
Recursion Synthesis with Unrealizability Witnesses

Azadeh Farzan

Department of Computer Science

University of Toronto

Toronto, Canada

azadeh@cs.toronto.edu

Danya Lette

Department of Computer Science

University of Toronto

Toronto, Canada

danya@cs.toronto.edu

Victor Nicolet

Department of Computer Science

University of Toronto

Toronto, Canada

victorn@cs.toronto.edu

Abstract

We propose SE
2
GIS, a novel inductive recursion synthesis

approach with the ability to both synthesize code and declare

a problem unsolvable. SE
2
GIS combines a symbolic variant

of counterexample-guided inductive synthesis (CEGIS) with

a new dual inductive procedure, which focuses on proving a

synthesis problem unsolvable rather than finding a solution

for it. A vital component of this procedure is a new algo-

rithm that produces a witness, a set of concrete assignments

to relevant variables, as a proof that the synthesis instance is

not solvable. Witnesses in the dual inductive procedure play

the same role that solutions do in classic CEGIS; that is, they

ensure progress. Given a reference function, invariants on

the input recursive data types, and a target family of recur-

sive functions, SE
2
GIS synthesizes an implementation in this

family that is equivalent to the reference implementation,

or declares the problem unsolvable and produces a witness

for it. We demonstrate that SE
2
GIS is effective in both cases;

that is, for interesting data types with complex invariants,

it can synthesize non-trivial recursive functions or output

witnesses that contain useful feedback for the user.

CCS Concepts: • Software and its engineering→ Auto-

matic programming;Automatic programming; Software
verification; • Theory of computation→ Invariants; Pro-
gram specifications; Abstraction; Program schemes.

Keywords: Program Synthesis, Functional Programming,

Invariants, Unrealizability, Recursion, Abstraction

ACM Reference Format:

Azadeh Farzan, Danya Lette, and Victor Nicolet. 2022. Recursion

Synthesis with Unrealizability Witnesses. In Proceedings of the 43rd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI ’22), June 13–17, 2022, San Diego,
CA, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.
1145/3519939.3523726

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9265-5/22/06. . . $15.00

https://doi.org/10.1145/3519939.3523726

1 Introduction

Recursive program synthesis has received a lot of attention

in recent years [1, 10–12, 27, 32, 34]. The specific setup of

these synthesis problems and their solution strategies vary

greatly.

In this paper, we address the problem of synthesizing a

recursive function whose behaviour is equivalent to a given

(reference) implementation. We assume that the programmer

has access to such an implementation of 𝑓 : 𝜏 → 𝐷 on a

recursive data type 𝜏 , and now wishes to have an equivalent

implementation 𝑔 : 𝜃 → 𝐷 on a new recursive data type 𝜃 .

This can be motivated, for example, by the fact that a more

efficient computation can be performed on 𝜃 . We propose

a synthesis algorithm that can automatically synthesize 𝑔

so that the programmer need not implement it from scratch.

More precisely, the recursion synthesis problem is defined

by the following components:

• a reference function 𝑓 : 𝜏 → 𝐷 ,

• a representation function 𝑟 : 𝜃 → 𝜏 that maps objects

of type 𝜃 to objects of type 𝜏 ,

• a type invariant 𝐼𝜏 : 𝜏 → Bool for 𝜏 , and
• a type invariant 𝐼𝜃 : 𝜃 → Bool for 𝜃 .

The following specification then defines the synthesis prob-

lem for a family of recursive functions G:
∃𝑔 ∈ G ∀𝑥 : 𝜃 · 𝐼𝜃 (𝑥) ∧ 𝐼𝜏 (𝑟 (𝑥)) ⇒ 𝑔(𝑥) = (𝑓 ◦ 𝑟) (𝑥) (1)

Intuitively, G is used to communicate the specific recursive

solution intended by the user; more precisely, it encodes high

level stipulations such as traversal strategies and time com-

plexity budgets
1
. The goal is to either synthesize a solution

for this specification, or produce a witness for its unrealiz-
ability. A witness is useful feedback for the user on why the

problem cannot be solved, and can be used to root cause the

unrealizability of the synthesis goal. This gives our synthesis

technique the means to have a meaningful interaction with

the user in revising problematic specifications. Most syn-

thesis techniques focus on solutions exclusively, although

recently there has been some interest [15, 16, 23] in address-

ing the unrealizability problem for synthesis. These efforts,

however, have been limited to non-recursive code.

Dependable solver support for synthesis is only avail-

able for a limited family of non-recursive base types. We

present a novel inductive synthesis algorithm for solving

1
In Section 3, this notion is fully formalized, but the details are not required

for the high level exposition here.

https://doi.org/10.1145/3519939.3523726
https://doi.org/10.1145/3519939.3523726
https://doi.org/10.1145/3519939.3523726

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Azadeh Farzan, Danya Lette, and Victor Nicolet

the recursion synthesis problem that uses existing (standard)

solvers for non-recursive functions at its core. In the spirit

of counterexample-guided inductive synthesis (CEGIS)[37],

our technique solves the recursion synthesis problem by it-

erating through a series of non-recursive approximations of
the original specification (Equation 1). In sharp contrast to

CEGIS, these non-recursive approximations are not strict

under-approximations of Equation 1. This requires a para-

digm shift in the mechanisms used for revising the approxi-

mate specifications.

1.1 Partial Bounding

As a very simple example, let us assume that 𝜏 and 𝜃 are both

of type List (non-empty cons-lists). In addition, there is a type

invariant on 𝜃 asserting that lists are sorted in increasing

order. The representation function 𝑟 is simply the identity

function. Consider a reference function min : List → Int
that computes the smallest element of a non-empty list.

The goal is to synthesize a function min𝑠 : List → Int
that computes the smallest element of a sorted list in con-
stant time. ↓ is shorthand for a binary operator that returns

the minimum of its two operands. One can immediately

observe that the implementation of min (for general lists)

is already a valid solution for min𝑠 . This is precisely why

List = Elt (𝐴) | Cons(𝐴, List)
min(Elt (𝑎)) → 𝑎

min(Cons(𝑎, ℓ)) → 𝑎 ↓ min(ℓ)
min𝑠 (Elt (𝑎)) → 𝑏1 (𝑎)
min𝑠 (Cons(𝑎, ℓ)) → 𝑏2 (𝑎)

the user needs to ex-

press their intent for

a constant time solu-

tion using the recursion

skeleton for min𝑠 illus-

trated here. It is para-

metric on two unknown

functions 𝑏1 and 𝑏2, but only admits constant-time solutions

due to the lack of any recursive calls on the list.

