
PLDI’22, June 20–24, 2022, San Diego, CA, USA

A Additional Material for Section 3: Concurrent Programs
Every statement a 2 � for a concurrent program P has as semantics JaK a binary relation over program states, i.e., valuations of
the variables occurring in P . We extend the semantics to traces via relational composition. Validity of Hoare triples {�} � {� },
where � and� are �rst-order assertions over the program variables and � is a trace, is de�ned as usual.

B Additional Material for Section 4: Reductions
As explained in 7, our �nal approach is based on an extension of Mazurkiewicz equivalence, where the commutativity relation
is conditional (parametrized in the state of an automaton). In this appendix, we thus introduce this more general form now,
and use it to formulate and prove slightly more general versions of our results. Unless otherwise noted, all de�nitions and
results in this appendix also hold for conditional commutativity.

Let A = (Q, �,� ,qinit, F) be any DFA over alphabet �. A conditional commutativity relation is a mapping from each state q of
A to a symmetric relationyyq ✓ �⇥ �. From such a commutativity relation on letters, we de�ne the (conditional) Mazurkiewicz
equivalence relation ⇠ ✓ �⇤ ⇥ �⇤ as the smallest relation satisfying

1. For allw 2 �⇤, we have thatw ⇠ w .
2. For allw1,w2,w3 2 �⇤ such thatw1 ⇠ w2 andw2 ⇠ w3, then alsow1 ⇠ w2.
3. For all u,� 2 �⇤ and a,b 2 �, if either � ⇤ (qinit,u) is unde�ned or ayy� ⇤ (qinit,u) b, then we have uab� ⇠ uba� .

If we havew ⇠ � , we say that the wordw is equivalent to the word � . Let L ✓ �⇤ be a language over our alphabet �. We de�ne
the closure of L as

cl (L) := {w 2 �⇤ | 9� 2 L .w ⇠ � } or equivalently, L =
[

w 2L
[w]

Observe that this operation is indeed a closure operation, i.e., it is extensive, monotonic and idempotent. We say that L is
closed i� L = cl (L).

We call L0 a reduction of L i� L
0 ✓ L, and we have 8w 2 L . 9� 2 L0 .w ⇠ � . If L is closed, then this is equivalent to cl (L0) = L.

A reduction L
0 of L is called (language-) minimal i� no strict subset of L0 is a reduction of L. This corresponds to the fact

that L0 contains exactly one representative of each ⇠-equivalence class present in L. For languages L1,L2 ✓ �⇤, the inclusion
L1 ✓ cl (L2) is equivalent to the existence of a reduction L

0
1 of L1 such that L01 ✓ L2.

Here in the appendix we present a more general version of the reduction induced by a preference order, which is not speci�c
to lexicographic orders. In general, preference orders may not be total, and thus an equivalence class might have multiple
minimal elements. Further, we do not assume closedness of the language L.

De�nition 4.1 (Reduction induced by Preference Order). Let L be a language, and let � be a preference order. The reduction of
L induced by � is de�ned as:

red� (L) :=
[

w 2L
min�

⇣
[w] \ L

⌘

General (not necessarily lexicographic) preference orders fully characterize reductions:

Lemma B.1 (Preference Order Characterization). Let L,L0 ✓ �⇤ be languages. Then L
0 is a reduction of L i� there exists a

preference order � such that L0 = red� (L).

Proof. We begin by showing that red� (L) is a reduction. For eachw 2 L, the upwards closure [w] (in case of symmetry, this
corresponds to the equivalence class ofw) is �nite. Hence the set [w] \ L is also �nite, and as it contains at leastw , it is also
nonempty. Hence it must contain at least one �-minimal element � . Then � 2 red� (L) is a representative forw . As each word
w 2 L has a representative in red� (L), this language is a reduction of L.

Vice versa, for a given reduction L
0 consider the preference order �L0 := L

0 ⇥ (�⇤ \ L0) [id�⇤ . It is easy to see that this
relation is re�exive, transitive and antisymmetric:

Re�exivity By de�nition, id�⇤ ✓ �L0 .
Transitivity Let u �L0 � and � �L0 w for words u,�,w 2 �⇤. By de�nition of �L0 , there are two cases: In the case that

(u,�) 2 id�⇤ , i.e., u = � , it immediately follows from � �L0 w that u �L0 w . In the case that u 2 L
0 and � < L

0, we
conclude from � �L0 w that indeed � = w , and hence u �L0 w follows.

Antisymmetry Let u �L0 � and � �L0 u for words u,� 2 �⇤. In the cases where (u,�) 2 id�⇤ or (�,u) 2 id�⇤ , the
conclusion u = � is immediate. Hence we only need to consider the case that u 2 L, � < L, � 2 L and u < L, and
immediately arrive at a contradiction.

15

PLDI’22, June 20–24, 2022, San Diego, CA, USA Azadeh Farzan, Dominik Klumpp, and Andreas Podelski

Hence �L0 is a preference order. Further, we observe that L0 = red�L0 (L): Any word w 2 L
0 is necessarily minimal in its

equivalence class, as there exists no word in �⇤ that is strictly less thanw . Hence it follows thatw 2 red�L0 (L). Conversely, for
any wordw < L0, by the fact that L0 is a reduction we know that there exists some word� 2 L0 such thatw ⇠ � . By construction,
it is immediate that � �L0 w . Hencew is not minimal in its equivalence class, and we conclude thatw < red�L0 (L). ⇤

De�nition 4.1 is fully general, yet interesting classes of reductions can be characterized by adding constraints about the
preference order:

Observation B.2. Let L ✓ �⇤ be a language, and let � be a total preference order. Then it follows that red� (L) is a language-
minimal reduction of L, i.e., no strict subset of red� (L) is a reduction of L.

Proof. This is straightforward: For a total order, every equivalence class has exactly one minimal element. Hence no element
of the reduction can be removed. ⇤

Next, we present a generalization of the (upwards-)closedness notion speci�c to a given preference order. This generalization
is su�cient to prove our results, and we make use of it in the proofs of section 6.2.

