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Abstract

We present a systematic investigation and experimental eval-
uation of a large space of algorithms for the verification
of concurrent programs. The algorithms are based on se-
quentialization. In the analysis of concurrent programs, the
general idea of sequentialization is to select a subset of in-
terleavings, represent this subset as a sequential program,
and apply a generic analysis for sequential programs. For the
purpose of verification, the sequentialization has to be sound
(meaning that the proof for the sequential program entails
the correctness of the concurrent program). We use the con-
cept of a preference order to define which interleavings the
sequentialization is to select (“the most preferred ones”). A
verification algorithm based on sound sequentialization that
is parametrized in a preference order allows us to directly
evaluate the impact of the selection of the subset of interleav-
ings on the performance of the algorithm. Our experiments
indicate the practical potential of sound sequentialization
for concurrent program verification.
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1 Introduction

Sequentialization a la KISS [32] has established itself as a
promising approach in the analysis of concurrent programs.
The issue that sequentialization addresses is known as the
explosion problem: In the interleaving model where non-
deterministic thread switches are possible at every control
location, the space of interleavings grows exponentially in
the number of threads.! There is a wide body of research
[20, 21, 26, 27, 33, 34] on approaches based on sequentializa-
tion, with successful methods that can find subtle, previously
undetected bugs, e.g., in bluetooth drivers. The underlying
idea is to select a subset of interleavings, represent this sub-
set by a (nondeterministic) sequential program, and apply
a generic analysis for sequential programs. This paper in-
vestigates the idea of sequentialization for the algorithmic
verification of concurrent programs. Algorithmic verifica-
tion here broadly refers to algorithms to automatically find
and check a program proof in the form of Floyd/Hoare-style
assertions, typically with the aid of an SMT solver.

Intuitively, many program interleavings are equivalent be-
cause many pairs of statements in different threads commute
(they are independent); i.e., they can be ordered either way
without changing the result of the execution of the inter-
leaving. In this case, the analysis of one interleaving already
covers its entire equivalence class.

To capture the general idea of sequentialization in the con-
text of verification, we use the concept of a sound reduction.
We refer to a subset of the set of all interleavings of the con-
current program as a reduction [15]. The reduction is sound
if it contains at least one representative for each equivalence
class of interleavings. Thus, a sound sequentialization of a
program amounts to the choice of a sound reduction. We
can now express verification based on sequentialization in
terms of the following two steps: the construction of a sound
reduction and the verification of the reduction. In the context
of verification (as opposed to falsification), the sequential-
ization must be sound for the outcome of the verification to
be sound.

In the literature, special cases of sound sequentialization
have been studied. In [11, 24, 28], programs are sequential-
ized by combining actions within a thread in atomic blocks,

ITerminology: An interleaving is a sequence of statements along a path
in the product of the control flow graphs of the individual threads of the
concurrent program.
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i.e., we obtain the reduction by dropping interleavings that do
not correspond to sequential compositions of atomic blocks.
In [9, 35], programs are sequentialized by placing context
switches after communication between threads, i.e., the re-
duction is obtained by dropping interleavings that do not
conform to this policy.

We carry out a systematic investigation and experimental
evaluation of a large space of algorithms that perform sound
sequentializations. We base the investigation on the concept
of a preference order, an order defined over the set of program
interleavings. For each equivalence class of interleavings, to
chose the representative to be included in the reduction, one
takes the smallest interleaving according the the preference
order (i.e. the most preferred) among all interleavings in the
class. By definition, the reduction defined by a preference
order is sound. If the preference order is a total order, the
reduction is minimal: i.e., the reduction includes precisely
one representative for each equivalence class and will no
longer be sound if one of its elements is removed.

We use a wide range of preference orders and obtain a
large space of sequentializations. A lexicographic preference
order is defined by a total order on the alphabet of statements
(reductions that correspond to lexicographic preference or-
ders have been studied in the context of trace monoids; see
[30]). In the special case where the total order (on state-
ments) is based on the thread owners of statements, the
lexicographic preference order favours interleavings that
choose to context switch out of a thread at the latest possible
point. This resembles the sequentializations in [11, 24, 28].

We introduce the class of positional preference orders by
allowing the total order on the alphabet of statements to
depend on the context in which we select the next statement
in the interleaving. Since the set of program statements is
finite, there are only finitely many total orderings (i.e. permu-
tations) of the alphabet of statements. Additionally, there are
finitely many control locations in a concurrent program with
a bounded number of threads. We exploit these two facts
in order to finitely represent a positional preference order,
using finite automata to keep track of the context (i.e. the
current control location). As a special case, positional pref-
erence orders can capture synchronous reductions [9, 35]:
We can change the order on the alphabet of statements after
every communication between threads.

The technical contribution of the paper is an effective
method that, for every choice of a preference order, con-
structs a space-efficient finite representation of a minimal
sound reduction of a given program. That is, the method is
parametric in the particular preference order.

The fact that the method is parametric in the choice of
a preference order allows us to carry out a series of exper-
iments for a range of preference orders, and evaluate the
impact of the preference order on the performance of the ver-
ification algorithm. Schematically, a verification algorithm
goes through refinement rounds and successively checks a

Azadeh Farzan, Dominik Klumpp, and Andreas Podelski

proof candidate until the check succeeds and a proof has
been found. The performance of the algorithm is determined
by the two aspects, proof finding and proof checking (the
number of refinement rounds needed to find a proof, and the
efficiency of the check in each refinement round). Since a
reduction is an (in general, infinite) language of interleavings
(which are words over the alphabet of thread statements) and
can be (finitely) represented by a deterministic finite automa-
ton (DFA), it is natural to phrase the verification algorithm in
the general terms of trace abstraction refinement [19]: Here,
the input program is already represented by a DFA (i.e. the
control flow graph, with entry and exit location as initial
resp. final state). That is, the verification algorithm takes as
input a finite representation of a reduction in exactly the
same way as a sequential program.

The fact that the reduction is minimal reflects the ideal
situation where the burden for the proof cannot be made
(relatively) any smaller; the proof needs to cover only the
interleavings in the reduction but every interleaving in a
minimal reduction requires a proof. We represent a (candi-
date) proof by a set of assertions and a corresponding set of
Hoare triples with statements from the individual threads.
We say that the proof covers an interleaving if there exists a
consecutive sequence of Hoare triples in the given set that
follows the statements in the interleaving. Different choices
of minimal reductions, as induced by different preference
orders, may lead to substantially different proofs, in terms of
the number and type of assertions in the complete proof, the
number of refinement rounds to find it, and whether a proof
can be found through an automated process at all [15, 16].

The fact that the method constructs a space-efficient finite
representation of a (minimal) reduction (for every choice of
a preference order) is relevant because the finite representa-
tion is an input to the check of a candidate proof; its size is
the dominating factor for the efficiency of the check. Check-
ing a candidate proof amounts to checking that it covers each
interleaving in the reduction, which is decidable (it can be re-
duced to the inclusion between two DFA). Section 7 discusses
the proof check and shows that we can tightly integrate the
construction of the reduction DFA on the fly with the proof
check. The choice of preference order has an impact on the
cost of the proof check because it depends on the preference
order whether a space-efficient finite representation for the
reduction exists. We show the efficiency of our construction
through a theoretical argument for a special case in which a
linear-size finite representation exists.

The overall contribution of the paper is a verification al-
gorithm that is parametrized by the preference order. The
performance of every (automated) verification algorithm is
determined by the two aspects of proof finding and proof
checking, and in ours, the choice of the preference order
has an impact on both aspects. The key insight from our ex-
periments is that the impact of the choice of the preference
order on the proof finding aspect plays a larger role in the
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overall performance than its impact on the proof checking
aspect. This is in line with our intuition that efficiency in
proof checking is not of much use if it never succeeds.