The unknown functions 𝑏1 and 𝑏2 are constrained by the

following specification (an instantiation of Equation 1):

∃𝑏1, 𝑏2 · ∀ℓ : list · sorted (ℓ) ⇒ min𝑠 (ℓ) = min(ℓ) (2)

A symbolic CEGIS-style routine would instantiate ℓ as lists of

size one, two, or more, containing symbolic elements, in or-

der to transform the above specification into a recursion-free

specification. Recently, we introduced partial bounding [10]

as an alternative technique that can significantly improve

recursion synthesis. The thesis of partial bounding is that it

is not strictly necessary to bound every instance of recursion
(e.g. instances of ℓ above) in the specification to obtain a

recursion-free specification but, rather, this bounding can be

done parsimoniously. With partial bounding, some recursive

calls with recursively typed inputs are encapsulated by appro-

priately typed variables that stand in for the results of those

calls. For example, if every instance of ℓ appears as min(ℓ)
or min𝑠 (ℓ), then each can be simply replaced by a variable 𝑣

of type integer (i.e. the return type of both functions). This

will transform the recursive constraints from Equation 2 into

recursion-free ones, if we temporarily overlook the invariant

sorted (ℓ):

b1(a) = a

b2(a) = a # v

<latexit sha1_base64="si1OpJnFYEO4kO1NtbDSoldILhk=">AAACZnicbZBNS8NAEIa38avWr6qIBy+LRVGRkhRBL0LRi0cFq0JTymQzrYubTdjdqCXk//kX/Ade9KpHt7GIVgcWXt5ndmZ4g0RwbVz3ueRMTE5Nz5RnK3PzC4tL1eWVKx2nimGLxSJWNwFoFFxiy3Aj8CZRCFEg8Dq4Ox3y63tUmsfy0gwS7ETQl7zHGRhrdauBH2CfywwE78u9vJL5xcxMYZjToOvlO7BLt48pUN8fh40fMIwfJCgVP9B7Sis+yvB7ZLdac+tuUfSv8EaiRkZ13q2+2nEsjVAaJkDrtucmppOBMpwJzCt+qjEBdgd9bFspIULdyYrTcrplnZD2YmWfNLRwf/7IINJ6EAW2MwJzq8fZ0PyPtVPTO+pkXCapQcm+FvVSQU1Mh8HSkCtkRgysAKa4vZWyW1DAjI3/15bH4qj9IbUst/l442n8FVeNundQP7xo1Jono6TKZINskh3ikUPSJGfknLQII0/kjbyTj9KLs+isOetfrU5p9GeV/CqHfgJmibmm</latexit>

9b1, b2 8a : int , ` : list

<latexit sha1_base64="MWgmlpblrRpb627mm+H/hR9e9n4=">AAACXXicbZDNSgMxFIXT0WqtVasuXLgJFsFFKTOlUHFVdOOygvWHTimZ9FaDmR+SO9IyzLP5HK5cuVRfwcy0oLZeCBy+e5N7crxICo22/VqwVlaLa+uljfJmZWt7p7q7d6PDWHHo8VCG6s5jGqQIoIcCJdxFCpjvSbj1ni6y/u0zKC3C4BqnEQx89hCIseAMDRpW712YmC2aJm7+WKJglFJv6KT1BdJMXeqOQ8WkpOyMuj7DR4GJCDCtUxek/GGZ73RYrdkNOy+6LJy5qJF5dYfVD3cU8tiHALlkWvcdO8JBwhQKLiEtu7GGiPEn9gB9IwPmgx4kuceUHhsyosaeOQHSnP6+kTBf66nvmcnMpF7sZfC/Xj/G8enA/DKKEQI+WzSOJcWQZnnSkVDAUU6NYFwJ45XyR6YYR5P6ny0ZNrA+mVk2+TiLaSyLm2bDaTXaV61a53yeVIkckiNyQhzSJh1ySbqkRzh5Ie/kk3wV3qyiVbG2Z6NWYX5nn/wp6+AbRwC51g==</latexit>

b1(a) = a

b2(a) = a # min(`)

<latexit sha1_base64="bFlNTmYlDHmxp2bv2vZLbfbtnn4=">AAACd3icbVHLSsNAFJ3EV62vqksXDhalipSkCLoRRDcuFawKTSk3k9s6OJmEmYlaQj7Uj/ADXOkkFtHqhYHDOfdxOBOmgmvjea+OOzM7N79QW6wvLa+srjXWN251kimGXZaIRN2HoFFwiV3DjcD7VCHEocC78PGi1O+eUGmeyBszTrEfw0jyIWdgLDVo6CDEEZc5CD6SB0U9D6qducKooOHAL1qwT/dOKdAgmBY7P8QoeZagVPJMgxjMAzd5zGXRClCIfUrrAcro+8ag0fTaXlX0L/AnoEkmdTVovNn9LItRGiZA657vpaafgzKcCSzqQaYxBfYII+xZKCFG3c8rrwXdtUxEh4myTxpasT8ncoi1Hseh7Syd62mtJP/TepkZnvRzLtPMoGRfh4aZoCahZdI04gqZEWMLgCluvVL2AAqYsf/x68pLZeqwVK1W2Hz86TT+gttO2z9qH193mmfnk6RqZIvskBbxyTE5I5fkinQJI6/kw6k5i867u+3uua2vVteZzGySX+X6n8IMvuU=</latexit>

9b1, b2 8a, v : int

<latexit sha1_base64="POQeKamdvCdF4YUacItGyky+2IQ=">AAACTHicbZDLSgMxFIYz9Vbvoy7dBIvgopQZKVRcFd10qWC10Cklk57a0MyF5ExpGeaVfBRXblzoG7hzJ4KZtgttPRD4+c5Jzp/fj6XQ6DivVmFldW19o7i5tb2zu7dvHxze6yhRHJo8kpFq+UyDFCE0UaCEVqyABb6EB394nfcfRqC0iMI7nMTQCdhjKPqCMzSoazc8GJstmqbe9LFUQS+jftfNygvkPPOo148Uk5KyMh1dUi9gOBCYihAz2rVLTsWZFl0W7lyUyLxuuvaH14t4EkCIXDKt264TYydlCgWXkG15iYaY8SF7hLaRIQtAd9KppYyeGtKjxo05IdIp/X0jZYHWk8A3k7lJvdjL4X+9doL9i475UZwghHy2qJ9IihHN46M9oYCjnBjBuBLGK+UDphhHE/KfLTk2sDyeWTb5uItpLIv784pbrdRuq6X61TypIjkmJ+SMuKRG6qRBbkiTcPJEXsgbebeerU/ry/qejRas+Z0j8qcK6z/ig7U1</latexit>

LabelPartial Bounding

<latexit sha1_base64="NGlalDyIlMgwjSfvjSKY2+4C5Lk=">AAACFHicbVDLSsNAFL3xWesr6tLNYBFcSEmKUJelblxWsA9oQ5lMpu3QySTMTIol9DdcudWvcCdu3fsR/oOTNgvbemDgcM69cw/HjzlT2nG+rY3Nre2d3cJecf/g8OjYPjltqSiRhDZJxCPZ8bGinAna1Exz2oklxaHPadsf32V+e0KlYpF41NOYeiEeCjZgBGsj9W27gaVmmKN6lIiAiWHfLjllZw60TtyclCBHo2//9IKIJCEVmnCsVNd1Yu2l2beE01mxlygaYzLGQ9o1VOCQKi+dJ5+hS6MEaBBJ84RGc/XvRopDpaahbyZDrEdq1cvE/7xuoge3XspEnGgqyOLQIOFIRyirAQVMUqL51BBMJDNZERlhiYk2ZS1dyWQjXj8tIpt+3NU21kmrUnZvytWHSqlWz5sqwDlcwBW4UIUa3EMDmkBgAi/wCm/Ws/VufVifi9ENK985gyVYX79KEZ8x</latexit>

The CEGIS-style algorithm of [10] relies on an invariant that

the non-recursive approximations are always strict under-

approximations of the original specification. The problem

setup in [10] is a limited instantiation of the problem posed

in this paper. In particular, the type invariants (e.g. sorted (ℓ))
are not taken into account by [10]. Additionally, unrealiz-

ability outcomes do not exist in the technique of [10].