De�nition B.3 (�-Closedness). Let � be a preference order. A language L ✓ �⇤ is �-closed i� it holds that

8w,� 2 �⇤ .w 2 L ^w ⇠ � ^� � w =) � 2 L

Note that this is truly a strict generalization of the classic notion of closedness: If L is closed, then L is �-closed for every
preference order �.

Let us make two more observations about �-closedness that play an important role in section 6.2 in the soundness proof of
our reduction algorithm. First, observe that the reduction induced by a preference order � preserves �-closedness:

Lemma B.4. If L is �-closed, then red� (L) is still �-closed.

Proof. Letw,� 2 �⇤ such thatw 2 red� (L),w ⇠ � and� � w . By the de�nition of red� (L), it follows thatw 2 min�
⇣
[w]\L

⌘
✓

L. From �-closedness of L we conclude that � 2 L, and speci�cally � 2 [w] \ L. But minimality of w and � � w imply that
w = � , and hence � 2 red� (L). ⇤

This is a signi�cant di�erence from general closedness: Even if L is closed, the reduction red� (L) is generally not closed.
Next, note that the notion of closedness wrt. a preference order is monotone in the underlying commutativity relation, as

well as in the preference order:

Lemma B.5. Let �1, �2 ✓ �⇤ ⇥ �⇤ be preference orders, such that �1 ✓ �2. Furthermore, letyy1· ,yy

2
· be (conditional) symmetric

commutativity relations, such that for all q,yy1q ✓yy2q ; and let ⇠i for i 2 {1, 2} be the equivalence relation corresponding toyyi· .
Then we have that ⇠1 ✓ ⇠2, and it follows that, if L is �2–closed wrt. ⇠2, L is also �1–closed wrt. ⇠1.

Proof. Assume that L is �2–closed wrt. ⇠2. Then letw,� 2 �⇤ such thatw 2 L,w ⇠1 � and � �1 w . By assumption, it follows
thatw ⇠2 � and � �2 w . Since L is �2–closed wrt. ⇠2, we conclude that � 2 L. ⇤

The assumption of �-closedness, or in particular the classic notion of closedness, allows to simplify the de�nition of the
reduction induced by a preference order, clarifying the role of the preference order in choosing representatives:

red� (L) =
[

w 2L
min�

⇣
[w] \ L

⌘

=
[

w 2L
min�[w]

= L \
 [

w 2�⇤
min�[w]

!

= L \ red� (�⇤)

Thus we arrive at the observation stated in section 4:

Observation B.6. If L is �-closed, then the choice of representatives for each class is independent of L, and we have

red� (L) = L \ red� (�⇤)
16

PLDI’22, June 20–24, 2022, San Diego, CA, USA

The results discussed in this appendix so far hold for any preference order, whether it is a lexicographic order or not. Some
of these results will indeed be applied for another preference order in proofs in subsequent sections.

We now turn to the case of lexicographic preference orders and investigate their space complexity, i.e., the minimal number
of states any DFA recognizing the reduction language must have. First, let us identify a subclass of lexicographic orders: We
say that � is thread-uniform, if the underlying letter ordering treats all letters of a thread the same:

i , j, (9a 2 �i ,b 2 �j . a < b) =) 8a 2 �i ,b 2 �j . a < b

In other words, there are cases where less commutativity induces a smaller recognizer for a lexicographic reduction. In general,
even full commutativity does not prevent exponential explosion:

Observation B.7. There exists a concurrent program P and a lexicographic preference order �, such that, even under full
commutativity, the state complexity of the corresponding reduction red� (L (P)) is exponential in size(P).

Proof. Let each thread Ti (for i = 1, . . . ,n) be given by a single if/then/else-statement, with a control �ow automaton as below:

si

ti ei

fi

a i

bi

ci d i

Then let P = T1 k . . . k Tn be the concurrent program in question. Let the letter order be given as a1 < b1 < . . . < an < bn <
c1 < d1 < . . . < cn < dn .

We denote the Nerode equivalence between words wr.t. the language red� (L (A)) by ⌘, i.e., the index of ⌘ is the state
complexity of red� (L (A)). Then the 2n words of the form x1x2 . . . xn , where xi 2 {ai ,bi }, are all pairwise non-equivalent w.r.t.
⌘. To see this, observe that the concatenation with the word �1 . . .�n , where

�i =
8><>:
ci if xi = ai

di else

is in the reduction red� (L (A)): Firstly, it is straightforward to see that the word w := x1 . . . xn�1 . . .�n is accepted by P .
Secondly, the wordw is sorted w.r.t. to the preference order and hence lexicographically minimal among all its permutations,
including all equivalent words. However, for any other word x 01x

0
2 . . . x

0
n , the concatenation x

0
1x
0
2 . . . x

0
n�1 . . .�n is not in L (P),

and thus also not in red� (L (P)).
Hence, a minimal DFA for red� (L (P)) must have at least 2n states. ⇤

In particular, if the lexicographic preference order not thread-uniform, branching in the control �ow of the threads can
lead to such an explosion. The DFA for the reduction, just like the full interleaving product, may have to keep track of all
combinations of branches taken by the di�erent threads, resulting in an exponential number of reachable states. The fact that
this explosion is really due to branching is illustrated by the observation that, for straight-line thread programs, the reduction
always has linear complexity, even for positional, not thread-uniform orders (as it contains only a single word). However,
as the slightly more precise version of the following theorem shows, thread-uniform lexicographic preference orders do not
su�er from exponential explosion (under full commutativity).

Theorem 4.2. Let � be a thread-uniform lexicographic preference order. Under full commutativity, the state complexity of the
induced reduction red� (L (P)) is linear in the program size size(P).

Proof. In section 6, we give a construction of a DFA for redlex (l) (L (P)) and in theorem 7.2 we prove that, under the above
assumptions, the constructed DFA has only O (size(P)) states. ⇤

We note the following about the reduction in �gure 1 and the claim in example 4.3:

Observation B.8. No lexicographical preference order can induce the reduction in �gure 1.

Proof. Consider the wordw := a1a2b1b2a1a2b1b2c1c2, i.e., both threads loop once then exit. Since this word is in the reduction
(it is accepted by the DFA in �gure 1), it must be minimal within its equivalence class. We conclude for the underlying strict
order on letters:
• We must have a1 < a2. Otherwise, the equivalent word a2a1b1b2a1a2b1b2c1c2 is preferable tow .
• We must have a2 < b1. Otherwise, the equivalent word a1b1a2b2a1a2b1b2c1c2 is preferable tow .