Roadmap. We demonstrate key features of our approach
on a motivating example in Section 2. After a background
section on concurrent programs (Section 3), we study prefer-
ence orders that define (minimal) reductions for which finite
representations exist (Section 4). Section 5 gives an algorith-
mic construction of such finite representations, based on the
concept of sleep sets. While this construction is effective, it
is not geared towards space-efficiency. Section 6 presents
an approach that is geared towards space-efficiency, based
on the concept of persistent sets. The final outcome of this
section is a construction of space-efficient representations
for minimal reductions (based on an integration of sleep sets
and persistent sets). Section 7 presents an on the fly algo-
rithm that integrates the construction from Section 6 into
the proof check for (the finite representation of) a reduction.
Section 7 furthermore investigates how we can benefit from
this integration by making the construction proof-sensitive.
We present our experimental evaluation in Section 8. We
conclude with a comparison to related work (Section 9).

Proofs for our theoretical results can be found in the appen-
dix [13]. The artifact accompanying the paper [14] contains
the detailed evaluation results and information on how to
reproduce the results.

2 Motivating Example

For our motivating example, we take a corrected version
of the bluetooth device driver code, a classical example in
sequentialization literature [32]. The driver consists of a
User method and a Stop method (Figure 1(a,b)). The setup
for our example has a fixed number of threads running User
and one thread running Stop, which tries to shut down the
driver. This can only be done when the device is not in use,
that is, there is no user thread currently using the driver.
Initially, the variable pendinglo has value 1, and the boolean
variables stoppingFlag, stoppingEvent and stopped are false.
Correctness is encoded by an assert statement present
in only one of the user threads (due to the symmetry of the
program), which captures the fact that, if the device is in
use by this thread, then the driver has not been stopped. We
generalized the example by letting user threads enter and
exit the device in a loop for an arbitrary number of times.

Verifying a Reduction. Observe that the enter actions of
two different user threads commute, i.e. the order in which
they are executed does not affect the reachable program
states. The same is true for two exit actions of two different
user threads. Therefore, the following traces (i.e. sequences
of program statements) are all equivalent up to arbitrary

2The version from [32] is the original one (where a bug was detected); a
corrected version is discussed, e.g., in 7, 12, 31].
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commutation of these actions, and the safety of either implies
the safety of the other two:

enters; entery; assert; entery; exits; close; exity; exity

51
T, = entery; entery; assert; enters; exity; close; exity; exits
T3 = entery; entery; enters; assert; exity; exity; exits; close

The sleep set algorithm of Section 5 constructs a minimal
reduction of the bluetooth program for the purpose of veri-
fication. The verification then needs one refinement round
less than without reduction, but incurs some overhead in
time and space. Conversely, persistent sets as in Section 6
improve on space and time per refinement round, but require
the same number of refinement rounds.

In this example, the (automatically generated) proof of
correctness without reductions uses the assertions T, L,
—stopped, stoppingFlag as well as assertions pendinglo >
C A =stoppingEvent for constants C € {1, ..., n}, where n is
the number of user threads. Every program trace that con-
tains a failing assert can be given a Floyd/Hoare annotation
using these assertions, such that the first assertion is T and
the last is L. This proves that such traces do not correspond
to feasible program executions, and the program is correct.
The central thesis of this paper is that the most gain in using
reductions for program verification stems from the simplifi-
cation of the proof. The discussed proof effectively counts
how many threads have entered but not exited the device.
Therefore, the number of assertions grows linearly with the
number of threads. The commutativity discussed yields a
reduction that excludes infinitely many behaviours, but does
not admit a significantly simpler proof.

Simpler Proofs with Conditional Commutativity. Con-
sider the enter action of one thread against the exit action of
another. They commute under the condition that pendinglo > 1.
A refinement of our algorithm (see Section 7) takes advan-
tage of this type of conditional commutativity information.
With this additional commutativity, the equivalence classes
of program behaviours become larger, and the reduction
ends up with fewer interleavings in it. Most importantly,
this reduction admits a much simpler proof than the one
discussed before.

We have pendinglo > 1 in any context where at least one
user thread has entered but not yet exited, and the Stop
thread has not yet executed Close. In such contexts, all ac-
tions of all remaining user threads commute, and all but
one interleaving can be soundly excluded. For the proof of
this reduction, there is no need to count the threads any-
more; every user thread, bar one, enters and exits without
interruption, and the counter never exceeds 2. The asser-
tions T, L, —stopped, stoppingFlag as well as pendinglo >
1 A —stoppingEvent and pendinglo > 2 A —stoppingEvent suf-
fice to prove correctness; i.e. every trace of the reduction
that contains a failing assert can be annotated with these
assertions. By a commutativity argument, it follows that no
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//.User method: // Stop method:
Wh:}:imi(z){{// Erter stoppingFlag true;
Gy
. . o - |
assume !stopplngFZvLag, atomic { // Close 860
pendinglo := pendinglo+1; pendinglo pendinglo-1; o
if (pendingIo == 0) { j:.) 40 |- -
stoppingEvent := true; +~
// do work 5
assert !stopped; 20 |, 1
: Rk -
atomic { // Exit ) n \ \ | |
E ; 0
pendinglo := pendinglo-1; :iiumzds?:piizg.vent, 2 4 6 8
if (pendinglo == 0) { PP ’ ’
stoppingEvent := true; Number of Threads
’ b
; (a) )} ©

Figure 1. Bluetooth driver code and verification results.

program trace containing a failing assert can be executed,
and therefore the program is correct.

With this reduction, the number of assertions is constant
in the number of threads. Our tool verifies instances of the
bluetooth example using a constant number of assertions
(i.e. 12) and a constant number of refinement rounds (i.e.
3). The key observation is that conditional commutativity
significantly simplifies the proof in this example.

Different Reductions. Beyond the reduction discussed
above (which we refer to as sequential composition), there
are many alternative choices of reductions. For example, one
can opt for a preference order that interleaves user threads
in a lockstep manner. In general, there are infinitely many
choices of (computable, minimal) reductions and different
reductions admit different proofs. Figure 1(c) demonstrates
the effect of the choice of reduction: It compares proof sizes
for reductions of instances of the bluetooth example which
range from 2 to 10 threads. The red circles refers to sequential
composition, and the blue “+” refers to lockstep. Other data
points (“x”) are from three random choices of preference
orders, which yield wildly different proof sizes. Unlike in
this example, sequential composition does not always yield
the smallest proof (see Section 8). Hence, we do not target
one specific choice of reduction but rather let our verification
algorithm be parametric in the choice of a preference order.

3 Concurrent Programs

A concurrent program P is composed of a fixed number of
threadsP =T, || ... || T,,. Each thread T; is given by a control
flow graph with initial location ¢, iinit and a distinguished exit
location £/ . . The location £/ . has no outgoing edges, but
all other locations have at least one. The size |T;| of a thread
is the number of control flow locations; the size of P is the
sum of the sizes of all threads, i.e., size(P) := >, |Til.

We interpret the control flow graph of a thread as a deter-
ministic finite automaton (Qj, 2;, 6i, finit, {€exit}). Program

locations are states, ¢ iinit is the initial state, {’éxit is the (only)
accepting state, and the alphabet X; consists of the program
statements in thread T;. We distinguish statements of differ-
ent threads, i.e., £; N X; = 0 whenever i # j.

We identify P with the interleaving product automaton
P= (01 X...X Q% 8,(CL .. L ALL s LEDD).
The alphabet X is the set of all statements of all threads,
ie,> = UL, 2. For statement a of thread T;, we define
5((51, e ,€n>, a) = <f], ce ,f,'_l, 5i(€is a),€i+1, ..
is defined. A trace (sequence of statements) of the program
P is a word accepted by this automaton, i.e., an interleaving
of statements from different threads such that each thread
ends up in its exit location. Since the interleaving product au-
tomaton’s size grows exponentially in the number of threads,
the algorithms we present in the subsequent sections do not
fully construct this product and hence (often) avoid paying
exponential cost.

