL, Article 1 (January 2020), 36 pages.

1 INTRODUCTION
A reduction of a program is generally another program, with a subset of the behaviours of the

original program, that faithfully represents it. Program reductions have been studied extensively

[Desai et al. 2014; Elmas et al. 2009; Genest et al. 2007; Hawblitzel et al. 2015; Lipton 1975; von

Gleissenthall et al. 2019] in the context of simplifying reasoning about concurrent and distributed

programs. The earliest and perhaps most well-known approach to reduction is due to Lipton

[Lipton 1975] who proposed to simplify concurrent program proofs by inferring large atomic

blocks of code (when possible) in order to reap the benefits of sound sequential reasoning inside

these blocks. The inference of the large atomic blocks is carried out based on commutativity

specifications of individual program statements. In the past 40 years, Lipton’s work has inspired

many reduction schemes for concurrent program analysis [Flanagan and Qadeer 2003; Flanagan

et al. 2005] and verification [Elmas et al. 2009; Hawblitzel et al. 2015]. In a different context,

commutativity specification of program statements have been used for an entirely different type

of reduction. There, the aim is to reduce the sizes of the communication buffers used in message-

passing programs. The equivalent program with smallest buffer sizes can be viewed as an almost
synchronous variation of the original asynchronous program. The key insight is that the proof of

correctness for the synchronous program is simpler; for program with bounded buffers the proof

need not include complex invariants such as those that universally quantify over unbounded buffer

contents.

The two groups of reduction approaches strive for seemingly contradictory targets. Lipton’s

approach opts for reductions in which the threads try not to yield for as long as possible, while

synchronous reductions would force a yield right after each send operation in order to execute its

matching receive. The former seems appropriate for shared memory concurrent programs and the

latter for message-passing concurrent and distributed programs. This sparks several interesting

questions: is this truly a rigid dichotomy? Can shared memory concurrent programs benefit from

Authors’ addresses: Azadeh Farzan, University of Toronto, azadeh@cs.toronto.edu; Anthony Vandikas, University of Toronto,

anthony.vandikas@mail.utoronto.ca.

2020. 2475-1421/2020/1-ART1 $15.00

https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

https://doi.org/

1:2 Azadeh Farzan and Anthony Vandikas

certain types of synchronous reductions where arbitrary program statements (other than just

sends and receives on channels) are synchronized? What sort of reductions can deal with message-

passing concurrent programs where reasoning has to be extended to the part of the program that

manipulates the data? Can we not commit to a particular reduction scheme in advance and let

the verifier pick the ideal reduction for the input program, depending on what is required for the

the specific combination of the program and the property? In this paper, we provide some initial

answers to these questions.

We propose an automated verification approach that combines the search for a proof with the

search for a sound reduction of the program. The high level idea is to give a chance to automated

verification to succeed by finding a correctness proof for a reduction of the program, where it

would fail otherwise if it attempted to prove the original program correct. The key distinction with

regards to most of the relevant literature is that instead of fixing a particular reduction in advance,

we propose to let a new automated verification algorithm search for an ideal reduction within a

generic universe of (infinitely many) sound reductions. The simple insight is that committing to the

wrong reduction in advance, for example attempting to infer large atomic blocks for a distributed

message-passing program, could set one up for failure. Our target programs are principally those

where proof simplification is the difference between the existence and nonexistence of a safety proof
within a fixed (decidable) language of assertions commonly used in automated verification. Without

simplification, the proof involves complicated invariants with elements such as quantification over

arrays and buffers or non-linear arithmetic for data variables which are currently the Achilles heel

of automated verification techniques. Therefore, the main accomplishment of our methodology is to

leverage the proof simplification power of reductions to expand the reach of automated verification

to instances that are theoretically out of its scope.

Our refinement loop maintains a proof candidate at each round, and checks if there exists a

reduction of the input program that is proved correct by this proof. To be able to implement this

subsumption test algorithmically, one needs an effective way of representing the set of all program

reductions. We introduce two novel classes of (infinitely many) program reductions and use finite

state (tree) automata, with nice algorithmic properties, to represent each class. The first class is

inspired by semi-trace monoids [Diekert and Rozenberg 1995] defined by a semi-commutativity

relation between program statements. Unfortunately, checking whether a proof subsumes a re-

duction of the program according to such a semi-trace monoid is in general undecidable (more on

this in Section 4). Therefore, the contribution of this paper critical to algorithmic verification is

devising a subclass, which we call S-reductions with a decidable subsumption check.

The most significant contribution of this paper is the second proposed class of reductions,

namely contextual reductions. For this class, the commutativity properties of the program statements

depend on the context from which the corresponding statements are executed. Two statements

may commute in one context and not in another. Contexts have been exploited in special cases for

proofs before. For example, in message-passing programs, a receive can be commuted to the left of

a send operation that is not its matching send, determined by by context.

To the best of our knowledge, general contexts have never been exploited for program proofs

before, and certainly not for automated verification.

Inspired by a language-theoretic notion of context from generalized Mazurkiewicz traces, we
define a set of (infinitely many) contextual reductions that is recognized by finite state automata. The

elegance of this definition is that it does not commit to a particular contextual commutativity relation

in advance. The automaton models a universe of reductions based on a universe of contextual

commutativity specifications. Our proposed algorithm then decides if there exists a sound contextual

commutativity specification in this universe, which induces a sound contextual reduction of the

program that is covered by a current valid proof candidate. Therefore, beyond making progress

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Reductions for Safety Proofs (Extended Version) 1:3

in proof construction, the refinement loop also infers assertions that substantiate the soundness

of a larger contextual commutativity relation through refinement. This goes against the classical

approach to automated program verificationwhere one first chooses a (static) mostly non-contextual

commutativity specification, then a reduction induced by the chosen specification, and finally then
tries to search for a proof for the given reduction. Our proposed refinement loop performs all these

three searches simultaneously. In summary, the following are the contributions of this paper:

• We introduce a class of semi-commutative reductions and present the theoretical properties

of this class that make it a good candidate for algorithmic proof simplification (Section 4).

• We introduce a novel class of contextually commutative reductions essential to proof simplifi-

cation for both shared-memory and message-passing concurrent programs, and theoretically

argue why they are suitable for algorithmic use (Section 5).

• We present a counterexample-guided refinement loop for verification which can incorporate

the above classes of reductions. This algorithm effectively performs a search for a triple

consisting of a contextual commutativity relation, a program reduction induced by it, and a proof
of correctness for the reduction. We discuss the soundness, completeness, and convergence

conditions for the algorithm. Moreover, we present two interesting insights that accommodate

the development of a novel algorithm for proof checking with an improved time complexity

upper bound. (Sections 7 and 8).

• We provide an in-depth comparison of the reductions presented in this paper and the two

most well-known reduction schemes from the concurrent program verification literature

(Section 6): (1) Lipton’s reduction for the inference of large atomic blocks, and (2) reductions

based on the idea of existential boundedness [Genest et al. 2007] which use commutativity-

based transformations to reduce message buffer sizes to simplify proofs of message-passing

concurrent/distributed programs.

• Our approach is implemented in a tool, called Slacker . Using a rich set of benchmarks,

mostly with required invariants beyond the reach of previous automated verification tools,

we demonstrate how the technique is effective in producing (automatically generated) proofs

for these benchmarks (Section 9).

2 MOTIVATING EXAMPLES
We start by motivating the two classes of reductions proposed in this paper through two examples.

In our first example, proof simplification is not essential, in that a proof for the program exists and

can be discovered using a standard verification algorithm [Heizmann et al. 2009]. By using the class

of semi-commutative reductions in this paper, however, one can produce a simpler proof (about

half the number of distinct assertions in the proof) in less than one third of the time. We then

i = 0;
while (i < N) {

inc(y);
i++;

}

j = 0;
while (j < M) {

dec(y);
j++;

}

inc(x: int)
{

atomic {
x = x + 1

}
}

dec(x: int)
{

atomic {
assume(x > 0);
x = x - 1;

}
}(a) (b)

(c)

Precondition: {N = M ^ y = 0}

Postcondition: {y = 0}
Fig. 1. Semi-commutativity example.

make a small modification to the code to get our second exam-

ple, for which a proof for the whole program does not exist in

the decidable assertion language of linear integer arithmetic

(LIA). Moreover, even though the program does admit a semi-

commutative reduction, a proof does not exist for that reduction

either. This will motivate our contextual reduction class, which

includes a sound reduction of the program with a simpler proof

that is quickly discovered by Slacker .

Consider the simple methods inc() and dec() defined in

Figure 1(a,b), and a simple concurrent program using them listed

in Figure 1(c), along with its corresponding pre/post-conditions.

Note that dec() is a blocking statement and therefore not all

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:4 Azadeh Farzan and Anthony Vandikas

program runs terminate. For a safety proof, it suffices to show that those that do satisfy the given

pre/post-condition. It is straightforward to see that a full Floyd-Hoare style proof of this program

exists in the decidable logical language of linear integer arithmetic.

Observe that inc() soundly semi-commutes with dec() in the sense that it is sound to swap a

dec() statement to the right of a following inc() statement, without changing program behaviour.

The inverse, however, is not true. Swapping a decrement to the left of an increment may make

it block in some program runs where it was not blocking in its original position. Adding this

to the fact that i and j are thread-local and therefore all statements referencing them commute

(against the statements of the other thread), indicates that a full proof for the program is not strictly

necessary. It is sufficient to provide a proof for a subset of the program runs that soundly represent

the program, and this subset may admit a strictly simpler proof. The discovery of this simple proof

is the goal of the methodology presented in this paper.

The sequential program illustrated in Figure 2 is a sound reduction of the program in Figure 1. In

this reduction, all decrements are postponed to the end using the semi-commutativity of dec() and

i = 0;
while (i < N) {

inc(y);
i++;

}
j = 0;
while (j < M) {

dec(y);
j++;

}

Fig. 2. A reduction.

inc(). The full commutativity of the rest of the actions is then used to bring

relevant steps of each thread together. Our proposed set of S-reductions includes
this sequential program as well as (infinitely) many other reductions that are

equivalent to the program up to the aforementioned (semi-) commutativity

properties of the statements. Our proposed algorithm attempts to verify at

least one member of the entire set in a refinement loop. Our tool, Slacker ,

discovers a simpler proof (about half the number of distinct assertions in the

proof) in about a third of the time of the original (without reductions). Note

that the reduction, for which Slacker discovers a proof may not match the

one in Figure 2 precisely.

The reader familiar with Lipton’s reductions [Lipton 1975] and the concept of left/right movers

would be curious about the connection between this transformation and Lipton’s atomic blocks

reductions. Note that dec() is a right-mover, and respectively, inc() is a left mover, and every

other statement is both
1
. Therefore, one can soundly declare each thread as one atomic block and

end up with a reduced program that runs these two atomic blocks in parallel. This program has

additional behaviours compared to the (sequentialized) reduction of Figure 2. The difference is not

substantial in this case. Next, we will look at a slight modification of this program which would

i = 0;
while (i < N) {

inc(y, C);
i++;

}

j = 0;
while (j < M) {

dec(y,C);
j++;

}

inc(x: int, d: int)
{

atomic {
x = x + d

}
}

dec(x: int, d: int)
{

atomic {
assume(x >= d);
x = x - d;

}
}(a) (b)

(c)

Precondition: {N = M ^ C > 0 ^ y = 0}

Postcondition: {y = 0}
Fig. 3. Contextual commutativity example.

render both Lipton style reductions and our S-reductions

entirely useless for proof simplification.

Consider the modified code illustrated in Figure 3. The

methods inc() and dec() operate as before, but now take

an extra parameter determining the increment/decrement

delta. The program uses a global (uninitialized) positive

constant C as this delta, and otherwise operates as be-

fore. Note that this program admits the same sequential

reduction in the style of Figure 2, since the new inc()
and dec()methods satisfy the same (semi-) commutative

properties as in the previous example. The problem is,

however, that this sequential reduction does not admit a

proof in the decidable LIA fragment. The proof needs to

1
In fact, since Lipton’s original definition in [Lipton 1975] is quantified over all reachable program contexts, inc() and
dec() would be both-movers according to his original definition. But, folklore usage of his technique, which quantifies over

all contexts (reachable or not), would declare them only left and right mover respectively.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Reductions for Safety Proofs (Extended Version) 1:5

establish at the end of the first loop that y = N × C, so that by the end of the second loop, y can

be proved to go back to zero. This requires a non-linear loop invariant y = i × C for the first loop.

Lipton’s reductions are also not effective for the same reason. Luckily, there is another reduction of

this program that does admit a proof in the LIA fragment.

Any program trace that has a different number of increments and decrements is infeasible,

and this can be reflected in the proof by simple invariants relating i, j, M, and N. All feasible
program traces will have an equal number of increments and decrements. To avoid having to use

multiplicative assertions like y = N × C, of all the equivalent feasible interleavings of the program,

the one in which increments and decrements appear in alternate order is the preferred one:

inc(y,C) . . .dec(y,C) . . .inc(y,C) . . .dec(y,C)

For these interleavings, the invariants need to only capture the fact that y goes up by C and then

comes back to zero when the matching decrement happens. The reduction that only includes these

interleavings is in some sense the opposite of the sequential reduction of Figure 2. In the sequential

one, an entire thread is executed as an atomic block, while in this one, threads are forced to yield

after each increment to let the matching decrement execute. It is interesting how a small change in

the program can have a big impact on the appropriate reduction for proving it correct.

Let us now argue why the suggested reduction is sound. The key is the concept of contextual
commutativity. Note that inc(y) and dec(y) fully commute if y ≥ C. Only for values of y < C, do
they semi-commute (as discussed above). Under this contextual commutativity relation, one can

show that the interleaving proposed above is equivalent to all other interleavings of the program.

The high level argument is: we already know that all decrements can be postponed to the end, due

to the (non-contextual) semi-commutativity relation. Therefore, every interleaving is equivalent to

one with all the decrements appearing at the end. Starting from that interleaving, the decrements

can be pulled forward one by one to appear next to a (matching) increment, because we know y ≥ C
is true before each decrement (that has a matching increment in the prefix of the run). Note that

this last step cannot be performed under the static semi-commutativity assumption. A decrement

does not commute to the left of an increment.

The main observation is that contexts matter. At the beginning, before any increments or decre-

ments have been executed, the two operations do not commute (when y = 0). Once an increment is

executed, then y ≥ C is established and then the operations commute.

Our proposed set of contextual reductions, called C-reductions, includes this preferred reduc-

tion and (infinitely) many more equivalent ones. In a refinement loop, our algorithm infers such

contextual commutativity information, and uses it to discover a sound contextual reduction of

the program that can be proved correct. The proof is in the pudding: the algorithm decides which

reductions are sound and among those which can be proved correct by actually producing proofs

of soundness of reductions and correctness of at least one specific reduction. Slacker can discover

a proof for the program in Figure 3 in a few seconds.

3 BACKGROUND
3.1 Programs and Proofs
Programs as Regular Languages. St denotes the (possibly infinite) set of program states. For
example, we haveSt = Z×Z for a programwith two integer variables. LetA ⊆ P (St) be a (possibly
infinite) set of assertions. Σ denotes a finite alphabet of program statements. For multithreaded

programs, statements are annotated with thread identifiers to distinguish the same statement of

different threads. We assume a bounded number of threads.

We refer to a finite string of statements as a (program) trace. For each statement a ∈ Σ, we
associate a semantics JaK ⊆ St × St and extend J−K to traces via (relation) composition. A trace

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:6 Azadeh Farzan and Anthony Vandikas

τ ∈ Σ∗ is said to be infeasible if Jτ K(St) = ∅, where Jτ K(St) denotes the image of Jτ K under St .
Note that the set of program traces is a superset of the set of concrete program executions (i.e.

feasible program traces).

Without loss of generality, we define a program as a language of traces. The semantics of a

program P is simply the union of the semantics of its traces JPK =
⋃

x ∈P JxK. Concretely, one may

obtain the language of program traces by interpreting the edge-labelled control-flow graph of the

program as a deterministic finite automaton (DFA): each location in the control flow graph is a DFA

state, and each edge in the control flow graph is a DFA transition. The control flow graph entry

location is the initial state of the DFA and all its exit locations are the DFA final states. We do not

define programs to necessarily be regular languages, but we do require our input programs to be

regular and many important results require this.

Program Safety. In the context of this paper, a program P is safe if all traces of P are infeasible, i.e.

JPK(St) = ∅. Standard partial correctness specifications can be represented as safety via a simple

encoding. Given a precondition ϕ and a postconditionψ , the validity of the Hoare-triple {ϕ}P {ψ } is
equivalent to the safety of [ϕ] · P · [¬ψ], where [] is a standard assume statement (or the singleton

language containing it), and · is language concatenation.

A proof is defined based on a finite set of assertions Π ⊆ A that includes true and false.
One can associate a regular language to each set of assertions Π by defining the NFA ΠN FA =

(Π, Σ,δΠ, true, {false}) where

δΠ (ϕpre ,a) = {ϕpost | JaK(ϕpre) ⊆ ϕpost }.

We refer to L (ΠN FA), abbreviated as L (Π), as a proof. Intuitively, L (Π) consists of traces that can
be proven infeasible using only assertions in Π. The following proof rule is therefore sound [Farzan
et al. 2013, 2015; Heizmann et al. 2009]:

∃Π ⊆ A. P ⊆ L (Π)

P is safe

(Safe)

When P ⊆ L (Π), we say that L (Π) is a proof for P . A proof does not uniquely belong to any

particular program; a single language L (Π) may prove many programs correct. When both P and

L (Π) are regular, this check is decidable and polynomial on the sizes of their corresponding DFAs.

3.2 Reductions
A safe program may not admit a safety proof in a given language of assertions, or it may admit one

but the proof may be prohibitively complex. This has inspired the notion of program reductions.
The reduction of a program P is a simpler program P ′ that may be soundly proved safe in place of

the original program P . Below is a very general definition of program reductions.

Definition 3.1 (semantic reduction). If for programs P and P ′, P ′ is safe implies that P is safe, then

P ′ is a semantic reduction of P (written P ′ ⪯ P).

The definition immediately gives rise to the following sound proof rule for proving safety:

∃P ′ ⪯ P ,Π ⊆ A. P ′ ⊆ L (Π)

P is safe

(SafeRed)

A program is safe if and only if ∅ is a valid reduction of the program, which means discovering a

semantic reduction and proving safety are mutually reducible to each other. Therefore, verifying

the existence of a semantic reduction is in general undecidable. Therefore, a very particular choice

of reduction is often used [Desai et al. 2014; Lipton 1975; von Gleissenthall et al. 2019].

There are instances in the literature [Farzan and Vandikas 2019; Lipton 1975] where a restricted

class of reductions have been used instead. For example, Lipton’s reductions are technically a family

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Reductions for Safety Proofs (Extended Version) 1:7

of choices of atomic blocks based on left/write-movers in the program. If one restricts the set of

possible reductions from all reductions (given in Definition 3.1) to a proper subset which more

amenable to algorithmic checking, then the rule becomes more amenable to automation. Fixing a

set R of (semantic) reductions will change the rule to:

∃P ′ ∈ R . P ′ ⊆ L (Π) ∀P ′ ∈ R . P ′ ⪯ P

P is safe

(SafeRed2)

In [Farzan and Vandikas 2019] one candidate for R was presented in the form of a set of syntactic

reductions which are called sleep set reductions. In this paper, we take a major step in defining a far

more general (yet decidable) set of semantic reductions as a candidate for R.

3.3 Tree Automata for Classes of Languages
It is possible to automate the checking of the first premise of the rule SafeRed2 through automata

theoretic techniques.

true

false

false

false false false

a ba

a

b

b

true

Fig. 4. Infinite tree representing
the language {a,ba}.

An infinite tree can encode a (potentially infinite) language of

finite words. Consider the tree on the right where nodes are labeled

with booleans and arcs are labeled with alphabet letters. A word

belongs to the language represented by such a tree if it labels a

path from the root to a true labeled node of the tree. A set of

languages can then be encoded as a set of infinite trees. Certain

sets of infinite trees are recognized by (finite state) automata over

infinite trees. Looping Tree Automata (LTAs) are a subclass of

Büchi Tree Automata where all states are accept states [Baader

and Tobies 2001]. The class of Looping Tree Automata is closed

under intersection and union, and checking emptiness of LTAs is

decidable. Unlike Büchi Tree Automata, emptiness can be decided

in linear time [Baader and Tobies 2001].

Definition 3.2. A Looping Tree Automaton (LTA) over |Σ|-ary, B-labelled trees is a tuple M =
(Q, Σ,∆,q0) whereQ is a finite set of states, ∆ ⊆ Q ×B × (Σ→ Q) is the transition relation, and q0
is the initial state.

Formally,M ’s execution over a tree L is characterized by a run δ ∗ : Σ∗ → Q where δ ∗ (ϵ) = q0 and
(δ ∗ (x),x ∈ L, λa. δ ∗ (xa)) ∈ ∆ for all x ∈ Σ∗. The set of languages accepted byM is then defined as

L (M) = {L | ∃δ ∗. δ ∗ is a run ofM on L}.

Theorem 3.3 (from [Farzan and Vandikas 2019]). Given an LTAM and a regular language L,
it is decidable whether ∃P ∈ L (M). P ⊆ L.

Note that Theorem 3.3 is effectively providing an automation recipe for the proof rule SafeRed2.

In [Farzan and Vandikas 2019], a construction was given for a Looping Tree Automaton (LTA) that

recognizes a specific family of reductions, called sleep-set reductions of an input program P , which
were shown to be useful in proving hypersafety properties of programs. In this paper, we will

provide two extensions: a family of static semi-commutative reductions and a family of contextual
reductions which are specifically useful for simplification of concurrent program proofs.

4 SEMI-COMMUTATIVE REDUCTIONS
We introduce a class of reductions inspired by semi-commutative Mazurkiewicz traces (aka semi-

trace monoids) and Lipton’s [Lipton 1975] left/right-movers.

Let I ⊆ Σ × Σ be an irreflexive (but not necessarily symmetric) semi-independence relation. Let
⊑I be the smallest preorder satisfying σabρ ⊑I σbaρ for all σ , ρ ∈ Σ∗ and (a,b) ∈ I . The upwards

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:8 Azadeh Farzan and Anthony Vandikas

and downwards closures of a language L ⊆ Σ∗ with respect to ⊑I are respectively denoted by ⌈L⌉ I
and ⌊L⌋ I and defined as:

⌈L⌉ I = {u | ∃v ∈ L.v ⊑I u} ⌊L⌋ I = {u | ∃v ∈ L.u ⊑I v}

A language L is upwards-closed (resp. downwards-closed) with respect to ⊑I if L = ⌈L⌉ I (resp.
L = ⌊L⌋ I).

If I is a symmetric relation, then ⊑I becomes an equivalence relation and its equivalence classes

are known as Mazurkiewicz traces [Diekert and Métivier 1997]. As is the case with Mazurkiewicz

traces, relation I is of interest in program verification when it is sound, i.e. JabK ⊆ JbaK for all
(a,b) ∈ I .

Definition 4.1 (semi-commutative reduction). A program P ′ is a semi-commutative reduction of a

program P , denoted by P ′ ⪯I P , if P ⊆ ⌊P
′⌋ I .

Intuitively, in the reduction P ′, it is safe to remove smaller traces (with respect to ⊑I) in favour

of larger ones. I is sound if σ ⊑I ρ =⇒ JσK ⊆ JρK. Sound relations define sound reductions for

safety verification. Formally:

Lemma 4.2. If I is a sound semi-independence relation and P ′ ⪯I P then P ′ ⪯ P .

Proof. Since I is sound, it follows that σ ⊑I τ implies JσK ⊆ Jτ K for any σ ,τ ∈ Σ∗. Then for any

a,b ∈ St we have

(a,b) ∈ JPK =⇒ ∃σ ∈ P . (a,b) ∈ JσK
=⇒ ∃σ ∈ ⌊P ′⌋ I . (a,b) ∈ JσK
=⇒ ∃σ . ∃τ ∈ P ′. σ ⊑I τ ∧ (a,b) ∈ JσK
=⇒ ∃σ . ∃τ ∈ P ′. σ ⊑I τ ∧ (a,b) ∈ Jτ K
=⇒ ∃τ ∈ P ′. (a,b) ∈ Jτ K
=⇒ (a,b) ∈ JP ′K

so JPK ⊆ JP ′K and therefore P ′ ⪯ P . □

Example 4.3. Recall the example from Section 2 illustrated in Figure 1. inc() semi-commutes

with dec() in the sense that it would be sound to have (dec(), inc()) ∈ I . But, the inverse is
not true: (inc(), dec()) < I . The sequential program of Figure 2 is a sound semi-commutative

reduction of the program in Figure 1.

Ideally, the set of all (sound) semi-commutative reductions of a program would replace R in

the premise of the rule SafeRed2. Unfortunately, this is not possible. It has already been argued

in [Farzan and Vandikas 2019] that the premise check ∃P ′ ∈ R .P ′ ⊆ L (Π) is undecidable for an
arbitrary Π for the special case where I is symmetric. Considering our scenario is strictly more

general, the undecidability result follows straightforwardly. Fortunately, there exists a suitable

approximation of the set of semi-commutative reductions that can be used as a candidate for R

rendering the premise decidable.

4.1 A Representable Class of Semi-Commutative Reductions
Recall from Section 3.3 that a language can be represented by an infinite labelled tree, where the

arcs are labelled with program statements. To reduce a language in a constructive way (in contrast

to Definition 4.1), one can prune this infinite tree in a style inspired by partial order reduction

[Godefroid 1996]. Pruning the tree is equivalent to removing words from the language, which

defines a reduction.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Reductions for Safety Proofs (Extended Version) 1:9

Consider the tree depicted in Figure 5(i) which corresponds to the language of all traces of a simple

program a ∥ bcd . Assume that we have I = {(b,a), (d,a)}. Imagine a (depth-first) traversal of the

tree in prefix order starting from the root. Once the left-most branch of the tree is explored, which

corresponds to the program run abcd , the algorithm explores the right branch at the root. Here,

the algorithm chooses not to explore the run bacd , since (b,a) ∈ I (and therefore bacd ⊑I abcd)
and abcd has already been explored. This branch is greyed out in Figure 5(ii) to indicate that it is

pruned. The algorithm continues its exploration and decides to prune bcda since bcda ⊑I bcad and

bcad is explored beforehand.

false

false

false

false

(i) (ii) (iii)

falsefalse false

falsefalse

true true true

false false

d

c

a

d

a

a

a

b

b

c

c

d d
false

true

false

falsefalse

falsefalse

false

true

d

c

a

a

b

b c

d
false

true

false

c

d

a

true true

d

a

false

false

false

false

falsefalse

false

true true

false

d

c

a

a

a

b

b

c

c

d d
false

true

false

true

d

a

Fig. 5. An example illustrating reductions as prunings of the tree representing the program language.

Now let us slightly tweak the algorithm’s traversal strategy. At the root, we choose to go right

first (instead of left as before). At every other internal node, we do prefix traversal as before. Now,

the algorithm sees bacd first, bcad second, and as before, prunes bcda since bcda ⊑I bcad . This is
illustrated in Figure 5(iii). Then finally, it gets to the leftmost branch from the root and explores

abcd . Note that abcd cannot be pruned. We have bacd ⊑I abcd , but the inverse is not true, that is
abcd ̸⊑I bacd . The change of the traversal strategy changes the reduction that is acquired.

A particular reduction is parametric on the non-deterministic choices made about which branch to

explore first. They determine what program traces are pruned in favour of others visited before them
which are larger with respect to ⊑I . Different non-deterministic choices lead to different reductions.

Two such reductions are depicted in Figure 5(ii,iii) for two different choices of exploration strategy

at the root. Note that one can change the exploration strategy at every internal node (with more

than one successor) to enumerate more reductions of this particular language. Reductions are

then characterized by an assignment O : Σ∗ → Lin(Σ) of nodes to linear orderings on Σ, where
(a,b) ∈ O (σ) means that at node σ (i.e. the node labeled by string σ from the root), we explore

the child σa after the child σb. Each O combined with the semi-independence relation I defines a
reduction P↓I,O of the program P :

P↓I,O = P \ {ρaσbτ | ρ,σ ,τ ∈ Σ∗ ∧ (a,b) ∈ O (ρ) ∧ ∀c ∈ aσ . (c,b) ∈ I }

where smaller (with respect to ⊑I) strings are pruned away in favour of the larger ones. If program

P is upwards closed, then the aggressive pruning defined above is sound:

Lemma 4.4. For all O : Σ∗ → Lin(Σ), if P is upwards-closed then P↓I,O ⪯I P .

Proof. First, we define the following order on traces:

σaτ1 <O σbτ2 ⇐⇒ (b,a) ∈ O (x) ∧ |τ1 | = |τ2 |

This relation is a variation of the standard lexicographical well-ordering on strings of the same

length, and is a well-order as well.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:10 Azadeh Farzan and Anthony Vandikas

Assume σ ∈ P . It suffices to show that σ ∈ ⌊P↓I,O ⌋ I . We proceed by induction on σ using <O
with the induction hypothesis σ ′ <O σ =⇒ σ ′ ∈ ⌊P↓I,O ⌋ I for all σ

′ ∈ P .
If σ ∈ P↓I,O then there is nothing left to prove.

If σ < P↓I,O , then by the definition of P↓I,O we have σ = σ1aσ2bσ3 for some σ1,σ2,σ3 ∈ Σ∗

and a,b ∈ Σ such that (a,b) ∈ O (σ1) and (c,b) ∈ I for all c ∈ aσ2. Define σ
′ = σ1baσ2σ3. Then

we have σ = σ1aσ2bσ3 ⊑I σ1baσ2σ3 = σ
′
which implies σ ′ ∈ P (since P is upwards-closed). Since

(a,b) ∈ O (σ1) we also have σ ′ <O σ , and therefore by the inductive hypothesis and transitivity of

⊑I we have σ ∈ ⌊P↓I,O ⌋ I . □

The set of all such reductions for a program and a fixed semi-independence relation I can then

be defined by enumerating all such order relations.

Definition 4.5 (S-Reduction). For a sound semi-independence relation I and an upwards closed

program P , the set of S-reductions of P is defined as

SRedI (P) = {P↓I,O | O : Σ∗ → Lin(Σ)}.

a3a1 a2 a4

a3a1 a4b2

�

{a3}

{a1}

(a3, a2) 62 I
(a2, a1) 2 I

The good news is that S-reductions can be effectively repre-

sented as the language of an LTA (Looping Tree Automaton) as

defined in Section 3.3. The intuition behind the construction of

the LTA recognizing SRedI (P) is as follows. The state of the LTA
keeps track of the set of transitions that can be ignored during the

exploration, referred to as sleep sets. The idea is that the sleep set at
the root of the tree is always empty, since nothing can be ignored

there. The child node inherits the sleep set of the parent node,

adds to it the transitions that have already been explored from the

parent node (which is retrievable from O (σ)) and removes from

it anything that is not semi-independent on the transition taken

from the parent to the child. Ignored transitions define ignored nodes in a tree in a straightforward

manner: a node is not ignored if there is a path of (all) unignored transitions to it from the root. For

example, in the figure on the right, if at node σ , the transition a3 can be ignored, then it means

all the descendents of σa3 are also ignored. If ai ’s are traversed in ascending order of i’s, then by

the time we get to σa2, we have already explored σa1 and its descendants. At σa2, we can ignore

a1 in addition to a3 which is already in the sleep set of σ . However, it is assumed that (a2,a3) < I .
Therefore, we have to remove a3 from the inherited sleep set. Therefore, at σa2, a1 is the only thing

that can be ignored. The LTA effectively accepts all such trees for all possible choices of O (σ) at
each node σ by maintaining these (finite) sleep sets in its state. The full construction, which is

inspired by the one given in [Farzan and Vandikas 2019] for a symmetric I , appears in the proof of

the Theorem below:

Theorem 4.6. For any regular language P and semi-independence relation I , the set of S-reductions
of P defined by I is recognized by an LTA.

Proof. First, observe that the set {ρaσbτ | ρ,σ ,τ ∈ Σ∗ ∧ (a,b) ∈ O (ρ) ∧ ∀c ∈ aσ . (c,b) ∈ I }
that appears in the definition of P↓I,O is equivalent to the set ignoreI,O , defined as the smallest set

satisfying

σ ∈ ignoreI,O =⇒ σa ∈ ignoreI,O
a ∈ sleepI,O (σ) =⇒ σa ∈ ignoreI,O

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Reductions for Safety Proofs (Extended Version) 1:11

where sleepI,O (σ) is defined recursively as

sleepI,O (ϵ) = ∅

sleepI,O (σa) = (sleepI,O (σ) ∪O (σ) (a)) ∩ I (a).

The recursive nature of these definitions lend themselves to a simple LTA construction for SRedI (P).
LetAP = (Q, Σ,δ ,q0, F) be aDFA recognizing P .We define our LTA constructionMP = (QP , Σ,∆P ,q0P)
where

• QP = Q × B × P (Σ),
• ∆P = {((q, ι, S),B, f) | ∃O ∈ Lin(Σ).

(B ⇐⇒ q ∈ F ∧ ¬ι) ∧

∀a. f (a) = (δ (q,a), ι ∨ a ∈ S, (S ∪O (a)) ∩ I (a))}

,

• q0P = (q0,⊥, ∅).

It follows by a simple inductive proof that any δ ∗P : Σ∗ → QP is a valid run of MP iff there exists

some O : Σ∗ → Lin(Σ) such that δ ∗P (σ) = (δ ∗ (q0,σ),σ ∈ ignoreI,O , sleepI,O (σ)) for all σ ∈ Σ∗.
This implies that L (MP) = SRedI (P). □

Since the set of S-reductions is parametric on I , it is interesting to explore the connection

between two different reduction sets SRedI (P) and SRedJ (P) when I ⊆ J . It is tempting to think

that I ⊆ J =⇒ ∀P . SRedJ (P) ⊆ SRedI (P). The more liberal semi-independence relation, in this

case J , permits more aggressive prunings and hence produces smaller reductions. But its reductions

are not reductions of I , specially if I ⊂ J . The following statement is true, which has the same

desired positive effect for proof checking:

Proposition 4.7. Given a program P , two semi-independence relations I and J , and an ordering
function O : Σ∗ → Lin(Σ), if I ⊆ J then P↓J ,O ⊆ P↓I,O .