17

PLDI’22, June 20–24, 2022, San Diego, CA, USA Azadeh Farzan, Dominik Klumpp, and Andreas Podelski

• We must have b1 < b2. Otherwise, the equivalent word a1a2b2b1a1a2b1b2c1c2 is preferable tow .
• We must have b2 < a1. Otherwise, the equivalent word a1a2b1a1b2a2b1b2c1c2 is preferable tow .

As a strict order is acyclic, this is a contradiction. ⇤

We split theorem 4.6 on regularity and language-minimality in two results here:

Observation B.9. The lexicographic reduction redlex (l) (L) of a language L is language-minimal, i.e., no proper subset of
redlex (l) (L) is a reduction of L.

Proof. This follows directly from observation B.2 and the fact that positional lexicographic preference orders are total. ⇤

The regularity result is only proven for the more limited setting discussed in the main sections of this paper, i.e., non-
conditional commutativity. Our algorithmic methods discussed later will, for the more general setting, only over-approximate
this language.

Lemma B.10. Assume that L (A) is lex (l)-closed, and the commutativity relation is unconditional. The lexicographic reduction
redlex (l) (L (A)) is regular.
Proof. We give a construction of a DFA for the reduction in section 5. Theorem 5.3 proves that this construction indeed
recognizes the language redlex (l) (L (A)). ⇤

Theorem 4.6. Assume that L (A) is lex (l)-closed, and the commutativity relation is unconditional. The lexicographic reduction
redlex (l) (L (A)) is regular and language-minimal.

Proof. Proven in observation B.9 and lemma B.10. ⇤

For positional lexicographic preference orders, even thread-uniformity cannot prevent exponential explosion under full
commutativity.

Observation B.11. There exists a concurrent program P and a thread-uniform P-positional lexicographic order lex (l), such
that, under full commutativity, the state complexity of the corresponding lexicographic reduction redlex (l) (L (P)) is exponential in
size(P).

Proof. Consider again the concurrent program P seen in the proof of theorem B.7. We de�ne for each k 2 {1, . . . ,n} the relation
<k on � =

Sn
i=1 �i as the total order such that

• we have ai <k bi <k ci <k di for all i 2 {1, . . . ,n};
• for i, j such that either i, j 2 {1, . . . ,k � 1} or i, j 2 {k, . . . ,n}, for all x 2 �i and � 2 �j we have that x <k � i� i < j;
• and for all i 2 {k, . . . ,n}, j 2 {1, . . . ,k � 1}, x 2 �i and � 2 �j , we have that x < �.

Intuitively, we �x an ordering within each thread (for sake of totality), and for increasing k we rotate the order between threads:
For k = 1, we order threads by their index (T1 �rst, Tn last); for k = 2 we shift T1 to the end; and so on. We then associate with
each state q of P one such total order:
• For a state q = h`1, . . . , `k�1, sk , . . . , sni where k 2 {1, . . . ,n} and `i 2 {ti , ei } for all i 2 {1, . . . ,k � 1}, we choose the
order <q := <k .
• For a state q = hf1, . . . , fk�1, `k , . . . , `ni where k 2 {1, . . . ,n} and `i 2 {ti , ei } for all i 2 {k, . . . ,n}, we choose the order
<q := <k .
• For all other states q, we choose the order <q := <1.

Once again, we consider the 2n words of the form x1 . . . xn with xi 2 {ai ,bi } and show that they are pairwise non-equivalent
w.r.t. the Nerode equivalence ⌘ induced by the language redlex (l) (L (P)). For one such word x1 . . . xn we de�ne the word
�1 . . .�n as above and once again observe that the concatenation w := x1 . . . xn�1 . . .�n is accepted by P . Further, w is
lexicographically minimal within its equivalence class. To see this, let us assume, for purposes of contradiction, some word
� = �1 . . .�2n with � , w , w ⇠ � and (�,w) 2 lex (l). Let u be the longest common pre�x of w and � , and let a,b 2 �,
w
0,� 0 2 �⇤ such thatw = uaw 0 and � = ub� 0. We show that a <q b, where q = �

⇤ (qinit,u). To this end, let us distinguish two
cases:

1. If |u | < n, then a = xk for some k 2 {1, . . . ,n}. Observe that q has the form h`1 . . . , `k�1, sk , . . . , sni where `i 2 {ti , ei }
for all i 2 {1, . . . ,k � 1}. By de�nition of the preference order, we thus have that <q = <k . We distinguish two sub-cases:
a. In the case that b = x j 2 �j for some j > k , and noting that a = xk 2 �k and both k, j 2 {k, . . . ,n}, we conclude from

the de�nition of <k that a <q b.
18

PLDI’22, June 20–24, 2022, San Diego, CA, USA

b. In the case that b = �j for some j 2 {1, . . . ,n}, we �rst observe that necessarily j < k : Were this not the case, then �
would di�er in the ordering between x j and �j , but since both these statements belong to the same thread and cannot
commute, this would contradict our assumption thatw ⇠ � . Hence we now know that j 2 {1, . . . ,k � 1} and conclude
again from the de�nition of <k that a <q b.

2. If |u | � n, then a = �k and b = �j for some k 2 {1, . . . ,n} and j > k . Observe that q has the form hf1 . . . , fk�1, `k , . . . , `ni
where `i 2 {ti , ei } for all i 2 {k, . . . ,n}. By de�nition of the preference order, we thus have that <q = <k . We note that
a = �k 2 �k , b = �j 2 �j and both k, j 2 {k, . . . ,n} and hence conclude that a <q b.

Therefore, we know that w 2 redlex (l) (L (P)). On the other hand, for any other word x
0
1 . . . x

0
n with x

0
i 2 {ai ,bi }, the

concatenation x
0
1 . . . x

0
n�1 . . .�n is not accepted by P and hence not in redlex (l) (L (P)). Thus, ⌘ has at least 2n equivalence

classes, and hence, a minimal DFA for redlex (l) (L (P)) must have at least 2n states. ⇤

C Additional Material for Section 5: Finite Representations
The de�nition of the sleep set automaton here di�ers only in the fact that conditional commutativity is used in the de�nition
of the updated sleep set S 0.