We specify correctness of a concurrent program P via a
pre/postcondition-pair (pre, post), where pre and post are
global assertions over the program variables. Though the
extension to the more general case where correctness is spec-
ified via assert statements opens up a few interesting points,
our formal exposition focuses on the pre/postcondition set-
ting for simplicity of presentation. Section 6.1 discusses some
of the difficulties, and our implementation analyses programs
with asserts.

Finite Automata. We assume familiarity with determin-
istic finite automata (DFA), given as A = (Q, 2, 3, Ginit, F)
with the usual components. § is a partial function; we say
that A is total if § is. For a state g, enabled(q) is the set
of letters a such that §(g, a) is defined. L£4(q) denotes the
language of all words accepted from state ¢, and L(A) the
language recognized by A. For w € ¥*, 6} (w) denotes the
state reached from gin;; by reading the longest prefix of w
for which a run exists. |A| denotes the number of reachable
states of A.

. €n>’ lf51 (gi’ a)
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When a result does not refer to DFA of a general form, only
to interleaving product automata of concurrent programs,
we point this out and use the symbol P instead of A.

4 Reductions

Our goal is to compute language-minimal sound reductions,
i.e,, reductions that contain exactly one representative for
each equivalence class. There exists a wide space of such
reductions, depending on which representatives are chosen.
The choice of representatives significantly impacts proof
simplicity and proof check efficiency. We characterize this
choice in terms of partial orders over words, called prefer-
ence orders. The representative for each class is the minimal
element of the class wrt. this preference order. We introduce
a class of preference orders, such that the induced reductions
can be effectively and efficiently computed. This characteri-
zation allows us to precisely describe what the algorithms in
sections 5 and 6 compute, and to contrast different reductions
through a language-theoretic study.

Formally, Mazurkiewicz equivalence [30] is a relation be-
tween words over an alphabet ¥. Given a symmetric com-
mutativity relation Q C > x X, words wy, wy are considered
equivalent (denoted w; ~ wy) if we can get from w; to w;
by repeatedly swapping adjacent commuting letters. Specif-
ically, ~ is the least reflexive-transitive relation such that
uabv ~ ubav for all u,v € X* and a,b € I with a LY b.
A language L is closed if it is a (possibly infinite) union of
equivalence classes.

Definition 4.1 (Reduction). We call L’ a reduction of L iff
L’" € L and for every w € L there exists a Mazurkiewicz-
equivalent representativev € L’.

For now, we leave the commutativity relation £ paramet-
ric, as most of our results are independent of the specific rela-
tion. In the case where the alphabet ¥ is the set of statements
in a concurrent program P, we assume that two statements
of the same thread never commute. This assumption is suffi-
cient to guarantee that the language L(P) of a concurrent
program is closed. In Section 7, we discuss a suitable choice
for commutativity of program statements.

4.1 Lexicographic Preference Orders

As a first step towards a class of preference orders, we fix a
total strict order < over alphabet X (the set of program state-
ments), and consider the induced lexicographic preference
order < on words. Given a language and a commutativity
relation over X, such a preference order induces a reduction:

Definition 4.2 (Lexicographic Reductions). Let L be a closed
language. The reduction of L induced by < is the set of <-
minimal representatives in L for each equivalence class.

red<(L) := {min<[w] | we L}

Here, [w] denotes the Mazurkiewicz equivalence class
of w. The language red<(L) contains exactly the (unique)
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minimal representative of each equivalence class wrt. the
lexicographic order induced by <, and is thus indeed a re-
duction of L. The input L only influences which equivalence
classes are represented in the reduction. The choice of how
they are represented, i.e., the representative for each class, is
independent of L. Formally, we have red<(L) = LN red<(Z*).
Preference orders separate the choice of representatives from
L, allowing to study the effect of the same choice mechanism
on different languages.

It is a well-known result [30] that for a closed regular
language L, the reduction red < (L) is also regular. The ques-
tion of the size of a DFA representing this regular language
naturally arises, as the efficiency of our proof check directly
depends on the size of the automaton representing the re-
duced program. We investigate how the two parameters -
the commutativity relation, and the preference order - influ-
ence the reduction language’s space complexity. For our first
goal of decreasing the number of refinement rounds, more
commutativity is always preferable, as it leads to a smaller
reduction language. This is not true of the reduction’s space
complexity: A DFA for the reduction red <(L) of a regular lan-
guage L may even need more states than a DFA for L itself.®
For the investigation into the effect of the preference order,
recall that we compute reductions of concurrent programs
P given as interleaving product P =T || ... || T,, and that
the alphabet is given as ¥ = ¥, W ... w X,. We consider the
ideal (in terms of the language) case of full commutativity,
i.e., all statements of different threads commute:

VI,]lij - Vaezi,ber.aQb

Even in this case, the complexity of the reduction language
can be exponential in size(P). However, picking the right
lexicographic preference order can avoid this explosion. In
fact, consider a very natural kind of preference order that is
based simply on an underlying ordering of threads; formally:

i#j, (JaeX,beXj.a<b) = YaeX,beXj.a<b

We call the induced lexicographic preference order thread-
uniform.

Theorem 4.3. Let < be a thread-uniform lexicographic pref-
erence order. Under full commutativity, the induced lexico-
graphic reduction red <(L(P)) is recognized by a DFA with
linearly many states in size(P).

A linear number of states is as good as we can expect,
since the reduction DFA must still contain every program
statement. The reduction induced by a thread-uniform pref-
erence order is exactly the sequential composition of threads.
This corresponds to a fixed-priority scheduling discipline.
If we do not have full commutativity, the reduction may in-
clude traces that deviate from this scheduling discipline. In

3 This may surprise readers familiar with partial order reduction literature
[2, 17]. However, such works typically assume the input program does not
have branches and loops, or only over-approximate the reduction red<(L).
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Thread T;:

bl az . b2

(a) A concurrent program P

Thread Ty:

(b) DFA recognizing a reduction
of P (under full commutativity)

Figure 2. A reduction not induced by any (classic) lexico-
graphic preference order

such cases, the reduction will still contain one representative
per equivalence class: For classes that contain an interleav-
ing that adheres to the scheduling discipline, this interleav-
ing will be picked as representative; for classes that do not
contain any interleaving that adheres to the scheduling dis-
cipline, some other representative is chosen. Only in the
case of full commutativity, a direct link between the reduc-
tion and the mentioned scheduling discipline can be drawn.
Certain other scheduling disciplines however can not be
approximated with lexicographic preference orders.

Example 4.4. Consider the program in Figure 2a. Under full
commutativity, the DFA in Figure 2b recognizes a reduction
that approximates lockstep scheduling. This reduction is
not induced by any lexicographic preference order: For the
accepted word ajaz by byajazbbycycy to be minimal, we would
need a; < a; < b; < by < ay, which is a contradiction.

We introduce a more general class of preference orders
that admit a wider class of reductions, while still being
finitely representable and thus algorithmically treatable.

4.2 Positional Lexicographic Preference Orders

The idea behind positional lexicographic preference orders is
to vary the underlying order between letters depending on
the prefix (of the word) leading to the context for the order.
To ensure finite representability, we require that a finite
automaton be able to decide the appropriate letter ordering,.
It may be helpful to think of a transducer representing the
order; for any prefix word u, the transducer outputs a total
order on X (a finite set of possibilities). In the following, we
assume a DFA A over alphabet ¥ with transition function &,
such that £(A) is closed. Further, let < be a mapping from
states q of A to total strict orders <, over X.

Definition 4.5 (Positional Lexicographic Preference Orders).
The A-positional lexicographic preference order induced by <
is the smallest relation lex (<) such that

1. for all words w, v, we have (w, wv) € lex(<)
2. forall wordsu, v, w, all letters a, b and a state q such that
q =6 (u) and a <4 b, we have (uav, ubw) € lex(<)
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Note that the definable orders depend on the structure
of the DFA A, not the recognized language. Two different
DFA that recognize the same language may define different
positional lexicographic preference orders. Classic lexico-
graphic orders correspond to the case that the order < is
the same for all states g. We define the reduction induced by
a positional lexicographic preference order analogously to
Definition 4.2, and in the following, refer to such reductions
as lexicographic reductions. Lexicographic reductions form a
subclass of the class of S-reductions introduced in [16].