In the absence of the fact that ℓ is sorted, the constraints

illustrated above are unrealizable, since no such function 𝑏2
exists for arbitrary lists. The invariant sorted (ℓ) limits the

valid choices for ℓ in the recursive constraints to sorted lists

only. Yet, in the recursion-free constraints, having eliminated

ℓ , one needs a semantically equivalent invariant constraining

the participating symbols (e.g. 𝑎 and 𝑣). In this case, from the

fact that ℓ is sorted, one can infer that 𝑎 ≤ min(ℓ); that is,
the first element of a sorted list is smaller than or equal to

the minimum element of the tail of the same list. Therefore,

the appropriate (realizable) version of the second constraint

becomes 𝑎 ≤ 𝑣 ⇒ 𝑏2 (𝑎) = 𝑎 ↓ 𝑣 . But, how can an inductive

synthesis algorithm be guided to infer invariants of this type?

The key point is that 𝑎 ≤ min(ℓ) is not just about the
sortedness of ℓ . It is a non-trivial fact about how the func-

tion min behaves on a sorted list Cons(𝑎, ℓ). Such facts need

to be inferred from the top invariant through an elaborate

process. If one starts by approximating the invariant 𝑎 ≤ 𝑣

with a general placeholder such as true, then the approxi-

mate recursion-free specification is no longer a strict under-

approximation of the original specification; observe that the

original specification is realizable while the approximation

true ⇒ 𝑏2 (𝑎) = 𝑎 ↓ 𝑣 is not. Therefore, one requires the

means to revise unrealizable (approximate) specifications,

which are conspicuously absent in CEGIS-style algorithms.

1.2 Revising Unrealizable Approximations

Consider a dual (to CEGIS) inductive algorithm A that, by

default, assumes that the high level synthesis specification

Ψ is unrealizable and aims to generate a witness to this un-

realizability. A uses a sequence 𝜓0,𝜓1, . . . of approximate

specifications in place of Ψ, where each approximation𝜓𝑖 is

unrealizable. At each round 𝑖 , A produces an unrealizability

witness 𝑤𝑖 for 𝜓𝑖 , with the hope that 𝑤𝑖 also certifies the

unrealizability of Ψ. If not,𝑤𝑖 is used to revise𝜓𝑖 in the next

round to𝜓𝑖+1. The focus ofA is on unrealizability; it shrinks

the set of possible witnesses in each round until it finds a

witness to the unrealizability of Ψ. A witness𝑤𝑖 in A plays

the same role that a counterexample does in CEGIS, and it is

as essential.

Recursion Synthesis with Unrealizability Witnesses PLDI ’22, June 13–17, 2022, San Diego, CA, USA

NO

YES

<latexit sha1_base64="5oXb11hQIz7JRQZXEvqcDXh5z6g=">AAACDXicdZDNTgIxFIU7+If4N+rSTSOYuCIzAwI7iW50h4mACUxIp3SgoTOdtB0MmfAMvoBbfQN3xq3P4Av4HHYAEzF6kiZfzr039/Z4EaNSWdaHkVlZXVvfyG7mtrZ3dvfM/YOW5LHApIk54+LOQ5IwGpKmooqRu0gQFHiMtL3RZVpvj4mQlIe3ahIRN0CDkPoUI6WtnmleS1i4L0AZxYLyWJ73zLxVtKzSWbkGZ1CuluZQcWxoa0iVBws1euZnt89xHJBQYYak7NhWpNwECUUxI9NcN5YkQniEBqSjMUQBkW4yu3wKT7TThz4X+oUKztyfEwkKpJwEnu4MkBrK37XU/KvWiZVfcxMaRrEiIZ4v8mMGFYdpDLBPBcGKTTQgLKi+FeIhEggrHdbSltTW5lQH8/17+D+0nKJdKTo3Tr5+sYgoC47AMTgFNqiCOrgCDdAEGIzBI3gCz8aD8WK8Gm/z1oyxmDkESzLevwBS6ZvT</latexit>

Is w spurious?

<latexit sha1_base64="6R0iw/gvG1sIx4ugMH/HXgZ/ukw=">AAACD3icdZBNSgNBEIV7/I3/Y1y6aQyCqzCTqMky6EKXEUwixBB6OhVt0tMzdNeoYcghvIBbvYE7cesRvIDnsCeJoKIPGj5eVVHVL4ilMOh5787M7Nz8wmJuaXlldW19w93MN02UaA4NHslIXwTMgBQKGihQwkWsgYWBhFYwOM7qrRvQRkTqHIcxdEJ2pURfcIbW6rr5E1CgGQJl9FagAmO6bsErel75YL9Kx7BfKU/gsORT30KmApmq3nU/LnsRT0JQyCUzpu17MXZSplFwCaPly8RAzPiAXUHbomIhmE46vn1Ed63To/1I26eQjt3vEykLjRmGge0MGV6b37XM/KvWTrBf7aRCxQmC4pNF/URSjGgWBO0JDRzl0ALjWthbKb9mmnG0cf3YktnWHNlgvn5P/4dmqegfFktnpULtaBpRjmyTHbJHfFIhNXJK6qRBOLkjD+SRPDn3zrPz4rxOWmec6cwW+SHn7RPP8J08</latexit>

Generate a witness
<latexit sha1_base64="T9FOG0gA2T9NYXnjFDXHKQ8VRHw=">AAACE3icdVDLSsNAFJ34rPUVFdy4GWwFVyVJa9tl0Y3LCvYBbSiT6aQdOpmEmYlSYz/DH3Crf+BO3PoB/oDf4aStYEUPXDiccy/33uNFjEplWR/G0vLK6tp6ZiO7ubW9s2vu7TdlGAtMGjhkoWh7SBJGOWkoqhhpR4KgwGOk5Y0uUr91Q4SkIb9W44i4ARpw6lOMlJZ65mH+Ng9VCGOupxi9Qx5lVI17Zs4qWFbxrFSFU1KqFGek7NjQ1iRFDsxR75mf3X6I44BwhRmSsmNbkXITJBTFjEyy3ViSCOERGpCOphwFRLrJ9P4JPNFKH/qh0MUVnKo/JxIUSDkOPN0ZIDWUv71U/MvrxMqvugnlUawIx7NFfszSh9MwYJ8KghUba4KwoPpWiIdIIKx0ZAtbUlmLEx3M9/fwf9J0Cna54Fw5udr5PKIMOALH4BTYoAJq4BLUQQNgcA8ewRN4Nh6MF+PVeJu1LhnzmQOwAOP9C60ZnsU=</latexit>

w to unrealizability

<latexit sha1_base64="VYxb7eTa7qmHBwGhdXW3YXNEj/A=">AAACFHicdZDLTgIxFIY7XhFvqAsXbhrBxBWZAQSWRBe6xEQuCUxIpxygodOZtB0TQuY1fAG3+gbujFv3voDPYQcwEaN/0uTPd87J6fm9kDOlbfvDWlldW9/YTG2lt3d29/YzB4dNFUSSQoMGPJBtjyjgTEBDM82hHUogvseh5Y2vknrrHqRigbjTkxBcnwwFGzBKtEG9zPE1CJBEAyZYBTxKKM6pXC+TtfO2XbwoVfHMlCrFuSkXHOwYkyiLFqr3Mp/dfkAjH4SmnCjVcexQu1MiNaMc4nQ3UhASOiZD6BgriA/Knc4OiPGZIX08CKR5QuMZ/TkxJb5SE98znT7RI/W7lsC/ap1ID6rulIkw0iDofNEg4lgHOEkD95kEqvnEGEIlM3/FdEQkodpktrQlwQbGJpjv6/H/plnIO+V84baQrV0uIkqhE3SKzpGDKqiGblAdNRBFMXpET+jZerBerFfrbd66Yi1mjtCSrPcvvv+euQ==</latexit>