De�nition 5.1 (Sleep Set Automaton). We de�ne the sleep set automatonSl (A) := (Q ⇥ 2�, �,�S, hqinit, ;i, F ⇥ 2�), where

�S (hq, Si,a) :=
8><>:
unde�ned if a 2 S or � (q,a) unde�ned
h� (q,a), S 0i else

with S 0 = {b 2 enabled (q) | (b 2 S _ b <q a) ^ ayyq b }.
We prove the correctness of the sleep set automaton in two lemmata. First however, we de�ne some notation used in these

lemmata. First, we de�ne a variant of the lexicographic preference order lex (l) parametrized in a state q, namely we let
lexq (l) be the smallest relation such that
• for all wordsw,� we have (w,w�) 2 lexq (l);
• and for all words u,�,w and all letters a,b such that from state q, by reading u we reach or get stuck in state q0 and
a <q0 b, we have (ua�,ubw) 2 lexq (l).

Note that in particular lex (l) = lexqinit (l), and that for words u,�,w , if q0 = �
⇤ (q,u) and (�,w) 2 lexq0 (l), it follows that

(u�,uw) 2 lexq (l).
Second, we de�ne analogously a variant of the conditional Mazurkiewicz equivalence parametrized in q: Let ⇠q be the least

re�exive-transitive relation such that for all u,� 2 �⇤ and a,b 2 �, if either � ⇤ (q,u) is unde�ned or ayy� ⇤ (q,u) b, then we have
uab� ⇠q uba� . Similar to above, we have that ⇠ = ⇠qinit and that for q0 = �

⇤ (q,u), � ⇠q0 w implies u� ⇠q uw . By clq (·) we
denote the closure up to this equivalence relation, and similarly redqlexq (l) (·) refers to the reduction induced by the equivalence
⇠q .
We can now state the �rst invariant we need to prove about all states of the sleep set automaton. It is essentially a local

variant of the result that the sleep set automaton recognizes a superset of the lexicographic reduction.

Lemma C.1. For allw 2 �⇤, for all states q of A and all S ✓ �,

w 2 redqlexq (l) (LA (q)) =) w 2 L (hq, Si) [clq (S · �⇤)

Proof. We proceed by induction over the length of a word w 2 redqlexq (l) (LA (q))⇤. The induction start is simple: If w = � ,
then we must have q 2 F , and thereby � 2 L (hq, Si). For the induction step, let w = a� for some a 2 � and � 2 �⇤. If a 2 S ,
then it immediately follows that a� 2 S · �⇤ ✓ clq (S · �⇤), and we are done. Consider however the case where a < S , and
therefore �Sl (P) (hq, Si,a) = hq0, S 0i, where q0 := �A (q,a), and S 0 is de�ned as in de�nition 5.1. We know that q0 exists, because
a� 2 LA (q); and furthermore, we know that � 2 LA (q0). Then it follows that � 2 redq

0

lexq0 (l)
(LA (q0)): If this were not the case,

i.e., � not were minimal within its ⇠q0-equivalence class, there would have to exist some � 0 2 LA (q0) such that � ⇠q0 � 0 and,
by totality, (� 0,�) 2 lexq0 (l). But from this it would follow that a� 0 2 LA (q), a� ⇠q a�

0 and (a� 0,a�) 2 lexq (l); this would
contradict our assumption that a� 2 redqlexq (l) (LA (q)).
Now, our induction hypothesis allows us to conclude that � 2 L (hq0, S 0i) [clq0 (S 0 · �⇤). If speci�cally � 2 L (hq0, S 0i), we

can indeed conclude thatw = a� 2 L (hq, Si), and we are done.
On the other hand, let us investigate the case that � 2 clq0 (S 0 · �⇤), i.e, � ⇠q0 bx for some b 2 S 0 and x 2 �⇤. Recall that by

de�nition, S 0 contains only letters that commute with a, and that are either already in S , or less than a, i.e.,

S
0 = {b 2 enabled (q) | (b 2 S _ b <q a) ^ ayyq b }

19

PLDI’22, June 20–24, 2022, San Diego, CA, USA Azadeh Farzan, Dominik Klumpp, and Andreas Podelski

It follows thatw = a� ⇠q abx ⇠q bax . Hence, the case that b <q a yields an immediate contradiction to our assumption that
w = a� 2 redqlexq (l) (LA (q)), as there exists a strictly smaller equivalent word bax . If b 2 S , we can conclude thatw 2 clq (S ·�⇤),
asw ⇠q bax 2 S · �⇤. ⇤

The second result shows the converse of the above: A word accepted by the sleep set automaton (starting from a state q) is
indeed in the lexicographic reduction. However, this only holds for unconditional commutativity.

Lemma C.2. Assume thatyyis unconditional. For allw 2 �⇤, for all states q of A and all S ✓ �,

w 2 L (hq, Si) =) w 2 redlexq (l) (LA (q)) \ cl (S · �⇤)
Proof. We proceed by induction over the length of a wordw 2 L (hq, Si). The casew = � again reduces both sides to q 2 F .
For the induction step, let w = a� , and let �Sl (A) (hq, Si,a) = hq0, S 0i. Then we know by induction hypothesis that, since

� 2 L (hq0, S 0i), we can conclude � 2 redlexq0 (l) (LA (q0)) \ cl (S · �⇤).
Let us �rst show that a� is not equivalent to any word beginning with a letter in S . Assume that such a word cu with c 2 S

and a� ⇠ cu existed. Clearly, a < S , otherwise we would have no transition from state hq, Si. But then it follows that a , c and
indeed a yyc . From this we conclude that c 2 S 0. There exists some word u 0 such that � ⇠ cu

0 (one commutation before c
reaches the beginning of the word cu, we must have dcu 0 for some letter d). This contradicts the induction hypothesis that
� < cl (S 0 · �⇤).