Example 4.6. Consider again Figure 2. Let < be a mapping
from states of P to total strict orders over letters, such that
ar <q bl <q €1 <q a2 <q by <q C2 for q € {{l1,€1),{s, ()},
and a; <g by <g ¢z <g a1 <g by <y c; for all other states
q’. The corresponding P-positional lexicographic preference
order < := lex(<) satisfies ajasb1bycic; < arbiciasbocy: Af-
ter the prefix a;, P reaches the state q := ({5, {1), and we have
ay <¢ by. Further, we have abiciazbzco < arbiazbsocicy: Af-
ter prefix a; by we reach g := ({2, {3),and ¢; <4 a;.Figure 2b
shows a DFA for the induced lexicographic reduction (under
full commutativity). The words above are equivalent, and
only the minimal word aja;b;b;c;c; is accepted.

This reflects a general approach for approximating lock-
step scheduling as preference order: Statements are ordered
by their thread, and if a state q is first (i.e., via a minimal
interleaving) reached through an edge labeled by a statement
from thread i, we rotate the ordering of threads such that <,
orders statements of thread i after all other statements.

All lexicographic reductions are language-minimal, i.e., no
proper subset of redjy(<)(L) is a reduction of L. This means
that every equivalence class of L has exactly one representa-
tive in redjex(<)(L). Thus our verification approach is never
obliged to prove two redundant interleavings. Furthermore,
these reductions can be finitely represented.

Theorem 4.7. The lexicographic reduction redje,(<)(L(A))
is regular and language-minimal.

In our setting, the languages representing concurrent
programs are always regular and closed. Therefore, Theo-
rem 4.7 permits us to conclude that a lexicographic reduction
redex(<)(L(P)) of program P is always regular and can thus
be seamlessly integrated in a trace abstraction refinement
loop as described in Section 1. In terms of reduction size
and proof check efficiency, this richer class of preference
orders can also cause exponential explosion. Despite this,
our interest in this class of preference orders is completely
justified when attempting to compute a provable program
reduction. For certain programs, positional lexicographic
preference orders admit simple proofs, while non-positional
lexicographic preference orders require complicated proofs
out of reach for automated methods [15]. Compared to this,
the finite proof checking overhead takes second place. Our
evaluation in Section 8 shows the impact of this.
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Figure 3. A DFA and the corresponding sleep set automaton.

We have identified a class of language-minimal reductions,
and investigated the optimal size of their corresponding finite
representations. In the next sections, we turn to effective
constructions of automata recognizing such reductions.

5 Finite Representations

We present an effective construction of finite representations
for the class of lexicographic reductions introduced in the
previous section. Specifically, let us fix a finite automaton
A =(Q,Z,6, qinit, F) such that L(A) is closed, and a mapping
< from states of A to total strict orders on X. We construct
an automaton G (A) that recognizes precisely the lexico-
graphical reduction redj.y(<)(L(A)). We focus here purely
on constructing some DFA that recognizes this language-
minimal reduction, motivated by the improvements in the
number of refinement iterations this allows. Section 6 then
focuses on proof check efficiency. Here, we adapt the sleep
set approach from partial order reduction literature [17].

Definition 5.1 (Sleep Set Automaton). We define the sleep
set automaton S (A) := (0x2%, 3, 8s, {(Ginit> D), Fx2%), where

undefined  ifa € S or §(q, a) undefined
(6(q,a),S") else

with S" = { b € enabled(q) | (b € SV b <ga) NalSb}.

0:((g.5),a) = {

The sleep set automaton maintains a set of letters at each
state (the eponymous sleep set), and prunes outgoing edges
labeled with such a letter. The construction guarantees that
for any accepting run using a pruned edge, a lexicographi-
cally smaller equivalent representative still exists. To achieve
a language-minimal reduction, our construction not only
prunes edges, but also unrolls loops and branches in the
input automaton, by distinguishing multiple occurrences
{(q, S1) and (g, S) of a state q with different sleep sets S; # Ss.

Example 5.2. Figure 3 shows a DFA and the corresponding
sleep set automaton, for the non-positional order a; < ay <
by < by, and if a; and b; commute for all i, j. Sleep sets are an-
notated in blue. At state (g2, {a1}), the outgoing edge labeled
with a; has been pruned: All words reaching this state have
the form wb; for some w € {ay,a,}*, and so the extension
wba; has a lexicographically smaller equivalent represen-
tative wa;b;. The state gy has been duplicated to achieve
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minimality: For words w leading to state (qo, {a1}), the ex-
tension wa; has a lexicographically smaller representative,
but this is not the case for words leading to state {(qo, 0).

Theorem 5.3. The sleep set automaton S (A) recognizes ex-
actly the lexicographic reduction red.x(<)(L(A)) of L(A).

Hence the sleep set automaton gives us a recognizer for a
language-minimal reduction. On the other hand, sleep sets
only decrease the number of transitions compared to the in-
put automaton, but not the number of states (see for instance
theorem 5.4 in [17]). This also holds for our variation; un-
rolling may even duplicate states. As shown in Figure 3, some
of the reachable states (in gray) may be unnecessary: They
cannot reach an accepting state. This problem (called sleep
set-blocked executions [1]) has been discussed extensively in
the literature. Our duplication of states makes this issue even
more pressing. Section 6 augments our construction in order
to deal with this problem.

6 Space-Efficient Representations

While the minimal (in terms of paths) reduction computed
by sleep sets is useful during the construction of the proof
candidate, there is no state pruning. The size of the reduction
DFA (and thus the cost of the proof check in our verification
method) is still exponential in the program size. As seen
in Example 5.2, this may be caused by useless states, from
which no accepting state can be reached. We now discuss a
method to eagerly (but soundly) prune edges to such states,
so that we never spend the time and memory to construct
the full (exponentially large) automaton. In Section 7, we
show how this results in an efficient proof check.

6.1 Sound Pruning

In this section, we discuss sufficient conditions that allow us
to soundly prune edges from an automaton state (soundly in
the sense that each equivalence class of a word accepted by
the automaton is still represented). By pruning edges, and
thus implicitly removing states that become unreachable,
we obtain a reduction automaton with a smaller number of
states. Later, in Section 7.1, we will see an algorithm that
computes a set of edges which can soundly be pruned.

Given a DFA A of the form A = (Q, 2,8, ¢init, F), let &
be a mapping that assigns to each state of A a subset of its
outgoing edges. The idea is to prune from each state all edges
that are not allowed by  at that state. We call the resulting
automaton A |, the m-reduction of A. Formally,

Alﬂ = (Q9 Z’ 5lﬂ,” ‘Zinit, F)

where 8|, (g, a) is undefined if a ¢ 7(q), and equal to (g, a),
otherwise. We define two concepts (weakly persistent sets
and membranes) that we use to identify mappings 7 such
that the corresponding 7-reduction is sound.

Definition 6.1 (Weakly Persistent Sets). A subset of outgo-
ing edges M C enableda(q) is weakly persistent in the state
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(a) The ignoring problem: The (b) Persistent sets prune the
persistent sets (in blue) prune all  dashed transition, leaving no
b-transitions. representative for the word b.

Figure 4. Problems solved by weakly persistent membranes.

q if for all words a; . . . am accepted by a run starting in q, if a
letter in the word (at, say, the i-th position) does not commute
with one of the letters in M, then there exists an earlier letter
in the word (before or at the i-th position) that lies inside of M.

ar...am € La(g), beM, a; T3b = Fj<i.qjeM

Weakly persistent sets are similar to persistent sets [17],
but less restrictive: We only quantify over accepted words
aj . ..an, whereas persistent sets quantify over all runs.