Generate a solution s

<latexit sha1_base64="Zl3rwmc8FJdyNm5CZzVaUxjmCJg=">AAACGXicdZDLSsNAFIYnXmu9RV3qYrARXJUkrW13Ft3oroK9QBvKZDpth04yYWYilNCNr+ELuNU3cCduXfkCPoeTtoIV/WHg5zvncOb8fsSoVLb9YSwtr6yurWc2sptb2zu75t5+Q/JYYFLHnHHR8pEkjIakrqhipBUJggKfkaY/ukzrzTsiJOXhrRpHxAvQIKR9ipHSqGseXUtoSQsiKDmLUwYVh1anJql13jVzdt62C2fFCpyaYrkwMyXXgY42qXJgrlrX/Oz0OI4DEirMkJRtx46UlyChKGZkku3EkkQIj9CAtLUNUUCkl0yvmMATTXqwz4V+oYJT+nMiQYGU48DXnQFSQ/m7lsK/au1Y9SteQsMoViTEs0X9mKWHppHAHhUEKzbWBmFB9V8hHiKBsNLBLWxJsYYTHcz39fB/03DzTinv3ri56sU8ogw4BMfgFDigDKrgCtRAHWBwDx7BE3g2HowX49V4m7UuGfOZA7Ag4/0LyRKfrg==</latexit>

Is s a solution to ?

NO

NO

YES

YES

<latexit sha1_base64="tGimbgpMkzbJAVgxLedqcohw3SQ=">AAACDXicdZBLTgJBEIZ7fCK+Rl266QgmrsgMILAkunGJRh4JTEhPU0CHnke6eyYhE87gBdzqDdwZt57BC3gOewATMfonnXz5qypV/bshZ1JZ1oextr6xubWd2cnu7u0fHJpHxy0ZRIJCkwY8EB2XSODMh6ZiikMnFEA8l0PbnVyn9XYMQrLAv1fTEByPjHw2ZJQobfVN8w5iJgHnezER4Zjl+2bOKlhW6bJcw3MoV0sLqBRtbGtIlUNLNfrmZ28Q0MgDX1FOpOzaVqichAjFKIdZthdJCAmdkBF0NfrEA+kk88tn+Fw7AzwMhH6+wnP350RCPCmnnqs7PaLG8nctNf+qdSM1rDkJ88NIgU8Xi4YRxyrAaQx4wARQxacaCBVM34rpmAhClQ5rZUtqa3Omg/n+Pf4fWsWCXSkUb4u5+tUyogw6RWfoAtmoiuroBjVQE1EUo0f0hJ6NB+PFeDXeFq1rxnLmBK3IeP8CspScCw==</latexit>

Revise '
<latexit sha1_base64="NL/OmslwebMvF8tu3oZdYLxATD0=">AAACB3icdZDLTsJAFIaneEO8oS7dTAQTV6QtCCyJblxiIpcEGjIdpjBhOm3moiEND+ALuNU3cGfc+hi+gM/hFDARo38yyZf/nJNz5vdjRqWy7Q8rs7a+sbmV3c7t7O7tH+QPj9oy0gKTFo5YJLo+koRRTlqKKka6sSAo9Bnp+JOrtN65I0LSiN+qaUy8EI04DShGylh9oRmBkVaweF8c5At2ybbLF5U6nEOlVl5A1XWgYyBVASzVHOQ/+8MI65BwhRmSsufYsfISJBTFjMxyfS1JjPAEjUjPIEchkV4yv3kGz4wzhEEkzOMKzt2fEwkKpZyGvukMkRrL37XU/KvW0yqoewnlsVaE48WiQDOoIpgGAIdUEKzY1ADCgppbIR4jgbAyMa1sSW1jzkww37+H/0PbLTnVknvjFhqXy4iy4AScgnPggBpogGvQBC2AQQwewRN4th6sF+vVelu0ZqzlzDFYkfX+BeVbmgU=</latexit>

rule out w

<latexit sha1_base64="8f/IqGJbCm2pgQH78sP76jJJG/c=">AAACB3icdZDLTgIxFIY7eEO8oS7dNIKJKzIDCCyJblxiIkICE9IpHWjotJNeTMiEB/AF3OobuDNufQxfwOewA5iI0T9p8uU/5+Sc/kHMqNKu++Fk1tY3Nrey27md3b39g/zh0Z0SRmLSxoIJ2Q2QIoxy0tZUM9KNJUFRwEgnmFyl9c49kYoKfqunMfEjNOI0pBhpa/WlYQQKo2FRFQf5glty3cpFtQHnUK1XFlAre9CzkKoAlmoN8p/9ocAmIlxjhpTqeW6s/QRJTTEjs1zfKBIjPEEj0rPIUUSUn8xvnsEz6wxhKKR9XMO5+3MiQZFS0yiwnRHSY/W7lpp/1XpGhw0/oTw2mnC8WBQaBrWAaQBwSCXBmk0tICypvRXiMZIIaxvTypbUtubMBvP9e/g/3JVLXq1UvikXmpfLiLLgBJyCc+CBOmiCa9ACbYBBDB7BE3h2HpwX59V5W7RmnOXMMViR8/4F3veaAQ==</latexit>

rule out s

<latexit sha1_base64="tGimbgpMkzbJAVgxLedqcohw3SQ=">AAACDXicdZBLTgJBEIZ7fCK+Rl266QgmrsgMILAkunGJRh4JTEhPU0CHnke6eyYhE87gBdzqDdwZt57BC3gOewATMfonnXz5qypV/bshZ1JZ1oextr6xubWd2cnu7u0fHJpHxy0ZRIJCkwY8EB2XSODMh6ZiikMnFEA8l0PbnVyn9XYMQrLAv1fTEByPjHw2ZJQobfVN8w5iJgHnezER4Zjl+2bOKlhW6bJcw3MoV0sLqBRtbGtIlUNLNfrmZ28Q0MgDX1FOpOzaVqichAjFKIdZthdJCAmdkBF0NfrEA+kk88tn+Fw7AzwMhH6+wnP350RCPCmnnqs7PaLG8nctNf+qdSM1rDkJ88NIgU8Xi4YRxyrAaQx4wARQxacaCBVM34rpmAhClQ5rZUtqa3Omg/n+Pf4fWsWCXSkUb4u5+tUyogw6RWfoAtmoiuroBjVQE1EUo0f0hJ6NB+PFeDXeFq1rxnLmBK3IeP8CspScCw==</latexit>

Revise '

<latexit sha1_base64="c05cQKmYX2muMCEurxxYLjOQByE=">AAACEXicdVDLTgIxFO3gC/E1PnZuGomJKzIDCCyJblxiIo8EJqRTOtDQdiZtxwQmfIU/4Fb/wJ1x6xf4A36HHcBEjJ6kybnn3pN7e/yIUaUd58PKrK1vbG5lt3M7u3v7B/bhUUuFscSkiUMWyo6PFGFUkKammpFOJAniPiNtf3yd9tv3RCoaijs9iYjH0VDQgGKkjdS3TxoyNLMcxsLYGJ0iU/XtvFNwnNJluQbnpFwtLUil6ELXkBR5sESjb3/2BiGOOREaM6RU13Ui7SVIaooZmeV6sSIRwmM0JF1DBeJEecn8+hk8N8oABqE0T2g4V386EsSVmnDfTHKkR+p3LxX/6nVjHdS8hIoo1kTgxaIgZlCHMI0CDqgkWLOJIQhLam6FeIQkwtoEtrIllY04M8F8/x7+T1rFglspFG+L+frVMqIsOAVn4AK4oArq4AY0QBNgMAWP4Ak8Ww/Wi/VqvS1GM9bScwxWYL1/AedjnmY=</latexit>