Proof. Recall the definitions of sleepI,O and ignoreI,O from Lemma 4.6, and that P↓I,O =
P \ ignoreI,O . A simple inductive proof gives us ∀σ . sleepI,O (σ) ⊆ sleepJ ,O (σ). This in turn implies

(again by a simple inductive proof) ∀σ . ignoreI,O ⊆ ignoreJ ,O , which implies P↓J ,O ⊆ P↓I,O . □

This means that if the program has a proof up to a reduction with a weaker semi-independence

relation, it will always have a proof for a reduction according to a stronger semi-independence

relation. It also implies in a straightforward manner that these reductions subsume the reductions

proposed in [Farzan and Vandikas 2019] based on symmetric independence relations.

In the special case where I is symmetric (as is the case in [Farzan and Vandikas 2019]), each L ∈
SRedI (P) is guaranteed to be optimal in the sense that the elements of L are pairwise incomparable

[Farzan and Vandikas 2019]. Unfortunately, this does not hold for a general (non-symmetric) I .
For example, the language defined by the tree in Figure 5(iii) is a strict superset of the language

defined by the tree in Figure 5(ii). Specifically, the language of the tree in Figure 5(iii) contains both

abcd and bacd , and the latter trace is redundant because bacd ⊑I abcd . Therefore, some program

reductions defined by SRedI (P) contain redundant traces and are non-optimal.

4.2 Computing a Sound Semi-Independence Relation
LTA-representability of the class of S-reductions (Theorem 4.6) is the key result of Section 4.

Soundness of S-reductions relies on Lemmas 4.2 and 4.4. Lemma 4.4 requires that the program P is

upwards-closed with respect to the independence relation I and Lemma 4.2 requires that I is sound.
Here, we outline how a relation I that satisfies both criteria can be constructed, with the help of a

theorem prover. Proposition 4.7 implies that one should try to obtain as large of an independence

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:12 Azadeh Farzan and Anthony Vandikas

relation as possible in order to maximize the likelihood that there exists a reduction with a proof.

One can show that every program P admits a maximal semi-independence relation IP .
The (Brzozowski) derivative of a language P and a string σ is defined as

σ−1P = {τ ∈ Σ∗ | στ ∈ P }.

Theorem 4.8. The relation IP defined as IP = {(a,b) | a , b ∧ ∀σ . (σab)−1P ⊆ (σba)−1P } is the
largest (with respect to ⊆) semi-independence relation such that P = ⌈P⌉ IP (upwards closedness of P).

Proof. First we show P = ⌈P⌉ IP . Clearly P ⊆ ⌈P⌉ IP , so it suffices to show ⌈P⌉ IP ⊆ P .
Assume σ ∈ ⌈P⌉ IP . Since σ is in the upwards closure of P , there must exist something in P that is

below σ , so we obtain some τ ∈ P such that τ ⊑I σ . Then τ can be obtained from σ by performing

some finite number of swaps n; we shall use τ ⊑nI σ to denote this. We proceed by induction on n,

with the inductive hypothesis τ ′ ⊑n−1I σ =⇒ σ ∈ ⌈P⌉ IP for all τ ′ ∈ P whenever n > 0.

If n = 0, then τ = σ , so clearly σ ∈ P .
If n > 0, then τ = τ1abτ2 for some τ1,τ2 ∈ Σ

∗
and a,b ∈ Σ such that (a,b) ∈ IP and τ1baτ2 ⊑

n−1
IP

σ .
By the definition of IP we have τ1baτ2 ∈ P from τ1abτ2 ∈ P , and by the inductive hypothesis we

have σ ∈ P .
Next, we show that IP is maximal. It suffices to show that P is not upwards closed for any

semi-independence relation I that includes a pair (a,b) ∈ I such that (σab)−1P ⊈ (σba)−1P for

some σ ∈ P . By the definition of the derivative there exists some τ such that σabτ ∈ P and σbaτ < P .
Then σabτ ⊑I σbaτ , which violates upwards closedness. □

When P is regular (as is the case for all of our input programs), it is possible to construct IP
directly, as the proposition ∀σ . (σab)−1P ⊆ (σba)−1P is equivalent to a subsumption relation on

states of the DFA recognizing P [Diekert and Rozenberg 1995].

Theorem 4.9. If P is regular, then IP is computable.

Proof. Let A = (Q, Σ,δ ,q0, F) be the minimal DFA representing P . We define Aq to be the DFA

obtained by replacing q0 with q in A. Then we have

(∀σ . (σab)−1P ⊆ (σba)−1P) ⇐⇒ (∀σ ,τ . σabτ ∈ P =⇒ σbaτ ∈ P)

⇐⇒ (∀σ ,τ . δ ∗ (q0,σabτ) ∈ F =⇒ δ ∗ (q0,σbaτ) ∈ F)

⇐⇒ (∀σ ,τ . δ ∗ (δ ∗ (q0,σab),τ) ∈ F =⇒ δ ∗ (δ ∗ (q0,σba),τ) ∈ F)

⇐⇒ (∀q,τ . δ ∗ (δ ∗ (q,ab),τ) ∈ F =⇒ δ ∗ (δ ∗ (q,ba),τ) ∈ F)

⇐⇒ (∀q.L (Aδ ∗ (q,ab)) ⊆ L (Aδ ∗ (q,ba)))

Since regular language inclusion is decidable, it follows that we can compute IP by iterating over

all possible pairs of statements. □

IP may be unsound. One can always obtain a maximal sound semi-independence relation by

removing from IP all statements a and b that do not satisfy JabK ⊆ JbaK. This last step needs to be

performed by making calls to a theorem prover. Note that since a and b are program statements,

the computation of this relation takes place once at the beginning of the verification process by

making a quadratic number (in the program size) of calls to a solver.

5 CONTEXTUAL REDUCTIONS
We introduce the notion of context for program reductions through the definition of a contextual
semi-independence relation. The independence relation is strengthened through the consideration

of the context information, where statements can be declared (semi-) commutative only in some

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Reductions for Safety Proofs (Extended Version) 1:13

contexts. Context is typically considered to be a state (or a set of states) from which the transitions

are being considered [Godefroid and Pirottin 1993; Katz and Peled 1992]. We propose a different

notion of context which is more useful in our language-theoretic setting, where the history of the

trace is used as context.

Concretely, a contextual semi-independence relation is a function I : Σ∗ → P (Σ × Σ) from traces

to irreflexive relations. Intuitively (a,b) ∈ I (σ) should hold for statements a and b and a program

trace σ where a can be swapped with b in context σ , that is JσabK ⊆ JσbaK. Note that contextual
semi-independence subsumes normal semi-independence, which can be considered as the special

case of a constant function; i.e. the same independence relation is assigned to all contexts.

Define ⊑I to be the smallest preorder satisfyingσabρ ⊑I σbaρ for allσ , ρ ∈ Σ
∗
and (a,b) ∈ I (σ).

Upwards and downwards closure and closedness are defined as before. We say I is sound if

JσabK ⊆ JσbaK for all σ ∈ Σ∗ and (a,b) ∈ I (σ).

Example 5.1. Recall the example of Figure 3, where we discussed the idea of contextual commu-

tativity of inc() and dec() at the high level in Section 2. Concretely, (inc(), dec()) ∈ I (σ) and
(dec(), inc()) ∈ I (σ), for all σ where the number of inc() statements is strictly larger than the

number of dec() statements in σ .

Since our contexts are defined language-theoretically, the definition of ↓ can be naturally extended

to support contexts. Define

P↓I,O = P \ {σaρbυ | σ , ρ,υ ∈ Σ∗ ∧ (a,b) ∈ O (σ) ∧ ∀τc ≤· aρ. (c,b) ∈ I (στ)}

where ≤· is the prefix relation on strings. Similar to the definition of semi-commutative reductions,

strings are soundly pruned from the program language to obtain each reduction P↓I,O , where
O is an order that determines the exploration strategy for the particular reduction. The set of all

reductions is then defined as

CRedI (P) = {P↓I,O | O : Σ∗ → Lin(Σ)}.

When I is a constant function, which makes the contextual relation collapse into the standard

semi-independence relation of Definition 4.1, CRedI (P) is representable as an LTA (by Theorem

4.6). This does not hold true for a general I. Since the goal of this paper is the development of

algorithms for enumerating reductions effectively, we are strictly interested in cases where for a

given I, the set of reductions CRedI (P) is LTA representable.

5.1 A Representable Class of Contextual Reductions
A contextual semi-independence relation I : Σ∗ → P (Σ × Σ) can be alternatively viewed as

an infinite tree labelled by a standard semi-independence relation. Thus we call I regular if it
corresponds to a regular tree. An infinite tree is regular iff it contains a finite number of unique

subtrees. Equivalently, an infinite tree is regular iff it can be generated by a modified DFAwith states

marked with arbitrary labels (in our case, semi-independence relations) instead just being labelled

as final or non-final. Since O : Σ∗ → Lin(Σ) can be viewed as an infinite tree, its regularity can be

accordingly defined. Program reductions induced by regular contextual independence relations are

LTA-representable:

Theorem 5.2. If I is regular, then CRedI (P) is representable as an LTA.

Proof. First, observe that the set {σaρbυ | σ , ρ,υ ∈ Σ∗∧(a,b) ∈ O (σ)∧∀τc ≤· aρ. (c,b) ∈ I (στ)}
that appears in the definition of P↓I,O is equivalent to the set ignoreI,O , defined as the smallest

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:14 Azadeh Farzan and Anthony Vandikas

set satisfying

σ ∈ ignoreI,O =⇒ σa ∈ ignoreI,O
a ∈ sleepI,O (σ) =⇒ σa ∈ ignoreI,O

where sleepI,O (σ) is defined recursively as

sleepI,O (ϵ) = ∅

sleepI,O (σa) = (sleepI,O (σ) ∪O (σ) (a)) ∩ I (σ) (a).

The recursive nature of these definitions lend themselves to a simple LTA construction for CRedI (P).
Let AP = (QP , Σ,δP ,q0P , FP) and AI = (QI , Σ,δI ,q0I , FI) be automata recognizing P and I,

respectively. We define our LTA constructionMPI = (QPI , Σ,∆PI ,q0PI) where

• QPI = QP ×QI × B × P (Σ),
• ∆P = {((qP ,qI , ι, S),B, f) | ∃O ∈ Lin(Σ).

(B ⇐⇒ qP ∈ FP ∧ ¬ι) ∧

∀a. f (a) = (δP (qP ,a),δI (qI ,a), ι ∨ a ∈ S, (S ∪O (a)) ∩ FI (qI) (a))}

,

• q0PI = (q0P ,q0I ,⊥, ∅).

It follows by a simple inductive proof that any δ ∗PI : Σ∗ → QPI is a valid run ofMPI iff there exists

some O : Σ∗ → Lin(Σ) such that δ ∗PI (σ) = (δ ∗P (q0P ,σ),δ
∗
I
(q0I ,σ),σ ∈ ignoreI,O , sleepI,O (σ))

for all σ ∈ Σ∗. This implies that L (MPI) = CRedI (P). □

Similar to the semi-commutative case (stated in Theorem 4.8), every program P has a maximal
contextual semi-independence relation IP , defined as

IP (σ) = {(a,b) | a , b ∧ (σab)−1P ⊆ (σba)−1P }.

One can naturally lift ⊆ to functions, where I1 ⊆ I2 iff ∀σ .I1 (σ) ⊆ I2 (σ). This provides an order

on the set of contextual relations with respect to which one can define maximality. This leads us to

the contextual analog of Theorem 4.8:

Theorem 5.3. IP is the largest (with respect to ⊆) semi-independence relation satisfying P = ⌈P⌉IP .

Proof. First we show P = ⌈P⌉IP . Clearly P ⊆ ⌈P⌉IP , so it suffices to show ⌈P⌉IP ⊆ P .
Assume σ ∈ ⌈P⌉IP . Since σ is in the upwards closure of P , there must exist something in P that is

below σ , so we obtain some τ ∈ P such that τ ⊑I σ . Then τ can be obtained from σ by performing

some finite number of swaps n; we shall use τ ⊑n
I
σ to denote this. We proceed by induction on n,

with the inductive hypothesis τ ′ ⊑n−1
I

σ =⇒ σ ∈ ⌈P⌉IP for all τ ′ ∈ P whenever n > 0.

If n = 0, then τ = σ , so clearly σ ∈ P .
If n > 0, then τ = τ1abτ2 for some τ1,τ2 ∈ Σ∗ and a,b ∈ Σ such that (a,b) ∈ IP (τ1) and

τ1baτ2 ⊑
n−1
IP

σ . By the definition of IP we have τ1baτ2 ∈ P from τ1abτ2 ∈ P , and by the inductive

hypothesis we have σ ∈ P .
Next, we show that IP is maximal. It suffices to show that P is not upwards closed for any

contextual semi-independence relation I that includes a pair (a,b) ∈ I (σ) such that (σab)−1P ⊈
(σba)−1P for some σ ∈ P . By the definition of the derivative there exists some τ such that σabτ ∈ P
and σbaτ < P . Then σabτ ⊑I σbaτ , which violates upwards closedness. □

When P is a regular language, IP is a computable function. In fact, a stronger result holds:

Theorem 5.4. If P is regular then so is IP .

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Reductions for Safety Proofs (Extended Version) 1:15

Proof. Let A = (Q, Σ,δ ,q0, F) be a DFA for P . Define A′ = (Q, Σ,δ ,q0, F
′) where F ′ : Σ∗ →

P (Σ × Σ) is defined as

F ′(q) = {(a,b) | a , b ∧ L (Aδ ∗ (q,ab)) ⊆ L (Aδ ∗ (q,ba))}.

Then

(a,b) ∈ IP (σ) ⇐⇒ a , b ∧ (σab)−1P ⊆ (σba)−1P

⇐⇒ a , b ∧ (∀τ . σabτ ∈ P =⇒ σbaτ ∈ P)

⇐⇒ a , b ∧ (∀τ . δ ∗ (q0,σabτ) ∈ F =⇒ δ ∗ (q0,σbaτ) ∈ F)

⇐⇒ a , b ∧ (∀τ . δ ∗ (q0,σabτ) ∈ F =⇒ δ ∗ (q0,σbaτ) ∈ F)

⇐⇒ a , b ∧ (∀τ . δ ∗ (δ ∗ (q0,σab),τ) ∈ F =⇒ δ ∗ (δ ∗ (q0,σba),τ) ∈ F)

⇐⇒ a , b ∧Aδ ∗ (δ ∗ (q0,σ),ab) ⊆ Aδ ∗ (δ ∗ (q0,σ),ba)

⇐⇒ (a,b) ∈ F ′(δ ∗ (q0,σ))

which is the acceptance condition for A′. □

As in the semi-commutative case, there is no guarantee that IP is sound, and one may obtain a

maximal sound contextual semi-independence relation Isound

P by removing the unsound elements:

Isound

P (σ) = IP (σ) \ {(a,b) | JσabK ⊈ JσbaK}.

Unlike the semi-commutative case, where any semi-commutative relation defines an LTA-representable

set of reductions, there is no guarantee that CRedIsoundP
(P) is LTA-representable.

Theorem 5.5. The set CRedIsoundP
(P) generally cannot be represented by an LTA.

Proof. We reduce representability of CRedIsoundP
(P) to safety. For a contradiction, assumeCRedIsoundP

(P)

is representable by an LTA for any regular P .
Let P ′ be any regular program, and let a and b be two statements that do not appear in P ′, are

always enabled, and only soundly commute in an inconsistent context, i.e. JaK and JbK are total
and a and b only commute in context σ if σ is infeasible. For example, one can take statements

x ← 0 and x ← 1.

Let P = P ′ · {ab,ba}. By our initial assumption, CRedIsoundP
(P) is representable by an LTA. By

definition, CRedIsoundP
(P) is non-empty. Every non-empty LTA contains a regular language [Farzan

and Vandikas 2019], so we obtain a regular language R ∈ CRedIsoundP
(P). Since R is a reduction of P

and a subset of P , it follows that P is sound iff R is sound.

Every trace in R ends in either ab or ba. If P is sound, then for any σ ∈ P we cannot have both

σab ∈ R and σba ∈ R: σ is infeasible, which means a and b are independent in context σ , which
means that at least one of these strings will be pruned (depending on whether a or b is explored

first at σ).
Conversely, if P is unsound then so is R, and there must exist a feasible trace σab ∈ R. Since a

and b are always enabled, it follows that σ is also feasible. Since σ is feasible, it follows that a and b
do not commute in context σ , so R must also include σba.

Thus P is unsafe iff R contains a pair of traces σab and σba. Since R is regular, this can easily be

checked by examining the states of the DFA accepting R. Thus we have a decision procedure for

safety, which is not possible. □

This makes Isound

P unsuitable for use in automated verification. Fortunately, we have a solution

for this problem. Recall that the ultimate goal is to find some reduction P↓I,O that can be proven

safe, and to this end, it is not necessary that I be maximal. It is difficult (if not impossible), without

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:16 Azadeh Farzan and Anthony Vandikas

knowing anything about the proof, to make a correct choice about I in advance. Therefore, we

can be clever and handle the choice of I in the same way that we handle the choice of a particular

exploration order O for a reduction: we construct the set of all possible P↓I,O over all possible I

and O . It will be left to the verification algorithm to discover the right choices for both I and O .

a1 ak

�

. . .

...

inde
pa1,a2

indepak�1 ,ak

Since not all independence relations are sound, we ensure our

reductions are valid by adding additional soundness constraints
to each reduction in the form of additional traces that can

only be proven correct if the underlying independence relation

is sound. This is done via an additional set of independence
statements Σindep = {indepa,b | a,b ∈ Σ} with the semantics

Jindepa,bK = JabK \ JbaK. Intuitively, each indepa,b is infeasible

iff it is executed in a state where statement a commutes to the

right of b. As illustrated on the right, for every node σ , and
each pair of outgoing transitions ai and aj , a new independence

transition with the label indepai ,aj is added to a new fresh state. The states/transitions illustrated in

blue are the new additions. The set of soundness constraints for a particular independence relation

I : Σ∗ → P (Σ × Σ) is then defined as

sound(I) = {σ · indepa,b | (a,b) ∈ I (σ)}.

Intuitively, this corresponds to unreachability of all newly added (blue) states in the schematic

figure above, which is formalized in the lemma below:

Lemma 5.6. I is sound iff Jsound(I)K = ∅.

Proof. Assume I is sound and let σ · indepa,b be any trace in sound(I). Then

Jσ · indepa,bK = JσK ◦ Jindepa,bK
= JσK ◦ (JabK \ JbaK)
= (JσK ◦ JabK) \ (JσK ◦ JbaK)
= JσabK \ JσbaK
= ∅,

so soundness of I implies safety of sound(I).
For the other direction, assume σ ∈ Σ∗ and a,b ∈ Σ such that Jσ · indepa,bK = ∅. By the above

derivation we have JσabK \ JσbaK = ∅, which implies JσabK ⊆ JσbaK. □

At this point, we can claim P is safe if both P↓I,O and sound(I) are safe. Since two programs

are safe iff their union is safe, we can treat P↓I,O and sound(I) as a single reduction by taking

their union.

Theorem 5.7. For any independence relation I : Σ∗ → P (Σ × Σ) and upwards-closed program P ,
P↓I,O ∪ sound(I) ⪯ P .

Proof. Follows trivially from Lemma 5.6 and soundness of C-reductions. □

Finally, we are ready to define our set of contextual reductions.

Definition 5.8 (C-Reductions). Given a program P , the set of C-reductions of the program is

defined as:

CRed
∗ (P) = {P↓I,O ∪ sound(I) | O : Σ∗ → Lin(Σ),I ⊆ IP }.

C-reductions, like S-reductions, are effectively representable for algorithmic verification:

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Reductions for Safety Proofs (Extended Version) 1:17

Theorem 5.9. For any regular program P the set of C-reductions (i.e. CRed∗ (P)) of P is recognized
by an LTA.

Proof. Let AP = (QP , Σ,δP ,q0P , FP) and AIP = (QIP , Σ,δIP ,q0IP , FIP) be automata recognizing

P and IP , respectively. We define our LTA constructionMP ∗ = (QP ∗ , Σ,∆P ∗ ,q0P ∗) where

• QP ∗ = (QP ×QIP × B × P (Σ)) ∪ B,
• ∆P = {(B,B, λa.⊥)}

∪ {((qP ,qIP , ι, S),B, f) | ∃I ⊆ FIP (qIP),O ∈ Lin(Σ).

(B ⇐⇒ qP ∈ FP ∧ ¬ι) ∧

(∀a,b . f (indepa,b) = ((a,b) ∈ I)) ∧

(∀a < Σindep. f (a) = (δP (qP ,a),δIP (qIP ,a), ι ∨ a ∈ S, (S ∪O (a)) ∩ I (a)))}

,

• q0P ∗ = (q0P ,q0IP ,⊥, ∅).

It follows by a simple inductive proof that any δ ∗P ∗ : Σ
∗ → QP ∗ is a valid run ofMP ∗ iff there exists

some I : Σ∗ → P (Σ × Σ) and O : Σ∗ → Lin(Σ) such that δ ∗P ∗ (σ) = (δ ∗P (q0P ,σ),δ
∗
IP
(q0IP ,σ),σ ∈

ignoreI,O , sleepI,O (σ)), δ
∗
P ∗ (σ · indepa,b) = ⊤, and δ

∗
P ∗ (σ · indepa,b · τ) = ⊥ for all σ ∈ Σ∗,

τ ∈ (Σ ∪ Σindep)
+
, and a,b ∈ Σ. This implies that L (MP ∗) = CRed

∗ (P). □

Note that since the LTA represents the set of all reductions with all possible choices of I, it

includes the reductions with the specific choice of the maximal sound contextual relation Isound

P .

Therefore, reductions based on Isound

P will be considered for the proof without the need for them

to be captured by an LTA as a single set.

5.2 Finite Programs
There is research [Wang et al. 2009] that focuses on reductions in the context of bounded model

checking (i.e. bug finding) for concurrent programs. It is therefore worthwhile to mention that for

this special class of programs, where the program language includes only finitely many traces, an

appropriate regular reduction always exists.

Theorem 5.10. For any finite P , there exists a sound regular independence relation I ⊆ IP such
that CRedI (P) = CRedIP (P).

Proof. Any trace τ that is not a prefix of any trace in P is irrelevant as far as independence is

concerned. An independence relation may choose to declare any and all statements independent at

τ without affecting the set of traces to be pruned. There is nothing to prune anyways. Thus we

define I to be the restriction of IP to P :

I (σ) = {(a,b) ∈ IP (σ) | ∃τ . στ ∈ P }.

While I (σ) may not have a finite representation, it is still computable (assuming the set of state-

ments are semantically within a decidable logic). Since P is finite, we may calculate exactly what

independencies should hold at each trace in P . An automaton accepting I (σ) simply has to check

whether σ ∈ P . □

While the “ideal” independence relation Isound

P defined previously may not be regular (and

therefore may not satisfy the precondition of Theorem 5.2), Theorem 5.10 implies that we can

always construct another regular independence relation that produces equivalent reductions. This

implies that completeness with respect to reductions can be achieved for bounded programs, while

it is not achievable for general (unbounded) programs.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:18 Azadeh Farzan and Anthony Vandikas

6 RELATIONSHIP TO KNOWN REDUCTION TECHNIQUES
Now that we have introduced C-reductions, it is only natural to ask if they subsume some well-

understood and widely used reduction techniques specific to certain program classes. To this end,

we investigate the relation between C-reductions and the two known approaches of Lipton [Lipton

1975] and Existential Boundedness [Genest et al. 2007].

6.1 Lipton’s Atomic Block Reductions
In Lipton’s reductions, semi-commutativity properties of statements are used as sufficient conditions

to infer atomic blocks. Declaring a block of code atomic (and having it executed without interruption)

has the effect of reducing the number of thread interleavings that must be proved correct.

Lipton’s condition is based on left movers and right movers. A left mover (respectively right

mover) is a statement that soundly commutes to the left (respectively right) of every statement in

every other thread. A sequence of statements a1 . . . anbc1 . . . cm may be declared atomic if each

ai is a right mover and each c j is a left mover. First, note that Lipton’s original definition for

left/right-movers was a contextual definition. He defined an action to be a left/right-mover if it

left/right commutes from all concrete reachable program contexts. For a program with variables

ranging over infinite data domains, this implies infinitely many possible contexts. Therefore, a

corresponding contextual commutativity relation will be incomputable in general. Given a general

contextual left/right-mover specification, checking the soundness of it according to Lipton’s original

contextual definition is undecidable since determining the set of reachable states is undecidable

in general. This is perhaps why all instances of usage of Lipton’s reductions in the literature are

non-contextual. One can view our C-reductions as an attempt to provide a decidable approximation

of this original definition for program safety verification.

Let us now compare our (non-contextual) S-reductions against the commonly used non-contextual

definition of Lipton’s reductions. First, observe that Lipton’s reductions are not optimal, even if

maximal blocks of atomic codes are inferred. For example, consider a disjoint parallel program
a1a2 ∥ b1b2. Since every statement is both a left and a right mover, one can reduce the program

to A ∥ B where A = a1a2 and B = b1b2 are atomic blocks. Note that this reduction includes two

execution AB and BA which are equivalent. Therefore, one is redundant. The set of S-reductions of

this program will include reductions with no redundancies; there are 4 of them in total, and each

has a single trace in it.

Now, let us assume the program a1a2 ∥ b1b2 is not disjoint parallel anymore and a1 and b1 are
right movers. This means that P can still be reduced toA ∥ B with the same atomic blocks. Note that

Lipton’s definition of a right mover is strictly stronger than (and therefore implies) our definition

of semi-commutativity. That is, if a1 is a right mover, then for all l ∈ Σ, (a1, l) ∈ I . Therefore, we
have a sound semi-independence relation

I = {(a1,b1), (a1,b2), (b1,a1), (b1,a2)}.

false

falsefalse

false

true

false

a1

a1

b1

b2

a2b2

a2

false false

true

false

b2

a2

b1

b1

b2

true

false

a2

b2

true

false

true true

false false

false

b2

a2

a2

a1

Fig. 6. S-reductions vs Lipton’s reductions.

The program is upwards-closed with respect to I . One
of the S-reductions of the program is illustrated in Figure

6. Assume that at every relevant node, the a transition

is explored first (which would correspond to the prefix

order traversal of the depicted tree). The figure illustrates

which runs are pruned (greyed out) and which remain in

the reduction. Specifically, the unexpected trace a1b1b2a2
has to remain in the reduction because the trace b1b2a1a2
which subsumes it is only visited later, and cannot be

used for pruning. Therefore, this particular s-reduction

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Reductions for Safety Proofs (Extended Version) 1:19

has an extra trace compared to Lipton’s reduction A ∥ B.
The rest of the choices of order (beyond always exploring

a’s before b’s at every point) will follow a similar pattern, and include other redundant runs. It

is easy to check that all four different S-reductions of this program include redundant traces in

addition to Lipton’s reduction.

The combination of the two examples demonstrate how our S-reductions and Lipton’s (non-

contextual) reductions are incomparable and therefore complementary. Note that for any concurrent

program (with a bounded number of threads), there are only finitely many choices for atomic

blocks. Therefore, one can imagine enumerating them all as a specialized reduction class. Since

there are finitely many possible reductions, the class of reductions is trivially recognizable by an

LTA. However, our generic C-reduction (or S-reduction) classes do not necessarily include all these

(finitely many) reductions.

6.2 Existential Boundedness
Programs operating on unbounded FIFO channels typically require quantified invariants for their

correctness proofs. For example, the simple code in Figure 7(a) requires an invariant stating that all

elements in transit at any given time are equal to 5. Note, however, that every trace of this program

is equivalent to a trace of the program in Figure 7(b) where every receive occurs right after its

corresponding send. For each trace in Figure 7(b), there is at most one element in transit at any

given time, which makes the program effectively finite state. The proposed approaches in [Desai

et al. 2014; von Gleissenthall et al. 2019], for example, verify the program in Figure 7(a) precisely

by transforming it to the one in Figure 7(b).

(a)

(b)

i = 0;
while (i < N) {

send(5);
i++;

}
<latexit sha1_base64="wH4ctrCiPy3afZd2f8bqWIc/+Cs=">AAAG53icjVXNbtNAEHYhBDC/hQMHLiuqSgWsyikgkEokEAi4gAqlLVJiRev1OF26P2Z3TRtZ5hW4Ia5IXOHKs/A2jFMX1U3UdKNIo5n5dr6Z2RnHmeDWheHfuVOnW2faZ8+d9y9cvHT5ytX5a5tW54bBBtNCmw8xtSC4gg3HnYAPmQEqYwFb8c6zyr71GYzlWr13owwiSYeKp5xRh6rBfOvGYl9YJzRNBFXDnA7BFr31bWqy6FmwRi2jovTHPhZckXKDzhiruxIIWosPggNot8j2EaV/gPhveprQwCdHDsNLrE5T9OyGk2bMjDPrRgK6fedSKrkY9WP0NhzspPsOjHa1SWrAuDhFLHIo/4MnMdYZroYNiIHkOATTUoJyDcjQAKjjQFIbqIHdnoh6NQ67gRpaRkV/oTy+PJ2ATL31IOluYeFTwJWbcs+0wrxArHUvx8SnXH049MrM0AKkpAF2ngUIA+MCUDbHAIGke4HkKrCgkhMyewfJJtcC3Cxe92byeqUl/ky2za1czyWWR4EZCK2zE3LZ4iJZd4buxmDMaBah+zMJ0XxvYHN5wuja4PTArKihj+MWw5CrohplXBr4okufky4JV/3dbS6ALHHymLy5TYrqpqoXSw9ur1Yyv3t3tcKjqoEeXF0Il8PxIZNCpxYWvPqsDebn/vQTzfLqiY/Z9Tph5qKCGseZAAyRW8go28En30NRUQk2KsaJlmQRNQlJtcG/cmSsPYwoqLR2JGP0lNRt26O2SjnN1std+igquMpyB4rtB0pzQZwm1T4kCcfBdGKEAmWGI1fCcPtR5nBrNqLUpbHNTJLPPLN1Lnv7yfi4Lw/huGJaWS0oznnT1Kt2JSRR8Rw+0s18nSr7WitdNp3ed6KiKkpF328wYvgV4GCahJrui30DCnar1UNVcgc3VAIpzYUr3J5zJfHxYKs7Rxs7KWyuLHfC5c7blYUnj+qmn/Nuere8Ja/jPfSeeK+8NW/DY60vrZ+tX63fbd7+2v7W/r7vemquxlz3Gqf94x89byFn</latexit><latexit sha1_base64="wH4ctrCiPy3afZd2f8bqWIc/+Cs=">AAAG53icjVXNbtNAEHYhBDC/hQMHLiuqSgWsyikgkEokEAi4gAqlLVJiRev1OF26P2Z3TRtZ5hW4Ia5IXOHKs/A2jFMX1U3UdKNIo5n5dr6Z2RnHmeDWheHfuVOnW2faZ8+d9y9cvHT5ytX5a5tW54bBBtNCmw8xtSC4gg3HnYAPmQEqYwFb8c6zyr71GYzlWr13owwiSYeKp5xRh6rBfOvGYl9YJzRNBFXDnA7BFr31bWqy6FmwRi2jovTHPhZckXKDzhiruxIIWosPggNot8j2EaV/gPhveprQwCdHDsNLrE5T9OyGk2bMjDPrRgK6fedSKrkY9WP0NhzspPsOjHa1SWrAuDhFLHIo/4MnMdYZroYNiIHkOATTUoJyDcjQAKjjQFIbqIHdnoh6NQ67gRpaRkV/oTy+PJ2ATL31IOluYeFTwJWbcs+0wrxArHUvx8SnXH049MrM0AKkpAF2ngUIA+MCUDbHAIGke4HkKrCgkhMyewfJJtcC3Cxe92byeqUl/ky2za1czyWWR4EZCK2zE3LZ4iJZd4buxmDMaBah+zMJ0XxvYHN5wuja4PTArKihj+MWw5CrohplXBr4okufky4JV/3dbS6ALHHymLy5TYrqpqoXSw9ur1Yyv3t3tcKjqoEeXF0Il8PxIZNCpxYWvPqsDebn/vQTzfLqiY/Z9Tph5qKCGseZAAyRW8go28En30NRUQk2KsaJlmQRNQlJtcG/cmSsPYwoqLR2JGP0lNRt26O2SjnN1std+igquMpyB4rtB0pzQZwm1T4kCcfBdGKEAmWGI1fCcPtR5nBrNqLUpbHNTJLPPLN1Lnv7yfi4Lw/huGJaWS0oznnT1Kt2JSRR8Rw+0s18nSr7WitdNp3ed6KiKkpF328wYvgV4GCahJrui30DCnar1UNVcgc3VAIpzYUr3J5zJfHxYKs7Rxs7KWyuLHfC5c7blYUnj+qmn/Nuere8Ja/jPfSeeK+8NW/DY60vrZ+tX63fbd7+2v7W/r7vemquxlz3Gqf94x89byFn</latexit><latexit sha1_base64="wH4ctrCiPy3afZd2f8bqWIc/+Cs=">AAAG53icjVXNbtNAEHYhBDC/hQMHLiuqSgWsyikgkEokEAi4gAqlLVJiRev1OF26P2Z3TRtZ5hW4Ia5IXOHKs/A2jFMX1U3UdKNIo5n5dr6Z2RnHmeDWheHfuVOnW2faZ8+d9y9cvHT5ytX5a5tW54bBBtNCmw8xtSC4gg3HnYAPmQEqYwFb8c6zyr71GYzlWr13owwiSYeKp5xRh6rBfOvGYl9YJzRNBFXDnA7BFr31bWqy6FmwRi2jovTHPhZckXKDzhiruxIIWosPggNot8j2EaV/gPhveprQwCdHDsNLrE5T9OyGk2bMjDPrRgK6fedSKrkY9WP0NhzspPsOjHa1SWrAuDhFLHIo/4MnMdYZroYNiIHkOATTUoJyDcjQAKjjQFIbqIHdnoh6NQ67gRpaRkV/oTy+PJ2ATL31IOluYeFTwJWbcs+0wrxArHUvx8SnXH049MrM0AKkpAF2ngUIA+MCUDbHAIGke4HkKrCgkhMyewfJJtcC3Cxe92byeqUl/ky2za1czyWWR4EZCK2zE3LZ4iJZd4buxmDMaBah+zMJ0XxvYHN5wuja4PTArKihj+MWw5CrohplXBr4okufky4JV/3dbS6ALHHymLy5TYrqpqoXSw9ur1Yyv3t3tcKjqoEeXF0Il8PxIZNCpxYWvPqsDebn/vQTzfLqiY/Z9Tph5qKCGseZAAyRW8go28En30NRUQk2KsaJlmQRNQlJtcG/cmSsPYwoqLR2JGP0lNRt26O2SjnN1std+igquMpyB4rtB0pzQZwm1T4kCcfBdGKEAmWGI1fCcPtR5nBrNqLUpbHNTJLPPLN1Lnv7yfi4Lw/huGJaWS0oznnT1Kt2JSRR8Rw+0s18nSr7WitdNp3ed6KiKkpF328wYvgV4GCahJrui30DCnar1UNVcgc3VAIpzYUr3J5zJfHxYKs7Rxs7KWyuLHfC5c7blYUnj+qmn/Nuere8Ja/jPfSeeK+8NW/DY60vrZ+tX63fbd7+2v7W/r7vemquxlz3Gqf94x89byFn</latexit><latexit sha1_base64="wH4ctrCiPy3afZd2f8bqWIc/+Cs=">AAAG53icjVXNbtNAEHYhBDC/hQMHLiuqSgWsyikgkEokEAi4gAqlLVJiRev1OF26P2Z3TRtZ5hW4Ia5IXOHKs/A2jFMX1U3UdKNIo5n5dr6Z2RnHmeDWheHfuVOnW2faZ8+d9y9cvHT5ytX5a5tW54bBBtNCmw8xtSC4gg3HnYAPmQEqYwFb8c6zyr71GYzlWr13owwiSYeKp5xRh6rBfOvGYl9YJzRNBFXDnA7BFr31bWqy6FmwRi2jovTHPhZckXKDzhiruxIIWosPggNot8j2EaV/gPhveprQwCdHDsNLrE5T9OyGk2bMjDPrRgK6fedSKrkY9WP0NhzspPsOjHa1SWrAuDhFLHIo/4MnMdYZroYNiIHkOATTUoJyDcjQAKjjQFIbqIHdnoh6NQ67gRpaRkV/oTy+PJ2ATL31IOluYeFTwJWbcs+0wrxArHUvx8SnXH049MrM0AKkpAF2ngUIA+MCUDbHAIGke4HkKrCgkhMyewfJJtcC3Cxe92byeqUl/ky2za1czyWWR4EZCK2zE3LZ4iJZd4buxmDMaBah+zMJ0XxvYHN5wuja4PTArKihj+MWw5CrohplXBr4okufky4JV/3dbS6ALHHymLy5TYrqpqoXSw9ur1Yyv3t3tcKjqoEeXF0Il8PxIZNCpxYWvPqsDebn/vQTzfLqiY/Z9Tph5qKCGseZAAyRW8go28En30NRUQk2KsaJlmQRNQlJtcG/cmSsPYwoqLR2JGP0lNRt26O2SjnN1std+igquMpyB4rtB0pzQZwm1T4kCcfBdGKEAmWGI1fCcPtR5nBrNqLUpbHNTJLPPLN1Lnv7yfi4Lw/huGJaWS0oznnT1Kt2JSRR8Rw+0s18nSr7WitdNp3ed6KiKkpF328wYvgV4GCahJrui30DCnar1UNVcgc3VAIpzYUr3J5zJfHxYKs7Rxs7KWyuLHfC5c7blYUnj+qmn/Nuere8Ja/jPfSeeK+8NW/DY60vrZ+tX63fbd7+2v7W/r7vemquxlz3Gqf94x89byFn</latexit>

j = 0;
while (j < N) {

x = receive();
j++;