Example 6.2. Consider the automata in Figure 3, and recall
that we assume that a; and b; commute for all i, j. The set
{a,} is weakly persistent in the state q;: If a word x1x; . . . X,
is accepted from ¢; and x; £ a, (hence x; € {aj, a}), then
Xj = ay for some j < i. Pruning outgoing edges not labeled
by a; removes the useless states shown in gray in Figure 3.

If we only consider concurrent programs as defined in
Section 3 (with special exit locations and a specification
given as pre/postcondition- q90)
pair), weakly persistent sets
suffice to ensure sound
pruning. However, this is

not the case for general O M
automata, and of particu-

lar relevance, it is not the O

case if we check correct- O

ness wrt. assert statements
in each thread (a common
way to specify correctness
for concurrent programs,
e.g. in our benchmarks in
Section 8). Figure 4 illustrates two cases where weakly persis-
tent sets allow for unsound pruning. To give a more complete
picture, we present an additional condition on the chosen set
of edges, through the concept of membranes (see Figure 5).

Figure 5. All accepting
runs from ¢ must “pass
through” (i.e., contain a let-
ter in) the membrane M.

Definition 6.3 (Membrane). A set M C ¥ is a membrane
for a state q if, whenever a non-empty word is accepted by a
run starting in q, the word must contain a letter in M.

ay...an € La(q), n>21 = Ji.a;eM

We use the examples in Figure 4a and Figure 4b to show
how membranes address the two aforementioned problems.
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The annotated sets are weakly persistent, but not membranes.
However, the set {b} is a weakly persistent membrane for
the initial state in both examples. Pruning with this set still
decreases the number of reachable states. As noted before, for
a concurrent program, weakly persistent sets alone already
allow for sound pruning: For a state of a concurrent program,
every weakly persistent set is also a membrane.*

We arrive at the soundness result for z-reduction (not
specific to concurrent programs).

Theorem 6.4 (Soundness of 7-Reduction). Assume the lan-
guage of A is closed, and 7(q) is a weakly persistent membrane
for each state q of A. The r-reduced automaton A, recognizes
a reduction of L(A).

We investigate the question whether the membrane condi-
tion can be relaxed, and show that locally, this is not possible.

Proposition 6.5. The subset of outgoing edges assigned to
the state q by the mapping = must be a membrane for q if
L4, (q) is a reduction of La(q).

6.2 Space-Efficient and Minimal

In order to achieve our goals of proof simplicity and efficient
proof checking, we need a method to compute a sound re-
duction that is both minimal (in terms of accepted paths)
and compact (in terms of states). To this end, we combine
the approaches of Section 5 and Section 6.1.

Again, we fixaDFA A = (Q, 2, 8, qinit, F). Let lex(<) be an
A-positional lexicographical preference order, and let 7 map
states of A to weakly persistent membranes. We apply the -
reduction (see Section 6.1) to the sleep set automaton S« (A)
wrt. the preference order lex(<) (see Section 5) that we have
obtained from the automaton A, and obtain the automaton

(@),

Algorithmically, we do not construct those parts of the
automaton S.(A) made unreachable by the subsequent -
reduction (see Algorithm 2 for details). Care needs to be
taken, as an arbitrary combination of a positional lexico-
graphic preference order and a function 7 does not neces-
sarily yield a sound reduction. A simple sufficient criterion
is given by compatibility: We say that lex (<) is compatible
with 7 if < prefers non-pruned edges (in 7(q)) over pruned
edges (not in 7(q)) for every state q € Q.

Ya,beX.aen(qQAb¢n(q) = a<gb

It remains to clarify the choice of 7, i.e., which weakly per-
sistent membranes to use for a reduction of the sleep set
automaton S, (A). Fortunately, this is no more complicated

4 For correctness wrt. assert statements, the edges of any thread with an
assert statement must be included to ensure the membrane condition. To
avoid including (in the worst case) all threads and being unable to prune, our
implementation analyses correctness of the program with respect to asserts
in each thread separately, preferring n analyses with (ideally) polynomial
proof checking effort over a single analysis with exponential proof checks.
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than the choice of weakly persistent membranes for the in-
put automaton A: If M is a weakly persistent membrane for
q, then M \ S is a weakly persistent membrane for the state
{q,S) of S<(A). In the remainder of this paper we denote by
7e the function with 7z({(g, S)) = 7(q) \ S. We arrive at the
soundness theorem for the combined reduction:

Theorem 6.6 (Soundness of Combined Reduction). The au-
tomaton (6< (A))lm recognizes the lexicographic reduction
induced by the prefe;"ence order lex(<).

L(S<@) ) = rediex(<(L(A)

The relevance of the two reduction techniques in our con-
text differs from the understood wisdom in model checking
(e.g. chapter 8 of [17]): There, persistent sets are the key
reduction technique, as the central objective is to reduce
the number of states; sleep sets play a secondary role. We
contrast this with our setting of concurrent program veri-
fication: Sleep sets are of first importance, allowing us to
compute language-minimal reductions (admitting smaller
proofs, which can be found with fewer refinement rounds).
Weakly persistent sets play a secondary role in the subse-
quent step of checking the proof candidate. Put bluntly, if we
don’t succeed at constructing a good proof candidate, being
able to check the proof candidate efficiently won’t help us.

7 Proof Checking for Reductions

We have shown how compact recognizers for language-
minimal reductions can be computed using techniques from
partial order reduction literature. We now apply this result
to the proof check of our verification approach. We first
present an algorithm to compute weakly persistent sets for
a concurrent program, and then integrate this algorithm in
the overall proof checking approach.

7.1 Persistent Sets for Concurrent Programs

In Section 6, we have seen that, given a mapping 7 from
states of an automaton to weakly persistent membranes, we
can construct small and language-minimal reductions. The
question is how one can compute such a mapping . Here,
we investigate the question for the setting where the automa-
ton is an interleaving product automaton P, i.e., where P is
defined from the parallel composition of threads, formally
P=T |l ...|| T, (see Section 3). Assume furthermore that
< mabps states of P to total strict orders on X.

The first step in the design of an algorithm to compute 7
is to define the problem to be solved. The issue here is to rule
out trivial solutions for the mapping . The first solution is
to assign to each state g the whole set of its outgoing edges.
This solution is useless as the corresponding z-reduction
does not prune any state. The second solution is based on
checking reachability in the (unreduced, i.e., exponentially
large) state space of the interleaving product automaton.
This solution is useless since it defeats the very purpose of

PLDI °22, June 13-17, 2022, San Diego, CA, USA

Preprocessing step: Compute the conflict relation, i.e., the
set{(f,-,fj) | fi a4 fj}
Procedure CompatiblePersistentSet(q):
Input: state g = ({4, ..., {y) of program P
Output: set M such that M is weakly persistent at q
active « { i€fl1,...,n}| enabledr, (¢;) # (D}
conflicts — { (i,]) € active® | €; »> ¢;

V da € enabledr;({;),b € enabledr,((;).a <q b}
SCCs « strongly connected components of graph
(active, conflicts)

E « topologically maximal SCC in SCCs
return M := | J;cg enabledr, ({;)
Algorithm 1: Computation of Weakly Persistent Sets

persistent sets, which is to avoid the combinatorial explosion
in the size of the concurrent program. We narrow down
the specification of the algorithm that computes 7 to three
conditions: (C1) The corresponding z-reduction is sound;
(C2) the algorithm has polynomial complexity (in the size
of the concurrent program P); and (C3) in the case of full
commutativity (every statement of a thread commutes with
every statement of another thread), the z-reduced automaton
is linear in the size of the concurrent program P. The case
of a full commutativity relation is used as a test case for
reduction algorithms; the question is whether, under the
right circumstances, the reduction can be optimal.