Problem unrealizable

<latexit sha1_base64="J2UwvVcREirnOP82Rb3y78MAw8E=">AAACEXicdZDLTgIxFIY7eEO84WXnppGYuCIzgMCS6MYlRgETmJBOOUBDpzNpOyYw4Sl8Abf6Bu6MW5/AF/A57AAmYvRPmnz5zzk5p78Xcqa0bX9YqZXVtfWN9GZma3tndy+7f9BUQSQpNGjAA3nnEQWcCWhopjnchRKI73FoeaPLpN66B6lYIG71OATXJwPB+owSbaxu9ugm4FGCWI2FHoJiE+h1szk7b9vF81IVz6BUKc6hXHCwYyBRDi1U72Y/O72ARj4ITTlRqu3YoXZjIjWjHKaZTqQgJHREBtA2KIgPyo1n10/xqXF6uB9I84TGM/fnREx8pca+Zzp9oofqdy0x/6q1I92vujETYaRB0PmifsSxDnASBe4xCVTzsQFCJTO3YjokklBtAlvaktjGnJpgvn+P/4dmIe+U84XrQq52sYgojY7RCTpDDqqgGrpCddRAFE3QI3pCz9aD9WK9Wm/z1pS1mDlES7LevwBdNJ6u</latexit>

Solution synthesized

<latexit sha1_base64="NYETC3ukTI/yQ31lFnm/xngF/R0=">AAACJ3icbVC7TsMwFHV4lvIKsCCxWLRITFXSAdioYIGtSPQhtVF14zqtVech26koUfkaFgb4FTYEI3/BiNNmoC1HsnR07jm6vseNOJPKsr6MpeWV1bX13EZ+c2t7Z9fc26/LMBaE1kjIQ9F0QVLOAlpTTHHajAQF3+W04Q6u03ljSIVkYXCvRhF1fOgFzGMElJY65uGtxMX2EETUZ0Wsk5w9gg5fdsyCVbImwIvEzkgBZah2zJ92NySxTwNFOEjZsq1IOQkIxQin43w7ljQCMoAebWkagE+lk0wuGOMTrXSxFwr9AoUn6t9EAr6UI9/VTh9UX87PUvG/WStW3oWTsCCKFQ3IdJEXc6xCnNaBu0xQovhIEyCC6b9i0gcBROnSZrZIxR5mrkhSo7aNdVX2fDGLpF4u2Wel8l25ULnKSsuhI3SMTpGNzlEF3aAqqiGCntAzekVvxovxbnwYn1PrkpFlDtAMjO9fD2SmnQ==</latexit>

Is ' realizable?

Partial Bounding Technique from [12]

<latexit sha1_base64="xcsZKGDQL+vTx9FEmJpCz8QpLPw=">AAACIXicdVDNThsxGPRC+S3QQI+9WA2VOK12lyWbYwQ99BgkEiIlq8jrfJtY8dpb24sURXkBXoMX4ErfoDfEreqd58CbpFKDYCRLo5nv0/ibJOdMG8/746ytf9jY3Nre2f24t3/wqXJ41NayUBRaVHKpOgnRwJmAlmGGQydXQLKEw3Uyvij96xtQmklxZSY5xBkZCpYySoyV+pXjJlGGEY7PZSEGTAzxFdCRYD8LwKmSGe76QdyvVD3XqwVhrY49NwzrUXBqSRRG3lkN+643RxUt0exXnnsDSYsMhKGcaN31vdzE0zKKcpjt9goNOaFjMoSupYJkoOPp/JoZ/maVAU6lsk8YPFf/35iSTOtJltjJjJiRfu2V4ltetzBpPZ4ykRcGBF0EpQXHRuKyGjxgCqjhE0sIVcz+FdMRUYQaW+BKSilbcWaL+Xc9fp+0A9cP3egyqDa+LyvaRl/QV3SCfBShBvqBmqiFKLpF9+gB/XLunN/Oo/O0GF1zljuf0Qqcvy8ZKKQ2</latexit>

<latexit sha1_base64="0fXaHl9owxW2Gca6no4h4Yd5irs=">AAAB/nicdVDLSsNAFJ3UV62vqks3g0Wom5DEmHRZdKO7ivYBbSiT6aQdOnkwMxFKKPgDbvUP3Ilbf8Uf8DuctBWs6IELh3Pu5d57/IRRIQ3jQyusrK6tbxQ3S1vbO7t75f2DlohTjkkTxyzmHR8JwmhEmpJKRjoJJyj0GWn748vcb98TLmgc3clJQrwQDSMaUIykkm6r16f9csXQDceynRo0dNuuudaZIq7tGucONHVjhgpYoNEvf/YGMU5DEknMkBBd00iklyEuKWZkWuqlgiQIj9GQdBWNUEiEl81OncITpQxgEHNVkYQz9edEhkIhJqGvOkMkR+K3l4t/ed1UBjUvo1GSShLh+aIgZVDGMP8bDignWLKJIghzqm6FeIQ4wlKls7Qll5U4VcF8fw//Jy1LNx3durEq9YtFREVwBI5BFZjABXVwBRqgCTAYgkfwBJ61B+1Fe9Xe5q0FbTFzCJagvX8BMISWWA==</latexit>

(I)
<latexit sha1_base64="HcSOdPaVM2G9jeSwIk6d4eTQRWI=">AAAB/3icdVDLSsNAFJ3UV62vqks3g0Wom5DEmHRZdGN3FewD2lAm00k7dPJgZiKU0IU/4Fb/wJ249VP8Ab/DSVvBih64cDjnXu69x08YFdIwPrTC2vrG5lZxu7Szu7d/UD48aos45Zi0cMxi3vWRIIxGpCWpZKSbcIJCn5GOP7nO/c494YLG0Z2cJsQL0SiiAcVI5lK10TgflCuGbjiW7dSgodt2zbUuFHFt17h0oKkbc1TAEs1B+bM/jHEakkhihoTomUYivQxxSTEjs1I/FSRBeIJGpKdohEIivGx+6wyeKWUIg5iriiScqz8nMhQKMQ191RkiORa/vVz8y+ulMqh5GY2SVJIILxYFKYMyhvnjcEg5wZJNFUGYU3UrxGPEEZYqnpUtuazEmQrm+3v4P2lbuuno1q1VqV8tIyqCE3AKqsAELqiDG9AELYDBGDyCJ/CsPWgv2qv2tmgtaMuZY7AC7f0LypKWqw==</latexit>

(II)

Figure 1. Overview of SE
2
GIS.

Recently, some progress has been made in producing unre-

alizability witnesses in the context of grammar-based synthe-

sis [15, 16], where the root cause of unrealizability is the lack

of expressivity in the grammar. This makes these routines

unsuitable for the specific usage we require here. As a major

contribution of this paper, we propose a class of unrealiz-

ability witnesses called functional unrealizability witnesses,
and an algorithm for generating them (see Section 6). These

witnesses are used to revise the approximate specifications

effectively to guarantee the progress of an algorithm in the

style of A.

Similar to CEGIS, where a solution to an approximate

specification may not be a solution to the original specifica-

tion, a witness 𝑤𝑖 to the unrealizability of an approximate

specification may not be a witness to the unrealizability of

the original specification. CEGIS uses a verify step to check

the solutions to approximate specifications. Similarly, A re-

quires a step to check whether each𝑤𝑖 is a real or spurious
witness; i.e. not a witness to the unrealizability of the original

specification. A spurious witness triggers another revision

round in A.

1.3 SE
2
GIS

We propose an algorithm called SE
2
GIS that combines the

two inductive algorithms – the partial bounding inductive

synthesis scheme of [10] and the dual algorithmA explained

in Section 1.2 – into one coherent inductive synthesis routine

that solves the recursive specification in Equation 1.