}
<latexit sha1_base64="T3HYXd40TJgL4cu+maaQsIk+ZG0=">AAAHJXicjVXdbtNKEHYhBPA5/BQuuVlRVSpgVUkBgVQiFRVxuOGoUNoiJVa0Xo/TbffH7K7bRJafh0fghlfgDiGdKyRu4SEYpy6nbqKmG0Uazcw3881MZhKlglvXav03d+Fi41Lz8pWr/l9/X7t+4+b8rW2rM8Ngi2mhzfuIWhBcwZbjTsD71ACVkYCdaH+9tO8cgLFcq3dulEIo6UDxhDPqUNWfb2wt9oR1QtNYUDXI6ABs3t3cpSYN14MNahkVhT/2seDyhBt0xlydlUDQSnwcHEM7eXqEKPxjxB/T85gGPjn1GAaxOknQs9OaNGNlnFk3EtDpOZdQycWoF6G34WAn3fdhdKhNXAHGzckjkUHxBzyJsc5wNahBDMRnIZiWEpSrQQYGQJ0FktpABex0RditcDgN1NAizHsLxdntaQdkatTjoju5hQ8BV25KnGmNeYlY6/4ZE58S+mTqlZmpBUhJA5w8CxAGxgWgbIYJAkmHgeQqwPKBH8A5yb2FeJtrAW4WtYczqb3SEj8m3eVWbmYSO6TA9IXW6Tm57HARbzpDDyMwZjSL0JRf8Unzo5l8aTbsW+RJKqEv/hfNOSlrg1sHM6n6uKYRDLjKyxOAxwY3ofD3SIe0Vv3DXS6ALO2RZ+TfeyQvIw3RUs1x6d5qqdl78GC1jAIqrsXo31xoLbfGj0wK7UpY8Kq30Z+f+9SLNcvKBRlz7LZbqQtzahxnAjBFZiGlbB8XpouiohJsmI/LLcgiamKSaINf5chYexKRU2ntSEboKanbtadtpXKarZu55GmYc5VmDhQ7SpRkgjhNymtKYo79cGKEAmWGI1fC8HZS5vDm1rJUrbH1SuIDntqqluFRMT5e2xM4rphWVguKV6Ju6paXFuIwfwF7dDvbpMq+1koXdad37TAvm1LS92uMGP6HcDB1QnX3xZ4BBYfl4aIqvo/3LYaEZsLlbuhcQXx8OOr26cFOCtsry+3WcvvNysLa02roV7w73l1vyWt7T7w175W34W15rPG58aPxs/Gr+bH5pfm1+e3I9cJchbnt1V7z+2+z7zaA</latexit><latexit sha1_base64="T3HYXd40TJgL4cu+maaQsIk+ZG0=">AAAHJXicjVXdbtNKEHYhBPA5/BQuuVlRVSpgVUkBgVQiFRVxuOGoUNoiJVa0Xo/TbffH7K7bRJafh0fghlfgDiGdKyRu4SEYpy6nbqKmG0Uazcw3881MZhKlglvXav03d+Fi41Lz8pWr/l9/X7t+4+b8rW2rM8Ngi2mhzfuIWhBcwZbjTsD71ACVkYCdaH+9tO8cgLFcq3dulEIo6UDxhDPqUNWfb2wt9oR1QtNYUDXI6ABs3t3cpSYN14MNahkVhT/2seDyhBt0xlydlUDQSnwcHEM7eXqEKPxjxB/T85gGPjn1GAaxOknQs9OaNGNlnFk3EtDpOZdQycWoF6G34WAn3fdhdKhNXAHGzckjkUHxBzyJsc5wNahBDMRnIZiWEpSrQQYGQJ0FktpABex0RditcDgN1NAizHsLxdntaQdkatTjoju5hQ8BV25KnGmNeYlY6/4ZE58S+mTqlZmpBUhJA5w8CxAGxgWgbIYJAkmHgeQqwPKBH8A5yb2FeJtrAW4WtYczqb3SEj8m3eVWbmYSO6TA9IXW6Tm57HARbzpDDyMwZjSL0JRf8Unzo5l8aTbsW+RJKqEv/hfNOSlrg1sHM6n6uKYRDLjKyxOAxwY3ofD3SIe0Vv3DXS6ALO2RZ+TfeyQvIw3RUs1x6d5qqdl78GC1jAIqrsXo31xoLbfGj0wK7UpY8Kq30Z+f+9SLNcvKBRlz7LZbqQtzahxnAjBFZiGlbB8XpouiohJsmI/LLcgiamKSaINf5chYexKRU2ntSEboKanbtadtpXKarZu55GmYc5VmDhQ7SpRkgjhNymtKYo79cGKEAmWGI1fC8HZS5vDm1rJUrbH1SuIDntqqluFRMT5e2xM4rphWVguKV6Ju6paXFuIwfwF7dDvbpMq+1koXdad37TAvm1LS92uMGP6HcDB1QnX3xZ4BBYfl4aIqvo/3LYaEZsLlbuhcQXx8OOr26cFOCtsry+3WcvvNysLa02roV7w73l1vyWt7T7w175W34W15rPG58aPxs/Gr+bH5pfm1+e3I9cJchbnt1V7z+2+z7zaA</latexit><latexit sha1_base64="T3HYXd40TJgL4cu+maaQsIk+ZG0=">AAAHJXicjVXdbtNKEHYhBPA5/BQuuVlRVSpgVUkBgVQiFRVxuOGoUNoiJVa0Xo/TbffH7K7bRJafh0fghlfgDiGdKyRu4SEYpy6nbqKmG0Uazcw3881MZhKlglvXav03d+Fi41Lz8pWr/l9/X7t+4+b8rW2rM8Ngi2mhzfuIWhBcwZbjTsD71ACVkYCdaH+9tO8cgLFcq3dulEIo6UDxhDPqUNWfb2wt9oR1QtNYUDXI6ABs3t3cpSYN14MNahkVhT/2seDyhBt0xlydlUDQSnwcHEM7eXqEKPxjxB/T85gGPjn1GAaxOknQs9OaNGNlnFk3EtDpOZdQycWoF6G34WAn3fdhdKhNXAHGzckjkUHxBzyJsc5wNahBDMRnIZiWEpSrQQYGQJ0FktpABex0RditcDgN1NAizHsLxdntaQdkatTjoju5hQ8BV25KnGmNeYlY6/4ZE58S+mTqlZmpBUhJA5w8CxAGxgWgbIYJAkmHgeQqwPKBH8A5yb2FeJtrAW4WtYczqb3SEj8m3eVWbmYSO6TA9IXW6Tm57HARbzpDDyMwZjSL0JRf8Unzo5l8aTbsW+RJKqEv/hfNOSlrg1sHM6n6uKYRDLjKyxOAxwY3ofD3SIe0Vv3DXS6ALO2RZ+TfeyQvIw3RUs1x6d5qqdl78GC1jAIqrsXo31xoLbfGj0wK7UpY8Kq30Z+f+9SLNcvKBRlz7LZbqQtzahxnAjBFZiGlbB8XpouiohJsmI/LLcgiamKSaINf5chYexKRU2ntSEboKanbtadtpXKarZu55GmYc5VmDhQ7SpRkgjhNymtKYo79cGKEAmWGI1fC8HZS5vDm1rJUrbH1SuIDntqqluFRMT5e2xM4rphWVguKV6Ju6paXFuIwfwF7dDvbpMq+1koXdad37TAvm1LS92uMGP6HcDB1QnX3xZ4BBYfl4aIqvo/3LYaEZsLlbuhcQXx8OOr26cFOCtsry+3WcvvNysLa02roV7w73l1vyWt7T7w175W34W15rPG58aPxs/Gr+bH5pfm1+e3I9cJchbnt1V7z+2+z7zaA</latexit><latexit sha1_base64="T3HYXd40TJgL4cu+maaQsIk+ZG0=">AAAHJXicjVXdbtNKEHYhBPA5/BQuuVlRVSpgVUkBgVQiFRVxuOGoUNoiJVa0Xo/TbffH7K7bRJafh0fghlfgDiGdKyRu4SEYpy6nbqKmG0Uazcw3881MZhKlglvXav03d+Fi41Lz8pWr/l9/X7t+4+b8rW2rM8Ngi2mhzfuIWhBcwZbjTsD71ACVkYCdaH+9tO8cgLFcq3dulEIo6UDxhDPqUNWfb2wt9oR1QtNYUDXI6ABs3t3cpSYN14MNahkVhT/2seDyhBt0xlydlUDQSnwcHEM7eXqEKPxjxB/T85gGPjn1GAaxOknQs9OaNGNlnFk3EtDpOZdQycWoF6G34WAn3fdhdKhNXAHGzckjkUHxBzyJsc5wNahBDMRnIZiWEpSrQQYGQJ0FktpABex0RditcDgN1NAizHsLxdntaQdkatTjoju5hQ8BV25KnGmNeYlY6/4ZE58S+mTqlZmpBUhJA5w8CxAGxgWgbIYJAkmHgeQqwPKBH8A5yb2FeJtrAW4WtYczqb3SEj8m3eVWbmYSO6TA9IXW6Tm57HARbzpDDyMwZjSL0JRf8Unzo5l8aTbsW+RJKqEv/hfNOSlrg1sHM6n6uKYRDLjKyxOAxwY3ofD3SIe0Vv3DXS6ALO2RZ+TfeyQvIw3RUs1x6d5qqdl78GC1jAIqrsXo31xoLbfGj0wK7UpY8Kq30Z+f+9SLNcvKBRlz7LZbqQtzahxnAjBFZiGlbB8XpouiohJsmI/LLcgiamKSaINf5chYexKRU2ntSEboKanbtadtpXKarZu55GmYc5VmDhQ7SpRkgjhNymtKYo79cGKEAmWGI1fC8HZS5vDm1rJUrbH1SuIDntqqluFRMT5e2xM4rphWVguKV6Ju6paXFuIwfwF7dDvbpMq+1koXdad37TAvm1LS92uMGP6HcDB1QnX3xZ4BBYfl4aIqvo/3LYaEZsLlbuhcQXx8OOr26cFOCtsry+3WcvvNysLa02roV7w73l1vyWt7T7w175W34W15rPG58aPxs/Gr+bH5pfm1+e3I9cJchbnt1V7z+2+z7zaA</latexit>

i = 0;
while (i < N) {

send(5);
x = receive();
i++;

}
<latexit sha1_base64="RH2GOBpzrxhll7KlR6psgbiMvnQ=">AAAGiHicjVRtT9RAEC5ynlhf0Y9+cCMhQW1ID2PE4CUovvBFRREwuWvIdjs9Vval7m6BS9PfpX/Ff+P0rhjKXcBtmkxmnmfm2dndiTPBrQvDPzNXZltX29fmrvs3bt66fefu/L1dq3PDYIdpoc33mFoQXMGO407A98wAlbGAvfhwo4rvHYGxXKtvbphBJOlA8ZQz6tC1Pz/7e7EvrBOaJoKqQU4HYIve9gE1WbQRbFHLqCj9EcaCK1JuEIy1uiuBoLX5PDildotszCj9U8a/0OuEBj45txgmsTpNEdkNJ8O4M86sGwro9p1LqeRi2I8RbTjYSfghDI+1SWrCqDlFLHIo/5EnOdYZrgYNioHkIgbTUoJyDcrAAKiLSFIbqIndnoh6NQ9PAz20jIr+QnlxezoBmZr1dNPdwsLPgCs3Jc+0xrxHrnUfRsKnpD5beuXS0gKkpAGePAuQBsYFoGyOBQJJTwLJVWBBJQH2APgR/KfCr5Dsci3AXabv2aX6NrXEz2QH3MrtXAaEOi05+08he1wk287Q4xiMGV6mJvTx9scw4KqoXha+Ybxgpc9Jl4Rr/vEBF0CWOHlFPj0mRZWpas3S88drlX2CqLpLS2MPf/p0rcqIoEa+/bsL4XI4WmTS6NTGglevrf35mV/9RLO8uoMjvb1OmLmooMZxJgBL5BYyyg7xTvbQVFSCjYpRC0qyiJ6EpNrgrxwZec8yCiqtHcoYkZK6A3s+VjmnxXq5S1ejgqssd6DYuFCaC+I0qQYWSTj2w4khGpQZjloJw/FEmcOx1qhSt8Y2d5Ic8czWezkZb8bHgXaGxxXTympB8SE2Q71qmEESFW/hB93Nt6myH7XSZRP0rRMVVVMq+X5DEcMxzcE0BTXhi30DCo6r2UBV8gRHSAIpzYUr3IlzJfFx4VF3zh/spLG7stwJlztfVhbWV+tDn/MeeI+8Ja/jvfDWvU1vy9vxWOth613rU+tz22+H7Rftl2PolZmac99rrPabvwPiBEE=</latexit><latexit sha1_base64="RH2GOBpzrxhll7KlR6psgbiMvnQ=">AAAGiHicjVRtT9RAEC5ynlhf0Y9+cCMhQW1ID2PE4CUovvBFRREwuWvIdjs9Vval7m6BS9PfpX/Ff+P0rhjKXcBtmkxmnmfm2dndiTPBrQvDPzNXZltX29fmrvs3bt66fefu/L1dq3PDYIdpoc33mFoQXMGO407A98wAlbGAvfhwo4rvHYGxXKtvbphBJOlA8ZQz6tC1Pz/7e7EvrBOaJoKqQU4HYIve9gE1WbQRbFHLqCj9EcaCK1JuEIy1uiuBoLX5PDildotszCj9U8a/0OuEBj45txgmsTpNEdkNJ8O4M86sGwro9p1LqeRi2I8RbTjYSfghDI+1SWrCqDlFLHIo/5EnOdYZrgYNioHkIgbTUoJyDcrAAKiLSFIbqIndnoh6NQ9PAz20jIr+QnlxezoBmZr1dNPdwsLPgCs3Jc+0xrxHrnUfRsKnpD5beuXS0gKkpAGePAuQBsYFoGyOBQJJTwLJVWBBJQH2APgR/KfCr5Dsci3AXabv2aX6NrXEz2QH3MrtXAaEOi05+08he1wk287Q4xiMGV6mJvTx9scw4KqoXha+Ybxgpc9Jl4Rr/vEBF0CWOHlFPj0mRZWpas3S88drlX2CqLpLS2MPf/p0rcqIoEa+/bsL4XI4WmTS6NTGglevrf35mV/9RLO8uoMjvb1OmLmooMZxJgBL5BYyyg7xTvbQVFSCjYpRC0qyiJ6EpNrgrxwZec8yCiqtHcoYkZK6A3s+VjmnxXq5S1ejgqssd6DYuFCaC+I0qQYWSTj2w4khGpQZjloJw/FEmcOx1qhSt8Y2d5Ic8czWezkZb8bHgXaGxxXTympB8SE2Q71qmEESFW/hB93Nt6myH7XSZRP0rRMVVVMq+X5DEcMxzcE0BTXhi30DCo6r2UBV8gRHSAIpzYUr3IlzJfFx4VF3zh/spLG7stwJlztfVhbWV+tDn/MeeI+8Ja/jvfDWvU1vy9vxWOth613rU+tz22+H7Rftl2PolZmac99rrPabvwPiBEE=</latexit><latexit sha1_base64="RH2GOBpzrxhll7KlR6psgbiMvnQ=">AAAGiHicjVRtT9RAEC5ynlhf0Y9+cCMhQW1ID2PE4CUovvBFRREwuWvIdjs9Vval7m6BS9PfpX/Ff+P0rhjKXcBtmkxmnmfm2dndiTPBrQvDPzNXZltX29fmrvs3bt66fefu/L1dq3PDYIdpoc33mFoQXMGO407A98wAlbGAvfhwo4rvHYGxXKtvbphBJOlA8ZQz6tC1Pz/7e7EvrBOaJoKqQU4HYIve9gE1WbQRbFHLqCj9EcaCK1JuEIy1uiuBoLX5PDildotszCj9U8a/0OuEBj45txgmsTpNEdkNJ8O4M86sGwro9p1LqeRi2I8RbTjYSfghDI+1SWrCqDlFLHIo/5EnOdYZrgYNioHkIgbTUoJyDcrAAKiLSFIbqIndnoh6NQ9PAz20jIr+QnlxezoBmZr1dNPdwsLPgCs3Jc+0xrxHrnUfRsKnpD5beuXS0gKkpAGePAuQBsYFoGyOBQJJTwLJVWBBJQH2APgR/KfCr5Dsci3AXabv2aX6NrXEz2QH3MrtXAaEOi05+08he1wk287Q4xiMGV6mJvTx9scw4KqoXha+Ybxgpc9Jl4Rr/vEBF0CWOHlFPj0mRZWpas3S88drlX2CqLpLS2MPf/p0rcqIoEa+/bsL4XI4WmTS6NTGglevrf35mV/9RLO8uoMjvb1OmLmooMZxJgBL5BYyyg7xTvbQVFSCjYpRC0qyiJ6EpNrgrxwZec8yCiqtHcoYkZK6A3s+VjmnxXq5S1ejgqssd6DYuFCaC+I0qQYWSTj2w4khGpQZjloJw/FEmcOx1qhSt8Y2d5Ic8czWezkZb8bHgXaGxxXTympB8SE2Q71qmEESFW/hB93Nt6myH7XSZRP0rRMVVVMq+X5DEcMxzcE0BTXhi30DCo6r2UBV8gRHSAIpzYUr3IlzJfFx4VF3zh/spLG7stwJlztfVhbWV+tDn/MeeI+8Ja/jvfDWvU1vy9vxWOth613rU+tz22+H7Rftl2PolZmac99rrPabvwPiBEE=</latexit><latexit sha1_base64="RH2GOBpzrxhll7KlR6psgbiMvnQ=">AAAGiHicjVRtT9RAEC5ynlhf0Y9+cCMhQW1ID2PE4CUovvBFRREwuWvIdjs9Vval7m6BS9PfpX/Ff+P0rhjKXcBtmkxmnmfm2dndiTPBrQvDPzNXZltX29fmrvs3bt66fefu/L1dq3PDYIdpoc33mFoQXMGO407A98wAlbGAvfhwo4rvHYGxXKtvbphBJOlA8ZQz6tC1Pz/7e7EvrBOaJoKqQU4HYIve9gE1WbQRbFHLqCj9EcaCK1JuEIy1uiuBoLX5PDildotszCj9U8a/0OuEBj45txgmsTpNEdkNJ8O4M86sGwro9p1LqeRi2I8RbTjYSfghDI+1SWrCqDlFLHIo/5EnOdYZrgYNioHkIgbTUoJyDcrAAKiLSFIbqIndnoh6NQ9PAz20jIr+QnlxezoBmZr1dNPdwsLPgCs3Jc+0xrxHrnUfRsKnpD5beuXS0gKkpAGePAuQBsYFoGyOBQJJTwLJVWBBJQH2APgR/KfCr5Dsci3AXabv2aX6NrXEz2QH3MrtXAaEOi05+08he1wk287Q4xiMGV6mJvTx9scw4KqoXha+Ybxgpc9Jl4Rr/vEBF0CWOHlFPj0mRZWpas3S88drlX2CqLpLS2MPf/p0rcqIoEa+/bsL4XI4WmTS6NTGglevrf35mV/9RLO8uoMjvb1OmLmooMZxJgBL5BYyyg7xTvbQVFSCjYpRC0qyiJ6EpNrgrxwZec8yCiqtHcoYkZK6A3s+VjmnxXq5S1ejgqssd6DYuFCaC+I0qQYWSTj2w4khGpQZjloJw/FEmcOx1qhSt8Y2d5Ic8czWezkZb8bHgXaGxxXTympB8SE2Q71qmEESFW/hB93Nt6myH7XSZRP0rRMVVVMq+X5DEcMxzcE0BTXhi30DCo6r2UBV8gRHSAIpzYUr3IlzJfFx4VF3zh/spLG7stwJlztfVhbWV+tDn/MeeI+8Ja/jvfDWvU1vy9vxWOth613rU+tz22+H7Rftl2PolZmac99rrPabvwPiBEE=</latexit>

Precondition: {x = 5}
<latexit sha1_base64="D6obtcJ4x8TF33PvxRpNR4MYREo=">AAACFnicdZDNSgMxFIUz/tb6V3XpJlgEN5YZtbYVhKIblxWsCp1SMmlGg5lkSO6IZZincOOruHGhiFtx59uYqRVU9ELgcM693NwviAU34Lrvztj4xOTUdGGmODs3v7BYWlo+NSrRlLWpEkqfB8QwwSVrAwfBzmPNSBQIdhZcHeb52TXThit5AoOYdSNyIXnIKQFr9UqbfhSom9Q3IW5pRpXs8zzYy3zsp35E4BIgvcnwPq5iP+uVym7Fa2w3Gi52Kzv1Ws3btqK6u1Vt1LFXcYdVRqNq9Upvfl/RJGISqCDGdDw3hm5KNHAqWFb0E8NiQq/IBetYKUnETDcdnpXhdev0cai0fRLw0P0+kZLImEEU2M78o+Z3lpt/ZZ0Ewno35TJOgEn6uShMBAaFc0a4zy0KEAMrCNUWCMX0kmhCwZIsWghfl+L/xelWxbOsjnfKzYMRjgJaRWtoA3mohproCLVQG1F0i+7RI3py7pwH59l5+Wwdc0YzK+hHOa8fsZ+fsA==</latexit><latexit sha1_base64="D6obtcJ4x8TF33PvxRpNR4MYREo=">AAACFnicdZDNSgMxFIUz/tb6V3XpJlgEN5YZtbYVhKIblxWsCp1SMmlGg5lkSO6IZZincOOruHGhiFtx59uYqRVU9ELgcM693NwviAU34Lrvztj4xOTUdGGmODs3v7BYWlo+NSrRlLWpEkqfB8QwwSVrAwfBzmPNSBQIdhZcHeb52TXThit5AoOYdSNyIXnIKQFr9UqbfhSom9Q3IW5pRpXs8zzYy3zsp35E4BIgvcnwPq5iP+uVym7Fa2w3Gi52Kzv1Ws3btqK6u1Vt1LFXcYdVRqNq9Upvfl/RJGISqCDGdDw3hm5KNHAqWFb0E8NiQq/IBetYKUnETDcdnpXhdev0cai0fRLw0P0+kZLImEEU2M78o+Z3lpt/ZZ0Ewno35TJOgEn6uShMBAaFc0a4zy0KEAMrCNUWCMX0kmhCwZIsWghfl+L/xelWxbOsjnfKzYMRjgJaRWtoA3mohproCLVQG1F0i+7RI3py7pwH59l5+Wwdc0YzK+hHOa8fsZ+fsA==</latexit><latexit sha1_base64="D6obtcJ4x8TF33PvxRpNR4MYREo=">AAACFnicdZDNSgMxFIUz/tb6V3XpJlgEN5YZtbYVhKIblxWsCp1SMmlGg5lkSO6IZZincOOruHGhiFtx59uYqRVU9ELgcM693NwviAU34Lrvztj4xOTUdGGmODs3v7BYWlo+NSrRlLWpEkqfB8QwwSVrAwfBzmPNSBQIdhZcHeb52TXThit5AoOYdSNyIXnIKQFr9UqbfhSom9Q3IW5pRpXs8zzYy3zsp35E4BIgvcnwPq5iP+uVym7Fa2w3Gi52Kzv1Ws3btqK6u1Vt1LFXcYdVRqNq9Upvfl/RJGISqCDGdDw3hm5KNHAqWFb0E8NiQq/IBetYKUnETDcdnpXhdev0cai0fRLw0P0+kZLImEEU2M78o+Z3lpt/ZZ0Ewno35TJOgEn6uShMBAaFc0a4zy0KEAMrCNUWCMX0kmhCwZIsWghfl+L/xelWxbOsjnfKzYMRjgJaRWtoA3mohproCLVQG1F0i+7RI3py7pwH59l5+Wwdc0YzK+hHOa8fsZ+fsA==</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="tgzz++TxTovvjID8pAyU5FVOaVo=">AAACC3icbZBLSwMxFIXv+Kz1Vd26CYrgxjIjiCIIghuXFWwrdErJpBkbmkmG5I60DPMr3PhX3LhQxL07/42ZtgtfBwKHcxJu7helUlj0/U9vbn5hcWm5slJdXVvf2KxtrbWszgzjTaalNrcRtVwKxZsoUPLb1HCaRJK3o+Fl2bfvubFCqxscp7yb0DslYsEouqhXOwyTSI/y0MakYTjTqi/K4qwISZiHCcUBYj4qyDk5JmHRq+35dX8i8tcEM7MHMzV6tY+wr1mWcIVMUms7gZ9iN6cGBZO8qIaZ5SllQ3rHO84qmnDbzSdrFWTfJX0Sa+OOQjJJv7/IaWLtOInczfKj9ndXhv91nQzj024uVJohV2w6KM4kQU1KRqQvHAqUY2coMw4II2xADWXoSFYdhOD3yn9N66ge+PXg2ocK7MAuHEAAJ3ABV9CAJjB4gCd4gVfv0Xv23qa45rwZt234Ie/9C1DHnc8=</latexit><latexit sha1_base64="/AhnAelSO12gVei+gtVJo2BeST4=">AAACC3icdZBBSxtBGIa/VWtjmmr02stQEXpp2DWmSQRB6KXHFJpEyIYwO5mNQ2ZnlplvJWHZX+HFv+LFg6X03lv/jbOJBZX6wsDL+87wzfdEqRQWff+vt7G59Wb7bWWn+q72fnevvl8bWJ0ZxvtMS20uImq5FIr3UaDkF6nhNIkkH0bzr2U/vOLGCq1+4DLl44TOlIgFo+iiSf1zmER6kYc2Jj3DmVZTURanRUjCPEwoXiLmi4KckRYJi0n90G8E3Wa36xO/cdJpt4OmM60vx61uhwQNf6VDeFRvUv8TTjXLEq6QSWrtKPBTHOfUoGCSF9UwszylbE5nfOSsogm343y1VkGOXDIlsTbuKCSr9OmLnCbWLpPI3Sw/al92Zfi/bpRh3BnnQqUZcsXWg+JMEtSkZESmwqFAuXSGMuOAMMIuqaEMHcmqg/BvU/K6GRw3Asfquw8V+AAf4RME0IZz+AY96AODa7iFe/jp3Xh33q81rg3vkdsBPJP3+wHXcp4v</latexit><latexit sha1_base64="mikjuAEZlzipDuRVoVU1kC3lMVs=">AAACFnicdZDNSgMxFIUz/lv/qi7dBIvgxjKj1raCUHTjsoJVoVNKJs1oMJMMyR2xDPMUbnwVNy4UcSvufBszbQUVvRA4nHMvN/cLYsENuO6HMzY+MTk1PTNbmJtfWFwqLq+cGZVoylpUCaUvAmKY4JK1gINgF7FmJAoEOw+uj/L8/IZpw5U8hX7MOhG5lDzklIC1usUtPwrUbeqbEDc1o0r2eB7sZz72Uz8icAWQ3mb4AFewn3WLJbfs1XfqdRe75d1atertWFHZ267Ua9gru4MqoVE1u8V3v6doEjEJVBBj2p4bQyclGjgVLCv4iWExodfkkrWtlCRippMOzsrwhnV6OFTaPgl44H6fSElkTD8KbGf+UfM7y82/snYCYa2TchknwCQdLgoTgUHhnBHucYsCRN8KQrUFQjG9IppQsCQLFsLXpfh/cbZd9iyrE7fUOBzhmEFraB1tIg9VUQMdoyZqIYru0AN6Qs/OvfPovDivw9YxZzSzin6U8/YJsF+frA==</latexit><latexit sha1_base64="D6obtcJ4x8TF33PvxRpNR4MYREo=">AAACFnicdZDNSgMxFIUz/tb6V3XpJlgEN5YZtbYVhKIblxWsCp1SMmlGg5lkSO6IZZincOOruHGhiFtx59uYqRVU9ELgcM693NwviAU34Lrvztj4xOTUdGGmODs3v7BYWlo+NSrRlLWpEkqfB8QwwSVrAwfBzmPNSBQIdhZcHeb52TXThit5AoOYdSNyIXnIKQFr9UqbfhSom9Q3IW5pRpXs8zzYy3zsp35E4BIgvcnwPq5iP+uVym7Fa2w3Gi52Kzv1Ws3btqK6u1Vt1LFXcYdVRqNq9Upvfl/RJGISqCDGdDw3hm5KNHAqWFb0E8NiQq/IBetYKUnETDcdnpXhdev0cai0fRLw0P0+kZLImEEU2M78o+Z3lpt/ZZ0Ewno35TJOgEn6uShMBAaFc0a4zy0KEAMrCNUWCMX0kmhCwZIsWghfl+L/xelWxbOsjnfKzYMRjgJaRWtoA3mohproCLVQG1F0i+7RI3py7pwH59l5+Wwdc0YzK+hHOa8fsZ+fsA==</latexit><latexit sha1_base64="D6obtcJ4x8TF33PvxRpNR4MYREo=">AAACFnicdZDNSgMxFIUz/tb6V3XpJlgEN5YZtbYVhKIblxWsCp1SMmlGg5lkSO6IZZincOOruHGhiFtx59uYqRVU9ELgcM693NwviAU34Lrvztj4xOTUdGGmODs3v7BYWlo+NSrRlLWpEkqfB8QwwSVrAwfBzmPNSBQIdhZcHeb52TXThit5AoOYdSNyIXnIKQFr9UqbfhSom9Q3IW5pRpXs8zzYy3zsp35E4BIgvcnwPq5iP+uVym7Fa2w3Gi52Kzv1Ws3btqK6u1Vt1LFXcYdVRqNq9Upvfl/RJGISqCDGdDw3hm5KNHAqWFb0E8NiQq/IBetYKUnETDcdnpXhdev0cai0fRLw0P0+kZLImEEU2M78o+Z3lpt/ZZ0Ewno35TJOgEn6uShMBAaFc0a4zy0KEAMrCNUWCMX0kmhCwZIsWghfl+L/xelWxbOsjnfKzYMRjgJaRWtoA3mohproCLVQG1F0i+7RI3py7pwH59l5+Wwdc0YzK+hHOa8fsZ+fsA==</latexit><latexit sha1_base64="D6obtcJ4x8TF33PvxRpNR4MYREo=">AAACFnicdZDNSgMxFIUz/tb6V3XpJlgEN5YZtbYVhKIblxWsCp1SMmlGg5lkSO6IZZincOOruHGhiFtx59uYqRVU9ELgcM693NwviAU34Lrvztj4xOTUdGGmODs3v7BYWlo+NSrRlLWpEkqfB8QwwSVrAwfBzmPNSBQIdhZcHeb52TXThit5AoOYdSNyIXnIKQFr9UqbfhSom9Q3IW5pRpXs8zzYy3zsp35E4BIgvcnwPq5iP+uVym7Fa2w3Gi52Kzv1Ws3btqK6u1Vt1LFXcYdVRqNq9Upvfl/RJGISqCDGdDw3hm5KNHAqWFb0E8NiQq/IBetYKUnETDcdnpXhdev0cai0fRLw0P0+kZLImEEU2M78o+Z3lpt/ZZ0Ewno35TJOgEn6uShMBAaFc0a4zy0KEAMrCNUWCMX0kmhCwZIsWghfl+L/xelWxbOsjnfKzYMRjgJaRWtoA3mohproCLVQG1F0i+7RI3py7pwH59l5+Wwdc0YzK+hHOa8fsZ+fsA==</latexit><latexit sha1_base64="D6obtcJ4x8TF33PvxRpNR4MYREo=">AAACFnicdZDNSgMxFIUz/tb6V3XpJlgEN5YZtbYVhKIblxWsCp1SMmlGg5lkSO6IZZincOOruHGhiFtx59uYqRVU9ELgcM693NwviAU34Lrvztj4xOTUdGGmODs3v7BYWlo+NSrRlLWpEkqfB8QwwSVrAwfBzmPNSBQIdhZcHeb52TXThit5AoOYdSNyIXnIKQFr9UqbfhSom9Q3IW5pRpXs8zzYy3zsp35E4BIgvcnwPq5iP+uVym7Fa2w3Gi52Kzv1Ws3btqK6u1Vt1LFXcYdVRqNq9Upvfl/RJGISqCDGdDw3hm5KNHAqWFb0E8NiQq/IBetYKUnETDcdnpXhdev0cai0fRLw0P0+kZLImEEU2M78o+Z3lpt/ZZ0Ewno35TJOgEn6uShMBAaFc0a4zy0KEAMrCNUWCMX0kmhCwZIsWghfl+L/xelWxbOsjnfKzYMRjgJaRWtoA3mohproCLVQG1F0i+7RI3py7pwH59l5+Wwdc0YzK+hHOa8fsZ+fsA==</latexit><latexit sha1_base64="D6obtcJ4x8TF33PvxRpNR4MYREo=">AAACFnicdZDNSgMxFIUz/tb6V3XpJlgEN5YZtbYVhKIblxWsCp1SMmlGg5lkSO6IZZincOOruHGhiFtx59uYqRVU9ELgcM693NwviAU34Lrvztj4xOTUdGGmODs3v7BYWlo+NSrRlLWpEkqfB8QwwSVrAwfBzmPNSBQIdhZcHeb52TXThit5AoOYdSNyIXnIKQFr9UqbfhSom9Q3IW5pRpXs8zzYy3zsp35E4BIgvcnwPq5iP+uVym7Fa2w3Gi52Kzv1Ws3btqK6u1Vt1LFXcYdVRqNq9Upvfl/RJGISqCDGdDw3hm5KNHAqWFb0E8NiQq/IBetYKUnETDcdnpXhdev0cai0fRLw0P0+kZLImEEU2M78o+Z3lpt/ZZ0Ewno35TJOgEn6uShMBAaFc0a4zy0KEAMrCNUWCMX0kmhCwZIsWghfl+L/xelWxbOsjnfKzYMRjgJaRWtoA3mohproCLVQG1F0i+7RI3py7pwH59l5+Wwdc0YzK+hHOa8fsZ+fsA==</latexit><latexit sha1_base64="D6obtcJ4x8TF33PvxRpNR4MYREo=">AAACFnicdZDNSgMxFIUz/tb6V3XpJlgEN5YZtbYVhKIblxWsCp1SMmlGg5lkSO6IZZincOOruHGhiFtx59uYqRVU9ELgcM693NwviAU34Lrvztj4xOTUdGGmODs3v7BYWlo+NSrRlLWpEkqfB8QwwSVrAwfBzmPNSBQIdhZcHeb52TXThit5AoOYdSNyIXnIKQFr9UqbfhSom9Q3IW5pRpXs8zzYy3zsp35E4BIgvcnwPq5iP+uVym7Fa2w3Gi52Kzv1Ws3btqK6u1Vt1LFXcYdVRqNq9Upvfl/RJGISqCDGdDw3hm5KNHAqWFb0E8NiQq/IBetYKUnETDcdnpXhdev0cai0fRLw0P0+kZLImEEU2M78o+Z3lpt/ZZ0Ewno35TJOgEn6uShMBAaFc0a4zy0KEAMrCNUWCMX0kmhCwZIsWghfl+L/xelWxbOsjnfKzYMRjgJaRWtoA3mohproCLVQG1F0i+7RI3py7pwH59l5+Wwdc0YzK+hHOa8fsZ+fsA==</latexit>