Let ¢ = ({1, . .., {y) be the state for which we aim to com-
pute a weakly persistent membrane. A simple approach to
compute persistent sets from the literature [2] is to pick some
thread T; such that the enabled letters of the thread’s current
location ; commute with all letters in other threads T;. The
set of enabled letters enabledr, (¢;) then forms a persistent
set. We use here a straightforward extension of this idea.
Let us first introduce the notion of conflict: Location ¢; is in
conflict with location ¢; of another thread, denoted £; ~» ¢},
if an outgoing edge a of £; does not commute with an out-
going edge b of some location ¢’ reachable from ¢; (within
the thread T;). We pick a subset of threads E C {1,...,n}
that have not yet terminated (enabledr, ((;) # 0 for i € E),
such that E is conflict-closed (¢(; ~» €;,i € E = j € E).
The enabled actions of all threads in E then form a weakly
persistent set.

Algorithm 1 shows the complete procedure. We reduce
the computation of a conflict-closed set E to the computation
of strongly connected components of a graph where nodes
represent threads and edges represent conflicts. Additional
edges ensure compatibility with the preference order lex(<).
To guarantee conflict-closedness, we select a topologically
maximal component for E, i.e., a component where no node
has an edge to another component. In the following, we
denote by 7 the function implemented by Algorithm 1; and
define 7z analogously to Section 6.2 as 7z ({g, S)) = 7(q) \ S.
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Proposition 7.1. 7 is compatible with the preference order
lex (<), and maps states to weakly persistent membranes.

Thus, Algorithm 1 satisfies (C1) in the specification given
above. To see that it also satisfies (C2), we note that the pre-
processing step, i.e., the computation of the conflict relation
~», can be done in O(}1<; j<, T3] - ITj), ie., in O(size(P)?)
time. Given the conflict relation ~», the computation of SCCs
and choosing one topologically maximal SCC can then be
done in O(n?), i.e., in quadratic time in the number of threads.
For (C3), recall from Section 4 that not all preference orders
admit linear-size reduction. However, for the case discussed
there, our construction is optimal:

Theorem 7.2. If the mapping < is thread-uniform and non-
positional (<4 = <y forallq, q') and under full commutativity,
the automaton S, (P)| . has O(size(P)) reachable states.

These results serve as validation for our method to com-
pute weakly persistent membranes: The computed recogniz-
ers are sound, and typically significantly smaller than they
would be for the trivial choice of weakly persistent mem-
branes, in the ideal case even exponentially smaller. This is
achieved through only polynomial effort for the computation
of weakly persistent membranes, i.e., computing the compact
recognizer for the reduction is not overly expensive.

7.2 Proof-Sensitive Sequentialization On The Fly

We integrate the combined sequentialization approach in
our verification scheme in order to check if the current proof
candidate is sufficient to prove correctness of the computed
reduction. Our verification scheme takes as input DFA repre-
senting the threads of a concurrent program. If it terminates,
it returns a proof that suffices to prove correctness for a
(sound) reduction of the concurrent program. Our algorithm
consists of refinement rounds. Each new refinement round
takes the trace that is returned as a counterexample by the
failed proof check in the previous refinement round (a trace
in the reduction that is not covered by the proof), constructs
a sequence of Hoare triples for the proof of the trace, and
augments the set of assertions from the previous refinement
round with the assertions from those Hoare triples. In the
initial round, the set of assertions is empty. The terminal
refinement round is the one where the proof check succeeds.
The subprocedure that constructs a sequence of Hoare triples
for the proof of the trace can be implemented, for example,
by an interpolant-generating SMT solver.

The proof check subprocedure takes as input the DFA
representing program threads and a set of assertions (the
candidate proof). It computes a reduction DFA on the fly
while simultaneously checking that the candidate proof cov-
ers each trace in the reduction. Indeed, the fact that we build
up a set of assertions for the candidate proof also opens up
a opportunity: The commutativity of statements in different
threads may depend on an assumption about the context in
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which the execution of the two statements starts. A candi-
date proof may establish the validity of an assertion and thus
guarantee the assumption, allowing for smaller reductions.

Formally, the candidate proof is given by a Floyd/Hoare
automaton [19] for a pre/postcondition-pair (pre, post). A
Floyd/Hoare automaton is conceptually similar to a (partial)
annotation of the control flow graph (here, the interleaving
product P) with inductive assertions. For the precise defini-
tion, we refer the reader to Heizmann et al. [19]. There, it is
also shown how to construct and iteratively refine Floyd/-
Hoare automata in a counterexample-guided verification
scheme. Here, we focus on our efficient proof check based
on sequentialization.

In the following, let A be a Floyd/Hoare automaton. As
already shown in Section 2, our verification approach takes
advantage of information provided by the proof candidate to
compute even simpler reductions. To this end, we introduce
the following definition:

Definition 7.3 (Proof-Sensitive Commutativity). Let ¢ be an
assertion of A. Statements a and b commute under condition
@, denoted a Qq) b, iff the compositions ab and ba have the
same semantics when starting from a state satisfying ¢.

A classical example where proof-sensitivity helps is the
case of two statements that write to memory via different
pointers. These statements do not commute generally, as the
pointers may alias one another. If however ¢ states that they
do not alias, then the statements commute under condition
¢. The concept is more general though, as e.g. seen for the
statements enter; and exit; from Section 2.

The attentive reader will note that this relation does not
quite fit into the notion of commutativity relation as defined
so far: It is parametrized in an assertion ¢ of A. To accom-
modate this, we extend the notion of commutativity and
Mazurkiewicz equivalence. As before, we say that a trace 7;
and 7, are equivalent, denoted 7; ~ 7, if we can get from 7; to
7, by repeatedly swapping adjacent commuting letters. The
difference is that commutativity of letters now depends on
the prefix, specifically on the assertion guaranteed to hold by
A. Formally, ~ is the least reflexive-transitive relation such
that uabv ~ ubav for allu,v € ¥* and a, b € X with a Qw b,
where ¢ = 67 (pre, u). All results presented so far still hold
for this extended setting, with two exceptions: Firstly, we
only guarantee that our construction over-approximates lex-
icographic reductions. Proof-sensitivity allows reductions
to contain fewer traces, lowering the threshold for mini-
mality. Our approach benefits from this less restrictive set-
ting, and removes more traces. However, it does not quite
improve all the way to the new minimality threshold. Sec-
ondly, our weakly persistent sets are not proof-sensitive:
There, we only consider statements a and b commutative
if they commute under condition T. Proof-sensitive com-
mutativity does not meet additional guarantees (e.g. weak
uniformity [17]) needed to ensure soundness of persistent
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A priori: V < 0

Procedure CheckProof (g, ¢, S):

Input: state q of program P, sleep set S C %,
assertion ¢ of Floyd/Hoare automaton A

if {q, ¢,S) € V then return

else if g € F and ¢ |~ post then “ctex. found”

Ve VUuilge S}

for a € CompatiblePersistentSet(q) \ S do
5"« {b € enabled(q) | (b€SV b<qa) A aly, b}
CheckProof (p(q, a), 5.4 (¢, a),S")

end

Algorithm 2: Recursive procedure used by the proof check
with proof-sensitive sequentialization on the fly.

sets in this setting. Combining normal weakly persistent sets
with proof-sensitive sleep sets is sound and preserves the
additional reduction (in terms of the language) afforded by
proof-sensitivity.

For proof-sensitive commutativity, it is sufficient to prove
correctness of one representative per equivalence class to
conclude correctness of the entire program. Algorithm 2
takes advantage of this, by checking whether the proof can-
didate A suffices to prove correctness of a reduction of P.
We do not necessarily construct the entire reduction if a
counterexample is found early. Computing the reduction on
the fly during proof checking further allows us to take ad-
vantage of proof-sensitive commutativity wrt. the states of
A. While this may seem self-referential, it is not a threat to
soundness: The proof candidate A is always correct; we only
check here if it is sufficient. Thus we only use already-proven
facts about the program to reduce it. We could equally well
take this information from a separate program analysis.