Figure 1 illustrates the overall idea. The recursive spec-

ification of Equation 1 is approximated by a sequence of

non-recursive specifications 𝜑0, 𝜑1, Independent of the

realizability/unrealizability of Equation 1, each 𝜑𝑖 may be

realizable or unrealizable. The top loop is an instance of

the partial bounding symbolic algorithm presented in [10],

which controls the set of symbolic input-outputs. The bot-

tom loop is our new dual inductive algorithm and the most

significant contribution of this paper. This loop is activated

whenever the approximate specification 𝜑 is unrealizable,

which is whenever the (recursion-free) approximation of the

𝐼𝜃 (𝑥) ∧ 𝐼𝜏 (𝑟 (𝑥)) part of the specification is too weak. This

loop controls the approximations of 𝐼𝜃 (𝑥) ∧ 𝐼𝜏 (𝑟 (𝑥)) para-
metric on the current set of symbolic input-outputs that are

set by the top loop.

The two loops work together to form an inductive synthe-

sis algorithm in the following sense. While 𝜑 is realizable,

the top loop makes progress in revising 𝜑 to be closer to the

original specification. If 𝜑 becomes unrealizable, then the

bottom loop revises 𝜑 to be closer to the original specifica-

tion. SE
2
GIS may alternate between the two loops as many

times as necessary until either a solution or an unrealizabil-

ity witness is found. We present soundness and progress

properties for the novel bottom loop, and for SE
2
GIS as the

combination of both loops.

We have implemented SE
2
GIS in a tool called Synduce and

evaluated it on 140 benchmarks. We present experimental

results that demonstrate that SE
2
GIS is substantially better

at performing recursion synthesis than symbolic CEGIS, and

that our proposed functional unrealizability solver is effective
independent of the SE

2
GIS setup.

In summary the contributions of this paper are:

• A new inductive synthesis algorithm for recursion syn-

thesis that (to our knowledge) is the first that uses un-

realizability of approximate specifications for progress

and can output an unrealizability witness.

• A new and interesting class of unrealizability root

causes and an effective algorithm for generating them.

• An implementation and evaluation that demonstrates

that the new ideas proposed in this paper substantially

advance the marker on recursive program synthesis.

2 Motivating Example

Figure 2(a) implements a function, frequency, that computes

the number of times an input parameter x appears in a tree t
(that permits duplicates). The tree has integer-labelled nodes

and leaves, and the recursive function count (in the body of

the function frequency) recursively inspects each node and

increments the count if the label is equal to x.
Suppose the programmer decides to use binary search

trees (which permit duplicates) instead of arbitrary trees

and, therefore, wishes to port the frequency function to

this new data type. The programmer can conjecture that

a more efficient implementation of frequency may exist

for binary search trees. They use the recursion skeleton

in Figure 2(b) to communicate this conjecture to Synduce.

The (non-recursive) functions 𝑢0, 𝑢1 and 𝑢2 are unknown,
and code must be synthesized for them such that target

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Azadeh Farzan, Danya Lette, and Victor Nicolet

let frequency x t =

let rec count = function

| Leaf a -> if a = x then 1 else

0

| Node (a, l, r) ->

count l + count r +

if a = x then 1 else 0

in count t

<latexit sha1_base64="ddFCkiEHQpLzUioSjFAcRkKPZvw=">AAAKJHichVZbb9s2FHa6W+Nd2m6Pe2EWBOgwNZAUx7Gxqeiyru1Dt3VF0xaIg4CSjmzCFOmR1BxP037Ofs3eij3sZb9lh5SUxI6zChBMnfOdC7/viFY840wb3/9n48Y77773/gc3N7sffvTxJ7du3/n0pZaFSuAokVyq1zHVwJmAI8MMh9czBTSPObyKp99Z/6tfQWkmxQuzmMFJTseCZSyhBk2nt98QMophzETJtbH1mBhXXQ6GZAp+KUAkC3JGDIm6hFirgoQkshBoIVkhEpsFXb+Tp0AzQsm9+4TZ38hGTUCQgADXQHwH+lGmQO5Sj3CPqC8tGM32qlNy8lWzUrhqXNekY6KBmu4IRHq5/dPb2/6u398L+wPi7+7tB/u9EBf9wO/7eyTY9d213WmuZ6d3bg5HqUyKHIRJONX6OPBn5qSkyrCEQ9UdFRpmNJnSMRzjUtAc9Enp2K/IDlpSkkmFN/bjrJcjSpprvchjRObUTPSqzxrX+Y4Lkw1OSiZmhUEd6kJZwYmRxEpJUoZqGL7ABU0Uw15JMqGKJgYFX6pizWj0zuqWl3wNaxqtyKEGU1qpqRgX6I0SmqNWO5hYSuQdNTj3EZm55wRFxRDbP+iEzsDDJ5xJlmiz4BCNMimNkAY0+w1GxmQ0Z3zhQDipUzu5OjKqcHFTWMylSptI126ZPyvUDGUYxZkGxUDbhhzCsd6GYLQo8hj3HgkpwILmE1Bg+UIK696x2L0GdYGviyELCxtkcbbVdn9WVY0ragjFbOdqr8mnJ3KukVjcUEZxTl2jaCO1kdA0RarJzA1WwakihUgxNJEKzuONsnKsZHE4W61NNWdmgu9Ag25iDY1XK1vTCvitbdgYJCAKXRbA3aeQ0YKb1mMpDZtOEK8KDjhQTq1WtLGii6qehGQ6Vviqpkv+/CkbT8xjBYutnl+tm4a2Ni2MxOHC6Xb7dzBsv42gZj5hOFy2mWbv6Nppx4JMsA63teoY937LDCfJREE9SJYGpEPAvPYiSqK4qh2sqLzvfePtel9797wtL/L+cO3mSNb/I9bO8nNIt/b9rZgjLQ51uSHfGSQvcoE6FpxnHM4YnuXWnik8diLDY2WfzjhkJqcKj+4ID6tzAOoQhZeerTYtIAYu5/iG2kNbT9ks2rtkvzDgSYB6I9d1y/FYCzabganK548PqzLs+V5zryDzh1RNXwDlVfnkxQ9Pq9L3h/3BYBWFooNokvX6XjAYequZxg2mThOGg8MwXJNm0bbkYzv1vYo6H7O3d4/SNKBgcOAFQ69/pabLdqjkvO0/GAbefs8LriAPeQEXNIR+7/tVRHOqNZj9IHz47RWqflJ42J5jHj0aDq7s0L5fdlWodof7uLv6rrrdEY51IvOc4n/kKOGqbv44OCnL0ZpNbQdVVV0JcvwtxdSMXosGcQUO12a3vC+hnRDrsQ1pS/CWyPURbh6X8BdTuj7CSbcUUYtZo7sjA2dmzlIziUKGn1Db7RcFuX7xMtwNersHP4fbDw6bz46bnc87X3TudoLOQedB50nnWeeok2wMN043Jhts88/NvzbfbP5dQ29sNDGfdZauzX//A/7CetM=</latexit>

let target x t =

let rec g = function

| Leaf a -> u0 x a

| Node (a, l, r) ->

if a < x

then u1 (g l)

else u2 x a (g r)