Postcondition: {x = 5}
<latexit sha1_base64="Ow5ueUMLrQjnXXIzVFNSsxU0I1c=">AAACGXicdZDPSiNBEMZ71F01+8eoRy+FQdhTmFFjEkEQvXiMYFTIhNDT6dHGnu6hu0YMw7yGF1/FiwdFPOrJt7EnRnCXtaDh4/uqqK5flEph0fdfvanpmW/fZ+fmKz9+/vq9UF1cOrY6M4x3mZbanEbUcikU76JAyU9Tw2kSSX4SXeyX+cklN1ZodYSjlPcTeqZELBhFZw2qfphE+ioPbQwdbZFpNRRlsl2EEOYQJhTPEfOrAnagARAWg2rNrwftjXbbB7++2Wo2gw0nGlvrjXYLgro/rhqZVGdQfQ6HmmUJV8gktbYX+Cn2c2pQMMmLSphZnlJ2Qc94z0lFE277+fiyAtacM4RYG/cUwtj9PJHTxNpRErnO8qf236w0/5f1Moxb/VyoNEOu2PuiOJOAGkpMMBSGM5QjJygzDgkDdk4NZehgVhyEj0vha3G8Xg8cq8PN2u7eBMccWSGr5A8JSJPskgPSIV3CyDW5Jffkwbvx7rxH7+m9dcqbzCyTv8p7eQN2o6CN</latexit><latexit sha1_base64="Ow5ueUMLrQjnXXIzVFNSsxU0I1c=">AAACGXicdZDPSiNBEMZ71F01+8eoRy+FQdhTmFFjEkEQvXiMYFTIhNDT6dHGnu6hu0YMw7yGF1/FiwdFPOrJt7EnRnCXtaDh4/uqqK5flEph0fdfvanpmW/fZ+fmKz9+/vq9UF1cOrY6M4x3mZbanEbUcikU76JAyU9Tw2kSSX4SXeyX+cklN1ZodYSjlPcTeqZELBhFZw2qfphE+ioPbQwdbZFpNRRlsl2EEOYQJhTPEfOrAnagARAWg2rNrwftjXbbB7++2Wo2gw0nGlvrjXYLgro/rhqZVGdQfQ6HmmUJV8gktbYX+Cn2c2pQMMmLSphZnlJ2Qc94z0lFE277+fiyAtacM4RYG/cUwtj9PJHTxNpRErnO8qf236w0/5f1Moxb/VyoNEOu2PuiOJOAGkpMMBSGM5QjJygzDgkDdk4NZehgVhyEj0vha3G8Xg8cq8PN2u7eBMccWSGr5A8JSJPskgPSIV3CyDW5Jffkwbvx7rxH7+m9dcqbzCyTv8p7eQN2o6CN</latexit><latexit sha1_base64="Ow5ueUMLrQjnXXIzVFNSsxU0I1c=">AAACGXicdZDPSiNBEMZ71F01+8eoRy+FQdhTmFFjEkEQvXiMYFTIhNDT6dHGnu6hu0YMw7yGF1/FiwdFPOrJt7EnRnCXtaDh4/uqqK5flEph0fdfvanpmW/fZ+fmKz9+/vq9UF1cOrY6M4x3mZbanEbUcikU76JAyU9Tw2kSSX4SXeyX+cklN1ZodYSjlPcTeqZELBhFZw2qfphE+ioPbQwdbZFpNRRlsl2EEOYQJhTPEfOrAnagARAWg2rNrwftjXbbB7++2Wo2gw0nGlvrjXYLgro/rhqZVGdQfQ6HmmUJV8gktbYX+Cn2c2pQMMmLSphZnlJ2Qc94z0lFE277+fiyAtacM4RYG/cUwtj9PJHTxNpRErnO8qf236w0/5f1Moxb/VyoNEOu2PuiOJOAGkpMMBSGM5QjJygzDgkDdk4NZehgVhyEj0vha3G8Xg8cq8PN2u7eBMccWSGr5A8JSJPskgPSIV3CyDW5Jffkwbvx7rxH7+m9dcqbzCyTv8p7eQN2o6CN</latexit><latexit sha1_base64="Ow5ueUMLrQjnXXIzVFNSsxU0I1c=">AAACGXicdZDPSiNBEMZ71F01+8eoRy+FQdhTmFFjEkEQvXiMYFTIhNDT6dHGnu6hu0YMw7yGF1/FiwdFPOrJt7EnRnCXtaDh4/uqqK5flEph0fdfvanpmW/fZ+fmKz9+/vq9UF1cOrY6M4x3mZbanEbUcikU76JAyU9Tw2kSSX4SXeyX+cklN1ZodYSjlPcTeqZELBhFZw2qfphE+ioPbQwdbZFpNRRlsl2EEOYQJhTPEfOrAnagARAWg2rNrwftjXbbB7++2Wo2gw0nGlvrjXYLgro/rhqZVGdQfQ6HmmUJV8gktbYX+Cn2c2pQMMmLSphZnlJ2Qc94z0lFE277+fiyAtacM4RYG/cUwtj9PJHTxNpRErnO8qf236w0/5f1Moxb/VyoNEOu2PuiOJOAGkpMMBSGM5QjJygzDgkDdk4NZehgVhyEj0vha3G8Xg8cq8PN2u7eBMccWSGr5A8JSJPskgPSIV3CyDW5Jffkwbvx7rxH7+m9dcqbzCyTv8p7eQN2o6CN</latexit>

Fig. 7. A Synchronous Reduction.

The program in Figure 7(b) is called universally bounded,
since there is a fixed bound k (= 1 in this case) where no

execution of the program has more than k messages in transit

at any given time. Conversely, the program in Figure 7(a)

is called existentially bounded, because every execution of

this program is equivalent to some execution where no more

than k messages are in transit at any given time. Universally

bounded programs are usually much easier to verify because

their channels are bounded. We argue that if a program is

existentially bounded then there exists a universally bounded

C-reduction. Note that our algorithm does not have to be

aware of the existential boundedness of its input. The claim

is that if the input is existentially bounded, the C-reductions will provide the opportunity for the

simpler proof to be found.

To provide the formal result, we use the setup similar to the one in [Genest et al. 2007] (in this

section only). We fix a finite set Chan of unbounded FIFO channels. For simplicity, we assume

programs can only perform send and receive actions on channels. Furthermore, we do not concern

ourselves with the particular contents of the channels; we only care about the number of messages

in transit at any given time. Formally, we instantiate our state set to St = (Chan → N) and our

alphabet to Σ = {send(c), recv(c) | c ∈ Chan}. We assign the semantics

Jsend(c)K = {(f , f [c 7→ f (c) + 1]) | f ∈ St }

Jrecv(c)K = {(f , f [c 7→ f (c) − 1]) | f ∈ St , f (c) > 0}

where f [x → y] denotes function f with the output for x replaced with y.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:20 Azadeh Farzan and Anthony Vandikas

A trace τ is said to be k-bounded if the number of elements in transit in any given channel never

exceeds k . Formally, this means that for any prefix σ of τ , we have

(λ_. 0, f) ∈ JσK =⇒ f (c) ≤ k

for all f ∈ St and c ∈ Chan. We say a program P is existentially k-bounded if every trace of P is

equivalent (with respect to the symmetric subset of ⊑IsoundP
, which we shall denote by ∼IsoundP

) by a

k-bounded trace. We say P is universally k-bounded if every trace of P is k-bounded. With these

definitions in place, we present the main theorem:

Theorem 6.1. If P is an existentially k-bounded program, then there exists a universally k-bounded
reduction P↓IsoundP ,O ∈ CRedIsoundP

(P) for some exploration ordering O : Σ∗ → Lin(Σ).

Proof. We write chan(a) to denote the channel on which a statement operates, that is

chan(send(c)) = c

chan(recv(c)) = c

Define O (σ) to return some ordering ≤Σ that explores statements in an order that minimizes

buffer sizes. For example, if buffer c has 4 elements after executing σ and buffer c ′ has 5, then
send(c) is explored before send(c ′). In all cases, receives are explored before sends.

Assume x ∈ P ↓IsoundP ,O and y is some k-bounded trace such that x ∼IsoundP
y. It suffices to show

that x is also k-bounded.
We proceed by (indexed) lexicographical induction on y, using <O defined in the proof of Lemma

4.4. Our inductive hypothesis is: if y ′ is some k-bounded trace such that x ∼IsoundP
y ′ and y ′ is

lexicographically smaller than y, then x is k-bounded.
If x = y, then weâĂŹre done, so assume x , y. Then x and y must have some common prefix z

followed by differing statements a and b such that

• x = zax1bx2, and
• y = zby1ay2

for some traces x1,x2,y1,y2 such that

• b is independent of ax1 in context z (i.e. zax1b ∼IsoundP
zbax1), and

• a is independent of by1 in context z (i.e. zby1a ∼IsoundP
zaby1).

Since x ∈ P ↓IsoundP ,O the above implies that a is explored before b (i.e. (b,a) ∈ O (z)), or else x

would be pruned. Let y ′ = zaby1y2 (i.e. y
′
is the trace obtained by moving a to the left of by1). Then

y ′ ∼IsoundP
y ∼IsoundP

x and y ′ is lexicographically smaller than y. By the inductive hypothesis, it

suffices to show that y ′ is k-bounded.
We proceed by cases:

• Assume a = recv(q) for some queue q. Moving recv statements to the left never increases

k-boundedness, so y ′ is k-bounded.
• Assume a = send(q). A statement cannot commute with itself, so every statement in y1 must

either be recv(q) or some other operation not involving q. Let n be the number of recv(q)
statements in by1, such that by1 = y10 · recv(q) · . . . · recv(q) ·y1n where send(q), recv(q) < y1i
for each 0 ≤ i ≤ n.
– Assume n = 0. Moving send statements to the left of other operations on different queues

does not affect k-boundedness, so y ′ is k-bounded.
– Assume z is infeasible. Then moving a to the left of by1 cannot affect k-boundedness since
a never appears in a feasible position, so y ′ is k-bounded.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Reductions for Safety Proofs (Extended Version) 1:21

– Assume n > 0 and z is feasible. We can move a to the left of each recv(q) statement in

by1 except for the first without affecting k-boundedness (i.e. zby10 · recv(q) · send(q) · . . . ·
recv(q) · y1ny2 is k-bounded). We can show this in two cases:

∗ If the first recv(q) is feasible, then q must have some numberm + 1 elements in it after

executing zy10, so k ≥ m + 1. After the first recv(q), q will havem elements, and after

executing send(q), q will once again have m + 1 elements. Thus moving the send(q)
does not affect the maximum number of elements that appear in q, which preserves

k-boundedness.
∗ If the first recv(q) is infeasible, then a never appears in a feasible position even if we

move it to the left of all the other recv(q)s, so k-boundedness is still preserved. Our final
task is to show we can push b past the first recv(q) without affecting k-boundedness.
Since (b,a) ∈ O (z), it cannot be the case that y10 = ϵ since that would imply b =
recv(q) and therefore (recv(q), send(q)) ∈ O (z), which is a contradiction because recv

statements are always explored before send(q) statements. Thus y10 is non-empty and

b ∈ {send(q′), recv(q′)} for some q′ , q. Once again, b cannot be a recv statement, so

b = send(q′).
Since (send(q′), send(q)) ∈ O (z), q must have at most as many elements as q′ after
executing z. If send(q) is executed first, then the maximum number of elements that

appear in either of the queues will still be the same, and therefore y ′ is k-bounded.

□

There are existing methods [Desai et al. 2014; von Gleissenthall et al. 2019], designed specifically

to transform asynchronous programs into synchronous ones. The significance of Theorem 6.1 is

that it demonstrates that even though our proposed technique is not specialized for this category,

it can potentially behave well on existentially bounded programs.

It should be noted that our technique cannot effectively use Theorem 6.1 unless it is also able to

come up with a soundness proof for Isound

P . This is not always possible because such proofs would

generally have to include assertions that somehow “count” the number of elements in each queue,

yielding a non-regular language. However, we conjecture that a weaker independence relation will

always suffice.

Conjecture 6.2. If P is an existentially k-bounded program, then there exists a universally k-
bounded reduction P↓I,O ∈ CRed

∗ (P) for some independence relation I : Σ∗ → P (Σ × Σ) and
exploration orderingO : Σ∗ → Lin(Σ) such that there exists a simple proof Π (i.e. Π is in linear integer
arithmetic) such that sound(I) ⊆ L (Π).

7 REFINEMENT-STYLE VERIFICATION ALGORITHM
Figure 8 illustrates the outline of our verification algorithm. It is a counterexample-guided abstrac-

tion refinement loop in the style of [Farzan and Vandikas 2019; Farzan et al. 2013, 2015; Heizmann

et al. 2009]. The algorithm starts with assertions true and false in the proof and iteratively discovers

more assertions until a proof is found. Unlike standard refinement loops, it suffices to discover the

proof for a sound reduction of the program and not the entire program.

To check the validity of any candidate proof Π, one has to check if there exists a reduction of the

program that is covered by Π. The results presented in this paper so far naturally give rise to an

algorithm for performing this check:

• The set of program reductions are LTA-representable (Theorems 4.6 and 5.2).

• A regular proof can be constructed based on a candidate set of assertions (see Section 3.1).

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:22 Azadeh Farzan and Anthony Vandikas

NO
<latexit sha1_base64="mxYyW1Wtiggu9AkKEg6VNfojaFk=">AAACAXicbVDLSsNAFJ3UV62vqBvBTbAIrkJSBLuSghtXWsE+oAllMrlph04mYWYilFA3/oobF4q49S/c+TdO24BaPTBwOOce7twTpIxK5TifRmlpeWV1rbxe2djc2t4xd/faMskEgRZJWCK6AZbAKIeWoopBNxWA44BBJxhdTP3OHQhJE36rxin4MR5wGlGClZb65oEnIy+IJAgK0uMJ5SFwZV1d982qY9fdU6dWtxzbmeGbuAWpogLNvvnhhQnJYh0nDEvZc51U+TkWihIGk4qXSUgxGeEB9DTlOAbp57MLJtaxVkIrSoR+ev1M/ZnIcSzlOA70ZIzVUC56U/E/r5epqO7nlKeZAk7mi6KMWSqxpnVYIRVAFBtrgomg+q8WGWKBidKlVXQJ7uLJf0m7ZruO7d7Uqo3zoo4yOkRH6AS56Aw10CVqohYi6B49omf0YjwYT8ar8TYfLRlFZh/9gvH+BbvMlwg=</latexit><latexit sha1_base64="mxYyW1Wtiggu9AkKEg6VNfojaFk=">AAACAXicbVDLSsNAFJ3UV62vqBvBTbAIrkJSBLuSghtXWsE+oAllMrlph04mYWYilFA3/oobF4q49S/c+TdO24BaPTBwOOce7twTpIxK5TifRmlpeWV1rbxe2djc2t4xd/faMskEgRZJWCK6AZbAKIeWoopBNxWA44BBJxhdTP3OHQhJE36rxin4MR5wGlGClZb65oEnIy+IJAgK0uMJ5SFwZV1d982qY9fdU6dWtxzbmeGbuAWpogLNvvnhhQnJYh0nDEvZc51U+TkWihIGk4qXSUgxGeEB9DTlOAbp57MLJtaxVkIrSoR+ev1M/ZnIcSzlOA70ZIzVUC56U/E/r5epqO7nlKeZAk7mi6KMWSqxpnVYIRVAFBtrgomg+q8WGWKBidKlVXQJ7uLJf0m7ZruO7d7Uqo3zoo4yOkRH6AS56Aw10CVqohYi6B49omf0YjwYT8ar8TYfLRlFZh/9gvH+BbvMlwg=</latexit><latexit sha1_base64="mxYyW1Wtiggu9AkKEg6VNfojaFk=">AAACAXicbVDLSsNAFJ3UV62vqBvBTbAIrkJSBLuSghtXWsE+oAllMrlph04mYWYilFA3/oobF4q49S/c+TdO24BaPTBwOOce7twTpIxK5TifRmlpeWV1rbxe2djc2t4xd/faMskEgRZJWCK6AZbAKIeWoopBNxWA44BBJxhdTP3OHQhJE36rxin4MR5wGlGClZb65oEnIy+IJAgK0uMJ5SFwZV1d982qY9fdU6dWtxzbmeGbuAWpogLNvvnhhQnJYh0nDEvZc51U+TkWihIGk4qXSUgxGeEB9DTlOAbp57MLJtaxVkIrSoR+ev1M/ZnIcSzlOA70ZIzVUC56U/E/r5epqO7nlKeZAk7mi6KMWSqxpnVYIRVAFBtrgomg+q8WGWKBidKlVXQJ7uLJf0m7ZruO7d7Uqo3zoo4yOkRH6AS56Aw10CVqohYi6B49omf0YjwYT8ar8TYfLRlFZh/9gvH+BbvMlwg=</latexit><latexit sha1_base64="mxYyW1Wtiggu9AkKEg6VNfojaFk=">AAACAXicbVDLSsNAFJ3UV62vqBvBTbAIrkJSBLuSghtXWsE+oAllMrlph04mYWYilFA3/oobF4q49S/c+TdO24BaPTBwOOce7twTpIxK5TifRmlpeWV1rbxe2djc2t4xd/faMskEgRZJWCK6AZbAKIeWoopBNxWA44BBJxhdTP3OHQhJE36rxin4MR5wGlGClZb65oEnIy+IJAgK0uMJ5SFwZV1d982qY9fdU6dWtxzbmeGbuAWpogLNvvnhhQnJYh0nDEvZc51U+TkWihIGk4qXSUgxGeEB9DTlOAbp57MLJtaxVkIrSoR+ev1M/ZnIcSzlOA70ZIzVUC56U/E/r5epqO7nlKeZAk7mi6KMWSqxpnVYIRVAFBtrgomg+q8WGWKBidKlVXQJ7uLJf0m7ZruO7d7Uqo3zoo4yOkRH6AS56Aw10CVqohYi6B49omf0YjwYT8ar8TYfLRlFZh/9gvH+BbvMlwg=</latexit>

YES
<latexit sha1_base64="OAyMTkgU4OuIw7jjbEPk43cTki0=">AAACAnicbVDLSgMxFM34rPU16krcBIvgqswUsbqRggguK9qHdIaSSe+0oZnMkGSEMhQ3/oobF4q49Svc+TemD0SrBwKHc+7h5p4g4Uxpx/m05uYXFpeWcyv51bX1jU17a7uu4lRSqNGYx7IZEAWcCahppjk0EwkkCjg0gv75yG/cgVQsFjd6kIAfka5gIaNEG6lt73oq9IJQgWSgPBEz0QGh8e3FddsuOEVnDOwUj0+PSuUy/lbcKSmgKapt+8PrxDSNTJ5yolTLdRLtZ0RqRjkM816qICG0T7rQMlSQCJSfjU8Y4gOjdHAYS/PM/rH6M5GRSKlBFJjJiOiemvVG4n9eK9XhiZ8xkaQaBJ0sClOOdYxHfeAOk0A1HxhCqGTmr5j2iCRUm9bypgR39uS/pF4quk7RvSoVKmfTOnJoD+2jQ+SiMqqgS1RFNUTRPXpEz+jFerCerFfrbTI6Z00zO+gXrPcvelSXcg==</latexit><latexit sha1_base64="OAyMTkgU4OuIw7jjbEPk43cTki0=">AAACAnicbVDLSgMxFM34rPU16krcBIvgqswUsbqRggguK9qHdIaSSe+0oZnMkGSEMhQ3/oobF4q49Svc+TemD0SrBwKHc+7h5p4g4Uxpx/m05uYXFpeWcyv51bX1jU17a7uu4lRSqNGYx7IZEAWcCahppjk0EwkkCjg0gv75yG/cgVQsFjd6kIAfka5gIaNEG6lt73oq9IJQgWSgPBEz0QGh8e3FddsuOEVnDOwUj0+PSuUy/lbcKSmgKapt+8PrxDSNTJ5yolTLdRLtZ0RqRjkM816qICG0T7rQMlSQCJSfjU8Y4gOjdHAYS/PM/rH6M5GRSKlBFJjJiOiemvVG4n9eK9XhiZ8xkaQaBJ0sClOOdYxHfeAOk0A1HxhCqGTmr5j2iCRUm9bypgR39uS/pF4quk7RvSoVKmfTOnJoD+2jQ+SiMqqgS1RFNUTRPXpEz+jFerCerFfrbTI6Z00zO+gXrPcvelSXcg==</latexit><latexit sha1_base64="OAyMTkgU4OuIw7jjbEPk43cTki0=">AAACAnicbVDLSgMxFM34rPU16krcBIvgqswUsbqRggguK9qHdIaSSe+0oZnMkGSEMhQ3/oobF4q49Svc+TemD0SrBwKHc+7h5p4g4Uxpx/m05uYXFpeWcyv51bX1jU17a7uu4lRSqNGYx7IZEAWcCahppjk0EwkkCjg0gv75yG/cgVQsFjd6kIAfka5gIaNEG6lt73oq9IJQgWSgPBEz0QGh8e3FddsuOEVnDOwUj0+PSuUy/lbcKSmgKapt+8PrxDSNTJ5yolTLdRLtZ0RqRjkM816qICG0T7rQMlSQCJSfjU8Y4gOjdHAYS/PM/rH6M5GRSKlBFJjJiOiemvVG4n9eK9XhiZ8xkaQaBJ0sClOOdYxHfeAOk0A1HxhCqGTmr5j2iCRUm9bypgR39uS/pF4quk7RvSoVKmfTOnJoD+2jQ+SiMqqgS1RFNUTRPXpEz+jFerCerFfrbTI6Z00zO+gXrPcvelSXcg==</latexit><latexit sha1_base64="OAyMTkgU4OuIw7jjbEPk43cTki0=">AAACAnicbVDLSgMxFM34rPU16krcBIvgqswUsbqRggguK9qHdIaSSe+0oZnMkGSEMhQ3/oobF4q49Svc+TemD0SrBwKHc+7h5p4g4Uxpx/m05uYXFpeWcyv51bX1jU17a7uu4lRSqNGYx7IZEAWcCahppjk0EwkkCjg0gv75yG/cgVQsFjd6kIAfka5gIaNEG6lt73oq9IJQgWSgPBEz0QGh8e3FddsuOEVnDOwUj0+PSuUy/lbcKSmgKapt+8PrxDSNTJ5yolTLdRLtZ0RqRjkM816qICG0T7rQMlSQCJSfjU8Y4gOjdHAYS/PM/rH6M5GRSKlBFJjJiOiemvVG4n9eK9XhiZ8xkaQaBJ0sClOOdYxHfeAOk0A1HxhCqGTmr5j2iCRUm9bypgR39uS/pF4quk7RvSoVKmfTOnJoD+2jQ+SiMqqgS1RFNUTRPXpEz+jFerCerFfrbTI6Z00zO+gXrPcvelSXcg==</latexit>

NO
<latexit sha1_base64="mxYyW1Wtiggu9AkKEg6VNfojaFk=">AAACAXicbVDLSsNAFJ3UV62vqBvBTbAIrkJSBLuSghtXWsE+oAllMrlph04mYWYilFA3/oobF4q49S/c+TdO24BaPTBwOOce7twTpIxK5TifRmlpeWV1rbxe2djc2t4xd/faMskEgRZJWCK6AZbAKIeWoopBNxWA44BBJxhdTP3OHQhJE36rxin4MR5wGlGClZb65oEnIy+IJAgK0uMJ5SFwZV1d982qY9fdU6dWtxzbmeGbuAWpogLNvvnhhQnJYh0nDEvZc51U+TkWihIGk4qXSUgxGeEB9DTlOAbp57MLJtaxVkIrSoR+ev1M/ZnIcSzlOA70ZIzVUC56U/E/r5epqO7nlKeZAk7mi6KMWSqxpnVYIRVAFBtrgomg+q8WGWKBidKlVXQJ7uLJf0m7ZruO7d7Uqo3zoo4yOkRH6AS56Aw10CVqohYi6B49omf0YjwYT8ar8TYfLRlFZh/9gvH+BbvMlwg=</latexit><latexit sha1_base64="mxYyW1Wtiggu9AkKEg6VNfojaFk=">AAACAXicbVDLSsNAFJ3UV62vqBvBTbAIrkJSBLuSghtXWsE+oAllMrlph04mYWYilFA3/oobF4q49S/c+TdO24BaPTBwOOce7twTpIxK5TifRmlpeWV1rbxe2djc2t4xd/faMskEgRZJWCK6AZbAKIeWoopBNxWA44BBJxhdTP3OHQhJE36rxin4MR5wGlGClZb65oEnIy+IJAgK0uMJ5SFwZV1d982qY9fdU6dWtxzbmeGbuAWpogLNvvnhhQnJYh0nDEvZc51U+TkWihIGk4qXSUgxGeEB9DTlOAbp57MLJtaxVkIrSoR+ev1M/ZnIcSzlOA70ZIzVUC56U/E/r5epqO7nlKeZAk7mi6KMWSqxpnVYIRVAFBtrgomg+q8WGWKBidKlVXQJ7uLJf0m7ZruO7d7Uqo3zoo4yOkRH6AS56Aw10CVqohYi6B49omf0YjwYT8ar8TYfLRlFZh/9gvH+BbvMlwg=</latexit><latexit sha1_base64="mxYyW1Wtiggu9AkKEg6VNfojaFk=">AAACAXicbVDLSsNAFJ3UV62vqBvBTbAIrkJSBLuSghtXWsE+oAllMrlph04mYWYilFA3/oobF4q49S/c+TdO24BaPTBwOOce7twTpIxK5TifRmlpeWV1rbxe2djc2t4xd/faMskEgRZJWCK6AZbAKIeWoopBNxWA44BBJxhdTP3OHQhJE36rxin4MR5wGlGClZb65oEnIy+IJAgK0uMJ5SFwZV1d982qY9fdU6dWtxzbmeGbuAWpogLNvvnhhQnJYh0nDEvZc51U+TkWihIGk4qXSUgxGeEB9DTlOAbp57MLJtaxVkIrSoR+ev1M/ZnIcSzlOA70ZIzVUC56U/E/r5epqO7nlKeZAk7mi6KMWSqxpnVYIRVAFBtrgomg+q8WGWKBidKlVXQJ7uLJf0m7ZruO7d7Uqo3zoo4yOkRH6AS56Aw10CVqohYi6B49omf0YjwYT8ar8TYfLRlFZh/9gvH+BbvMlwg=</latexit><latexit sha1_base64="mxYyW1Wtiggu9AkKEg6VNfojaFk=">AAACAXicbVDLSsNAFJ3UV62vqBvBTbAIrkJSBLuSghtXWsE+oAllMrlph04mYWYilFA3/oobF4q49S/c+TdO24BaPTBwOOce7twTpIxK5TifRmlpeWV1rbxe2djc2t4xd/faMskEgRZJWCK6AZbAKIeWoopBNxWA44BBJxhdTP3OHQhJE36rxin4MR5wGlGClZb65oEnIy+IJAgK0uMJ5SFwZV1d982qY9fdU6dWtxzbmeGbuAWpogLNvvnhhQnJYh0nDEvZc51U+TkWihIGk4qXSUgxGeEB9DTlOAbp57MLJtaxVkIrSoR+ev1M/ZnIcSzlOA70ZIzVUC56U/E/r5epqO7nlKeZAk7mi6KMWSqxpnVYIRVAFBtrgomg+q8WGWKBidKlVXQJ7uLJf0m7ZruO7d7Uqo3zoo4yOkRH6AS56Aw10CVqohYi6B49omf0YjwYT8ar8TYfLRlFZh/9gvH+BbvMlwg=</latexit>