To show that a� 2 redlexq (l) (LA (q)), let b 2 �, x 2 �⇤ such that a� ⇠ bx and (bx ,a�) 2 lexq (l); we must now show
that bx = a� to prove minimality of a� within its equivalence class. We distinguish two cases: If a = b, we conclude from
(ax ,a�) 2 lexq (l) that also (x ,�) 2 lexq0 (l), and by minimality of � , this implies x = � . Hence we have shown bx = ax = a� ,
and we are done with minimality.
In the case where a , b, we conclude from (bx ,a�) 2 lexq (l) that b <q a. Furthermore, since bx and a� di�er in their

ordering of the letters a and b, but we have a� ⇠ bx , we know that these letters commute, i.e., ayyb. Then, we must have
b 2 S 0. There exists some word u such that � ⇠ bu (one commutation before b reaches the beginning of the word bx , we must
have cbu for some letter c). But this contradicts the induction hypothesis, speci�cally the part that � < cl (S 0 · �⇤). ⇤

Theorem 5.3. Assume thatyyis unconditional. The sleep set automatonSl (A) recognizes exactly the lexicographic reduction
redlex (l) (L (A)) of L (A).
Proof. We apply lemma C.1 and lemma C.2 to the initial state hqinit, ;i. Noting that cl (; · �⇤) = cl (;) = ;, we arrive at our
conclusion. ⇤

The above theorem, and in particular lemma C.2, does not hold in case of conditional commutativity: The sleep set automaton
recognizes only an over-approximation of the lexicographic reduction (lemma C.1). As an example, consider the case where
a,b commute in the initial state, and c,d commute in the state reached by ba, but c,d do not commute in the state reached by
ab. Then abcd ⇠ bacd ⇠ badc ⇠ abdc , but the reduction automaton accepts both abcd and abdc .

Observation C.3. If a state q is reachable in a concurrent program P , then hq, Si is reachable inSl (P) for some S ✓ �.

Proof. Letw be a word that reaches state q. Among all the interleavings ofw (permutations that preserve the order with in
each thread), let � be the lexicographically minimal such interleaving. Then � also reaches state q. As only statements of
di�erent threads commute, all elements of [�] must also be interleavings of � . Thus, � is minimal within its equivalence class,
and either � or an extension of � to a word accepted by P is also accepted by the sleep set automaton. Hence the sleep set
automaton must not get stuck while reading � , and so it reaches a state hq, Si for some sleep set S . ⇤

D Additional Material for Section 6: Space-E�cient Representations
Observation D.1. For a state q of a concurrent program P , every weakly persistent set in q is a membrane for q.

Proof. If q is terminal, then LP (q) ✓ {� }. As LP (q) contains no non-empty word, any M is trivially a membrane for q. If
q = h`1, . . . , `ni is not terminal, observe that enabled (q) =

S
i=1..n,`i,`iexit

enabledTi (`i). To reach an accepting state, each thread
i with `i , `iexit must make at least one step. Hence, enabledTi (`i) for any such i is a membrane for q. A weakly persistent set
M for q must necessarily be a superset of at least one such set (see results for section 7.1) and thus also a membrane for q. ⇤

Theorem 6.3 (Soundness of � -Reduction). Assume the language of A is closed, and � (q) is a weakly persistent membrane for
each state q of A. The � -reduced automaton A#� recognizes a reduction of L (A).
Proof. Theorem D.2 proves a stronger result. ⇤

20

PLDI’22, June 20–24, 2022, San Diego, CA, USA

In this appendix, we prove a more precise version of the above theorem. This more precise version is then used to argue for
soundness of the combined construction in section 6.2. Speci�cally, we will here describe the preference order that induces the
reduction recognized by the � -reduced automaton. Note that this preference order does not fall into the class of positional
lexicographic preference orders described in section 4 (though it looks similar), as it is not total, and hence a class might have
multiple representatives.

We de�ne, for a setM of letters, the partial strict order <M over letters as follows: The letter a is smaller than the letter b if
a lies inM , and b does not.

a 2 M, b < M) a <M b

Given the mapping � , we de�ne the preference order⌧q
� , a preference order on words, as the smallest relation such that for all

wordsw,� and letters a,b we havew ⌧q
� w� , and if a <� (q0) b for q0 = �

⇤
+ (q,w), thenwau ⌧q

� wb� . By⌧� we denote⌧qinit
� .

We denote the language obtained by applying the corresponding reduction (i.e., the reduction induced by the � -preference
order) to the language of A by

red⌧� (L (A)).
The next statement links the persistent-set reduction of an automaton (see section 6.1) and the persistent-set reduction of

its language.

TheoremD.2 (Soundness of Persistent Set Reduction). Assume unconditional independence. The automaton obtained by applying
the � -reduction to the DFA A recognizes exactly the language obtain by applying the reduction induced by the � -preference order
to the language recognized by A, i.e.,

L (A#�) = red⌧� (L (A))
if the language of A, i.e., L (A) is⌧� -closed, and the mapping � always assigns to a state q a weakly persistent membrane for q.

Proof. We prove the more general statement that for everyw 2 �⇤, it holds that
8q 2 Q .w 2 LA#� (q) () w 2 red⌧q

�
(LA (q))

Proceed by induction over the length |w | ofw . In the case where |w | = 0 andw = � , the result is immediate, as both sides of
the above equivalence reduce to q 2 F .

For the induction step, letw = a� . For the inclusion, let now a� 2 LA#� (q). Then it is easy to see that a� 2 LA (q), and a 2
� (q). Hence there can be no x 2 �⇤ such that x ⌧q

� a� unless x = a� , and hence a� 2 min⌧q
�
([a�] \LA (q)) ✓ red⌧q

�
(LA (q)).

For the reverse inclusion, let now a� 2 red⌧q
�
(LA (q)). That means there exists some x 2 LA (q) such that a� 2 min⌧q

�
([x]\

LA (q)). We want to show that a 2 � (q). For purposes of contradiction, suppose now that a < � (q). By the fact that a� 2 LA (q)
and � (q) is amembrane forq, there exists some (and hence also, a �rst) letterb 2 � (q) such thata� = a�1b�2 for some�1,�2 2 �⇤.
By the fact that � (q) is weakly persistent, that then implies that a� ⇠q ba�1�2. But then ba�1�2 ⌧q

� a� and x ⇠q a� ⇠q ba�1�2,
and by⌧q

� -closedness of LA (q)6, ba�1�2 2 LA (q), which contradicts the fact that a� 2 min⌧q
�
([x] \ LA (q)).