Theorem 7.4 (Soundness). If CheckProof (ginit, pre, @) does
not find a counterexample, the program is correct, i.e., P satis-
fies the pre/postcondition-pair (pre, post).

In addition to soundness, we are interested in the efficiency
of our proof check. We can show that for certain preference
orders (as before), the proof check can in the best case achieve
polynomial complexity in the size of the program:

Theorem 7.5 (Efficiency). For a non-positional thread-uniform
mapping <, and under full commutativity, the time required
by Algorithm 2 is polynomial in size(P).

We optimize proof checking across refinement rounds to
avoid repeatedly reducing parts of the program that have
already been proven correct: If during a proof check a state
{q, ¢, S) — with program location g, Floyd/Hoare assertion ¢,
and sleep set S — cannot reach a counterexample, we mark
this state as “useless”. In later refinement rounds, we con-
clude that a state of the form (g, ¢ A ¢, S) — the same state
with a strengthened assertion ¢ A ¢ — is again useless. We
prune all outgoing edges of this state, without changing the
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reduction language. For the soundness of this optimization,
we rely on the monotonicity of proof-sensitive commutativ-
ity: If statements commute under some condition, they also
commute under stronger conditions. Thus, as we strengthen
the Floyd/Hoare-assertions in each round, we have more and
more commutativity, and prune more (never fewer) edges.

The candidate proof may identify sections of the state
space as unreachable. For instance, the proof may estab-
lish that mutual exclusion holds for two critical regions of
threads. In such cases, we can forgo the sequentialization
of all (typically non-equivalent) interleavings in which both
threads are in the critical region at the same time, because
no such interleaving can be executed by the program. Thus,
on-the-fly sequentialization may avoid the construction of
large parts of the state space. An upfront sequentialization
(decoupled from a subsequent verification algorithm) would
not be able to do so.

8 Empirical Evaluation

We implemented our approach in a tool called ULTIMATE
GEMCUTTER. GEMCUTTER analyses C programs that use
pthread-style primitives to dynamically create and manip-
ulate threads.” GEMCUTTER attempts to prove that such a
program only uses a bounded number of threads, and if
successful, then verifies the bounded-thread program. For
programs with unbounded threads, GEMCUTTER may be able
to find bugs. It will never unsoundly declare an unbounded-
thread program as correct.

To determine commutativity between statements, we com-
bine an efficient check of a sufficient condition — neither
statement writes a variable accessed by the other statement;
roughly speaking the heap is here represented as a single
array variable — with a more precise (and proof-sensitive)
SMT-based check. In cases where the SMT solver is unable
to determine commutativity within a small timeout, we fall
back to assume non-commutativity. It is always sound to
declare things that do commute as non-commutative. In prac-
tice, we rarely observe such cases, typically in connection
with C memory management features that are modeled with
quantified array formulae in SMT.

We implemented several preference orders®: (1) a non-
positional preference order (called “seq”) that approximates
sequential composition of threads; (2) a positional preference
order that approximates lockstep scheduling; and (3) a (non-
positional) preference order that uses a pseudo-random gen-
erator with a fixed seed to order statements. Unless otherwise
stated, data for GEMCUTTER refers to a portfolio-aggregation
of the best preference order for each benchmark (among (1)
and (2) described above, and three versions of the random

5 To accommodate such programs (given an upper bound on the number of
threads), we adapted Algorithm 1 to deal with dynamic thread management.
®Information on how to specify preference orders and other settings for
GEMCUTTER is available at https://github.com/ultimate-pa/ultimate/blob/
dev/releaseScripts/default/adds/gemcutter/README.md.
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AUTOMIZER GEMCUTTER
# time  mem rounds # time - mem rounds
(s) (GB) (s) (GB)
SV-COMP Benchmarks
successful | 940 35247 2091 9951 | 960 16626 528 6163
- correct 163 3014 148 1394 | 169 2971 89 1073
- incorrect | 777 32233 1943 8557 | 791 13655 439 5090
WEAVER Benchmarks
successful | 61 2602 44 1140 | 91 2518 44 954
- correct 60 2589 43 1133 90 2512 44 949
- incorrect 1 13 1 7 1 7 <1 5

Table 1. Number (#) of successfully analysed benchmarks,
CPU time, memory (mem), and number of refinement rounds.

order (3) with different seeds). The portfolio terminates as
soon as the analysis for any preference order terminates.
The state-of-the-art software model checker ULTIMATE Au-
TOMIZER [18] serves as baseline for comparison. Other than
the algorithms discussed in this paper, our implementation
uses the same components as AUTOMIZER.

For the empirical evaluation of our approach, we are in-
terested in the following research questions:

RQ 1: Can sequentialization make finding proofs eas-
ier? We examine (i) the number of successfully verified pro-
grams; (ii) the number of refinement rounds needed to find a
proof for a program; and (iii) the size of the computed proof,
as number of Floyd/Hoare-style assertions.

RQ 2: Can sequentialization make proof checking more
efficient? We measure the average time per refinement
round; as well as the overall memory consumption.

ROQ 3: How does the choice of preference order matter?
We compare the discussed measures for instantiations of our
approach with different preference orders.

Benchmarks. We evaluated both tools using two sets of
benchmarks. The first set contains the benchmarks in the
ConcurrencySafety category of the Competition on Software
Verification (SV-COMP’21) [3], a standard benchmark set
in software verification with 203 correct and 847 incorrect
programs. We excluded programs that our approach does not
target (such as safe programs with an unbounded number of
threads). The second set is the benchmark set of the WEAVER
verifier [15] with 182 correct and 1 incorrect programs. These
benchmarks require complex proof arguments and are thus
good to stress test GEMCUTTER’s ability to find simple proofs.

Results. The evaluation was performed using the benchexec
benchmarking tool [5] on a Debian 10.10 machine with an
AMD Ryzen Threadripper 3970X 32-Core processor. We set
a timeout of 900 s and a memory limit of 8000 MB for each
instance. The artifact accompanying this paper [14] contains
the detailed evaluation results as well as all components
needed to reproduce the results.

The quantile plots in Figure 6 (note the logarithmic y-axis)
compare the performance of the tools and clearly illustrate
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the overall time and memory advantage of GEMCUTTER over
AUTOMIZER. A point (x,y) denotes that the x-th fastest pro-
gram to be successfully analysed required y seconds of CPU
time, resp. the program with the x-th least memory consump-
tion required y MB of memory. Table 1 presents the data in
more detail, and additionally includes the total number of
refinement rounds. GEMCUTTER analyses 50 additional pro-
grams using significantly fewer resources. The increase of ca.
50 % for the WEAVER benchmarks is particularly noteworthy.

900 ‘ _ 8,000 ‘ —
CPU time (s) Memory (MB) ;"
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Figure 6. Quantile Plots comparing performance of Au-
TOMIZER (green, dotted) with GEMCUTTER (orange, solid).

Figure 7 illustrates the improvements in proof size and
number of refinement rounds for the set of benchmarks that
both GEMCUTTER and AUTOMIZER can solve (note the loga-
rithmic axes). The number of refinement rounds is reduced
by a factor of up to 25 and the proof size by a factor of up to
65. This concludes our investigation of RQ 1.

Refinement rounds Proof size
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Figure 7. Scatter plots comparing AUTOMIZER (x-axis) with
GEMCUTTER (y-axis) for correct (+) and incorrect (X) pro-
grams

Regarding the efficiency of proof checking (RQ 2), we
have already presented evidence of overall time and memory
improvements. Table 2 shows the average time per refine-
ment round, across all successfully analysed programs, for
AuToMIZER, GEMCUTTER (portfolio), variations of GEMCUT-
TER with only sleep set resp. only persistent set reduction,
and GEMCUTTER with both reduction algorithms but only
the lockstep preference order. Persistent set reduction makes
the most significant contribution to proof check efficiency.