Program P
<latexit sha1_base64="dtmzqoX9s6w/S8DiRsJ6d4OHEwE=">AAACCXicbVC7TgJBFL2LL8QHq5Y2E8HEiuzSaEm0sVwTeSRAyOwwCxNmZjczs0ay4Qv8BFv9ADtj61dY+yMOsIWCJ7nJyTn35tycMOFMG8/7cgobm1vbO8Xd0t7+wWHZPTpu6ThVhDZJzGPVCbGmnEnaNMxw2kkUxSLktB1ObuZ++4EqzWJ5b6YJ7Qs8kixiBBsrDdxyT0coUPFIYYGqQXXgVryatwBaJ35OKpAjGLjfvWFMUkGlIRxr3fW9xPQzrAwjnM5KvVTTBJMJHtGupRILqvvZ4vEZOrfKEEWxsiMNWqi/LzIstJ6K0G4KbMZ61ZuL/3nd1ERX/YzJJDVUkmVQlHJkYjRvAQ2ZosTwqSWYKGZ/RWSMFSbGdvUnRRv2OLOt+KsdrJNWveZ7Nf+uXmlc5/0U4RTO4AJ8uIQG3EIATSCQwjO8wKvz5Lw5787HcrXg5Dcn8AfO5w+2DJm/</latexit><latexit sha1_base64="dtmzqoX9s6w/S8DiRsJ6d4OHEwE=">AAACCXicbVC7TgJBFL2LL8QHq5Y2E8HEiuzSaEm0sVwTeSRAyOwwCxNmZjczs0ay4Qv8BFv9ADtj61dY+yMOsIWCJ7nJyTn35tycMOFMG8/7cgobm1vbO8Xd0t7+wWHZPTpu6ThVhDZJzGPVCbGmnEnaNMxw2kkUxSLktB1ObuZ++4EqzWJ5b6YJ7Qs8kixiBBsrDdxyT0coUPFIYYGqQXXgVryatwBaJ35OKpAjGLjfvWFMUkGlIRxr3fW9xPQzrAwjnM5KvVTTBJMJHtGupRILqvvZ4vEZOrfKEEWxsiMNWqi/LzIstJ6K0G4KbMZ61ZuL/3nd1ERX/YzJJDVUkmVQlHJkYjRvAQ2ZosTwqSWYKGZ/RWSMFSbGdvUnRRv2OLOt+KsdrJNWveZ7Nf+uXmlc5/0U4RTO4AJ8uIQG3EIATSCQwjO8wKvz5Lw5787HcrXg5Dcn8AfO5w+2DJm/</latexit><latexit sha1_base64="dtmzqoX9s6w/S8DiRsJ6d4OHEwE=">AAACCXicbVC7TgJBFL2LL8QHq5Y2E8HEiuzSaEm0sVwTeSRAyOwwCxNmZjczs0ay4Qv8BFv9ADtj61dY+yMOsIWCJ7nJyTn35tycMOFMG8/7cgobm1vbO8Xd0t7+wWHZPTpu6ThVhDZJzGPVCbGmnEnaNMxw2kkUxSLktB1ObuZ++4EqzWJ5b6YJ7Qs8kixiBBsrDdxyT0coUPFIYYGqQXXgVryatwBaJ35OKpAjGLjfvWFMUkGlIRxr3fW9xPQzrAwjnM5KvVTTBJMJHtGupRILqvvZ4vEZOrfKEEWxsiMNWqi/LzIstJ6K0G4KbMZ61ZuL/3nd1ERX/YzJJDVUkmVQlHJkYjRvAQ2ZosTwqSWYKGZ/RWSMFSbGdvUnRRv2OLOt+KsdrJNWveZ7Nf+uXmlc5/0U4RTO4AJ8uIQG3EIATSCQwjO8wKvz5Lw5787HcrXg5Dcn8AfO5w+2DJm/</latexit><latexit sha1_base64="dtmzqoX9s6w/S8DiRsJ6d4OHEwE=">AAACCXicbVC7TgJBFL2LL8QHq5Y2E8HEiuzSaEm0sVwTeSRAyOwwCxNmZjczs0ay4Qv8BFv9ADtj61dY+yMOsIWCJ7nJyTn35tycMOFMG8/7cgobm1vbO8Xd0t7+wWHZPTpu6ThVhDZJzGPVCbGmnEnaNMxw2kkUxSLktB1ObuZ++4EqzWJ5b6YJ7Qs8kixiBBsrDdxyT0coUPFIYYGqQXXgVryatwBaJ35OKpAjGLjfvWFMUkGlIRxr3fW9xPQzrAwjnM5KvVTTBJMJHtGupRILqvvZ4vEZOrfKEEWxsiMNWqi/LzIstJ6K0G4KbMZ61ZuL/3nd1ERX/YzJJDVUkmVQlHJkYjRvAQ2ZosTwqSWYKGZ/RWSMFSbGdvUnRRv2OLOt+KsdrJNWveZ7Nf+uXmlc5/0U4RTO4AJ8uIQG3EIATSCQwjO8wKvz5Lw5787HcrXg5Dcn8AfO5w+2DJm/</latexit>

Initial empty proof ⇧
<latexit sha1_base64="9VyRlQMRXaTOL+96pFaDC0EQacQ=">AAACBnicbZBLSwMxFIUzPmt9VV2KEGwFV2WmG10W3eiugn1AO5RMmmlDM0lI7ghl6MqNf8WNC0Xc+hvc+W9MHwttPRD4OOdewj2RFtyC7397K6tr6xubua389s7u3n7h4LBhVWooq1MllGlFxDLBJasDB8Fa2jCSRII1o+H1JG8+MGO5kvcw0ixMSF/ymFMCzuoWTjo2xreSAycCs0TDCGujVIxLnRovdQtFv+xPhZchmEMRzVXrFr46PUXThEmggljbDnwNYUYMcCrYON9JLdOEDkmftR1KkjAbZtMzxvjMOT0cK+OeBDx1f29kJLF2lERuMiEwsIvZxPwva6cQX4YZlzoFJunsozgVGBSedIJ73DAKYuSAUOO6oJgOiCEUXHN5V0KwePIyNCrlwC8Hd5Vi9WpeRw4do1N0jgJ0garoBtVQHVH0iJ7RK3rznrwX7937mI2uePOdI/RH3ucPvNuX/A==</latexit><latexit sha1_base64="9VyRlQMRXaTOL+96pFaDC0EQacQ=">AAACBnicbZBLSwMxFIUzPmt9VV2KEGwFV2WmG10W3eiugn1AO5RMmmlDM0lI7ghl6MqNf8WNC0Xc+hvc+W9MHwttPRD4OOdewj2RFtyC7397K6tr6xubua389s7u3n7h4LBhVWooq1MllGlFxDLBJasDB8Fa2jCSRII1o+H1JG8+MGO5kvcw0ixMSF/ymFMCzuoWTjo2xreSAycCs0TDCGujVIxLnRovdQtFv+xPhZchmEMRzVXrFr46PUXThEmggljbDnwNYUYMcCrYON9JLdOEDkmftR1KkjAbZtMzxvjMOT0cK+OeBDx1f29kJLF2lERuMiEwsIvZxPwva6cQX4YZlzoFJunsozgVGBSedIJ73DAKYuSAUOO6oJgOiCEUXHN5V0KwePIyNCrlwC8Hd5Vi9WpeRw4do1N0jgJ0garoBtVQHVH0iJ7RK3rznrwX7937mI2uePOdI/RH3ucPvNuX/A==</latexit><latexit sha1_base64="9VyRlQMRXaTOL+96pFaDC0EQacQ=">AAACBnicbZBLSwMxFIUzPmt9VV2KEGwFV2WmG10W3eiugn1AO5RMmmlDM0lI7ghl6MqNf8WNC0Xc+hvc+W9MHwttPRD4OOdewj2RFtyC7397K6tr6xubua389s7u3n7h4LBhVWooq1MllGlFxDLBJasDB8Fa2jCSRII1o+H1JG8+MGO5kvcw0ixMSF/ymFMCzuoWTjo2xreSAycCs0TDCGujVIxLnRovdQtFv+xPhZchmEMRzVXrFr46PUXThEmggljbDnwNYUYMcCrYON9JLdOEDkmftR1KkjAbZtMzxvjMOT0cK+OeBDx1f29kJLF2lERuMiEwsIvZxPwva6cQX4YZlzoFJunsozgVGBSedIJ73DAKYuSAUOO6oJgOiCEUXHN5V0KwePIyNCrlwC8Hd5Vi9WpeRw4do1N0jgJ0garoBtVQHVH0iJ7RK3rznrwX7937mI2uePOdI/RH3ucPvNuX/A==</latexit><latexit sha1_base64="9VyRlQMRXaTOL+96pFaDC0EQacQ=">AAACBnicbZBLSwMxFIUzPmt9VV2KEGwFV2WmG10W3eiugn1AO5RMmmlDM0lI7ghl6MqNf8WNC0Xc+hvc+W9MHwttPRD4OOdewj2RFtyC7397K6tr6xubua389s7u3n7h4LBhVWooq1MllGlFxDLBJasDB8Fa2jCSRII1o+H1JG8+MGO5kvcw0ixMSF/ymFMCzuoWTjo2xreSAycCs0TDCGujVIxLnRovdQtFv+xPhZchmEMRzVXrFr46PUXThEmggljbDnwNYUYMcCrYON9JLdOEDkmftR1KkjAbZtMzxvjMOT0cK+OeBDx1f29kJLF2lERuMiEwsIvZxPwva6cQX4YZlzoFJunsozgVGBSedIJ73DAKYuSAUOO6oJgOiCEUXHN5V0KwePIyNCrlwC8Hd5Vi9WpeRw4do1N0jgJ0garoBtVQHVH0iJ7RK3rznrwX7937mI2uePOdI/RH3ucPvNuX/A==</latexit>

« a reduction of
P covered by ⇧?

<latexit sha1_base64="hFdybTTIpoS7RajQREdH92aoqGA=">AAACO3icbVC7TgMxEPTxJrwClDQrckhU0R0NdARoKINEAlIuiny+PbDw2SfbhxJF+R6+gk+gBVHTIVp6nEcBCStZGs3O7qwnzgU3Ngjevbn5hcWl5ZXV0tr6xuZWeXunaVShGTaYEkrfxtSg4BIblluBt7lGmsUCb+KHi2H/5hG14Upe216O7YzeSZ5yRq2jOuWzSCouE5QWIpOCH2HXmRofKGhMCjZUgUoBIIpKft0Hptw6TCDuOXGd+6edciWoBqOCWRBOQIVMqt4pf0SJYkXmPJmgxrTCILftPtWWM4GDUlQYzCl7oHfYclDSDE27P/rqAA4ck0CqtHvu5hH7e6JPM2N6WeyUGbX3Zro3JP/rtQqbnrT7XOaFRcnGRmkhwCoY5gYJ18is6DlAmebuVmD3VFNmXbp/XIzl3YFLJZzOYBY0j6phUA2vjiq180k+K2SP7JNDEpJjUiOXpE4ahJEn8kJeyZv37H14n97XWDrnTWZ2yZ/yvn8AqgWsHg==</latexit><latexit sha1_base64="hFdybTTIpoS7RajQREdH92aoqGA=">AAACO3icbVC7TgMxEPTxJrwClDQrckhU0R0NdARoKINEAlIuiny+PbDw2SfbhxJF+R6+gk+gBVHTIVp6nEcBCStZGs3O7qwnzgU3Ngjevbn5hcWl5ZXV0tr6xuZWeXunaVShGTaYEkrfxtSg4BIblluBt7lGmsUCb+KHi2H/5hG14Upe216O7YzeSZ5yRq2jOuWzSCouE5QWIpOCH2HXmRofKGhMCjZUgUoBIIpKft0Hptw6TCDuOXGd+6edciWoBqOCWRBOQIVMqt4pf0SJYkXmPJmgxrTCILftPtWWM4GDUlQYzCl7oHfYclDSDE27P/rqAA4ck0CqtHvu5hH7e6JPM2N6WeyUGbX3Zro3JP/rtQqbnrT7XOaFRcnGRmkhwCoY5gYJ18is6DlAmebuVmD3VFNmXbp/XIzl3YFLJZzOYBY0j6phUA2vjiq180k+K2SP7JNDEpJjUiOXpE4ahJEn8kJeyZv37H14n97XWDrnTWZ2yZ/yvn8AqgWsHg==</latexit><latexit sha1_base64="hFdybTTIpoS7RajQREdH92aoqGA=">AAACO3icbVC7TgMxEPTxJrwClDQrckhU0R0NdARoKINEAlIuiny+PbDw2SfbhxJF+R6+gk+gBVHTIVp6nEcBCStZGs3O7qwnzgU3Ngjevbn5hcWl5ZXV0tr6xuZWeXunaVShGTaYEkrfxtSg4BIblluBt7lGmsUCb+KHi2H/5hG14Upe216O7YzeSZ5yRq2jOuWzSCouE5QWIpOCH2HXmRofKGhMCjZUgUoBIIpKft0Hptw6TCDuOXGd+6edciWoBqOCWRBOQIVMqt4pf0SJYkXmPJmgxrTCILftPtWWM4GDUlQYzCl7oHfYclDSDE27P/rqAA4ck0CqtHvu5hH7e6JPM2N6WeyUGbX3Zro3JP/rtQqbnrT7XOaFRcnGRmkhwCoY5gYJ18is6DlAmebuVmD3VFNmXbp/XIzl3YFLJZzOYBY0j6phUA2vjiq180k+K2SP7JNDEpJjUiOXpE4ahJEn8kJeyZv37H14n97XWDrnTWZ2yZ/yvn8AqgWsHg==</latexit><latexit sha1_base64="hFdybTTIpoS7RajQREdH92aoqGA=">AAACO3icbVC7TgMxEPTxJrwClDQrckhU0R0NdARoKINEAlIuiny+PbDw2SfbhxJF+R6+gk+gBVHTIVp6nEcBCStZGs3O7qwnzgU3Ngjevbn5hcWl5ZXV0tr6xuZWeXunaVShGTaYEkrfxtSg4BIblluBt7lGmsUCb+KHi2H/5hG14Upe216O7YzeSZ5yRq2jOuWzSCouE5QWIpOCH2HXmRofKGhMCjZUgUoBIIpKft0Hptw6TCDuOXGd+6edciWoBqOCWRBOQIVMqt4pf0SJYkXmPJmgxrTCILftPtWWM4GDUlQYzCl7oHfYclDSDE27P/rqAA4ck0CqtHvu5hH7e6JPM2N6WeyUGbX3Zro3JP/rtQqbnrT7XOaFRcnGRmkhwCoY5gYJ18is6DlAmebuVmD3VFNmXbp/XIzl3YFLJZzOYBY0j6phUA2vjiq180k+K2SP7JNDEpJjUiOXpE4ahJEn8kJeyZv37H14n97XWDrnTWZ2yZ/yvn8AqgWsHg==</latexit>

Program P is verified
<latexit sha1_base64="L54F5CQ0Kff41ye3EvBjm5E0qBA=">AAACBXicbVC7TsMwFHXKq5RXgBEGixaJqUq6wFjBwhgk+pDaqHIcp7XqR2Q7SFXUhYVfYWEAIVb+gY2/wW0zQMuRLB2dc66u74lSRrXxvG+ntLa+sblV3q7s7O7tH7iHR20tM4VJC0smVTdCmjAqSMtQw0g3VQTxiJFONL6Z+Z0HojSV4t5MUhJyNBQ0oRgZKw3c075OYKDkUCEOa0ENUg1t3iZIDAdu1at7c8BV4hekCgoEA/erH0uccSIMZkjrnu+lJsyRMhQzMq30M01ShMdoSHqWCsSJDvP5FVN4bpUYJlLZJwycq78ncsS1nvDIJjkyI73szcT/vF5mkqswpyLNDBF4sSjJGDQSziqBMVUEGzaxBGFF7V8hHiGFsLHFVWwJ/vLJq6TdqPte3b9rVJvXRR1lcALOwAXwwSVoglsQgBbA4BE8g1fw5jw5L86787GIlpxi5hj8gfP5A11ClzA=</latexit><latexit sha1_base64="L54F5CQ0Kff41ye3EvBjm5E0qBA=">AAACBXicbVC7TsMwFHXKq5RXgBEGixaJqUq6wFjBwhgk+pDaqHIcp7XqR2Q7SFXUhYVfYWEAIVb+gY2/wW0zQMuRLB2dc66u74lSRrXxvG+ntLa+sblV3q7s7O7tH7iHR20tM4VJC0smVTdCmjAqSMtQw0g3VQTxiJFONL6Z+Z0HojSV4t5MUhJyNBQ0oRgZKw3c075OYKDkUCEOa0ENUg1t3iZIDAdu1at7c8BV4hekCgoEA/erH0uccSIMZkjrnu+lJsyRMhQzMq30M01ShMdoSHqWCsSJDvP5FVN4bpUYJlLZJwycq78ncsS1nvDIJjkyI73szcT/vF5mkqswpyLNDBF4sSjJGDQSziqBMVUEGzaxBGFF7V8hHiGFsLHFVWwJ/vLJq6TdqPte3b9rVJvXRR1lcALOwAXwwSVoglsQgBbA4BE8g1fw5jw5L86787GIlpxi5hj8gfP5A11ClzA=</latexit><latexit sha1_base64="L54F5CQ0Kff41ye3EvBjm5E0qBA=">AAACBXicbVC7TsMwFHXKq5RXgBEGixaJqUq6wFjBwhgk+pDaqHIcp7XqR2Q7SFXUhYVfYWEAIVb+gY2/wW0zQMuRLB2dc66u74lSRrXxvG+ntLa+sblV3q7s7O7tH7iHR20tM4VJC0smVTdCmjAqSMtQw0g3VQTxiJFONL6Z+Z0HojSV4t5MUhJyNBQ0oRgZKw3c075OYKDkUCEOa0ENUg1t3iZIDAdu1at7c8BV4hekCgoEA/erH0uccSIMZkjrnu+lJsyRMhQzMq30M01ShMdoSHqWCsSJDvP5FVN4bpUYJlLZJwycq78ncsS1nvDIJjkyI73szcT/vF5mkqswpyLNDBF4sSjJGDQSziqBMVUEGzaxBGFF7V8hHiGFsLHFVWwJ/vLJq6TdqPte3b9rVJvXRR1lcALOwAXwwSVoglsQgBbA4BE8g1fw5jw5L86787GIlpxi5hj8gfP5A11ClzA=</latexit><latexit sha1_base64="L54F5CQ0Kff41ye3EvBjm5E0qBA=">AAACBXicbVC7TsMwFHXKq5RXgBEGixaJqUq6wFjBwhgk+pDaqHIcp7XqR2Q7SFXUhYVfYWEAIVb+gY2/wW0zQMuRLB2dc66u74lSRrXxvG+ntLa+sblV3q7s7O7tH7iHR20tM4VJC0smVTdCmjAqSMtQw0g3VQTxiJFONL6Z+Z0HojSV4t5MUhJyNBQ0oRgZKw3c075OYKDkUCEOa0ENUg1t3iZIDAdu1at7c8BV4hekCgoEA/erH0uccSIMZkjrnu+lJsyRMhQzMq30M01ShMdoSHqWCsSJDvP5FVN4bpUYJlLZJwycq78ncsS1nvDIJjkyI73szcT/vF5mkqswpyLNDBF4sSjJGDQSziqBMVUEGzaxBGFF7V8hHiGFsLHFVWwJ/vLJq6TdqPte3b9rVJvXRR1lcALOwAXwwSVoglsQgBbA4BE8g1fw5jw5L86787GIlpxi5hj8gfP5A11ClzA=</latexit>

Program P is incorrect
<latexit sha1_base64="KspNQzUrB53kyOqRprd8vo2SJeE=">AAACD3icbVC7TsMwFHXKq5RXgJHFogUxVUkXGCtYGINEH1ITVY7jtFYdO7IdpCrqH7DwKywMIMTKysbf4LQZoOVIlo7Ouff63hOmjCrtON9WZW19Y3Orul3b2d3bP7APj7pKZBKTDhZMyH6IFGGUk46mmpF+KglKQkZ64eSm8HsPRCoq+L2epiRI0IjTmGKkjTS0z30V+1xQHhGuoSfFSKIENrwGpApSjoWUBGs4tOtO05kDrhK3JHVQwhvaX34kcJaYqZghpQauk+ogR1JTzMis5meKpAhP0IgMDOUoISrI5/fM4JlRIhgLaZ7Zaq7+7shRotQ0CU1lgvRYLXuF+J83yHR8FeSUp5kmHC8+ijMGtYBFODCixbVsagjCkppdIR4jibA2EdZMCO7yyauk22q6TtO9a9Xb12UcVXACTsEFcMElaINb4IEOwOARPINX8GY9WS/Wu/WxKK1YZc8x+APr8we4VZvK</latexit><latexit sha1_base64="KspNQzUrB53kyOqRprd8vo2SJeE=">AAACD3icbVC7TsMwFHXKq5RXgJHFogUxVUkXGCtYGINEH1ITVY7jtFYdO7IdpCrqH7DwKywMIMTKysbf4LQZoOVIlo7Ouff63hOmjCrtON9WZW19Y3Orul3b2d3bP7APj7pKZBKTDhZMyH6IFGGUk46mmpF+KglKQkZ64eSm8HsPRCoq+L2epiRI0IjTmGKkjTS0z30V+1xQHhGuoSfFSKIENrwGpApSjoWUBGs4tOtO05kDrhK3JHVQwhvaX34kcJaYqZghpQauk+ogR1JTzMis5meKpAhP0IgMDOUoISrI5/fM4JlRIhgLaZ7Zaq7+7shRotQ0CU1lgvRYLXuF+J83yHR8FeSUp5kmHC8+ijMGtYBFODCixbVsagjCkppdIR4jibA2EdZMCO7yyauk22q6TtO9a9Xb12UcVXACTsEFcMElaINb4IEOwOARPINX8GY9WS/Wu/WxKK1YZc8x+APr8we4VZvK</latexit><latexit sha1_base64="KspNQzUrB53kyOqRprd8vo2SJeE=">AAACD3icbVC7TsMwFHXKq5RXgJHFogUxVUkXGCtYGINEH1ITVY7jtFYdO7IdpCrqH7DwKywMIMTKysbf4LQZoOVIlo7Ouff63hOmjCrtON9WZW19Y3Orul3b2d3bP7APj7pKZBKTDhZMyH6IFGGUk46mmpF+KglKQkZ64eSm8HsPRCoq+L2epiRI0IjTmGKkjTS0z30V+1xQHhGuoSfFSKIENrwGpApSjoWUBGs4tOtO05kDrhK3JHVQwhvaX34kcJaYqZghpQauk+ogR1JTzMis5meKpAhP0IgMDOUoISrI5/fM4JlRIhgLaZ7Zaq7+7shRotQ0CU1lgvRYLXuF+J83yHR8FeSUp5kmHC8+ijMGtYBFODCixbVsagjCkppdIR4jibA2EdZMCO7yyauk22q6TtO9a9Xb12UcVXACTsEFcMElaINb4IEOwOARPINX8GY9WS/Wu/WxKK1YZc8x+APr8we4VZvK</latexit><latexit sha1_base64="KspNQzUrB53kyOqRprd8vo2SJeE=">AAACD3icbVC7TsMwFHXKq5RXgJHFogUxVUkXGCtYGINEH1ITVY7jtFYdO7IdpCrqH7DwKywMIMTKysbf4LQZoOVIlo7Ouff63hOmjCrtON9WZW19Y3Orul3b2d3bP7APj7pKZBKTDhZMyH6IFGGUk46mmpF+KglKQkZ64eSm8HsPRCoq+L2epiRI0IjTmGKkjTS0z30V+1xQHhGuoSfFSKIENrwGpApSjoWUBGs4tOtO05kDrhK3JHVQwhvaX34kcJaYqZghpQauk+ogR1JTzMis5meKpAhP0IgMDOUoISrI5/fM4JlRIhgLaZ7Zaq7+7shRotQ0CU1lgvRYLXuF+J83yHR8FeSUp5kmHC8+ijMGtYBFODCixbVsagjCkppdIR4jibA2EdZMCO7yyauk22q6TtO9a9Xb12UcVXACTsEFcMElaINb4IEOwOARPINX8GY9WS/Wu/WxKK1YZc8x+APr8we4VZvK</latexit>

+ a valid counterexample
<latexit sha1_base64="T5G6bTCAAg9mZjbSqp6wqyeHBAo=">AAACEXicbVA9SwNBEN3zM8avU0ubxSgIQrhLo2XQxjKCiYHkCHN7c7q4t3vs7gVDyF+w8a/YWChia2fnv3ETU2j0wcLjvZnZmRfnghsbBJ/e3PzC4tJyaaW8ura+selvbbeMKjTDJlNC6XYMBgWX2LTcCmznGiGLBV7Ft2dj/6qP2nAlL+0gxyiDa8lTzsA6qecfdk3alYrLBKWl+0f7FGgfBE8oU4W0qPEOslwg7fmVoBpMQP+ScEoqZIpGz//oJooVmZvLBBjTCYPcRkPQljOBo3K3MJgDu4Vr7DgqIUMTDScXjeiBUxKaKu2e22ui/uwYQmbMIItdZQb2xsx6Y/E/r1PY9CQacpkXFiX7/igtBLWKjuOhCdfIrBg4AkxztytlN6CBuShM2YUQzp78l7Rq1TCohhe1Sv10GkeJ7JI9ckhCckzq5Jw0SJMwck8eyTN58R68J+/Ve/sunfOmPTvkF7z3Ly9JnJk=</latexit><latexit sha1_base64="T5G6bTCAAg9mZjbSqp6wqyeHBAo=">AAACEXicbVA9SwNBEN3zM8avU0ubxSgIQrhLo2XQxjKCiYHkCHN7c7q4t3vs7gVDyF+w8a/YWChia2fnv3ETU2j0wcLjvZnZmRfnghsbBJ/e3PzC4tJyaaW8ura+selvbbeMKjTDJlNC6XYMBgWX2LTcCmznGiGLBV7Ft2dj/6qP2nAlL+0gxyiDa8lTzsA6qecfdk3alYrLBKWl+0f7FGgfBE8oU4W0qPEOslwg7fmVoBpMQP+ScEoqZIpGz//oJooVmZvLBBjTCYPcRkPQljOBo3K3MJgDu4Vr7DgqIUMTDScXjeiBUxKaKu2e22ui/uwYQmbMIItdZQb2xsx6Y/E/r1PY9CQacpkXFiX7/igtBLWKjuOhCdfIrBg4AkxztytlN6CBuShM2YUQzp78l7Rq1TCohhe1Sv10GkeJ7JI9ckhCckzq5Jw0SJMwck8eyTN58R68J+/Ve/sunfOmPTvkF7z3Ly9JnJk=</latexit><latexit sha1_base64="T5G6bTCAAg9mZjbSqp6wqyeHBAo=">AAACEXicbVA9SwNBEN3zM8avU0ubxSgIQrhLo2XQxjKCiYHkCHN7c7q4t3vs7gVDyF+w8a/YWChia2fnv3ETU2j0wcLjvZnZmRfnghsbBJ/e3PzC4tJyaaW8ura+selvbbeMKjTDJlNC6XYMBgWX2LTcCmznGiGLBV7Ft2dj/6qP2nAlL+0gxyiDa8lTzsA6qecfdk3alYrLBKWl+0f7FGgfBE8oU4W0qPEOslwg7fmVoBpMQP+ScEoqZIpGz//oJooVmZvLBBjTCYPcRkPQljOBo3K3MJgDu4Vr7DgqIUMTDScXjeiBUxKaKu2e22ui/uwYQmbMIItdZQb2xsx6Y/E/r1PY9CQacpkXFiX7/igtBLWKjuOhCdfIrBg4AkxztytlN6CBuShM2YUQzp78l7Rq1TCohhe1Sv10GkeJ7JI9ckhCckzq5Jw0SJMwck8eyTN58R68J+/Ve/sunfOmPTvkF7z3Ly9JnJk=</latexit><latexit sha1_base64="T5G6bTCAAg9mZjbSqp6wqyeHBAo=">AAACEXicbVA9SwNBEN3zM8avU0ubxSgIQrhLo2XQxjKCiYHkCHN7c7q4t3vs7gVDyF+w8a/YWChia2fnv3ETU2j0wcLjvZnZmRfnghsbBJ/e3PzC4tJyaaW8ura+selvbbeMKjTDJlNC6XYMBgWX2LTcCmznGiGLBV7Ft2dj/6qP2nAlL+0gxyiDa8lTzsA6qecfdk3alYrLBKWl+0f7FGgfBE8oU4W0qPEOslwg7fmVoBpMQP+ScEoqZIpGz//oJooVmZvLBBjTCYPcRkPQljOBo3K3MJgDu4Vr7DgqIUMTDScXjeiBUxKaKu2e22ui/uwYQmbMIItdZQb2xsx6Y/E/r1PY9CQacpkXFiX7/igtBLWKjuOhCdfIrBg4AkxztytlN6CBuShM2YUQzp78l7Rq1TCohhe1Sv10GkeJ7JI9ckhCckzq5Jw0SJMwck8eyTN58R68J+/Ve/sunfOmPTvkF7z3Ly9JnJk=</latexit>

YES
<latexit sha1_base64="OAyMTkgU4OuIw7jjbEPk43cTki0=">AAACAnicbVDLSgMxFM34rPU16krcBIvgqswUsbqRggguK9qHdIaSSe+0oZnMkGSEMhQ3/oobF4q49Svc+TemD0SrBwKHc+7h5p4g4Uxpx/m05uYXFpeWcyv51bX1jU17a7uu4lRSqNGYx7IZEAWcCahppjk0EwkkCjg0gv75yG/cgVQsFjd6kIAfka5gIaNEG6lt73oq9IJQgWSgPBEz0QGh8e3FddsuOEVnDOwUj0+PSuUy/lbcKSmgKapt+8PrxDSNTJ5yolTLdRLtZ0RqRjkM816qICG0T7rQMlSQCJSfjU8Y4gOjdHAYS/PM/rH6M5GRSKlBFJjJiOiemvVG4n9eK9XhiZ8xkaQaBJ0sClOOdYxHfeAOk0A1HxhCqGTmr5j2iCRUm9bypgR39uS/pF4quk7RvSoVKmfTOnJoD+2jQ+SiMqqgS1RFNUTRPXpEz+jFerCerFfrbTI6Z00zO+gXrPcvelSXcg==</latexit><latexit sha1_base64="OAyMTkgU4OuIw7jjbEPk43cTki0=">AAACAnicbVDLSgMxFM34rPU16krcBIvgqswUsbqRggguK9qHdIaSSe+0oZnMkGSEMhQ3/oobF4q49Svc+TemD0SrBwKHc+7h5p4g4Uxpx/m05uYXFpeWcyv51bX1jU17a7uu4lRSqNGYx7IZEAWcCahppjk0EwkkCjg0gv75yG/cgVQsFjd6kIAfka5gIaNEG6lt73oq9IJQgWSgPBEz0QGh8e3FddsuOEVnDOwUj0+PSuUy/lbcKSmgKapt+8PrxDSNTJ5yolTLdRLtZ0RqRjkM816qICG0T7rQMlSQCJSfjU8Y4gOjdHAYS/PM/rH6M5GRSKlBFJjJiOiemvVG4n9eK9XhiZ8xkaQaBJ0sClOOdYxHfeAOk0A1HxhCqGTmr5j2iCRUm9bypgR39uS/pF4quk7RvSoVKmfTOnJoD+2jQ+SiMqqgS1RFNUTRPXpEz+jFerCerFfrbTI6Z00zO+gXrPcvelSXcg==</latexit><latexit sha1_base64="OAyMTkgU4OuIw7jjbEPk43cTki0=">AAACAnicbVDLSgMxFM34rPU16krcBIvgqswUsbqRggguK9qHdIaSSe+0oZnMkGSEMhQ3/oobF4q49Svc+TemD0SrBwKHc+7h5p4g4Uxpx/m05uYXFpeWcyv51bX1jU17a7uu4lRSqNGYx7IZEAWcCahppjk0EwkkCjg0gv75yG/cgVQsFjd6kIAfka5gIaNEG6lt73oq9IJQgWSgPBEz0QGh8e3FddsuOEVnDOwUj0+PSuUy/lbcKSmgKapt+8PrxDSNTJ5yolTLdRLtZ0RqRjkM816qICG0T7rQMlSQCJSfjU8Y4gOjdHAYS/PM/rH6M5GRSKlBFJjJiOiemvVG4n9eK9XhiZ8xkaQaBJ0sClOOdYxHfeAOk0A1HxhCqGTmr5j2iCRUm9bypgR39uS/pF4quk7RvSoVKmfTOnJoD+2jQ+SiMqqgS1RFNUTRPXpEz+jFerCerFfrbTI6Z00zO+gXrPcvelSXcg==</latexit><latexit sha1_base64="OAyMTkgU4OuIw7jjbEPk43cTki0=">AAACAnicbVDLSgMxFM34rPU16krcBIvgqswUsbqRggguK9qHdIaSSe+0oZnMkGSEMhQ3/oobF4q49Svc+TemD0SrBwKHc+7h5p4g4Uxpx/m05uYXFpeWcyv51bX1jU17a7uu4lRSqNGYx7IZEAWcCahppjk0EwkkCjg0gv75yG/cgVQsFjd6kIAfka5gIaNEG6lt73oq9IJQgWSgPBEz0QGh8e3FddsuOEVnDOwUj0+PSuUy/lbcKSmgKapt+8PrxDSNTJ5yolTLdRLtZ0RqRjkM816qICG0T7rQMlSQCJSfjU8Y4gOjdHAYS/PM/rH6M5GRSKlBFJjJiOiemvVG4n9eK9XhiZ8xkaQaBJ0sClOOdYxHfeAOk0A1HxhCqGTmr5j2iCRUm9bypgR39uS/pF4quk7RvSoVKmfTOnJoD+2jQ+SiMqqgS1RFNUTRPXpEz+jFerCerFfrbTI6Z00zO+gXrPcvelSXcg==</latexit>