Hence we now know that a 2 � (q). Then letq0 := �#� (q,a) = � (q,a). We then conclude that� 2 LA (q0),� 2 red⌧q0
�
(LA (q0))

– if � wasn’t minimal, a� would not be minimal either –, and by induction hypothesis, � 2 LA#� (q
0). Hence a� 2 LA#� (q). ⇤

Proposition 6.4. The subset of outgoing edges assigned to the state q by the mapping � must be a membrane for q if LA#� (q) is
a reduction of LA (q).

Proof. If, for a proof by contraposition, � (q) is not a membrane for q, then there exists a wordw 2 LA (q) such thatw , � and
w does not contain any letter in � (q). But every � 2 LA#� (q) (where � , �) begins with a letter in � (q). Thus, there can be no
such � withw ⇠ � ; i.e., LA#� (q) is not a reduction of LA (q). ⇤

Note that, in the situation of proposition 6.4, when we take a state q and a wordw such that � ⇤ (qinit,w) = q, if the set � (q)
is not a membrane and the word � 2 LA (q) has no representative in LA#� (q), then it could still be that the composed wordw�
does have a representative in L (A#�) (because, “by chance”, some word accepted by A#� is equivalent tow�). Theorem D.2
required the language of the input automaton to be⌧� -closed. For the combination of sleep set and persistent reduction this
is critical: The sleep set reduction automatonSlex (l) (A) does not recognize a closed language, but a reduction. We can not
generally assume⌧� -closedness either. However, compatibility resolves this issue. We state here a more general version of
compatibility, that follows directly from the simple local criterion for (positional) lexicographic preference orders given in
section 6.2.
6Strictly speaking, we need to restrict to reachable states q. Then closedness of LA (q) follows from the assumption of closedness of L (A). Since we also
need this for sleepsets, I should probably put it in a lemma.

21

PLDI’22, June 20–24, 2022, San Diego, CA, USA Azadeh Farzan, Dominik Klumpp, and Andreas Podelski

De�nition D.3 (Compatibility). Let � : Q ! 2�, and let � ✓ �⇤ ⇥ �⇤ be a preference order. We say that � and � are compatible
if⌧� ✓ �.
The idea is that for each wordw , if a previous (sleep set) reduction chooses the lexicographically minimal representative

� 2 minlex (l)[w], then persistent set reduction must not remove this representative in favor of another representative already
removed by the �rst reduction. The second obstacle we face is the fact that our variant of persistent set reduction is based on
unconditional commutativity. However, we take advantage of conditional commutativity in sleep set reduction. To reconcile
this di�erence, we identify the unconditional core of a conditional commutativity relation.

De�nition D.4. Letyy· : Q ! 2�⇥� be a conditional commutativity relation. Then we de�ne that letters a,b 2 � commute
unconditionally, denoted ayyb, i� ayyq b for all conditions q 2 Q .

The following lemma shows that compatibility achieves the goal we set:

Lemma D.5. Let � : Q ! 2�, and let lex (l) be a regular lexicographical order, If � and lex (l) are compatible, then L (Sl (A))
is⌧� -closed wrt. the unconditional commutativity relationyy.

Proof. L (Sl (A)) = redlex (l) (A) is lex (l)-closed. By compatibility and lemma B.5, the result follows. ⇤

We formalize and proof the observation made in the paper about weakly persistent membranes for the sleep set automaton.

Lemma D.6. Let q 2 Q be a state, and let S ✓ � be a set of letters. IfM is a weakly persistent membrane for q, thenM \ S is a
weakly persistent membrane for the state hq, Si ofSl (A).
Proof. We begin by showing that M \ S is a membrane for hq, Si. As M is a membrane for q, and LSl (A) (hq, Si) ✓ LA (q), it
follows that M is a membrane for hq, Si. Let now w 2 L (hq, Si). We know that w contains some letter b 2 M . If b < S , i.e.,
b 2 M \ S , then we are done. Now consider the case that b 2 M \ S . Then clearly b cannot be the �rst letter ofw , otherwise
w < L (hq, Si). In fact, there must occur a letter c inw before b such that c 6yyb, otherwise b is still in the sleep set. By the fact
thatM is a persistent set for q, we know that the �rst such c must be inM . Inductively, we arrive at the fact that the �rst letter
inw that is inM must not be in S . HenceM \ S is a membrane for hq, Si.

To show thatM\S is weakly persistent at hq, Si, let us �rst observe thatM ✓ enabledA (q), and henceM\S ✓ enabledA (q)\S =
enabledSl (A) (hq, Si). Now, let a1 . . . am 2 L (hq, Si) such that there exists b 2 M \S with ai 6yyb. But then also a1 . . . am 2 L (q),
and b 2 M . Hence becauseM is weakly persistent at q, there exists j  i with aj 2 M . But as argued for membranes above, the
�rst letter in a1 . . . am that is inM must not be in S . Hence there exists k  j  i with am 2 M \ S . ⇤

Theorem 6.5 (Soundness of Combined Reduction). The automaton
⇣
Sl (A)

⌘
#�S

recognizes the lexicographic reduction induced
by the preference order lex (l).

L (
⇣
Sl (A)

⌘
#�S

) = redlex (l) (L (A))

Proof. By lemma D.5, lemma D.6 and theorem D.2, it follows that L0 := L (
⇣
Sl (A)

⌘
#�) is indeed a reduction ofL (A). Further, we

clearly have L0 ✓ L (Sl (A)) = redlex (l) (A). But since redlex (l) (A) is a minimal reduction, it follows that L0 = redlex (l) (A). ⇤

E Additional Material for Section 7: Proof Checking for Reductions
The following result says that the approach we take to computing persistent sets, i.e., picking a set E of threads and taking
their enabled actions, is sound (and there is no alternative).

Proposition E.1. M is weakly persistent at state q of a concurrent program P i� there exists a con�ict-closed set of non-terminated
threads E ✓ {1, . . . ,n} such thatM =

S
i 2E enabledTi (`i). Further, E must only be empty if q has no outgoing edges.