in g t

<latexit sha1_base64="caRY+hig1m3MT2z/stvocHTHLL8=">AAAKOHichVbbbttGEJXTW6xekrSPfVnXCZAAjEDSsiIjYZC6aRKgaZsGzgWwDGNFDqmFlrvq7rKywrIf1j/pW1+Koq/9gs4uSduSlYYAoeXsmZkzc4YrjmecaeP7f2xceu/9Dz786PJm9+NPPv3sytVrn7/UslAxvIgll+r1mGrgTMALwwyH1zMFNB9zeDWefmP3X/0CSjMpDsxiBkc5zQRLWUwNmo6v/kXIaAwZEyXXxuZjIqu6HAwxVGX4c0IMibqEWJOCmGQkImkhYuuO5l/JU6ApoeT2fXJ95PiUCpKKFMf+dXSmDvODTIDcpB7hHlG3EItWQpj1u0dO3AMhZgJiNUZwndzMCL/VQIBrWIWELo2FqVtdJpCg6Y5AJOcLOr667ff8wU44GBK/t7Mb7PZDXAwCf+DvkKDnu2u701zPjq9dvjtKZFzkIEzMqdaHgT8zRyVVhsUcqu6o0DCj8ZRmcIhLQXPQR6UjVpEbaElIKhXewhBnPe9R0lzrRT5GZE7NRK/uWeO6vcPCpMOjkolZYUDEdaK04MRIYsUlCUOJDF/ggsaKIVcST6iiscERWMpizWj0TmrKS3tN1zRasYcaTGn1pyIrcDeKaY4q3sDAUqIaqNrpHpGpe45RbnSx/EHHdAYePuGUslibBYdolEpphDSg2RsYGZPSnPGFA+HsTu0s68iowvlNYTGXKmk8a+nzZ4WaoQyjcapBMdCWkEO4rrcu6C2KfIy1R0IKsKD5BBTYfmELa+6Y7HaDOsPXybALC+tkcZZqW59VVeOKGkIx2qnaa+LpiZxrbCwWlFKcXkcUbaQ2Epok2Goyc4NVcKpIIRJ0jaWCU3+jrBwrURzOZmtDzZmZ4Pw36MbX0PFqZmtaAb+ThvXBBkShiwJYfQIpLbhpd2xLw4YJ4lXBAQfKqdWKlim6qOpJiKeZkphhaT9/yrKJeaxgsdX3q3XT0OamhZE4XDjdrn4HQ/qtBzXzCcPhsmSa2nHrRjsWZIJ5uM1V+7j3W6Y4SSYK6kGybcB2CJjXu4iSKK5qBysq73v3vJ5317vtbXmR95ujm2Oz/h+xdpafQ7K162+NObbFoc4T8p1B8iIXqGPBecrhhOHpbu2pwmMnMnys7NMJh9TkeGozEeFhdQpAHaLw3LPVpgWMgcs5vqH2NNdTNot2ztnPDHgSoN7Y65ryONOCzWZgqvL54/2qDPu+19wryPwhVdMDoLwqnxx8/7QqfX9vMByuolB0EE2w/sALhnveaqSswdRhwnC4H4ZrwixaSj7Sqe9V1OmYvZs9StOAguEdL9jzBhdyumj7Ss5b/sFe4O32veACcp8XcNaG0O9/u4poTrUGsxuED7++0KofFR62p5hHj/aGFyq075ddFaqtcBerq++q2x3hWMcyzyn+R45irmryh8FRWY7WFLUdVFV1wcn1b8mn7uhb0SAuwOGt0W3fl9BOiPXYpmlL8LaR6z3cPC7hz6Z0vYeTbsmjFrNGd0cGTsycJWYSBb0+w8+q7fabgrx98TLsBf3enZ/C7Qf7zYfH5c6Xna86NztB507nQedJ51nnRSfe+G7j5403G+Xm75t/bv69+U8NvbTR+HzRWbo2//0PFN6Beg==</latexit>

let target x t =

let rec g = function

| Leaf a -> u0 x a

| Node (a, l, r) ->

if a < x

then u1 (g l) (g r)

else u2 x a (g r) (g l)

in g t

<latexit sha1_base64="HgAksAdAYaIR3P+ONsckZN5UMVQ=">AAAKRHichVZbb9s2FHa6W+Pd2u1xL8zSAi2gBpLiuA5aFV3WtX3otq7oDYiDgJKOZMIUaZDUHE/THrd/tv+w/7CXYdjrsENKSmLHXQUopg6/71w/MYpnnGnj+39sXHrn3ffe/+DyZv/Djz7+5NMrVz97qWWpEniRSC7V65hq4EzAC8MMh9czBbSIObyKp1/b/Vc/gtJMiudmMYOjguaCZSyhBk3HV/4iZBxDzkTFtbHxmMjrPgdDDFU5/pwQQ6I+IdakICE5iUhWisTS0fwzeQI0I5TcukeujV0+lYK0JuWxfw3J1GG+kymQG9Qj3CPqJmLRSgizvLvkxD0QYiYgVn0E18iNnPCb9q+62QKBa1gFhi5YA2sofSYwWdMfg0jPF3d8Zdvf8Ye74XBE/J3dvWBvEOJiGPhDf5cEO767tnvt9fT46uU741QmZQHCJJxqfRj4M3NUUWVYwqHuj0sNM5pMaQ6HuBS0AH1UufRqch0tKcmkwlsY4qznGRUttF4UMSILaiZ6dc8a1+0dliYbHVVMzEoDImkCZSUnRhI7aJIyHJfhC1zQRDHMlSQTqmhiUA5LUawZjd5Jk/LSXts1jVbsoQZTWS1QkZe4GyW0wIleR8dS4kxwgqd7RGbuOcHRI8XmDzqhM/DwCRXLEm0WHKJxJqUR0oBmP8HYmIwWjC8cCHU8tbrWkVGl401hMZcqbZmNAIqnpZrhGMZxpkEx0DYhh3Bd7yjIFmURY+2RkAIsaD4BBbZf2MImdwx2q0Wd4Ztg2IWFJVmcTbWrz05V44oaQtHb6bTX+NMTOdfYWCwoo6hhlyjaSGMkNE2x1WTmhFVyqkgpUqQmUsEp3yg7jhUvDmejda7mzExQ/y265Roar0a2phXwW9OwHGxAFDovgNWnkNGSm27HtjRsM0G8KjmgoNy0uqHlii7qRgnJNFcSIyztF09YPjGPFCy2Bn69Tg1dbFoaieJCdbv6HQzT7xjUzCcMxWWTaWvHreudLMgE43Abq+G491tmqCQTBY2QbBuwHQLmzS6iJA5XdcKKqnveXW/Hu+Pd8ra8yPvFpVtgs/4fsVbLzyDd2vO3Yo5tcajzCfnOIHlZCJxjyXnG4YThSW/tmcJjJzI8VvbphENmCjzBmYjwsDoF4Byi8NyznU0HiIHLOb6h9mTXUzaLds/Zzwx4EuC8sddNynGuBZvNwNTVs0cHdRUOfK+9V5DFA6qmz4Hyunr8/NsndeX7+8PRaBWFQwfROhsMvWC07616yltM4yYMRwdhuMbNokvJx3SaexV1KrO3Z4+jaUHB6LYX7HvDCzGdtwMl513+wX7g7Q284ALygJdw1obQH3yzimhPtRazF4QPvrrQqu8VHranmIcP90cXKrTvl12VqqtwD6tr7rrfH6OsE1kUFP9HjhOumuQPg6OqGq8pajuo6/oCyfVvidN09I1oEBfg8Ebvtu9LaDeI9di2aUvwrpHrGU6PS/gzla5nuNEtMZphNuj+2MCJmbPUTKJwJ2D4ibXdfVOQNy9eInawc/uHcPv+Qfvhcbn3Re/L3o1e0Lvdu9973Hvae9FLNl5t1Bu/bvy2+fvmn5t/b/7TQC9ttJzPe0vX5r//AWvChL4=</latexit>

step (1)