Construct a proof ⇧0 for
<latexit sha1_base64="QV/DGpk6sP0+tPlpYbyuXaiqsOk=">AAACFHicbVA7T8MwGHTKq5RXgJHFokUgIVVJFxgrujAWiT6kJqocx2mtOnZkO0hV1B/Bwl9hYQAhVgY2/g1umgFabjrdfc8LEkaVdpxvq7S2vrG5Vd6u7Ozu7R/Yh0ddJVKJSQcLJmQ/QIowyklHU81IP5EExQEjvWDSmvu9ByIVFfxeTxPix2jEaUQx0kYa2pceF5SHhGvoqQi2BFdaplhDBBMpRARrXpue12AkJBzaVafu5ICrxC1IFRRoD+0vLxQ4jc10zJBSA9dJtJ8hqSlmZFbxUkUShCdoRAaGchQT5Wf5UzN4ZpQw3xsJc12u/u7IUKzUNA5MZYz0WC17c/E/b5Dq6NrPKE9STTheLIpSBrWA84RgSCXBmk0NQVhScyvEYyQR1ibHignBXX55lXQbddepu3eNavOmiKMMTsApuAAuuAJNcAvaoAMweATP4BW8WU/Wi/VufSxKS1bRcwz+wPr8AaS5nT4=</latexit><latexit sha1_base64="QV/DGpk6sP0+tPlpYbyuXaiqsOk=">AAACFHicbVA7T8MwGHTKq5RXgJHFokUgIVVJFxgrujAWiT6kJqocx2mtOnZkO0hV1B/Bwl9hYQAhVgY2/g1umgFabjrdfc8LEkaVdpxvq7S2vrG5Vd6u7Ozu7R/Yh0ddJVKJSQcLJmQ/QIowyklHU81IP5EExQEjvWDSmvu9ByIVFfxeTxPix2jEaUQx0kYa2pceF5SHhGvoqQi2BFdaplhDBBMpRARrXpue12AkJBzaVafu5ICrxC1IFRRoD+0vLxQ4jc10zJBSA9dJtJ8hqSlmZFbxUkUShCdoRAaGchQT5Wf5UzN4ZpQw3xsJc12u/u7IUKzUNA5MZYz0WC17c/E/b5Dq6NrPKE9STTheLIpSBrWA84RgSCXBmk0NQVhScyvEYyQR1ibHignBXX55lXQbddepu3eNavOmiKMMTsApuAAuuAJNcAvaoAMweATP4BW8WU/Wi/VufSxKS1bRcwz+wPr8AaS5nT4=</latexit><latexit sha1_base64="QV/DGpk6sP0+tPlpYbyuXaiqsOk=">AAACFHicbVA7T8MwGHTKq5RXgJHFokUgIVVJFxgrujAWiT6kJqocx2mtOnZkO0hV1B/Bwl9hYQAhVgY2/g1umgFabjrdfc8LEkaVdpxvq7S2vrG5Vd6u7Ozu7R/Yh0ddJVKJSQcLJmQ/QIowyklHU81IP5EExQEjvWDSmvu9ByIVFfxeTxPix2jEaUQx0kYa2pceF5SHhGvoqQi2BFdaplhDBBMpRARrXpue12AkJBzaVafu5ICrxC1IFRRoD+0vLxQ4jc10zJBSA9dJtJ8hqSlmZFbxUkUShCdoRAaGchQT5Wf5UzN4ZpQw3xsJc12u/u7IUKzUNA5MZYz0WC17c/E/b5Dq6NrPKE9STTheLIpSBrWA84RgSCXBmk0NQVhScyvEYyQR1ibHignBXX55lXQbddepu3eNavOmiKMMTsApuAAuuAJNcAvaoAMweATP4BW8WU/Wi/VufSxKS1bRcwz+wPr8AaS5nT4=</latexit><latexit sha1_base64="QV/DGpk6sP0+tPlpYbyuXaiqsOk=">AAACFHicbVA7T8MwGHTKq5RXgJHFokUgIVVJFxgrujAWiT6kJqocx2mtOnZkO0hV1B/Bwl9hYQAhVgY2/g1umgFabjrdfc8LEkaVdpxvq7S2vrG5Vd6u7Ozu7R/Yh0ddJVKJSQcLJmQ/QIowyklHU81IP5EExQEjvWDSmvu9ByIVFfxeTxPix2jEaUQx0kYa2pceF5SHhGvoqQi2BFdaplhDBBMpRARrXpue12AkJBzaVafu5ICrxC1IFRRoD+0vLxQ4jc10zJBSA9dJtJ8hqSlmZFbxUkUShCdoRAaGchQT5Wf5UzN4ZpQw3xsJc12u/u7IUKzUNA5MZYz0WC17c/E/b5Dq6NrPKE9STTheLIpSBrWA84RgSCXBmk0NQVhScyvEYyQR1ibHignBXX55lXQbddepu3eNavOmiKMMTsApuAAuuAJNcAvaoAMweATP4BW8WU/Wi/VufSxKS1bRcwz+wPr8AaS5nT4=</latexit>

invalidity of everything in Ci
<latexit sha1_base64="Bh/V8WX4jOXGjTDnP7cW9CJONKI=">AAACGnicbVC7TsMwFHV4lvIKMLJYtEhMVdIFxooujEWiD6mJIsdxWquOHdlOpSjqd7DwKywMIMSGWPgb3DYDtBzpSkfn3Kt77wlTRpV2nG9rY3Nre2e3slfdPzg8OrZPTntKZBKTLhZMyEGIFGGUk66mmpFBKglKQkb64aQ99/tTIhUV/EHnKfETNOI0phhpIwW263FBeUS4hp6KIeVTxGhEdQ5FDImZzPWY8pExYL0d0DqEgV1zGs4CcJ24JamBEp3A/vQigbPE7MAMKTV0nVT7BZKaYkZmVS9TJEV4gkZkaChHCVF+sXhtBi+NEsFYSFPmxoX6e6JAiVJ5EprOBOmxWvXm4n/eMNPxjV9QnmaacLxcFGcMagHnOcGISoI1yw1BWFJzK8RjJBHWJs2qCcFdfXmd9JoN12m4981a67aMowLOwQW4Ai64Bi1wBzqgCzB4BM/gFbxZT9aL9W59LFs3rHLmDPyB9fUD0B2gBA==</latexit><latexit sha1_base64="Bh/V8WX4jOXGjTDnP7cW9CJONKI=">AAACGnicbVC7TsMwFHV4lvIKMLJYtEhMVdIFxooujEWiD6mJIsdxWquOHdlOpSjqd7DwKywMIMSGWPgb3DYDtBzpSkfn3Kt77wlTRpV2nG9rY3Nre2e3slfdPzg8OrZPTntKZBKTLhZMyEGIFGGUk66mmpFBKglKQkb64aQ99/tTIhUV/EHnKfETNOI0phhpIwW263FBeUS4hp6KIeVTxGhEdQ5FDImZzPWY8pExYL0d0DqEgV1zGs4CcJ24JamBEp3A/vQigbPE7MAMKTV0nVT7BZKaYkZmVS9TJEV4gkZkaChHCVF+sXhtBi+NEsFYSFPmxoX6e6JAiVJ5EprOBOmxWvXm4n/eMNPxjV9QnmaacLxcFGcMagHnOcGISoI1yw1BWFJzK8RjJBHWJs2qCcFdfXmd9JoN12m4981a67aMowLOwQW4Ai64Bi1wBzqgCzB4BM/gFbxZT9aL9W59LFs3rHLmDPyB9fUD0B2gBA==</latexit><latexit sha1_base64="Bh/V8WX4jOXGjTDnP7cW9CJONKI=">AAACGnicbVC7TsMwFHV4lvIKMLJYtEhMVdIFxooujEWiD6mJIsdxWquOHdlOpSjqd7DwKywMIMSGWPgb3DYDtBzpSkfn3Kt77wlTRpV2nG9rY3Nre2e3slfdPzg8OrZPTntKZBKTLhZMyEGIFGGUk66mmpFBKglKQkb64aQ99/tTIhUV/EHnKfETNOI0phhpIwW263FBeUS4hp6KIeVTxGhEdQ5FDImZzPWY8pExYL0d0DqEgV1zGs4CcJ24JamBEp3A/vQigbPE7MAMKTV0nVT7BZKaYkZmVS9TJEV4gkZkaChHCVF+sXhtBi+NEsFYSFPmxoX6e6JAiVJ5EprOBOmxWvXm4n/eMNPxjV9QnmaacLxcFGcMagHnOcGISoI1yw1BWFJzK8RjJBHWJs2qCcFdfXmd9JoN12m4981a67aMowLOwQW4Ai64Bi1wBzqgCzB4BM/gFbxZT9aL9W59LFs3rHLmDPyB9fUD0B2gBA==</latexit><latexit sha1_base64="Bh/V8WX4jOXGjTDnP7cW9CJONKI=">AAACGnicbVC7TsMwFHV4lvIKMLJYtEhMVdIFxooujEWiD6mJIsdxWquOHdlOpSjqd7DwKywMIMSGWPgb3DYDtBzpSkfn3Kt77wlTRpV2nG9rY3Nre2e3slfdPzg8OrZPTntKZBKTLhZMyEGIFGGUk66mmpFBKglKQkb64aQ99/tTIhUV/EHnKfETNOI0phhpIwW263FBeUS4hp6KIeVTxGhEdQ5FDImZzPWY8pExYL0d0DqEgV1zGs4CcJ24JamBEp3A/vQigbPE7MAMKTV0nVT7BZKaYkZmVS9TJEV4gkZkaChHCVF+sXhtBi+NEsFYSFPmxoX6e6JAiVJ5EprOBOmxWvXm4n/eMNPxjV9QnmaacLxcFGcMagHnOcGISoI1yw1BWFJzK8RjJBHWJs2qCcFdfXmd9JoN12m4981a67aMowLOwQW4Ai64Bi1wBzqgCzB4BM/gFbxZT9aL9W59LFs3rHLmDPyB9fUD0B2gBA==</latexit>

Let ⇧ = ⇧ [⇧0
<latexit sha1_base64="KQEB05cxYsR7rAPBANJ9xzhW1qQ=">AAACEHicdVC7TsMwFHV4lvIKMLJYtKhMVZKKtgtSBQsDQ5HoQ2qqynGd1qrjRLaDVEX9BBZ+hYUBhFgZ2fgbnDZIgOBIto7Oude+93gRo1JZ1oextLyyurae28hvbm3v7Jp7+20ZxgKTFg5ZKLoekoRRTlqKKka6kSAo8BjpeJOL1O/cEiFpyG/UNCL9AI049SlGSksDs+TykPIh4Qq60odXRMGi26TwDKa3i+MoJaXiwCxYZWsOaJUrds2pnWpSd6pVpwLtzCqADM2B+e4OQxwH+mXMkJQ924pUP0FCUczILO/GkkQIT9CI9DTlKCCyn8wXmsFjrQyhHwp99GRz9XtHggIpp4GnKwOkxvK3l4p/eb1Y+fV+QnkUK8Lx4iM/ZlCFME0HDqkgWLGpJggLqmeFeIwEwkpnmNchfG0K/ydtp2xbZfvaKTTOszhy4BAcgRNggxpogEvQBC2AwR14AE/g2bg3Ho0X43VRumRkPQfgB4y3T2wYmuc=</latexit><latexit sha1_base64="KQEB05cxYsR7rAPBANJ9xzhW1qQ=">AAACEHicdVC7TsMwFHV4lvIKMLJYtKhMVZKKtgtSBQsDQ5HoQ2qqynGd1qrjRLaDVEX9BBZ+hYUBhFgZ2fgbnDZIgOBIto7Oude+93gRo1JZ1oextLyyurae28hvbm3v7Jp7+20ZxgKTFg5ZKLoekoRRTlqKKka6kSAo8BjpeJOL1O/cEiFpyG/UNCL9AI049SlGSksDs+TykPIh4Qq60odXRMGi26TwDKa3i+MoJaXiwCxYZWsOaJUrds2pnWpSd6pVpwLtzCqADM2B+e4OQxwH+mXMkJQ924pUP0FCUczILO/GkkQIT9CI9DTlKCCyn8wXmsFjrQyhHwp99GRz9XtHggIpp4GnKwOkxvK3l4p/eb1Y+fV+QnkUK8Lx4iM/ZlCFME0HDqkgWLGpJggLqmeFeIwEwkpnmNchfG0K/ydtp2xbZfvaKTTOszhy4BAcgRNggxpogEvQBC2AwR14AE/g2bg3Ho0X43VRumRkPQfgB4y3T2wYmuc=</latexit><latexit sha1_base64="KQEB05cxYsR7rAPBANJ9xzhW1qQ=">AAACEHicdVC7TsMwFHV4lvIKMLJYtKhMVZKKtgtSBQsDQ5HoQ2qqynGd1qrjRLaDVEX9BBZ+hYUBhFgZ2fgbnDZIgOBIto7Oude+93gRo1JZ1oextLyyurae28hvbm3v7Jp7+20ZxgKTFg5ZKLoekoRRTlqKKka6kSAo8BjpeJOL1O/cEiFpyG/UNCL9AI049SlGSksDs+TykPIh4Qq60odXRMGi26TwDKa3i+MoJaXiwCxYZWsOaJUrds2pnWpSd6pVpwLtzCqADM2B+e4OQxwH+mXMkJQ924pUP0FCUczILO/GkkQIT9CI9DTlKCCyn8wXmsFjrQyhHwp99GRz9XtHggIpp4GnKwOkxvK3l4p/eb1Y+fV+QnkUK8Lx4iM/ZlCFME0HDqkgWLGpJggLqmeFeIwEwkpnmNchfG0K/ydtp2xbZfvaKTTOszhy4BAcgRNggxpogEvQBC2AwR14AE/g2bg3Ho0X43VRumRkPQfgB4y3T2wYmuc=</latexit><latexit sha1_base64="KQEB05cxYsR7rAPBANJ9xzhW1qQ=">AAACEHicdVC7TsMwFHV4lvIKMLJYtKhMVZKKtgtSBQsDQ5HoQ2qqynGd1qrjRLaDVEX9BBZ+hYUBhFgZ2fgbnDZIgOBIto7Oude+93gRo1JZ1oextLyyurae28hvbm3v7Jp7+20ZxgKTFg5ZKLoekoRRTlqKKka6kSAo8BjpeJOL1O/cEiFpyG/UNCL9AI049SlGSksDs+TykPIh4Qq60odXRMGi26TwDKa3i+MoJaXiwCxYZWsOaJUrds2pnWpSd6pVpwLtzCqADM2B+e4OQxwH+mXMkJQ924pUP0FCUczILO/GkkQIT9CI9DTlKCCyn8wXmsFjrQyhHwp99GRz9XtHggIpp4GnKwOkxvK3l4p/eb1Y+fV+QnkUK8Lx4iM/ZlCFME0HDqkgWLGpJggLqmeFeIwEwkpnmNchfG0K/ydtp2xbZfvaKTTOszhy4BAcgRNggxpogEvQBC2AwR14AE/g2bg3Ho0X43VRumRkPQfgB4y3T2wYmuc=</latexit>

Is any member of Cf
<latexit sha1_base64="JZofvbFDrLSHvMpsGN2z1D29c4Y=">AAACDnicbVC7TgJBFJ3FF+Jr1dJmIpBYkV0aLYk02mEijwQImR3uwoR5bGZmTQjhC2z8FRsLjbG1tvNvHB6FgieZ5OSce+/ce6KEM2OD4NvLbGxube9kd3N7+weHR/7xScOoVFOoU8WVbkXEAGcS6pZZDq1EAxERh2Y0qs785gNow5S8t+MEuoIMJIsZJdZJPb/YMXFHKib7IC2+NZjIMRYgItBYxbhQ7cWFHO75+aAUzIHXSbgkebREred/dfqKpsINpZwY0w6DxHYnRFtGOUxzndRAQuiIDKDtqCQCTHcyP2eKi07p41hp99xSc/V3x4QIY8YicpWC2KFZ9Wbif147tfFVd8JkklqQdPFRnHJsFZ5lg/tMA7V87AihmrldMR0STah1CeZcCOHqyeukUS6FQSm8K+cr18s4sugMnaMLFKJLVEE3qIbqiKJH9Ixe0Zv35L14797HojTjLXtO0R94nz+QsJp2</latexit><latexit sha1_base64="JZofvbFDrLSHvMpsGN2z1D29c4Y=">AAACDnicbVC7TgJBFJ3FF+Jr1dJmIpBYkV0aLYk02mEijwQImR3uwoR5bGZmTQjhC2z8FRsLjbG1tvNvHB6FgieZ5OSce+/ce6KEM2OD4NvLbGxube9kd3N7+weHR/7xScOoVFOoU8WVbkXEAGcS6pZZDq1EAxERh2Y0qs785gNow5S8t+MEuoIMJIsZJdZJPb/YMXFHKib7IC2+NZjIMRYgItBYxbhQ7cWFHO75+aAUzIHXSbgkebREred/dfqKpsINpZwY0w6DxHYnRFtGOUxzndRAQuiIDKDtqCQCTHcyP2eKi07p41hp99xSc/V3x4QIY8YicpWC2KFZ9Wbif147tfFVd8JkklqQdPFRnHJsFZ5lg/tMA7V87AihmrldMR0STah1CeZcCOHqyeukUS6FQSm8K+cr18s4sugMnaMLFKJLVEE3qIbqiKJH9Ixe0Zv35L14797HojTjLXtO0R94nz+QsJp2</latexit><latexit sha1_base64="JZofvbFDrLSHvMpsGN2z1D29c4Y=">AAACDnicbVC7TgJBFJ3FF+Jr1dJmIpBYkV0aLYk02mEijwQImR3uwoR5bGZmTQjhC2z8FRsLjbG1tvNvHB6FgieZ5OSce+/ce6KEM2OD4NvLbGxube9kd3N7+weHR/7xScOoVFOoU8WVbkXEAGcS6pZZDq1EAxERh2Y0qs785gNow5S8t+MEuoIMJIsZJdZJPb/YMXFHKib7IC2+NZjIMRYgItBYxbhQ7cWFHO75+aAUzIHXSbgkebREred/dfqKpsINpZwY0w6DxHYnRFtGOUxzndRAQuiIDKDtqCQCTHcyP2eKi07p41hp99xSc/V3x4QIY8YicpWC2KFZ9Wbif147tfFVd8JkklqQdPFRnHJsFZ5lg/tMA7V87AihmrldMR0STah1CeZcCOHqyeukUS6FQSm8K+cr18s4sugMnaMLFKJLVEE3qIbqiKJH9Ixe0Zv35L14797HojTjLXtO0R94nz+QsJp2</latexit><latexit sha1_base64="JZofvbFDrLSHvMpsGN2z1D29c4Y=">AAACDnicbVC7TgJBFJ3FF+Jr1dJmIpBYkV0aLYk02mEijwQImR3uwoR5bGZmTQjhC2z8FRsLjbG1tvNvHB6FgieZ5OSce+/ce6KEM2OD4NvLbGxube9kd3N7+weHR/7xScOoVFOoU8WVbkXEAGcS6pZZDq1EAxERh2Y0qs785gNow5S8t+MEuoIMJIsZJdZJPb/YMXFHKib7IC2+NZjIMRYgItBYxbhQ7cWFHO75+aAUzIHXSbgkebREred/dfqKpsINpZwY0w6DxHYnRFtGOUxzndRAQuiIDKDtqCQCTHcyP2eKi07p41hp99xSc/V3x4QIY8YicpWC2KFZ9Wbif147tfFVd8JkklqQdPFRnHJsFZ5lg/tMA7V87AihmrldMR0STah1CeZcCOHqyeukUS6FQSm8K+cr18s4sugMnaMLFKJLVEE3qIbqiKJH9Ixe0Zv35L14797HojTjLXtO0R94nz+QsJp2</latexit>

a valid counterexample?
<latexit sha1_base64="F8NQ3CROy39vvHhl099/38bOvBg=">AAACD3icbVA9TwJBEN3zW/w6tbTZSDRW5I5GO4k2lpqIkAAhc3tzsGFv97K7RySEf2DjX7Gx0BhbWzv/jQtSKPiSTV7em5mdeVEmuLFB8OUtLC4tr6yurRc2Nre2d/zdvTujcs2wypRQuh6BQcElVi23AuuZRkgjgbWodzn2a33Uhit5awcZtlLoSJ5wBtZJbf+4aZKmVFzGKC0F2gfBY8pULi1qvIc0E3heoG2/GJSCCeg8CaekSKa4bvufzVixPHVTmQBjGmGQ2dYQtOVM4KjQzA1mwHrQwYajElI0reHknhE9ckpME6Xdc1tN1N8dQ0iNGaSRq0zBds2sNxb/8xq5Tc5aQy6z3KJkPx8luaBW0XE4NOYamRUDR4Bp7nalrAsamAvDFFwI4ezJ8+SuXAqDUnhTLlYupnGskQNySE5ISE5JhVyRa1IljDyQJ/JCXr1H79l7895/She8ac8++QPv4xtt/Zw7</latexit><latexit sha1_base64="F8NQ3CROy39vvHhl099/38bOvBg=">AAACD3icbVA9TwJBEN3zW/w6tbTZSDRW5I5GO4k2lpqIkAAhc3tzsGFv97K7RySEf2DjX7Gx0BhbWzv/jQtSKPiSTV7em5mdeVEmuLFB8OUtLC4tr6yurRc2Nre2d/zdvTujcs2wypRQuh6BQcElVi23AuuZRkgjgbWodzn2a33Uhit5awcZtlLoSJ5wBtZJbf+4aZKmVFzGKC0F2gfBY8pULi1qvIc0E3heoG2/GJSCCeg8CaekSKa4bvufzVixPHVTmQBjGmGQ2dYQtOVM4KjQzA1mwHrQwYajElI0reHknhE9ckpME6Xdc1tN1N8dQ0iNGaSRq0zBds2sNxb/8xq5Tc5aQy6z3KJkPx8luaBW0XE4NOYamRUDR4Bp7nalrAsamAvDFFwI4ezJ8+SuXAqDUnhTLlYupnGskQNySE5ISE5JhVyRa1IljDyQJ/JCXr1H79l7895/She8ac8++QPv4xtt/Zw7</latexit><latexit sha1_base64="F8NQ3CROy39vvHhl099/38bOvBg=">AAACD3icbVA9TwJBEN3zW/w6tbTZSDRW5I5GO4k2lpqIkAAhc3tzsGFv97K7RySEf2DjX7Gx0BhbWzv/jQtSKPiSTV7em5mdeVEmuLFB8OUtLC4tr6yurRc2Nre2d/zdvTujcs2wypRQuh6BQcElVi23AuuZRkgjgbWodzn2a33Uhit5awcZtlLoSJ5wBtZJbf+4aZKmVFzGKC0F2gfBY8pULi1qvIc0E3heoG2/GJSCCeg8CaekSKa4bvufzVixPHVTmQBjGmGQ2dYQtOVM4KjQzA1mwHrQwYajElI0reHknhE9ckpME6Xdc1tN1N8dQ0iNGaSRq0zBds2sNxb/8xq5Tc5aQy6z3KJkPx8luaBW0XE4NOYamRUDR4Bp7nalrAsamAvDFFwI4ezJ8+SuXAqDUnhTLlYupnGskQNySE5ISE5JhVyRa1IljDyQJ/JCXr1H79l7895/She8ac8++QPv4xtt/Zw7</latexit><latexit sha1_base64="F8NQ3CROy39vvHhl099/38bOvBg=">AAACD3icbVA9TwJBEN3zW/w6tbTZSDRW5I5GO4k2lpqIkAAhc3tzsGFv97K7RySEf2DjX7Gx0BhbWzv/jQtSKPiSTV7em5mdeVEmuLFB8OUtLC4tr6yurRc2Nre2d/zdvTujcs2wypRQuh6BQcElVi23AuuZRkgjgbWodzn2a33Uhit5awcZtlLoSJ5wBtZJbf+4aZKmVFzGKC0F2gfBY8pULi1qvIc0E3heoG2/GJSCCeg8CaekSKa4bvufzVixPHVTmQBjGmGQ2dYQtOVM4KjQzA1mwHrQwYajElI0reHknhE9ckpME6Xdc1tN1N8dQ0iNGaSRq0zBds2sNxb/8xq5Tc5aQy6z3KJkPx8luaBW0XE4NOYamRUDR4Bp7nalrAsamAvDFFwI4ezJ8+SuXAqDUnhTLlYupnGskQNySE5ISE5JhVyRa1IljDyQJ/JCXr1H79l7895/She8ac8++QPv4xtt/Zw7</latexit>C: a set of

<latexit sha1_base64="4D3uQfYOCYk4E5tsYM7saL+hxwk=">AAACBHicdVDLSgMxFM3UV62vUZfdBFvBVZmZYltcFbtxWcE+oDOUTJppQzPJkGSEUrpw46+4caGIWz/CnX9j+hBU9EDgcM69N/eeMGFUacf5sDJr6xubW9nt3M7u3v6BfXjUViKVmLSwYEJ2Q6QIo5y0NNWMdBNJUBwy0gnHjbnfuSVSUcFv9CQhQYyGnEYUI22kvp33uaB8QLiGvopgsVG8gAgqoqGI+nbBKTkLQKdUdqte9dyQmlepeGXorqwCWKHZt9/9gcBpbKZhhpTquU6igymSmmJGZjk/VSRBeIyGpGcoRzFRwXRxxAyeGmUAIyHNM9ss1O8dUxQrNYlDUxkjPVK/vbn4l9dLdVQLppQnqSYcLz+KUga1gPNE4IBKgjWbGIKwpGZXiEdIIqxNbjkTwtel8H/S9kquU3KvvUL9chVHFuTBCTgDLqiCOrgCTdACGNyBB/AEnq1769F6sV6XpRlr1XMMfsB6+wSVspbC</latexit><latexit sha1_base64="4D3uQfYOCYk4E5tsYM7saL+hxwk=">AAACBHicdVDLSgMxFM3UV62vUZfdBFvBVZmZYltcFbtxWcE+oDOUTJppQzPJkGSEUrpw46+4caGIWz/CnX9j+hBU9EDgcM69N/eeMGFUacf5sDJr6xubW9nt3M7u3v6BfXjUViKVmLSwYEJ2Q6QIo5y0NNWMdBNJUBwy0gnHjbnfuSVSUcFv9CQhQYyGnEYUI22kvp33uaB8QLiGvopgsVG8gAgqoqGI+nbBKTkLQKdUdqte9dyQmlepeGXorqwCWKHZt9/9gcBpbKZhhpTquU6igymSmmJGZjk/VSRBeIyGpGcoRzFRwXRxxAyeGmUAIyHNM9ss1O8dUxQrNYlDUxkjPVK/vbn4l9dLdVQLppQnqSYcLz+KUga1gPNE4IBKgjWbGIKwpGZXiEdIIqxNbjkTwtel8H/S9kquU3KvvUL9chVHFuTBCTgDLqiCOrgCTdACGNyBB/AEnq1769F6sV6XpRlr1XMMfsB6+wSVspbC</latexit><latexit sha1_base64="4D3uQfYOCYk4E5tsYM7saL+hxwk=">AAACBHicdVDLSgMxFM3UV62vUZfdBFvBVZmZYltcFbtxWcE+oDOUTJppQzPJkGSEUrpw46+4caGIWz/CnX9j+hBU9EDgcM69N/eeMGFUacf5sDJr6xubW9nt3M7u3v6BfXjUViKVmLSwYEJ2Q6QIo5y0NNWMdBNJUBwy0gnHjbnfuSVSUcFv9CQhQYyGnEYUI22kvp33uaB8QLiGvopgsVG8gAgqoqGI+nbBKTkLQKdUdqte9dyQmlepeGXorqwCWKHZt9/9gcBpbKZhhpTquU6igymSmmJGZjk/VSRBeIyGpGcoRzFRwXRxxAyeGmUAIyHNM9ss1O8dUxQrNYlDUxkjPVK/vbn4l9dLdVQLppQnqSYcLz+KUga1gPNE4IBKgjWbGIKwpGZXiEdIIqxNbjkTwtel8H/S9kquU3KvvUL9chVHFuTBCTgDLqiCOrgCTdACGNyBB/AEnq1769F6sV6XpRlr1XMMfsB6+wSVspbC</latexit><latexit sha1_base64="4D3uQfYOCYk4E5tsYM7saL+hxwk=">AAACBHicdVDLSgMxFM3UV62vUZfdBFvBVZmZYltcFbtxWcE+oDOUTJppQzPJkGSEUrpw46+4caGIWz/CnX9j+hBU9EDgcM69N/eeMGFUacf5sDJr6xubW9nt3M7u3v6BfXjUViKVmLSwYEJ2Q6QIo5y0NNWMdBNJUBwy0gnHjbnfuSVSUcFv9CQhQYyGnEYUI22kvp33uaB8QLiGvopgsVG8gAgqoqGI+nbBKTkLQKdUdqte9dyQmlepeGXorqwCWKHZt9/9gcBpbKZhhpTquU6igymSmmJGZjk/VSRBeIyGpGcoRzFRwXRxxAyeGmUAIyHNM9ss1O8dUxQrNYlDUxkjPVK/vbn4l9dLdVQLppQnqSYcLz+KUga1gPNE4IBKgjWbGIKwpGZXiEdIIqxNbjkTwtel8H/S9kquU3KvvUL9chVHFuTBCTgDLqiCOrgCTdACGNyBB/AEnq1769F6sV6XpRlr1XMMfsB6+wSVspbC</latexit>

counterexamples
<latexit sha1_base64="FvFBV9FKkcETnXZvKz2cGoSNlKY=">AAAB/HicdVBNS8NAEN3Ur1q/qj16WSyCp5Ck2PZY9OKxgv2ANpTNdtIu3WzC7kYspf4VLx4U8eoP8ea/cdtGUNEHA4/3ZpiZFyScKe04H1ZubX1jcyu/XdjZ3ds/KB4etVWcSgotGvNYdgOigDMBLc00h24igUQBh04wuVz4nVuQisXiRk8T8CMyEixklGgjDYqlvgoxjVOhQcIdiRIOalAsO7azBHbsilvzaueG1L1q1atgN7PKKENzUHzvD2OaRiA05USpnusk2p8RqRnlMC/0UwUJoRMygp6hgkSg/Nny+Dk+NcoQh7E0JTReqt8nZiRSahoFpjMieqx+ewvxL6+X6rDuz5hIUg2CrhaFKcc6xosk8JBJoJpPDSFUMnMrpmMiCTVRqIIJ4etT/D9pe7br2O61V25cZHHk0TE6QWfIRTXUQFeoiVqIoil6QE/o2bq3Hq0X63XVmrOymRL6AevtE3whlU8=</latexit><latexit sha1_base64="FvFBV9FKkcETnXZvKz2cGoSNlKY=">AAAB/HicdVBNS8NAEN3Ur1q/qj16WSyCp5Ck2PZY9OKxgv2ANpTNdtIu3WzC7kYspf4VLx4U8eoP8ea/cdtGUNEHA4/3ZpiZFyScKe04H1ZubX1jcyu/XdjZ3ds/KB4etVWcSgotGvNYdgOigDMBLc00h24igUQBh04wuVz4nVuQisXiRk8T8CMyEixklGgjDYqlvgoxjVOhQcIdiRIOalAsO7azBHbsilvzaueG1L1q1atgN7PKKENzUHzvD2OaRiA05USpnusk2p8RqRnlMC/0UwUJoRMygp6hgkSg/Nny+Dk+NcoQh7E0JTReqt8nZiRSahoFpjMieqx+ewvxL6+X6rDuz5hIUg2CrhaFKcc6xosk8JBJoJpPDSFUMnMrpmMiCTVRqIIJ4etT/D9pe7br2O61V25cZHHk0TE6QWfIRTXUQFeoiVqIoil6QE/o2bq3Hq0X63XVmrOymRL6AevtE3whlU8=</latexit><latexit sha1_base64="FvFBV9FKkcETnXZvKz2cGoSNlKY=">AAAB/HicdVBNS8NAEN3Ur1q/qj16WSyCp5Ck2PZY9OKxgv2ANpTNdtIu3WzC7kYspf4VLx4U8eoP8ea/cdtGUNEHA4/3ZpiZFyScKe04H1ZubX1jcyu/XdjZ3ds/KB4etVWcSgotGvNYdgOigDMBLc00h24igUQBh04wuVz4nVuQisXiRk8T8CMyEixklGgjDYqlvgoxjVOhQcIdiRIOalAsO7azBHbsilvzaueG1L1q1atgN7PKKENzUHzvD2OaRiA05USpnusk2p8RqRnlMC/0UwUJoRMygp6hgkSg/Nny+Dk+NcoQh7E0JTReqt8nZiRSahoFpjMieqx+ewvxL6+X6rDuz5hIUg2CrhaFKcc6xosk8JBJoJpPDSFUMnMrpmMiCTVRqIIJ4etT/D9pe7br2O61V25cZHHk0TE6QWfIRTXUQFeoiVqIoil6QE/o2bq3Hq0X63XVmrOymRL6AevtE3whlU8=</latexit><latexit sha1_base64="FvFBV9FKkcETnXZvKz2cGoSNlKY=">AAAB/HicdVBNS8NAEN3Ur1q/qj16WSyCp5Ck2PZY9OKxgv2ANpTNdtIu3WzC7kYspf4VLx4U8eoP8ea/cdtGUNEHA4/3ZpiZFyScKe04H1ZubX1jcyu/XdjZ3ds/KB4etVWcSgotGvNYdgOigDMBLc00h24igUQBh04wuVz4nVuQisXiRk8T8CMyEixklGgjDYqlvgoxjVOhQcIdiRIOalAsO7azBHbsilvzaueG1L1q1atgN7PKKENzUHzvD2OaRiA05USpnusk2p8RqRnlMC/0UwUJoRMygp6hgkSg/Nny+Dk+NcoQh7E0JTReqt8nZiRSahoFpjMieqx+ewvxL6+X6rDuz5hIUg2CrhaFKcc6xosk8JBJoJpPDSFUMnMrpmMiCTVRqIIJ4etT/D9pe7br2O61V25cZHHk0TE6QWfIRTXUQFeoiVqIoil6QE/o2bq3Hq0X63XVmrOymRL6AevtE3whlU8=</latexit>