Proof. If M contains some transition a 2 enabledTi (`i), then M must contain every enabled letter of the thread Ti (i.e.,
enabledTi (`i) ✓ M). Otherwise some b 2 enabledI1 (`i) \M could be executed, which does not commute with all letters inM

(at the very least, not with a), violating the de�nition of weakly persistent sets. Hence the set of letters are given by a set E of
threads. Similarly, if some thread i 2 E has a con�ict with a thread j < E, we consider the wordw consisting only of letters of
thread j until the con�icting location `0j is reached; followed by the con�icting outgoing edge of `0j ; followed by more letters
of all threads until an accepting state is reached. Then the �rst letter that does not commute with all letters inM is the one
labeling the con�icting edge, which is not itself inM .

The proof that conversely, every set E as described yields a weakly persistent set is straightforward. ⇤

Proposition 7.1. � implemented by algorithm 1 is compatible with the preference order lex (l), and maps states to weakly
persistent membranes.

22

PLDI’22, June 20–24, 2022, San Diego, CA, USA

Proof. Apply lemma ?? on the fact that a topologically maximal strongly connected component is non-empty and closed under
the edge relation. For compatibility, note that if action a <q b, a is an action of thread i and b an action of thread j, and
a 2 � (q), then algorithm 1 creates an edge (`i , `j) in the graph. Since the set E of threads is a topologically maximal strongly
connected component and i 2 E, it follows that j 2 E and hence b 2 � (q). ⇤

In order to prove our e�ciency theorem, theorem 7.2, we show that all reachable states of the automaton in question, i.e.,
Sl (P)#� , have a certain form. Speci�cally, let �k (`k) for k 2 {1, . . . ,n} and `k 2 Qk denote the state hq, Si with the program
location q = h`1exit, . . . , `k�1exit , `k , `

k+1
init , . . . , `

n
initi and the sleep set S =

Sk�1
i=1 enabled (`

i
exit). The following lemma describes the

weakly persistent membranes our algorithm computes for such states.

Lemma E.2. Let l be non-positional and thread-uniform, and assume full commutativity. Let k 2 {1, . . . ,n}, `k 2 Qk , and
�k (`k) = hq, Si such that q = h`1, . . . , `ni. Let k 0 be the least index such that k 0 � k and enabledTk0 (`k 0) , ;, if such an index
exists. Then it follows that

� (�k (`k)) ✓ enabledTk0 (`k 0)

Proof. Let us go through the computation of CompatiblePersistentSet(q) step-by-step.
We begin with the assignment of active, and note that `k 0 2 active by assumption. Next, let us consider the relation con�icts.

By the assumption of full commutativity, a con�ict `j `i only occurs if i = j . Any con�icts (`i , `j) induced by the preference
order must also satisfy i � j. In particular, for all i 2 {k 0 + 1, . . . ,n} such that `i 2 active, the preference order ensures that
con�icts contains the pair (`i , `k 0).
Since there are no con�icts (`i , `j) where i < j, a topologically maximal SCC cannot contain any `i with i > k

0. Thereby,
our algorithm, i.e., a call of CompatiblePersistentSet(q), computes a weakly persistent membraneMq ✓

Sk 0
i=1 enabled (`i)

for state q. But since k 0 is the least index greater or equal k that has an enabled action, we can re�ne the inclusion to

Mq ✓
k 0[

i=1
enabled (`i) = *

,
k�1[

i=1
enabled (`i)+- [enabled (`k 0)

Finally, to arrive at a weakly persistent membrane for hq, Si, we subtract S fromMq . But by the de�nition of �k (`k), we have
that S =

Sk�1
i=1 enabled (`i), and hence � (hq, Si) ✓ enabled (`k 0). ⇤

The e�ciency theorem itself is once again stated more precisely here:

Theorem7.2. Ifl is thread-uniform and non-positional, and we have full commutativity, the automatonSl (P)#�S hasO (size(P))
reachable states.

Proof. Let us assume, for purposes of simplicity, that for the program P = T1 k . . . k Tn , our non-positional thread-uniform
preference order l orders actions of thread T1 before those of thread T2, and actions of thread T2 before those of thread T3, etc.
If this is not the case, we renumber the threads to ensure their numbering conforms to the given preference order.
We now prove that all reachable states ofSl (P)#� have the form �k (`k) for some k 2 {1, . . . ,n} and `k 2 Qk . To this end,

we proceed by induction over the wordw by which a state is reached. Hence, letw 2 �⇤ such that � ⇤
Sl (P)#�

(hqinit, ;i,w) = hq, Si
for some program location q 2 QP and some sleep set S ✓ �.

Induction Start If w = � , i.e., hq, Si = hqinit, ;i, then it follows immediately that q has the described form for k = 1 and
`k = `

1
init. Hence, it follows that hq, Si = �1 (`1init).

Induction Step Let noww = �a for some � 2 �⇤ and a 2 �k for some k 2 {1, . . . ,n}. There exists a state hq0, S 0i such that
by reading the pre�x� we reach � ⇤

Sl (P)#�
(hqinit, ;i,�) = hq0, S 0i, and �Sl (P)#� (hq0, S 0i,a) = hq, Si. By induction hypothesis,

we have some k 0, `k 0 such that hq0, S 0i = �k 0 (`k 0).
From the fact that hq0, S 0i has a transition labeled by the letter a, i.e., a 2 � (hq0, S 0i), we conclude by lemma E.2 that k is
the least index greater or equal than k 0 that is enabled in q0. Since only `iexit may be terminal in thread i , we have that all

23

PLDI’22, June 20–24, 2022, San Diego, CA, USA Azadeh Farzan, Dominik Klumpp, and Andreas Podelski

threads i 2 {k, . . . ,k � 1} have reached `iexit in state q0. Furthermore, the sleep set can be written as

S = {b 2 enabled (q0) | (b 2 S 0 _ b <q0 a) ^ ayyq0 b } (de�nition ofS(·))
= {b 2 enabled (q0) | (b 2 S 0 ^ ayyq0 b) _ (b < S 0 ^ b <q0 a ^ ayyq0 b) }
= {b 2 enabled (q0) | b 2 S 0 _ (b < S 0 ^ b <q0 a ^ ayyq0 b) } (full commutativity)

= {b 2 enabled (q0) | b 2 S 0 _ (b 2 �k ^ b <q0 a ^ ayyq0 b) } (assumption on l)

= {b 2 enabled (q0) | b 2 S 0 } (no commutativity within thread Tk)
= S
0

= enabled (q0) \
k 0�1[

i=1
�i (induction hypothesis)

= enabled (q0) \
k�1[

i=1
�i (minimality of k)

= enabled (q) \
k�1[

i=1
�i (only thread k changes location)

Thereby it follows for the successor state hq, Si that indeed hq, Si = �k (`k), where `k is the thread location reached by
executing a.