The last column in Table 2 shows that the choice of pref-
erence order can significantly impact proof check efficiency
(RQ 3); orders that do not approximate sequential composi-
tion may incur additional costs. However, this does not mean
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AutoMIzER Portfolio | sleep persistent | lockstep
Proof size for successfully verified correct programs

total 147.7 110.9 | 136.1 155.7 119.6
- SV-COMP 89.0 71.2 71.9 129.4 79.0
- WEAVER 307.1 185.3 | 256.7 215.0 197.1
Time per refinement round (in s) for successfully analysed programs
total 3.41 2.69 3.04 2.16 3.22
- SV-COMP 3.54 2.70 3.00 2.10 3.21
- WEAVER 2.28 2.64 3.22 2.79 3.33

Table 2. Comparison of proof size and proof check efficiency
for AuTomizeR vs different variations of GEMCUTTER.

seq [ 277
that the preference or- g 121
der seq is always the lockstep %6113
best choice: 18 bench-
rand(l) 1153

mark programs (16 cor- 60
rect, 2 incorrect) are suc- rand(2) 168
cessfully analysed by the )

; rand(3) [ 137
portfolio approach, but 62

not when using only the
sequential preference or-
der. Figure 8 illustrates
how well different prefer-
ence orders work for dif-
ferent benchmarks in the set.

We also evaluate the impact of proof-sensitive commuta-
tivity. Without proof-sensitivity, 8 fewer programs from the
benchmark set can be analysed. The average proof size of suc-
cessfully proven programs increases (by 2.53% for SV-COMP
benchmarks and 4.96% for WEAVER benchmarks), as does
the total number of refinement rounds for all successfully
analysed programs (by 0.80 % for SV-COMP benchmarks and
4.53 % for WEAVER benchmarks). The average time per refine-
ment round remains roughly the same. However, we save
around 44 GB of memory across all successfully analysed
programs.

We attribute the success of GEMCUTTER primarily to the
fact that it finds simpler proofs faster for sequentializations.
This is reflected in the significant decrease of the number of
refinement rounds for correct programs, and the decrease
in average proof size. It is noteworthy that GEMCUTTER
does better at finding bugs as well; 14 additional incorrect
programs are detected in the benchmark set. In these cases,
fewer spurious counterexamples from the same equivalence
class have to be explored before encountering a real error.
This is reflected in the significantly decreased number of
refinement iterations needed for incorrect programs.

GEMCUTTER is competitive against bug finding tools. In
SV-COMP’22 [4], the state-of-the-art sequentialization-based
bounded model checker CSEQ [20, 21] won second place in
the category ConcurrencySafety and was able to find bugs
in 303 programs (note that the benchmark set differed from

Figure 8. Incorrect (red) and
correct (blue, hatched) programs
with the best preference order.
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the SV-COMP’21 benchmarks used in this paper). GEMCuUT-
TER also competed [23] and found 299 bugs’. In the demo
category NoDataRace, GEMCUTTER found data races in 69
programs, while CSEQ found data races in 61 programs®. At
the same time, GEMCUTTER soundly verified many bench-
mark programs, winning third place in ConcurrencySafety.
CSEQ on the other hand is unsound for verification, because it
only shows absence of bugs within a certain unrolling bound
for loops and for interleavings up to a bounded number of
context switches [20].

Limitations. We only evaluate two principled preference
orders as well as three randomized orders. Additional (princi-
pled) preference orders accompanied by strategies or heuris-
tics to pick a suitable one might yield better results. In par-
ticular, it would be interesting to have an approach that can
dynamically adjust a choice of a preference order based on
partial verification efforts. The fact that the distribution in
Figure 8 is relatively even (there is no always-optimal order)
suggests that there may be untapped potential here.

Currently, we use the proof to boost commutativity infor-
mation, but the generation of the proof is unaware of this
usage. It is unclear whether the current modest additional
benefits of proof-sensitive commutativity can be substan-
tially boosted if proof generation actively tries to help with
commutativity. The results from the SIEVER tool [16] suggest
that this merits further investigation.

9 Related Work

Existing research on sequentialization for the analysis of
concurrent programs can be roughly classified into two ar-
eas, based on whether the aim is to find bugs or to prove
correctness. Sequentialization has been proposed through a
transformation of the concurrent program to a sequential
program that simulates all its interleavings (e.g. [29]), which
does not have any advantage in the form of simplifying
proofs or dealing with the state explosion. Using Petri net
unfoldings in [10] somewhat improves the state explosion
issue, but still requires to prove all interleavings correct. The
focus of the discussion in this section is on techniques that
do not analyze all program interleavings.

Sequentialization for Bug Finding. Sequentialization
for bug finding, introduced by Qadeer and Wu [32], analyzes
a subset of all program interleavings chosen by limiting the
number of context switches between threads. There is a large
body of work on sequentialization for bug finding [20, 21,
26, 27, 33, 34] which looks at different program models (e.g.
recursive programs) and considers different bounding and
scheduling algorithms for selecting the under-approximation
of the program. We forgo an in-depth discussion of these
techniques since they cannot verify correctness.

"https://sv-comp.sosy-lab.org/2022/results/results-verified/
8https://sv-comp.sosy-lab.org/2022/demo.php
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Reductions for Semi-Interactive Techniques. Program
reductions, although not under this terminology, have been
used as a means of simplifying proofs of concurrent and
distributed programs before. Lipton’s theory of left- resp.
right-movers [28] has been used to simplify programs for
verification. Elmas et al. [11] introduce an interactive proof
technique, where alternating reduction and abstraction steps
are used to prove shared memory concurrent programs cor-
rect. Kragl and Qadeer [25] build on this and introduce the
notion of layered programs, a notation that allows a proof
engineer to compactly lay out the alternating reduction and
abstraction steps. Later work by the same authors [24] builds
on this notation and allows further removal of redundant
interleavings, up to completely sequential programs.

In the context of message-passing distributed systems,
synchronous (rather than sequential) programs are the de-
sired form for reductions: In such reductions, the message
buffers are bounded. Preference orders can help identify
such reductions, in which the buffers effectively disappear.
Almost-synchronous reductions [9] and round-based schemes
[35] fall in this category.

Reductions for Fully-Automated Techniques. Wachter
et al. [36] integrate partial order reduction (POR) in the Im-
pACT verification algorithm. They employ monotonic POR
[22] on the abstract reachability tree (ART) constructed by
ImpAcT, and hence the algorithm ends up verifying a reduc-
tion of the program. Additional expansion of the ART is
necessary to guarantee soundness, and because of this the
computed reduction is not minimal. Wachter et al. employ
conditional commutativity, but based on a separate light-
weight alias analysis of the ART rather than the proof itself.
Chu and Jaffar [8] similarly integrate POR with ImpacT. They
further allow “property-driven” commutativity, by identify-
ing certain fixed patterns in the usage of variables and in the
checked property.

Cassez and Ziegler [6] combine POR with Trace Abstrac-
tion refinement. The reduction implemented in the paper
is not minimal. Since the reduction is computed only once
up-front before beginning the verification process, it can not
take advantage of any information derived from the proof.
By contrast, we use proof assertions for conditional commu-
tativity and we compute the reduction on the fly and never
construct a full reduction if a feasible error trace is found.

Farzan and Vandikas [15, 16] present a new variant of
Trace Abstraction that integrates reduction, trying to find
one provable reduction in an infinite class of reductions. Enu-
meration of all reductions comes at a high complexity cost.
They have a guarantee of finding the simplest proof when
it matters, but lose on scalability when it does not matter
greatly. By contrast, our approach simply chooses one reduc-
tion and commits to it, in the hope it can be proven correct.
Our aim in this work is to strike a balance between proof
simplicity and proof check efficiency. On a more technical
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level, we give details about the relation between the different
classes of minimal reductions in Section 4.
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