Partition C into feasible Cf and
infeasible Ci counterexamples

<latexit sha1_base64="pY1xesRaIcZ1AcRibUqb20j9Lfc=">AAACQHicbVA9SwNBEN3z2/gVtbRZTASrcGejZdDGMoIxQi6Eub05XdzbPXb3xBD8aTb+BDtrGwtFbK2cxBR+PVh4vDczO/OSQknnw/AxmJqemZ2bX1isLC2vrK5V1zfOnCmtwLYwytjzBBwqqbHtpVd4XliEPFHYSa6ORn7nGq2TRp/6QYG9HC60zKQAT1K/2oldxmNtpE5Re94CS0PI4fWjOpfaG54hOEnjSOlndQ465XFM1ndd1rkwpfZo8QbyQqHrV2thIxyD/yXRhNTYBK1+9SFOjShz2kIocK4bhYXvDUf7CIW3lbh0WIC4ggvsEtWQo+sNxwHc8h1SUp4ZS4+uGKvfO4aQOzfIE6rMwV+6395I/M/rlj476A2lLkqPWnx9lJWKUy6jNHkqLQqvBkRAWEpOcHEJFgRF4SoUQvT75L/kbK8RhY3oZK/WPJzEscC22DbbZRHbZ012zFqszQS7Y0/shb0G98Fz8Ba8f5VOBZOeTfYDwccnkdeumA==</latexit><latexit sha1_base64="pY1xesRaIcZ1AcRibUqb20j9Lfc=">AAACQHicbVA9SwNBEN3z2/gVtbRZTASrcGejZdDGMoIxQi6Eub05XdzbPXb3xBD8aTb+BDtrGwtFbK2cxBR+PVh4vDczO/OSQknnw/AxmJqemZ2bX1isLC2vrK5V1zfOnCmtwLYwytjzBBwqqbHtpVd4XliEPFHYSa6ORn7nGq2TRp/6QYG9HC60zKQAT1K/2oldxmNtpE5Re94CS0PI4fWjOpfaG54hOEnjSOlndQ465XFM1ndd1rkwpfZo8QbyQqHrV2thIxyD/yXRhNTYBK1+9SFOjShz2kIocK4bhYXvDUf7CIW3lbh0WIC4ggvsEtWQo+sNxwHc8h1SUp4ZS4+uGKvfO4aQOzfIE6rMwV+6395I/M/rlj476A2lLkqPWnx9lJWKUy6jNHkqLQqvBkRAWEpOcHEJFgRF4SoUQvT75L/kbK8RhY3oZK/WPJzEscC22DbbZRHbZ012zFqszQS7Y0/shb0G98Fz8Ba8f5VOBZOeTfYDwccnkdeumA==</latexit><latexit sha1_base64="pY1xesRaIcZ1AcRibUqb20j9Lfc=">AAACQHicbVA9SwNBEN3z2/gVtbRZTASrcGejZdDGMoIxQi6Eub05XdzbPXb3xBD8aTb+BDtrGwtFbK2cxBR+PVh4vDczO/OSQknnw/AxmJqemZ2bX1isLC2vrK5V1zfOnCmtwLYwytjzBBwqqbHtpVd4XliEPFHYSa6ORn7nGq2TRp/6QYG9HC60zKQAT1K/2oldxmNtpE5Re94CS0PI4fWjOpfaG54hOEnjSOlndQ465XFM1ndd1rkwpfZo8QbyQqHrV2thIxyD/yXRhNTYBK1+9SFOjShz2kIocK4bhYXvDUf7CIW3lbh0WIC4ggvsEtWQo+sNxwHc8h1SUp4ZS4+uGKvfO4aQOzfIE6rMwV+6395I/M/rlj476A2lLkqPWnx9lJWKUy6jNHkqLQqvBkRAWEpOcHEJFgRF4SoUQvT75L/kbK8RhY3oZK/WPJzEscC22DbbZRHbZ012zFqszQS7Y0/shb0G98Fz8Ba8f5VOBZOeTfYDwccnkdeumA==</latexit><latexit sha1_base64="pY1xesRaIcZ1AcRibUqb20j9Lfc=">AAACQHicbVA9SwNBEN3z2/gVtbRZTASrcGejZdDGMoIxQi6Eub05XdzbPXb3xBD8aTb+BDtrGwtFbK2cxBR+PVh4vDczO/OSQknnw/AxmJqemZ2bX1isLC2vrK5V1zfOnCmtwLYwytjzBBwqqbHtpVd4XliEPFHYSa6ORn7nGq2TRp/6QYG9HC60zKQAT1K/2oldxmNtpE5Re94CS0PI4fWjOpfaG54hOEnjSOlndQ465XFM1ndd1rkwpfZo8QbyQqHrV2thIxyD/yXRhNTYBK1+9SFOjShz2kIocK4bhYXvDUf7CIW3lbh0WIC4ggvsEtWQo+sNxwHc8h1SUp4ZS4+uGKvfO4aQOzfIE6rMwV+6395I/M/rlj476A2lLkqPWnx9lJWKUy6jNHkqLQqvBkRAWEpOcHEJFgRF4SoUQvT75L/kbK8RhY3oZK/WPJzEscC22DbbZRHbZ012zFqszQS7Y0/shb0G98Fz8Ba8f5VOBZOeTfYDwccnkdeumA==</latexit>

Cf
<latexit sha1_base64="Ik5qfjcr2JsOazs6zjaSz1r+5pM=">AAAB/HicdVBLSwMxGMzWV62v1R69BFvBU9ndYttjsRePFewD2lKyabYNzSZLkhWWpf4VLx4U8eoP8ea/MW1XUNGBwDDzfclk/IhRpR3nw8ptbG5t7+R3C3v7B4dH9vFJV4lYYtLBggnZ95EijHLS0VQz0o8kQaHPSM+ft5Z+745IRQW/1UlERiGachpQjLSRxnZxqAI45ILyCeEallvjoDy2S07FWQE6lapb9+qXhjS8Ws2rQjezSiBDe2y/DycCx6G5ATOk1MB1Ij1KkdQUM7IoDGNFIoTnaEoGhnIUEjVKV+EX8NwoExgIaY5JsFK/b6QoVCoJfTMZIj1Tv72l+Jc3iHXQGKWUR7EmHK8fCmIGtYDLJuCESoI1SwxBWFKTFeIZkghr01fBlPD1U/g/6XoV16m4N16peZXVkQen4AxcABfUQRNcgzboAAwS8ACewLN1bz1aL9brejRnZTtF8APW2yektpQb</latexit><latexit sha1_base64="Ik5qfjcr2JsOazs6zjaSz1r+5pM=">AAAB/HicdVBLSwMxGMzWV62v1R69BFvBU9ndYttjsRePFewD2lKyabYNzSZLkhWWpf4VLx4U8eoP8ea/MW1XUNGBwDDzfclk/IhRpR3nw8ptbG5t7+R3C3v7B4dH9vFJV4lYYtLBggnZ95EijHLS0VQz0o8kQaHPSM+ft5Z+745IRQW/1UlERiGachpQjLSRxnZxqAI45ILyCeEallvjoDy2S07FWQE6lapb9+qXhjS8Ws2rQjezSiBDe2y/DycCx6G5ATOk1MB1Ij1KkdQUM7IoDGNFIoTnaEoGhnIUEjVKV+EX8NwoExgIaY5JsFK/b6QoVCoJfTMZIj1Tv72l+Jc3iHXQGKWUR7EmHK8fCmIGtYDLJuCESoI1SwxBWFKTFeIZkghr01fBlPD1U/g/6XoV16m4N16peZXVkQen4AxcABfUQRNcgzboAAwS8ACewLN1bz1aL9brejRnZTtF8APW2yektpQb</latexit><latexit sha1_base64="Ik5qfjcr2JsOazs6zjaSz1r+5pM=">AAAB/HicdVBLSwMxGMzWV62v1R69BFvBU9ndYttjsRePFewD2lKyabYNzSZLkhWWpf4VLx4U8eoP8ea/MW1XUNGBwDDzfclk/IhRpR3nw8ptbG5t7+R3C3v7B4dH9vFJV4lYYtLBggnZ95EijHLS0VQz0o8kQaHPSM+ft5Z+745IRQW/1UlERiGachpQjLSRxnZxqAI45ILyCeEallvjoDy2S07FWQE6lapb9+qXhjS8Ws2rQjezSiBDe2y/DycCx6G5ATOk1MB1Ij1KkdQUM7IoDGNFIoTnaEoGhnIUEjVKV+EX8NwoExgIaY5JsFK/b6QoVCoJfTMZIj1Tv72l+Jc3iHXQGKWUR7EmHK8fCmIGtYDLJuCESoI1SwxBWFKTFeIZkghr01fBlPD1U/g/6XoV16m4N16peZXVkQen4AxcABfUQRNcgzboAAwS8ACewLN1bz1aL9brejRnZTtF8APW2yektpQb</latexit><latexit sha1_base64="Ik5qfjcr2JsOazs6zjaSz1r+5pM=">AAAB/HicdVBLSwMxGMzWV62v1R69BFvBU9ndYttjsRePFewD2lKyabYNzSZLkhWWpf4VLx4U8eoP8ea/MW1XUNGBwDDzfclk/IhRpR3nw8ptbG5t7+R3C3v7B4dH9vFJV4lYYtLBggnZ95EijHLS0VQz0o8kQaHPSM+ft5Z+745IRQW/1UlERiGachpQjLSRxnZxqAI45ILyCeEallvjoDy2S07FWQE6lapb9+qXhjS8Ws2rQjezSiBDe2y/DycCx6G5ATOk1MB1Ij1KkdQUM7IoDGNFIoTnaEoGhnIUEjVKV+EX8NwoExgIaY5JsFK/b6QoVCoJfTMZIj1Tv72l+Jc3iHXQGKWUR7EmHK8fCmIGtYDLJuCESoI1SwxBWFKTFeIZkghr01fBlPD1U/g/6XoV16m4N16peZXVkQen4AxcABfUQRNcgzboAAwS8ACewLN1bz1aL9brejRnZTtF8APW2yektpQb</latexit>

Ci
<latexit sha1_base64="yAvckmZpzc2T8PVaEu/PVL1nr/U=">AAAB/HicdVBLSwMxGMzWV62v1R69BFvBU9ndYttjsRePFewD2lKyabYNzSZLkhWWpf4VLx4U8eoP8ea/MW1XUNGBwDDzfclk/IhRpR3nw8ptbG5t7+R3C3v7B4dH9vFJV4lYYtLBggnZ95EijHLS0VQz0o8kQaHPSM+ft5Z+745IRQW/1UlERiGachpQjLSRxnZxqAI45ILyCeEalltjWh7bJafirACdStWte/VLQxpereZVoZtZJZChPbbfhxOB49DcgBlSauA6kR6lSGqKGVkUhrEiEcJzNCUDQzkKiRqlq/ALeG6UCQyENMckWKnfN1IUKpWEvpkMkZ6p395S/MsbxDpojFLKo1gTjtcPBTGDWsBlE3BCJcGaJYYgLKnJCvEMSYS16atgSvj6KfyfdL2K61TcG6/UvMrqyINTcAYugAvqoAmuQRt0AAYJeABP4Nm6tx6tF+t1PZqzsp0i+AHr7ROpRZQe</latexit><latexit sha1_base64="yAvckmZpzc2T8PVaEu/PVL1nr/U=">AAAB/HicdVBLSwMxGMzWV62v1R69BFvBU9ndYttjsRePFewD2lKyabYNzSZLkhWWpf4VLx4U8eoP8ea/MW1XUNGBwDDzfclk/IhRpR3nw8ptbG5t7+R3C3v7B4dH9vFJV4lYYtLBggnZ95EijHLS0VQz0o8kQaHPSM+ft5Z+745IRQW/1UlERiGachpQjLSRxnZxqAI45ILyCeEalltjWh7bJafirACdStWte/VLQxpereZVoZtZJZChPbbfhxOB49DcgBlSauA6kR6lSGqKGVkUhrEiEcJzNCUDQzkKiRqlq/ALeG6UCQyENMckWKnfN1IUKpWEvpkMkZ6p395S/MsbxDpojFLKo1gTjtcPBTGDWsBlE3BCJcGaJYYgLKnJCvEMSYS16atgSvj6KfyfdL2K61TcG6/UvMrqyINTcAYugAvqoAmuQRt0AAYJeABP4Nm6tx6tF+t1PZqzsp0i+AHr7ROpRZQe</latexit><latexit sha1_base64="yAvckmZpzc2T8PVaEu/PVL1nr/U=">AAAB/HicdVBLSwMxGMzWV62v1R69BFvBU9ndYttjsRePFewD2lKyabYNzSZLkhWWpf4VLx4U8eoP8ea/MW1XUNGBwDDzfclk/IhRpR3nw8ptbG5t7+R3C3v7B4dH9vFJV4lYYtLBggnZ95EijHLS0VQz0o8kQaHPSM+ft5Z+745IRQW/1UlERiGachpQjLSRxnZxqAI45ILyCeEalltjWh7bJafirACdStWte/VLQxpereZVoZtZJZChPbbfhxOB49DcgBlSauA6kR6lSGqKGVkUhrEiEcJzNCUDQzkKiRqlq/ALeG6UCQyENMckWKnfN1IUKpWEvpkMkZ6p395S/MsbxDpojFLKo1gTjtcPBTGDWsBlE3BCJcGaJYYgLKnJCvEMSYS16atgSvj6KfyfdL2K61TcG6/UvMrqyINTcAYugAvqoAmuQRt0AAYJeABP4Nm6tx6tF+t1PZqzsp0i+AHr7ROpRZQe</latexit><latexit sha1_base64="yAvckmZpzc2T8PVaEu/PVL1nr/U=">AAAB/HicdVBLSwMxGMzWV62v1R69BFvBU9ndYttjsRePFewD2lKyabYNzSZLkhWWpf4VLx4U8eoP8ea/MW1XUNGBwDDzfclk/IhRpR3nw8ptbG5t7+R3C3v7B4dH9vFJV4lYYtLBggnZ95EijHLS0VQz0o8kQaHPSM+ft5Z+745IRQW/1UlERiGachpQjLSRxnZxqAI45ILyCeEalltjWh7bJafirACdStWte/VLQxpereZVoZtZJZChPbbfhxOB49DcgBlSauA6kR6lSGqKGVkUhrEiEcJzNCUDQzkKiRqlq/ALeG6UCQyENMckWKnfN1IUKpWEvpkMkZ6p395S/MsbxDpojFLKo1gTjtcPBTGDWsBlE3BCJcGaJYYgLKnJCvEMSYS16atgSvj6KfyfdL2K61TcG6/UvMrqyINTcAYugAvqoAmuQRt0AAYJeABP4Nm6tx6tF+t1PZqzsp0i+AHr7ROpRZQe</latexit>

Fig. 8. Counterexample-guided refinement loop.

• LTA representability of the program and regularity of the proof language imply that the

check can be performed through an emptiness test for the intersection of LTA languages

(Theorem 3.3). There are known algorithms for both tasks [Baader and Tobies 2001].

When the proof is not sufficient, a finite set of counterexamples can be produced as a witness.

These counterexamples are sequences of statements. One can check whether they are feasible

or not. In a standard setting, a feasible counterexample would be a witness for the violation of

the property by the program. In our setting, not every counterexample is a program trace. If a

program trace counterexample is feasible, then the program is unsafe. We stop the loop and return

the counterexample.

The specific construction of our LTA for C-reductions implies that some reductions in the class

may be unsound. Any feasible counterexample that is not a program trace is a witness for the

unsoundness of (at least) one such reduction. We refer to these as invalid counterexamples. These

are therefore spurious counterexamples and are ignored. We address how this does not affect the

termination of the refinement loop in Section 7.1.

If no true counterexample is found, then one can produce proofs of infeasibility of all the infeasible

counterexamples with the aid of any program prover. All new assertions discovered through this

process are then added to the current proof conjecture, and the refinement loop restarts. Note

that proofs of infeasibility of program trace counterexamples contribute towards the discovery

of a program proof, and proofs of infeasibility of the rest would contribute towards discovery of

invariants that expand the set of sound contextual commutativity relations. In our tool, we use

Craig interpolation to produce proofs of infeasibility of these counterexamples. In general, since

program traces are the simplest forms of sequential programs (loop and branch free), any automated

program prover (that can handle proving them) may be used.

7.1 Termination, Soundness and Completeness
Let us assume that the program is correct, and more specifically, there exists a proof Π∗ that
subsumes one of its contextual reductions in CRed

∗ (P). Ideally, we would like to claim that the

refinement algorithm of Figure 8 succeeds under these conditions.

Note that the convergence of the algorithm depends on two factors: (1) the counterexamples

used by the algorithm belong to L (Π∗) and (2) the proofs discovered by the backend solver for

these counterexamples use assertions from Π∗. The latter is a typical known wild card in software

model checking, which cannot be guaranteed; there is plenty of empirical evidence, however, that

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Reductions for Safety Proofs (Extended Version) 1:23

procedures based on Craig Interpolation do well in approximating it. This problem is orthogonal to

the contribution of this paper.

The former poses a new problem specific to our methodology: if the ideal proof Π∗ is the target
of the refinement loop, since the set of traces proved correct in L (Π∗) is incomparable to the set of

program traces P , then one cannot just use any program trace as an appropriate counterexample.

A key observation from LTA’s can be used to solve this problem. For an LTA M and regular

language L, when there exists no R ∈ L (M) such that R ⊆ L, then there exists a finite set of

counterexamples C such that for all R ∈ L (M), there exists some τ ∈ C such that τ ∈ R and

τ < L [Farzan and Vandikas 2019]. This is very significant, since it means that when we check a

proof candidate L (Π), and it does not cover any program reduction, then there are finitely many

counterexamples that together cover all reductions. This means that if all these counterexamples

are proved infeasible, and Π is updated with these proofs, then the proof has made meaningful

progress for every single reduction.

But what about invalid counterexamples from the setCf (of Figure 8) which our algorithm simply

ignores? Note that these may appear again in subsequent rounds. Fortunately, this behaviour turns

out to be unproblematic: strong progress essentially relies on finding new counterexamples for each

correct reduction. Whether we find new (or even any) counterexamples for incorrect reductions is

of no importance.

Theorem 7.1 (Strong Progress). Assume there exists a reduction P∗ ∈ CRed∗ (P) (or alternatively
SRed

∗ (P)) and a set of assertions Π∗, such that P∗ ⊆ L (Π∗). If the algorithm of Figure 8 uses assertions
from Π∗ to prove the infeasibility of those counterexamples which belong to L (Π∗), then it will
terminate in at most |Π∗ | iterations.

Proof. It is sufficient to show that we learn at least one new assertion in Π∗ every iteration.

Assume we have received a counterexample set C such that, for all P ′ ∈ CRed
∗ (P), there exists

some x ∈ C such that x ∈ P ′ and x < L (Π) ([Farzan and Vandikas 2019] ensures C exists). Let

x∗ ∈ C be the counterexample for P∗. Then Interpolate(x) will return new assertions Π′ ⊆ Π∗

satisfying x∗ ∈ L (Π′). If Π′ ⊆ Π then x∗ would not have been returned as a counterexample, so

there must exist some ϕ ∈ Π′ (and therefore ϕ ∈ Π∗) such that ϕ < Π. □

Theorem 7.1 ensures that the algorithm will never get into an infinite loop due to a bad choice of

counterexamples. The extra condition on proofs of traces from Π∗ rules out diverging behaviour
that could occur due to the wrong choice of assertions by the backend prover. A wrong choice

of assertions can cause divergence in any standard software model checking algorithm (even for

sequential integer programs with simple proofs) that relies on discovery of loop invariants through

interpolation. The assumption that there exists a proof for a reduction (in the fixed set CRed
∗ (P)) of

the program ensures that the algorithm is searching for a proof that does exist. Note that, in general,

a proof may exist for a reduction of the program which is not in CRed
∗ (P). That is, the algorithm

is not complete with respect to all reductions, but only reductions in CRed
∗ (P). Since checking the

premises of SafeRed for all semantic reductions is undecidable as discussed in Section 3, a complete

algorithm does not exist. The soundness of the algorithm is a straightforward consequence of the

soundness of reductions stated in Sections 4 and 5.

8 AN EFFICIENT ALGORITHM FOR PROOF CHECKING
The proof checking algorithm described in Section 7 boils down to an emptiness check on the

intersection (i.e. product) of the LTAs representing all program reductions and the proof language.

The size of the reduction LTA is exponential on the input program size, both in terms of the number

of states and the number of transitions per state. This can make proof checking prohibitively

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:24 Azadeh Farzan and Anthony Vandikas

expensive, even though the emptiness test is performed in linear time. In this section, we propose a

new algorithm for proof checking that has a provably better worst-case time complexity and works

better in practice. First, we show how to drastically reduce the number of transitions considered

during proof checking. This also allows us to easily employ antichain-based optimizations (in the

style of [Farzan and Vandikas 2019; Wulf et al. 2006]) to better deal with the exponential state space,

which in turn allows us to further reduce the number of transitions considered and arrive at an

asymptotically better algorithm than the one given in [Farzan and Vandikas 2019].

8.1 Proof-Driven Maximal Independence Relations
Our construction of the reduction LTA enumerates a class of contextual independence relations

and a class of reductions that are induced by them. The key observation of this section is that a

specific proof candidate instigates some additional structure in the state space of all contextual

independence relations that would allow us to soundly and completely choose one maximal relation
instead of exploring them all.

For the purpose of checking a proof candidate Π, it suffices to only consider those independence

relations that are correct according to Π, i.e. all independence relations I : Σ∗ → P (Σ × Σ) such
that sound(I) ⊆ L (Π). The proof checking algorithm will never certify a reduction based on an

unproven independence relation anyways. In fact, even among independence relations that are

correct according to Π, it suffices to consider only a single maximal independence relation IΠ ⊆ IP
induced by the proof Π, defined as

IΠ (σ) = {(a,b) ∈ IP (σ) | σ · indepa,b ∈ L (Π)}.

This independence relation declares a pair of statements independent precisely when it is sound

to do so according to Π. By maximal, we mean that any independence relation I that is sound

according to Π is subsumed by IΠ .

Proposition 8.1. For any independence relation I ⊆ IP , if sound(I) ⊆ L (Π) then I ⊆ IΠ .

IΠ can be shown to be regular by modifying the automaton recognizing L (Π). By Theorem 5.2,

CRedIΠ (P) is representable by an LTA. The following theorem states that proof checking against

IΠ is just as good as proof checking against all independence relations.

Theorem 8.2. There exists some P ′ ∈ CRed
∗ (P) satisfying P ′ ⊆ L (Π) iff there exists some

P ′′ ∈ CRedIΠ (P) satisfying P
′′ ⊆ L (Π).

Proof. (→) By the definition of CRed
∗ (P), we have P ′ = P↓I,O ∪ sound(I) for some I ⊆ IP

and O : Σ∗ → Lin(Σ). Thus P↓I,O ⊆ L (Π) and sound(I) ⊆ L (Π). By Proposition 8.1, we have

I ⊆ IΠ . Using similar reasoning to the proof of Proposition 4.7, we may conclude P↓IΠ,O ⊆ P↓I,O .
Therefore this case is satisfied for P ′′ = P↓IΠ,O .

(←) By the definition of CRedIΠ (P) we have P
′′ = P↓IΠ,O for some O : Σ∗ → Lin(Σ). By the

definition of IΠ we have sound(IΠ) ⊆ L (Π), so this case is satisfied for P ′ = P↓IΠ,O . □

Therefore, we can replace the LTA representing CRed
∗ (P) with the LTA representing CRedIΠ (P)

in our proof checking algorithm. While this reduces the number of transitions considered expo-

nentially, it also increases the state space of the reduction LTA since CRedIΠ (P) must simulate

the automaton witnessing regularity of IΠ . This turns out to be of no consequence: the proof

automaton already contains the state space of IΠ , so the state space of the product automaton

remains unchanged. Thus we obtain a product automaton with exponentially fewer transitions and

an identical state space, resulting in an exponentially faster proof checking algorithm.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Reductions for Safety Proofs (Extended Version) 1:25

8.2 Optimizing Emptiness Test Through Antichains
While LTAs can be checked for emptiness in linear time, the size of the checked automaton is

exponential in |Σ| (in the worst case), since the reduction LTA (as described in Section 4.1) must

maintain sleep sets. In [Farzan and Vandikas 2019], this problem is alleviated using antichain

methods [Wulf et al. 2006] for the case of symmetric and non-contextual independence relations.

The idea is that emptiness checking reduces to constructing a set of inactive states from which no

language is accepted. The set of inactive states is shown to be downwards-closed with respect to a

particular subsumption relation, which allows the set to be represented compactly by its maximal

elements (i.e. antichains).

It turns out that with the contextual (and semi-) independence relations, we can also adapt these

methods as an optimization for proof checking. This comes as a positive byproduct of the use

of the maximal independence relation IΠ that we described in Section 8.1. The key observation

is that we can pretend that we are in the non-contextual setting of [Farzan and Vandikas 2019],

but recover all the relevant information about IΠ from the state of the product automaton that

contains information about both program and proof automaton states. Therefore, we can recover

the required information about IΠ and know what transitions are independent at each state of the

product automaton.

Description of Contextual Antichain Algorithm
Assume the program P is represented by the automaton AP = (QP , Σ,δP ,q0P , FP), and assume the

proof language L (Π) is represented by the automaton AΠ = (QΠ, Σ,δΠ,q0Π, FΠ). We recall the

definition of Fmax
: (QP ×QΠ → P (P (Σ))) → (QP ×QΠ → P (P (Σ))) from [Farzan and Vandikas

2019].

Fmax

MPΠ
(X) (qP ,qΠ) =




{Σ} if qP ∈ FP ∧ qΠ < FΠd

O ∈Lin (Σ)

⊔
a∈Σ

S ∈X (q′P ,q
′
Π)

S ′ otherwise

where

q′P = δP (qP ,a) X ⊓ Y = max{x ∩ y | x ∈ X ∧ y ∈ Y }

q′Π = δΠ (qΠ,a) X ⊔ Y = max(X ∪ Y)

S ′ =



{(S ∪ I (a)) \ {a}} if O (a) ∩ I (a) ⊆ S

∅ otherwise

.

and I is the static (symmetric) independence relation. This definition needs no modifications to

support semi-independence; our definitions of sleep and ignore given in the proofs in Section 4 are

identical to the ones given in [Farzan and Vandikas 2019].

Let AIP = (QP , Σ,δP ,q0P , FIP) be the automaton witnessing regularity of IP (recall from Section

5 that this automaton is identical to AP aside from its final “states”). To accommodate contextuality,

we need only replace I in the above definition with the relation

I ′ = {(a,b) ∈ FIP (qP) | δ (qΠ, indepa,b) ∈ FΠ}

which consists of all pairs of statements where P is closed at state qP ((a,b) ∈ FIP (qP)) and soundly
commute according to Π at state qΠ (δ (qΠ, indepa,b) ∈ FΠ).

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:26 Azadeh Farzan and Anthony Vandikas

Intuitively, we want to replace I with IΠ (σ), for some appropriate σ such that δΠ (q0Π,σ) = qΠ
and δP (q0P ,σ) = qP . Then we have

IΠ (σ) = {(a,b) ∈ IP (σ) | σ · indepa,b ∈ L (Π)}

= {(a,b) ∈ IP (σ) | δ
∗
Π (q0Π,σ · indepa,b) ∈ FΠ}

= {(a,b) ∈ IP (σ) | δΠ (δ
∗ (q0Π,σ), indepa,b) ∈ FΠ}

= {(a,b) ∈ FIP (δ
∗
P (q0P ,σ)) | δΠ (qΠ, indepa,b) ∈ FΠ}

= {(a,b) ∈ FIP (qP) | δΠ (qΠ, indepa,b) ∈ FΠ}

= I ′.

As in [Farzan and Vandikas 2019], proof checking passes iff the least fixed-point of Fmax
is empty

at states (q0P ,q0Π), i.e. lfp(F
max) (q0P ,q0Π) = ∅.

Antichain methods do not generally improve the worst-case computational complexity of an

algorithm, since the size of the largest antichain on sets of a finite alphabet is still exponential in

the size of the alphabet. However, antichains are never larger than the sets they represent, and

often exponentially smaller, making antichain-based algorithms very efficient in practice.

8.3 Time Complexity of Proof Checking
The final source of complexity that we would like to eliminate is a factorial component that arises

because our reduction automaton considers all possible exploration strategies of the program

(through enumerations of all order functions). In particular, each state in the reduction automaton

has a transition for all |Σ|! linear orderings over Σ. In conjunction with the optimization of Section

8.2, this translates to an iterated antichain meet over all linear orders, which has exponential-

of-factorial complexity. Fortunately, we can reduce this factor to only exponential in the size of

Σ.
As mentioned previously, LTA emptiness is calculated via a fixed point computation. The com-

plexity occurs within the function over which the fixed point is computed. Therefore, we shall

focus on the complexity of calculating this function. This function, which we call Fmax
, has type

Fmax
: (QP ×QΠ → P (P (Σ))) → (QP ×QΠ → P (P (Σ))),

where QP and QΠ are respectively the state spaces of the DFAs accepting the program language P
and the proof language L (Π). Since the input of Fmax

is itself a function, we define the size of a

function X : QP ×QΠ → P (P (Σ)) to be the maximum size of all its outputs, i.e.

|X | = max{|X (qP ,qΠ) | | qP ∈ QP ,qΠ ∈ QΠ}.

Theorem 8.3. The algorithm as of Section 8.2 computes Fmax (X) in O ((|Σ| |X |)2 |Σ |!) time.

Proof. The definition of Fmax
given above involves an iterated antichain meet of an iterated

antichain join. Given two argumentsA and B, antichain meets are calculated in O ((|A| |B |)2) time by

finding the maximal elements amongst the pairwise intersections of A and B. Conversely, antichain
joins are calculated in O (|A| |B |) time by finding the maximal elements among A ∪ B. An iterated
antichain meet over n elements of size at-mostm has O (m2n) complexity, and an iterated antichain

join has O (n2m2) complexity.

The inner join in Fmax
given above is over |Σ| |X | antichains of size 1, and therefore has (|Σ| |X |)2

complexity. The outer join is over |Σ|! antichains of size Σ| |X |, and therefore has O ((|Σ| |X |)2 |Σ |!).
Together, this has O ((|Σ| |X |)2 |Σ |! + |Σ|!(|Σ| |X |)2) = O ((|Σ| |X |)2 |Σ |!) complexity. □

There is a key observation that allows us to improve these results. The following lemma captures

this by effectively permitting the elimination of the set of linear orders from our calculations:

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Reductions for Safety Proofs (Extended Version) 1:27

Lemma 8.4. Let A ⊆ Σ × P (Σ) be a relation satisfying ∀(a, S) ∈ A. a ∈ S . Then

(∀O ∈ Lin(Σ). ∃(a, S) ∈ A.O (a) ⊆ S) ⇐⇒ (∃∅ ⊂ A′ ⊆ A.∀(a, S) ∈ A′.Dom(A′) ⊆ S)

where Dom(A′) is the domain of A′.

Proof. (→) Assume ∀∅ ⊂ A′ ⊆ A. ∃(a, S) ∈ A′.Dom(A′) ⊈ S .
We show, by contrapositive, ∃O ∈ Lin(Σ).∀(a, S) ∈ A.O (a) ⊈ S .
Let B = A. Then we have B ⊆ A. We show

∃O ∈ Lin(Σ).∀(a, S) ∈ B.O (a) ⊈ S

by induction on |B | while maintaining B ⊆ A.

• If B = ∅, then the

• Assume B , ∅ and B ⊆ A.
For our inductive hypothesis, we assume

∀b ∈ B. ∃O ∈ Lin(Σ).∀(a, S) ∈ B \ {b}.O (a) ⊈ S .

We instantiate our first assumption withA′ = B to obtain some (a, S) ∈ B such that Dom(B) ⊈
S , from which we obtain some b < S such that ∀T . (b,T) < B.
By instantiating b = (a, S) in our inductive hypothesis, we obtain someO ∈ Lin(Σ) such that

∀(c,U) ∈ B \ {(a, S)}.O (c) ⊈ S .

Now define O ′ to be a linear order identical to O , except with b at the bottom of the order.

Then O ′(a) ⊈ S (since b < O ′(a) but b ∈ S).
Also, ∀(c,U) ∈ B \ {(a, S)}.O ′(c) ⊈ S (since ∀T . (b,T) < B, and b is at the bottom of O ′).
Thus ∀(c,U) ∈ B.O ′(c) ⊈ S .
Therefore ∃O ∈ Lin(Σ).∀(a, S) ∈ B.O (a) ⊈ S , for O = O ′.

(←) Assume ∃∅ ⊂ A′ ⊆ A.∀(a, S) ∈ A′.Dom(A′) ⊆ S .
Then ∀(a, S) ∈ A′,b < S . ∃T . (b,T) ∈ A′.
Since A′ , ∅, we have Dom(A′) , ∅.
Assume O is any linear order on Σ.
Let a be the maximal element of Dom(A′) with respect to O .
Then there exists some S such that (a, S) ∈ A′.
Then (a, S) ∈ A (since A′ ⊆ A).
Then O (a) ⊆ S . If this were not the case, then there would exist some b ∈ O (a) such that b < S ,

which (by an earlier fact) implies b ∈ Dom(A′). Necessarily, a , b, since (a, S) ∈ A =⇒ a ∈ S and

b < S . Since a is maximal, we have (b,a) ∈ O . But b ∈ O (a), which is a contradiction.

Thus ∃(a, S) ∈ A.O (a) ⊆ S . □

The equality implied by the lemma is used to improve the fixed point calculation of Fmax
, based

on the LTA built using the construction of Theorem 5.2 instantiated by the sound independence

relation of Proposition 8.1. The left-hand side of the equality appears in the fixed point computation,

and the right hand side lets us drop the enumeration of all linear orders from it. This leads us to

the following result of reduced overall complexity for the dominant computation part of proof

checking:

Theorem 8.5. Fmax (X) can be computed in O (2 |Σ | |Σ| |X |) time.

Proof. Observe that the formula for Fmax
given previously ultimately calculates a finite inter-

section of the form

(S1 ∪ I ′(a1)) \ {a1} ∩ · · · ∩ (Sn ∪ I ′(an)) \ {an }

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:28 Azadeh Farzan and Anthony Vandikas

where

O (ai) ⊆ Si ∪ I ′(ai)

Si ∈ X (δP (qP ,a
′),δΠ (qΠ,a

′))

for each 1 ≤ i ≤ n. Define

Pairs = {(a, S) | S ∈ X (δP (qP ,a),δΠ (qΠ,a))}

Valid = {A ⊆ Pairs | ∀O ∈ Lin(Σ). ∃(a, S) ∈ A.O (a) ⊆ S ∩ I ′(a)}

Then we can rearrange Fmax
to

max




⋂
(a,S)∈A

(S ∪ I ′(a)) \ {a}
���� A ∈ Valid




Note that a superset of any A ∈ Valid is also inValid , and adding elements to A will shrink the

inner intersection, so we need only minimal elements ofValid .

max




⋂
(a,S)∈A

(S ∪ I ′(a)) \ {a}
���� A ∈ min(Valid)




By Lemma 8.4, we have

Valid = {A ⊆ Pairs | ∃∅ ⊂ A′ ⊆ A.∀(a, S) ∈ A′.Dom(A′) ⊆ S ∪ I ′(a)}.