Finally, since there are at most size(P) =
Pn

i=1 |Ti | distinct states of the form �k (`k), we conclude that the automatonSl (P)#�
has O (size(P)) reachable states. ⇤

We give here the precise de�nition of Floyd/Hoare automata:

De�nition E.3 (Floyd/Hoare automaton). A Floyd/Hoare automaton over alphabet � is a total DFA A = (QA, �,�A,qAinit, FA)
such that
• QA is a set of formulae, whose free variables are a subset of the program variables,
• qAinit = pre, and FA = {post},
• and for all �,� 2 QA and a 2 � such that �A (�,a) = � , the Hoare triple {�} a {� } is valid.

We formalize here the de�nition of proof-sensitive commutativity:

De�nition 7.3 (Proof-Sensitive Commutativity). Let � be an assertion of A. Statements a and b commute under condition �,
denoted ayy� b, i� the compositions ab and ba have the same semantics when starting from a state satisfying �. Formally, let J�K
denote the set of all program states satisfying �. Then we have ayy� b i�

(J�K ⇥ J>K) \ JabK = (J�K ⇥ J>K) \ JbaK

Proof-sensitive commutativity is an instance of conditional commutativity [13]. Proof-sensitive commutativity satis�es our
intuition that covering between traces preserves correctness:

Lemma E.4. Proof-sensitive commutativity based on a Floyd/Hoare automaton preserves valid Hoare triples: Let �1,�2 be traces
such that �1 ⇠ �2. If a Hoare triple {�} �2 {� } is valid, then {�} �1 {� } is also valid.
Proof. Since equality is re�exive and transitive, we only have to prove the case that �1 = uab� , �2 = uba� for some u,� 2 �⇤
and a,b 2 � such that ayy� b, where � ⇤A (>,u) = �. Then by inductivity of the Floyd/Hoare automaton, we have that {>}u {�}
is valid, or equivalently JuK ✓ J>K ⇥ J�K. Hence

J�1K = JuK � JabK � J�K

= JuK �
⇣
(J�K ⇥ J>K) \ JabK

⌘
� J�K

= JuK �
⇣
(J�K ⇥ J>K) \ JbaK

⌘
� J�K

= JuK � JbaK � J�K
= J�2K

⇤
24

PLDI’22, June 20–24, 2022, San Diego, CA, USA

Theorem 7.4 (Soundness). If CheckProof(qinit , pre, ;) does not �nd a counterexample, the program is correct, i.e., P satis�es
the pre/postcondition-pair (pre, post).

Proof. Let P ⇥A denote the product automaton of the interleaving product P and the Floyd/Hoare automatonA, where states
are accepting i� the P-component is accepting. Since A is total, the language of P ⇥A is exactly the same as the language
of P (and hence closed), only the states di�er. We apply the combined reduction with conditional sleep set reduction (using
proof-sensitive commutativity) and unconditional persistent set reduction to obtain the automaton

B :=

Sl (P ⇥A)

!

#�S
By theorem 6.5 and 7.1, the automaton B recognizes a reduction of L (P). Finally, consider the automata di�erence between B

and the Floyd/Hoare automaton A. This di�erence automaton is isomorphic to B, merely the accepting states change. The
call CheckProof(qinit , pre, ;) amounts to an emptiness check of this di�erence automaton. If no counterexample is found,
all words accepted by B (i.e., all words in the reduction) are also accepted by A (and thus satisfy the pre/postcondition pair
(pre, post). From lemma E.4 it follows that then all words of P satisfy this pre/postcondition pair, and P is correct. ⇤

Theorem 7.5 (E�ciency). If the mapping l is thread-uniform and non-positional, and we have full commutativity, the time
required by algorithm 2 is polynomial in size(P).

Proof. By theorem 4.2, the size of the reduced automaton B from the proof of theorem 7.4 is linear. By our observations on the
e�ciency of algorithm 1, only polynomial time is needed to compute weakly persistent membranes. Putting these results
together, it is easy to see that we can construct B in polynomial time. Hence, the inclusion check (algorithm 2) that constructs
this automaton on-the-�y and checks its inclusion againstA also terminates in polynomial time. Speci�cally, the time required
is in O (size(P)2 + n2 · size(P)), where n is the number of threads. ⇤

Observation E.5. If two statements commute under some condition, they also commute under all stronger conditions.

Proof. Let a,b be statements that commute under a condition �, and let� be a stronger condition. The result is easy to see: If
ab and ba behave the same when starting in any state satisfying �, they must also behave the same when starting in any state
satisfying� (a subset of states). ⇤

25

	Abstract
	1 Introduction
	2 Motivating Example
	3 Concurrent Programs
	4 Reductions
	4.1 Lexicographic Preference Orders
	4.2 Positional Lexicographic Preference Orders

	5 Finite Representations
	6 Space-Efficient Representations
	6.1 Sound Pruning
	6.2 Space-Efficient and Minimal

	7 Proof Checking for Reductions
	7.1 Persistent Sets for Concurrent Programs
	7.2 Proof-Sensitive Reduction On The Fly

	8 Empirical Evaluation
	9 Related Work
	References
	A Additional Material for Section 3: Concurrent Programs
	B Additional Material for Section 4: Reductions
	C Additional Material for Section 5: Finite Representations
	D Additional Material for Section 6: Space-Efficient Representations
	E Additional Material for Section 7: Proof Checking for Reductions