Consequently, A ∈ min(Valid) =⇒ A , ∅ ∧ ∀(a, S) ∈ A.Dom(A) ⊆ S ∪ I ′(a). The iteration

intersection effectively excludes the domain of A, and since each S ∪ I ′(a) is a superset of Dom(A)
we can simplify the above to

max{Dom(A) | A ∈ min(Valid)}

As pointed out earlier, it matters not whether we useValid or min(Valid). Anything in-between

is just as valid.

max{Dom(A) | ∅ ⊂ A ⊆ Pairs ∧ ∀(a, S) ∈ A.Dom(A) ⊆ S ∪ I ′(a)}

Finally, we expand Pairs and simplify to obtain

Fmax (X) (qP ,qΠ) = max{B | ∀a ∈ B. ∃S ∈ X (δP (qP ,a),δΠ (qΠ,a)). B ⊆ S ∪ I ′(a)}

This version of Fmax
can be implemented by iterating over all subsets of Σ, checking whether the

condition in the set comprehension holds for each subset, and then taking the maximal elements.

Obtaining the correct subsets takes O (2Σ |Σ| |X |) time. □

9 EXPERIMENTAL RESULTS
There are two facts that make an experimental evaluation of the technique worthwhile: (1) Our

reduction sets are necessarily incomplete. There may exist a general semantic reduction of the

program (in the sense of Definition 3.1) with a simple proof, but this reduction may not belong to

the set of S-reductions or C-reductions defined in this paper. Therefore, an experimental evaluation

to see how well the incomplete reductions fare in practice is essential. (2) The worst case time com-

plexity of our algorithm is exponential, and therefore, it is important to know if an implementation

of this algorithm can handle realistic examples.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Reductions for Safety Proofs (Extended Version) 1:29

9.1 Implementation
We have implemented our approach in a tool called Slacker written in Haskell. Slacker accepts a

program written in a simple imperative language. The input language supports integers, booleans,

arrays, uninterpreted functions, deterministic and non-deterministic branches and loops, parallel

composition, assume statements, and assignment statements. The desired safety property is encoded

in the input program itself in the form of assume statements, and Slacker attempts to prove the

program safe.

Slacker implements all of the optimizations of Section 8. Note that since the algorithm as of

Section 8 computes a fixpoint of a function over the product state space of the program and proof

DFAs, no tree automata are ever explicitly constructed during an execution of the tool.

SMT Solvers. Slacker supports a variety of background solvers. Only a few solvers support

interpolation, but Slacker can use different solvers for interpolation and proof generalization.

For interpolation, Slacker supports Z3, MathSAT, and SMTInterpol. For proof generalization,

Slacker additionally supports Yices and CVC4. The main reason for multiple solver support is

the general fragility of the interpolation tools. For example, MathSAT does well on some of our

arithmetic benchmarks, but bugs out easily with the array benchmarks, while SMTInterpol does

better with array interpolants. On the other hand, MathSAT performs better when it works.

Counterexamples. The set of counterexamples that provide the convergence guarantee of The-

orem 7.1 are often too large to be practically useful. It turns out that the algorithm converges in

the strong majority of the cases if one selects only one counterexample from this set to move

forward. The algorithm may take a few more refinement rounds to converge this way, but each

round executes much faster and the overall time for verification ends up being substantially lower.

The choice of counterexample can have a substantial impact on the total verification time. One

can imagine many heuristics for this selection. We use two specifically for the evaluation in this

section: one that picks a (mostly) sequentialized trace from all available traces (S), and another one

which picks a mostly interleaved (I) counterexample; that is, it uses the counterexample that is

going through the steps of different threads in a round-robin manner.

Recall the example in Figure 1. For verification with contextual (semi) reductions, the time under

the (I) counterexample selection criterion is three times slower than the one under (S), since the

good reduction is the sequential reduction. Big gaps like this one (in either direction) are observed

in most benchmarks.

9.2 Evaluation
The target programs for our approach are those where a proof for the entire program is out of the

reach of current automated verification tools due to the expressivity of the language of required

interpolants. For this reason, Slacker cannot be compared against existing tools, as the premise is

that they should fail on the majority of these benchmarks.

Given the same proof, checking it against an infinite set of reductions, in contrast to a single

program in classic verification, is bound to be (theoretically) more expensive. Therefore, when not

needed, reductions can cause a potentially large overhead on verification time. The exception is

the cases where they are not strictly needed (from the theoretical point of view) but using them

leads to a much smaller proof (in terms of the total number of assertions). In these scenarios, the

smaller proof can offset the overhead of proof checking against reductions and lead to a better

overall verification time.

Benchmarks. We have a diverse set of benchmarks in Table 1 which includes programs that

require the reductions presented in this paper to be verified by an automated prover. In other

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:30 Azadeh Farzan and Anthony Vandikas

words, they are theoretically beyond the reach of the automated provers. The reason for this is

that a Floyd-Hoare style proof for the entire program (i.e. unreduced) will require a rich language

of assertions that reason about (1) unbounded message buffers, (2) non-linear constraints, or (3)

quantified facts about arrays, or a combination of these features. The benchmarks are arranged

in Table 1 based on the complexity of these required assertions. Slacker manages to prove these

benchmarks correct by discovering a reduction for which the base theories of Linear Integer

Arithmetic (LIA), Uninterpreted Functions (UF), and theory of arrays (unquantified) suffice.

Our second set of benchmarks, reported in Table 2, includes programs for which the S/C-

reductions presented in this paper are not strictly required. They either require no reductions at

all or the sleep-set reductions (from [Farzan and Vandikas 2019]) are sufficient for proving them

correct automatically. We use this second set of benchmarks to highlight the fact that the rich set of

reductions presented in this paper can be of practical importance even if not theoretically required.

Benchmark

Reduction Style

S + C C S

Unbounded Buffers

channel-sum 1.8 0.8 TO
horseshoe 45.2 45.5 TO
prod-cons 7.5 3.4 TO
prod-cons-3 138.9 26.8 TO
prod-cons-eq 3.4 4.3 TO
queue-add-2 6.2 5.9 TO
send-receive 5.7 4.9 TO

send-receive-alt 1.1 0.5 TO
simple-queue 0.3 0.03 TO
queue-add-3 214.4 TO TO

Nonlinear

Figure 3 TO 0.3 TO
mult-4 TO 25.5 TO

mult-equiv 197.9 TO 194
counter-fun 0.8 TO TO

Arrays

simple-array-sum 52.4 97.4 TO
three-array-min 39.1 74.2 TO
three-array-sum 28.1 58.4 TO
three-array-max TO 34.6 TO

Unbounded Buffers + Nonlinear

buffer-mult 131.5 212.4 TO
buffer-series 62.9 216.7 TO

buffer-series-array 97.9 292.2 TO
queue-add-2-nl 14.4 15.7 TO
queue-add-3-nl 344 314 TO

Queues + Arrays

dec-subseq-array 4.6 7.3 TO
inc-subseq-array 4.5 6.7 TO

Table 1. Experimental Results. Times are in
seconds. Best times are in boldface. TO indi-
cate a timeout (set at 20mins).Weaver is the
tool from [Farzan and Vandikas 2019].

Unbounded buffers are modelled in these benchmarks

using uninterpreted functions. More precisely, a buffer

is modelled using a triple

〈
f , i0, i1

〉
∈ (Z→ Z) × Z × Z

where f (i) denotes the ith element in the buffer, i0 points
to the first element in the buffer, and i1 points to the last.

Results. We ran Slacker on the benchmarks on a Dell

Optiplex 3050 with an Intel(R) Core(TM) i7-7700 CPU (4

cores, 2 threads per core) and 32GB of RAM, running 64-

bit Ubuntu 18.04. The results are reported in Tables 1 and

2. Slacker has an option to turn semi-commutativity on

and off, and we used it to measure the impact of it alone,

and also when added to contextual commutativity rela-

tions. Note that C-reductions (of Definition 5.8) are by

default defined based on contextual semi-commutative

relations, and therefore, they correspond to the “S + C”

option in Table 1. The “C” column corresponds to C-

reductions without semi-commutativity.

The “None” column in the table corresponds to our

implementation of [Heizmann et al. 2009] which does

not perform reductions or any optimizations specific

to handling concurrent programs. Therefore, it can be

considered as a baseline algorithm. Our benchmarks are

not very large programs. It is unlikely that a proof is

not found by this baseline algorithm due to known in-

tractability issues of concurrent program verification

(i.e. state-space explosion). There are two reasons for

failure: (1) the proof for the program is beyond capabil-

ities of state-of-the-art SMT solvers (for interpolation

and verification-condition checking), and (2) the algo-

rithm falls into the well-known divergent behaviour of

automated verification where sufficiently strong loop

invariants are not produced.

All benchmarks in Table 1 fall in category (1). From

Table 2, the benchmarks under Arrays also fall in category (1). Without S-reductions, C-reductions,

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Reductions for Safety Proofs (Extended Version) 1:31

or sleep-set reductions of [Farzan and Vandikas 2019], there would be a need for universal quantifi-

cation over array elements. The rest of benchmarks in Table 2, for which the “None” algorithm

timeouts, fall under category (2). In these instances, Slacker succeeds with reductions because it

gets lucky with the counterexamples of the reduction-based method and sidesteps the divergence

issues. The example in Figure 1 is one of these examples. If we modify the precondition to add the

assertion { M = N } and change the postcondition to { y = N - M }, then interpolation-based

proofs do not diverge. This example is listed in Table 2 as “Figure 1 (alt)”.

The results clearly demonstrate that C-reductions are very powerful in producing proofs in the

majority of cases. There are cases that S-reductions alonemake proving a program possible and there

Benchmark

Reduction Style

S + C C S Weaver None

Arrays + Nonlinear

dot-product-array 62.2 105 50.8 54.6 TO
Arrays

max-array-hom 1644 906 756 1483 TO
max-array 232 306 36.2 446 TO

min-array-hom 830 1366 578 578 TO
min-array 151.5 180 51.9 56.9 TO

sum-array-hom 116 167 115 123 TO
sum-array 64 94.5 46.5 50.9 TO
parray-copy 311 407 218 232 TO
mts-array TO TO 1176 1190 TO
sorted TO TO 819 TO TO

Unbounded Buffers

commit-1 3.2 5.3 1.7 1.7 1.9

commit-2 15.9 38.4 6.4 14.4 31.1

two-queue 8.1 2.6 15.1 15.2 57.7

Standard Language of Assertions

Figure 1 0.21 0.2 TO TO TO
Figure 1 (alt) 1.4 2.1 1.2 3.0 3.2

counter-determinism 5.8 10.5 TO TO TO
difference-det 25.9 25.1 12.5 TO TO

nonblocking-cntr 1.3 1.1 TO TO TO
nonblocking-cntr-alt 3.7 3.8 19.3 28.1 TO

min-le-max 3.2 2.7 0.2 0.1 0.4

threaded-sum-2 3.1 3.4 9.5 10 3.4

threaded-sum-3 139 90.7 84.2 TO TO
Table 2. More experimental results. Times are in seconds. Best time
for each benchmark appears in boldface. TO indicate a timeout (set at
30mins). Weaver is the tool from [Farzan and Vandikas 2019]. None
is without any reductions [Heizmann et al. 2009].

are cases that semi-commutativity

substantially boosts contextual

reductions. Theoretically, adding

the option of semi-commutation

specifications should only make

the tool perform better. How-

ever, a change in the indepen-

dence relation could result in a

change in the counterexamples

used in the refinement rounds,

and in four of the benchmarks

(from both tables), this change

seems to be adversarial for the al-

gorithm; in these cases, the con-

textual reductions without semi-

commutativity manage to pro-

duce a proof, but adding in semi-

commutativity causes timeouts.

Other than a few exceptions,

the counterexample selection strat-

egy (I) described before produces

the fastest time over the bench-

marks. With the solvers the re-

sults are mixed. The best times

are split (near half-half) between

MathSAT and SMTInterpol.

On average 13 refinement rounds

are required to verify the bench-

marks, with 43 being the maxi-

mum number. The average proof

size is about 93 assertions and the

largest proof includes 340 assertions. Of the benchmarks that take more than 5 seconds to verify,

the majority are three-threaded programs. For these, on average, 81% of the time is spent in proof

construction, 11% in proof checking, and 8% in interpolation. For the six four-threaded benchmarks,

the averages are different: 38% of the time is spent in proof construction, 54% in proof checking, and

8% in interpolation. It is expected that as the number of threads increases, the cost of proof checking

should dominate the total verification time since it increases exponentially with the number of

threads.

Slacker and all of our benchmarks are available at https://github.com/weaver-verifier/weaver.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

https://github.com/weaver-verifier/weaver

1:32 Azadeh Farzan and Anthony Vandikas

The Optimized Proof Checking Algorithm
In Section 8, we proposed a novel way of devising a faster proof checking algorithm. We evaluate

this algorithm separately by comparing the times taken for proof checking a complete proof for

each benchmark in the standard algorithm versus the optimized algorithm. The optimized algorithm

performed 6.7x faster than the standard one in the best case, and 1.7x faster on average. In the

worst case, the optimized algorithm’s performance was the same as the standard algorithm (in

exactly one case). Note that this is an isolated evaluation of the algorithms for poofs that check. In

the refinement loop, most proof checking tests fail, and using the optimized version produces better

overall speedups than these reported numbers. Since the two algorithms may produce different

counterexamples, one cannot compare the overall time of the entire verification process between

the two proof checking algorithm choices. There is no guarantee that the speedups (or slowdowns)

observed are not due to better (or worse) luck with the selection of counterexamples.

10 RELATEDWORK
The contributions of this paper relate to several topics, including automated concurrent program

verification, relational verification, and program reductions. Each topic has a vast literature of

related work. Here, we only explore connections to the most relevant work. Specifically, a large

body of related work using reduction for the purpose of bug finding (in contrast to producing

proofs) is not discussed since the focus of this paper is on sound reductions for verification.

Reductions for Concurrent Program Verification
Lipton’s reduction [Lipton 1975] has inspired several approaches to concurrent program verification

[Elmas et al. 2009; Hawblitzel et al. 2015; Kragl et al. 2018], which fundamentally opt for inferring

large atomic blocks of code (using various different techniques) to leverage mostly sequential

reasoning for concurrent program verification. QED [Elmas et al. 2009] and CIVL [Hawblitzel et al.

2015] frameworks both use refinement-oriented approaches to proving concurrent programs correct.

These semi-automatic systems use a combination of ideas to simplify proofs of concurrent programs.

Specifically, yield predicates (location invariants) are similar to the contexts for commutativity in

this paper. CIVL[Hawblitzel et al. 2015] takes advantage of classic movers wherever applicable,

so as not to have to rely too heavily on yield predicates. QED [Elmas et al. 2009] performs small

rewrites in the concurrent program that have to be justified by potentially expensive reduction and

invariant reasoning. Both systems are more broadly applicable since they deal with functions and

subroutines which are not part of our program model.

In a different direction, program reductions (beyond atomicity specifications) have been used

to simplify concurrent and distributed program proofs by eliminating the need to reason about

unbounded message buffers. In [Genest et al. 2007], the theory of Mazurkiewicz traces is used to

define a category of distributed systems, modelled as automata communicating through channels,

which are existentially bounded. Natural proofs [Desai et al. 2014] and pretend synchrony[von
Gleissenthall et al. 2019] (among many more) use the same fundamental idea to simplify reasoning

about distributed systems. For the programs which are targets of these approaches, large atomic

blocks are not a reduction of choice since the aim of the reduction (i.e. program simplification) is to

simplify the program from an asynchronous to almost synchronous.

Natural proofs [Desai et al. 2014] work for unbounded domains but boundedly many processes.

Pretend synchrony [von Gleissenthall et al. 2019] provides an extension that works with unboundedly
many processes by rewriting the program into an equivalent synchronous one. Tomake this possible,

however, assumptions are made about loops (that there is no loop state) and round non-interference

(no carried state between rounds). These are reasonable assumptions for distributed protocols but

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Reductions for Safety Proofs (Extended Version) 1:33

do not apply to concurrent message-passing programs. We also assume boundedly many processes,

simply to be able to use finite state automata. Limited notions of context appear in some domain-

specific reduction techniques. For example, in natural proofs [Desai et al. 2014], it matters whether

a buffer is empty or not. Contextual reductions, however, are more general than context specific to

buffers.

We emphasize that all these techniques are incomplete, even for the particular domains for which

they were designed. Contextual reductions are also incomplete. As already noted in [Farzan and

Vandikas 2019], the problem of finding a reduction is as difficult as proving safety.

Partial Order Reduction
Partial-order reduction (POR) [Abdulla et al. 2014, 2017; Godefroid 1996] is a class of techniques that

reduces the state space of search (for violation of a safety property) by removing redundant paths.

POR techniques are concerned with finding a single (preferably minimal) reduction of (mostly)

finite-state systems, and their primary application is in reachability/unreachability queries. We

use the underlying ideas in POR in a non-standard way. The design of the LTAs that recognize

S-reductions and C-reductions are informed by them.

Context has been incorporated into POR algorithms before. In [Godefroid and Pirottin 1993;

Katz and Peled 1992], conditional dependence is used as a weakening of the independence relation

to increase the potential for reduction. Conditional dependence adds a third component to the

dependence relation, which is a (single) state. These techniques are exclusively applicable to finite-

state systems. One can view one of the contributions of this paper as providing a way of lifting

these ideas to infinite-state programs. In [Wang et al. 2008], the notion of guarded dependence is
introduced which extends the state to a predicate (i.e. a set of states). This is then used to perform

POR in the context of bounded symbolic model checking of finite state systems.

A language-theoretic notion of context has been previously studied in the context of models of

concurrency [Sassone et al. 1993]. Our language-theoretic definition can be viewed as a weakening

of that notion of Generalized Mazurkiewicz Trace Languages, which have additional consistency
and coherence conditions on relation I.

Partial order reduction has been combined with automated verification methods to tackle the

large state space of multithreaded programs [Cassez and Ziegler 2015; Wachter et al. 2013; Wang

et al. 2009]. In [Wachter et al. 2013], POR is combined with the classic IMPACT algorithm to

lift it to concurrent programs. In [Cassez and Ziegler 2015], POR is applied to the concurrent

control-flow automaton of the program to construct a reduced one, which is then used for proof

construction/checking in a classic refinement algorithm in the style of [Heizmann et al. 2009].

Contexts do not play (a significant) role in pruningmechanisms of either of the approaches presented

in [Cassez and Ziegler 2015; Wachter et al. 2013].

Relational and Hypersafety Verification
Program reductions have been used in relational and hypersafety verification [Barthe et al. 2011;

Goguen and Meseguer 1982; Pnueli et al. 1998; Sabelfeld and Myers 2003; Sousa and Dillig 2016;

Sousa et al. 2014] where reductions are applied to product programs to obtain simple proofs of

relational/hyper- properties. The important observation is that since the copies of the program in

such product programs are completely disjoint, the statements fully commute for the purpose of

constructing a reduction. The contributions of this paper become significant when one does not have

such a trivial commutativity relation. For example, if the goal is to prove a relational/hyper property

of a concurrent program, where beyond the top-level product, commutativity specifications within

a copy become relevant. We have examples of this (for instance proving the determinism of a

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:34 Azadeh Farzan and Anthony Vandikas

concurrent program) among our benchmarks in Section 9. Neither of the approaches cited can

handle concurrent programs.

The work in [Farzan and Vandikas 2019] is the closest to ours in terms of methodology and in the

fact that it handles concurrent programs. There, in the same style of refinement loop, the space of

non-contextual reductions based on a symmetric dependence relation are explored for the purpose

of verification of hypersafety properties of sequential and concurrent programs. Programs proved

correct in this paper that require reasoning about semi-commutativity and contextual commutativity

are theoretically beyond the scope of the algorithm presented in [Farzan and Vandikas 2019].

Equivalence checking of looped programs has been explored as an instance of relational verifica-

tion [Churchill et al. 2019; Lahiri et al. 2012; Sharma et al. 2013]. In [Sharma et al. 2013] loops are

never unrolled and therefore the approach is limited to cases that a simple proof exists for unrolled

loops. SymDiff [Lahiri et al. 2012] uses (unsound) unrolling of the loops for a fixed number of itera-

tions for verification. And, finally and most recently, in [Churchill et al. 2019], concrete executions

are used as a guide to guess a good correspondence between (potentially unrolled) executions of

the loops to push the frontier further. In our approach, arbitrary (unbounded) unrollings of loops

are considered for constructing proofs through the reduction automaton. As long as the correct

invariants are guessed through the interpolation method, the approach can succeed in finding the

right correspondence and a proof for it if one exists.

11 CONCLUSION AND FUTUREWORK
The notion of context for program reductions had not received much attention before this paper.

C-reductions provide a solution to incorporate contextual reductions in the automated program

verification tool. The preliminary experimental results (Section 9) are promising. Nontrivial ex-

amples, that previously could not be proved automatically, can be verified using Slacker . There

is, however, much more work left ahead to explore the full potential of program reductions for

automated program verification.

First, in Section 8, we presented algorithmic optimizations that ensure no additional complexity

is incurred for contextual reductions over the simpler reductions of [Farzan and Vandikas 2019].

The proof checking algorithm however still has a high complexity. This may be acceptable as a

worst-case complexity for proof checking, but the construction of section 8 implicitly requires a

construction of the program control flow automaton, whose size is exponential on the number

of threads. Consider the case of a very simple parallel program where all threads are disjoint and
the postcondition refers only to the variables in a single thread. Slacker can handle proving this

program for a small number of threads, but as the number of threads grows, Slacker ’s verification

time grows exponentially with it. It will be interesting to explore alternative ways of defining

the reduction LTAs and/or the exploration algorithms to find solutions with better average case

complexity when the number of threads grows but the verification task remains simple. For example,

exploiting symmetry for replicated code is one possible avenue of investigation.

Second, it would be interesting to see how the idea of abstraction used by QED [Elmas et al.

2009] and CIVL [Hawblitzel et al. 2015] can be incorporated in the framework put forward by this

paper to gain more powerful reductions. Briefly, a non-commuting statement can be abstracted in

a way that the new program still satisfies the property of interest and the new abstract statement

commutes against more statements than the old concrete one. These abstractions are suggested

manually in [Elmas et al. 2009; Hawblitzel et al. 2015] and it will be interesting to investigate if the

same insight can be inferred automatically.

Another limitation of the current approach is that it works for a fixed number of threads. It would

be interesting to explore if predicate automata [Farzan et al. 2015] or nominal automata [Boja’nczyk
et al. 2014] can be used to formulate reductions for parameterized concurrent programs.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Reductions for Safety Proofs (Extended Version) 1:35

REFERENCES
Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. Optimal dynamic partial order reduction.

In Suresh Jagannathan and Peter Sewell, editors, The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, pages 373–384. ACM, 2014. ISBN

978-1-4503-2544-8.

Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. Source sets: A foundation for optimal

dynamic partial order reduction. J. ACM, 64(4):25:1–25:49, 2017.

Franz Baader and Stephan Tobies. The inverse method implements the automata approach for modal satisfiability. In Rajeev

Goré, Alexander Leitsch, and Tobias Nipkow, editors, Automated Reasoning, First International Joint Conference, IJCAR
2001, Siena, Italy, June 18-23, 2001, Proceedings, volume 2083 of Lecture Notes in Computer Science, pages 92–106. Springer,
2001. ISBN 3-540-42254-4.

Gilles Barthe, Juan Manuel Crespo, and César Kunz. Relational verification using product programs. In Michael J. Butler

and Wolfram Schulte, editors, FM 2011: Formal Methods - 17th International Symposium on Formal Methods, Limerick,
Ireland, June 20-24, 2011. Proceedings, volume 6664 of Lecture Notes in Computer Science, pages 200–214. Springer, 2011.
ISBN 978-3-642-21436-3.

Mikolaj Boja’nczyk, Bartek Klin, and Slawomir Lasota. Automata theory in nominal sets. Logical Methods in Computer
Science, 10(3), 2014.

Franck Cassez and Frowin Ziegler. Verification of concurrent programs using trace abstraction refinement. In Martin Davis,

Ansgar Fehnker, Annabelle McIver, and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and
Reasoning - 20th International Conference, LPAR-20 2015, Suva, Fiji, November 24-28, 2015, Proceedings, volume 9450 of

Lecture Notes in Computer Science, pages 233–248. Springer, 2015. ISBN 978-3-662-48898-0.

Berkeley R. Churchill, Oded Padon, Rahul Sharma, and Alex Aiken. Semantic program alignment for equivalence checking.

In Kathryn S. McKinley and Kathleen Fisher, editors, Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019., pages 1027–1040. ACM, 2019. ISBN

978-1-4503-6712-7.

Ankush Desai, Pranav Garg, and P. Madhusudan. Natural proofs for asynchronous programs using almost-synchronous

reductions. In Andrew P. Black and Todd D. Millstein, editors, Proceedings of the 2014 ACM International Conference on
Object Oriented Programming Systems Languages & Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA,
October 20-24, 2014, pages 709–725. ACM, 2014. ISBN 978-1-4503-2585-1.

Volker Diekert and Yves Métivier. Partial commutation and traces. In Grzegorz Rozenberg and Arto Salomaa, editors,

Handbook of Formal Languages, Volume 3: Beyond Words., pages 457–533. Springer, 1997. ISBN 978-3-642-63859-6.

Volker Diekert and Grzegorz Rozenberg, editors. The Book of Traces. World Scientific, 1995. ISBN 978-981-02-2058-7.

Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. A calculus of atomic actions. In Zhong Shao and Benjamin C. Pierce,

editors, Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009,
Savannah, GA, USA, January 21-23, 2009, pages 2–15. ACM, 2009. ISBN 978-1-60558-379-2.

Azadeh Farzan and Anthony Vandikas. Automated hypersafety verification. In Isil Dillig and Serdar Tasiran, editors,

Computer Aided Verification - 31st International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings,
Part I, volume 11561 of Lecture Notes in Computer Science, pages 200–218. Springer, 2019. ISBN 978-3-030-25539-8.

Azadeh Farzan, Zachary Kincaid, and Andreas Podelski. Inductive data flow graphs. In Roberto Giacobazzi and Radhia

Cousot, editors, The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13,
Rome, Italy - January 23 - 25, 2013, pages 129–142. ACM, 2013. ISBN 978-1-4503-1832-7.

Azadeh Farzan, Zachary Kincaid, and Andreas Podelski. Proof spaces for unbounded parallelism. In Sriram K. Rajamani and

David Walker, editors, Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, January 15-17, 2015, pages 407–420. ACM, 2015. ISBN 978-1-4503-3300-9.

Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. In Ron Cytron and Rajiv Gupta, editors,

Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and Implementation 2003, San Diego,
California, USA, June 9-11, 2003, pages 338–349. ACM, 2003. ISBN 1-58113-662-5.

Cormac Flanagan, Stephen N. Freund, and Shaz Qadeer. Exploiting purity for atomicity. IEEE Trans. Software Eng., 31(4):
275–291, 2005.

Blaise Genest, Dietrich Kuske, and Anca Muscholl. On communicating automata with bounded channels. Fundam. Inform.,
80(1-3):147–167, 2007.

Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems - An Approach to the State-Explosion
Problem, volume 1032 of Lecture Notes in Computer Science. Springer, 1996. ISBN 3-540-60761-7.

Patrice Godefroid and Didier Pirottin. Refining dependencies improves partial-order verification methods (extended abstract).

In Costas Courcoubetis, editor, Computer Aided Verification, 5th International Conference, CAV ’93, Elounda, Greece, June
28 - July 1, 1993, Proceedings, volume 697 of Lecture Notes in Computer Science, pages 438–449. Springer, 1993. ISBN
3-540-56922-7.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

1:36 Azadeh Farzan and Anthony Vandikas

Joseph A. Goguen and José Meseguer. Security policies and security models. In 1982 IEEE Symposium on Security and
Privacy, Oakland, CA, USA, April 26-28, 1982, pages 11–20. IEEE Computer Society, 1982. ISBN 0-8186-0410-7.

Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serdar Tasiran. Automated and modular refinement reasoning for

concurrent programs. In Daniel Kroening and Corina S. Pasareanu, editors, Computer Aided Verification - 27th International
Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II, volume 9207 of Lecture Notes in
Computer Science, pages 449–465. Springer, 2015. ISBN 978-3-319-21667-6.

Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Refinement of trace abstraction. In Jens Palsberg and

Zhendong Su, editors, Static Analysis, 16th International Symposium, SAS 2009, Los Angeles, CA, USA, August 9-11, 2009.
Proceedings, volume 5673 of Lecture Notes in Computer Science, pages 69–85. Springer, 2009. ISBN 978-3-642-03236-3.

Shmuel Katz and Doron A. Peled. Defining conditional independence using collapses. Theor. Comput. Sci., 101(2):337–359,
1992.

Bernhard Kragl, Shaz Qadeer, and Thomas A. Henzinger. Synchronizing the asynchronous. In Sven Schewe and Lijun Zhang,

editors, 29th International Conference on Concurrency Theory, CONCUR 2018, September 4-7, 2018, Beijing, China, volume

118 of LIPIcs, pages 21:1–21:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. ISBN 978-3-95977-087-3.

Shuvendu K. Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebêlo. SYMDIFF: A language-agnostic semantic

diff tool for imperative programs. In P. Madhusudan and Sanjit A. Seshia, editors, Computer Aided Verification - 24th
International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings, volume 7358 of Lecture Notes in
Computer Science, pages 712–717. Springer, 2012. ISBN 978-3-642-31423-0.

Richard J. Lipton. Reduction: A method of proving properties of parallel programs. Commun. ACM, 18(12):717–721, 1975.

Amir Pnueli, Michael Siegel, and Eli Singerman. Translation validation. In Bernhard Steffen, editor, Tools and Algorithms
for Construction and Analysis of Systems, 4th International Conference, TACAS ’98, Held as Part of the European Joint
Conferences on the Theory and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings,
volume 1384 of Lecture Notes in Computer Science, pages 151–166. Springer, 1998. ISBN 3-540-64356-7.

Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security. IEEE Journal on Selected Areas in
Communications, 21(1):5–19, 2003.

Vladimiro Sassone, Mogens Nielsen, and Glynn Winskel. Deterministic behavioural models for concurrency. In Andrzej M.

Borzyszkowski and Stefan Sokolowski, editors, Mathematical Foundations of Computer Science 1993, 18th International
Symposium, MFCS’93, Gdansk, Poland, August 30 - September 3, 1993, Proceedings, volume 711 of Lecture Notes in Computer
Science, pages 682–692. Springer, 1993. ISBN 3-540-57182-5.

Rahul Sharma, Eric Schkufza, Berkeley R. Churchill, and Alex Aiken. Data-driven equivalence checking. In Antony L.

Hosking, Patrick Th. Eugster, and Cristina V. Lopes, editors, Proceedings of the 2013 ACM SIGPLAN International Conference
on Object Oriented Programming Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN,
USA, October 26-31, 2013, pages 391–406. ACM, 2013. ISBN 978-1-4503-2374-1.

Marcelo Sousa and Isil Dillig. Cartesian hoare logic for verifying k-safety properties. In Chandra Krintz and Emery Berger,

editors, Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2016, Santa Barbara, CA, USA, June 13-17, 2016, pages 57–69. ACM, 2016. ISBN 978-1-4503-4261-2.

Marcelo Sousa, Isil Dillig, Dimitrios Vytiniotis, Thomas Dillig, and Christos Gkantsidis. Consolidation of queries with

user-defined functions. In Michael F. P. O’Boyle and Keshav Pingali, editors, ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014, pages 554–564. ACM,

2014. ISBN 978-1-4503-2784-8.

Klaus von Gleissenthall, Rami Gökhan Kici, Alexander Bakst, Deian Stefan, and Ranjit Jhala. Pretend synchrony: synchronous

verification of asynchronous distributed programs. PACMPL, 3(POPL):59:1–59:30, 2019.
Björn Wachter, Daniel Kroening, and Joël Ouaknine. Verifying multi-threaded software with impact. In Formal Methods in

Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013, pages 210–217. IEEE, 2013.
Chao Wang, Zijiang Yang, Vineet Kahlon, and Aarti Gupta. Peephole partial order reduction. In C. R. Ramakrishnan and

Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems, 14th International Conference,
TACAS 2008, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer Science, pages 382–396. Springer,
2008. ISBN 978-3-540-78799-0.

Chao Wang, Swarat Chaudhuri, Aarti Gupta, and Yu Yang. Symbolic pruning of concurrent program executions. In Hans

van Vliet and Valérie Issarny, editors, Proceedings of the 7th joint meeting of the European Software Engineering Conference
and the ACM SIGSOFT International Symposium on Foundations of Software Engineering, 2009, Amsterdam, The Netherlands,
August 24-28, 2009, pages 23–32. ACM, 2009. ISBN 978-1-60558-001-2.

Martin DeWulf, Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin. Antichains: A new algorithm for checking

universality of finite automata. In Thomas Ball and Robert B. Jones, editors, Computer Aided Verification, 18th International
Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, volume 4144 of Lecture Notes in Computer Science,
pages 17–30. Springer, 2006. ISBN 3-540-37406-X.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

	Abstract
	1 Introduction
	2 Motivating Examples
	3 Background
	3.1 Programs and Proofs
	3.2 Reductions
	3.3 Tree Automata for Classes of Languages

	4 Semi-commutative Reductions
	4.1 A Representable Class of Semi-Commutative Reductions
	4.2 Computing a Sound Semi-Independence Relation

	5 Contextual Reductions
	5.1 A Representable Class of Contextual Reductions
	5.2 Finite Programs

	6 Relationship to Known Reduction Techniques
	6.1 Lipton's Atomic Block Reductions
	6.2 Existential Boundedness

	7 Refinement-style Verification Algorithm
	7.1 Termination, Soundness and Completeness

	8 An Efficient Algorithm for Proof Checking
	8.1 Proof-Driven Maximal Independence Relations
	8.2 Optimizing Emptiness Test Through Antichains
	8.3 Time Complexity of Proof Checking

	9 Experimental Results
	9.1 Implementation
	9.2 Evaluation

	10 Related Work
	11 Conclusion and Future Work
	References