<latexit sha1_base64="GuJeflNOkAaz+qMOQihijjDE47Q=">AAAB73icdVDJSgNBEK2JW4xb1KOXxiDEyzCTxclJAl48RjALJEPo6fQkTXoWu3uEMOQnvHhQxKu/482/sSeJoKIPCh7vVVFVz4s5k8qyPozc2vrG5lZ+u7Czu7d/UDw86sgoEYS2ScQj0fOwpJyFtK2Y4rQXC4oDj9OuN73K/O49FZJF4a2axdQN8DhkPiNYaaknFY1R2T4fFkuWWWnUrUYVaeLUnLqTkQurateRbVoLlGCF1rD4PhhFJAloqAjHUvZtK1ZuioVihNN5YZBIGmMyxWPa1zTEAZVuurh3js60MkJ+JHSFCi3U7xMpDqScBZ7uDLCayN9eJv7l9RPlN9yUhXGiaEiWi/yEIxWh7Hk0YoISxWeaYCKYvhWRCRaYKB1RQYfw9Sn6n3Qqpl0znZtKqXm5iiMPJ3AKZbDBgSZcQwvaQIDDAzzBs3FnPBovxuuyNWesZo7hB4y3T0Ixj3c=</latexit>

step (2)

<latexit sha1_base64="X6zVpQqFFcPxDaB/M7QWkTAueIs=">AAAB73icdVDLSgNBEJyNrxhfUY9eBoMQL8vuJnFzkoAXjxHMA5IlzE56kyGzD2dmhRDyE148KOLV3/Hm3zibRFDRgoaiqpvuLj/hTCrL+jBya+sbm1v57cLO7t7+QfHwqC3jVFBo0ZjHousTCZxF0FJMcegmAkjoc+j4k6vM79yDkCyObtU0AS8ko4gFjBKlpa5UkOCycz4olizTqdesegVr4lbdmpuRC6ti17BtWguU0ArNQfG9P4xpGkKkKCdS9mwrUd6MCMUoh3mhn0pICJ2QEfQ0jUgI0pst7p3jM60McRALXZHCC/X7xIyEUk5DX3eGRI3lby8T//J6qQrq3oxFSaogostFQcqxinH2PB4yAVTxqSaECqZvxXRMBKFKR1TQIXx9iv8nbce0q6Z745Qal6s48ugEnaIyspGLGugaNVELUcTRA3pCz8ad8Wi8GK/L1pyxmjlGP2C8fQJDto94</latexit>

(a)

<latexit sha1_base64="riDX4FP2zng7jDUHnNSQUhLWfgs=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CPEY9OIxonlAsoTZSW8yZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb+d++wmV5rF8NJME/YgOJQ85o8ZKD2V62S+W3Iq7AFknXkZKkKHRL371BjFLI5SGCap113MT40+pMpwJnBV6qcaEsjEdYtdSSSPU/nRx6oxcWGVAwljZkoYs1N8TUxppPYkC2xlRM9Kr3lz8z+umJrz2p1wmqUHJlovCVBATk/nfZMAVMiMmllCmuL2VsBFVlBmbTsGG4K2+vE5a1Yp3VandV0v1myyOPJzBOZTBgxrU4Q4a0AQGQ3iGV3hzhPPivDsfy9ack82cwh84nz+LR41S</latexit>

(b)

<latexit sha1_base64="LpnDIkbSpJn9gCrCkbZH8rvpbuI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CPEY9OIxonlAsoTZSW8yZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb+d++wmV5rF8NJME/YgOJQ85o8ZKD+Xgsl8suRV3AbJOvIyUIEOjX/zqDWKWRigNE1Trrucmxp9SZTgTOCv0Uo0JZWM6xK6lkkao/eni1Bm5sMqAhLGyJQ1ZqL8npjTSehIFtjOiZqRXvbn4n9dNTXjtT7lMUoOSLReFqSAmJvO/yYArZEZMLKFMcXsrYSOqKDM2nYINwVt9eZ20qhXvqlK7r5bqN1kceTiDcyiDBzWowx00oAkMhvAMr/DmCOfFeXc+lq05J5s5hT9wPn8AjMyNUw==</latexit>

(c)

<latexit sha1_base64="S7aBpyDJbZKAA3SSWpLwu2u14hs=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CPEY9OIxonlAsoTZSW8yZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb+d++wmV5rF8NJME/YgOJQ85o8ZKD2V22S+W3Iq7AFknXkZKkKHRL371BjFLI5SGCap113MT40+pMpwJnBV6qcaEsjEdYtdSSSPU/nRx6oxcWGVAwljZkoYs1N8TUxppPYkC2xlRM9Kr3lz8z+umJrz2p1wmqUHJlovCVBATk/nfZMAVMiMmllCmuL2VsBFVlBmbTsGG4K2+vE5a1Yp3VandV0v1myyOPJzBOZTBgxrU4Q4a0AQGQ3iGV3hzhPPivDsfy9ack82cwh84nz+OUY1U</latexit>

Flawed Recursion Skeleton

<latexit sha1_base64="fuQMc6mLYdBt6PRrO0pzQPW1aTM=">AAACAnicbVDLSsNAFJ3UV62vqitxM1gEVyUpQl1JQRCX9dEHtKFMJjft0MmDmYlSQnHjr7hxoYhbv8Kdf+MkzUJbDwwczjmXO/c4EWdSmea3UVhaXlldK66XNja3tnfKu3ttGcaCQouGPBRdh0jgLICWYopDNxJAfIdDxxlfpH7nHoRkYXCnJhHYPhkGzGOUKC0NygeXnDyAi2+AxlkK346Bg0q9ilk1M+BFYuWkgnI0B+WvvhvS2IdAUU6k7FlmpOyECMUoh2mpH0uICB2TIfQ0DYgP0k6yE6b4WCsu9kKhX6Bwpv6eSIgv5cR3dNInaiTnvVT8z+vFyjuzExZEsYKAzhZ5MccqxGkf2GUCqOITTQgVTP8V0xERhCrdWkmXYM2fvEjatap1Wq1f1yqN87yOIjpER+gEWaiOGugKNVELUfSIntErejOejBfj3fiYRQtGPrOP/sD4/AEUVpc7</latexit>

Correct Recursion Skeleton

<latexit sha1_base64="qaza3tID1Plt/uZigj8X/yhDr0g=">AAACA3icbVDLSsNAFJ34rPVVdaebwSK4KkkR6koK3bisjz6gDWUyvWmHTjJhZiKUUHDjr7hxoYhbf8Kdf+MkzUJbDwwczrmXO+d4EWdK2/a3tbK6tr6xWdgqbu/s7u2XDg7bSsSSQosKLmTXIwo4C6GlmebQjSSQwOPQ8SaN1O88gFRMhPd6GoEbkFHIfEaJNtKgdNwQUgLV+BZonI3huwlw0KlZtit2BrxMnJyUUY7moPTVHwoaBxBqyolSPceOtJsQqRnlMCv2YwURoRMygp6hIQlAuUmWYYbPjDLEvpDmhRpn6u+NhARKTQPPTAZEj9Wil4r/eb1Y+5duwsIo1hDS+SE/5lgLnBaChyzNz6eGECqZ+SumYyIJ1aa2oinBWYy8TNrVinNRqd1Uy/WrvI4COkGn6Bw5qIbq6Bo1UQtR9Iie0St6s56sF+vd+piPrlj5zhH6A+vzBwYFl8Q=</latexit>

Reference Function

<latexit sha1_base64="cwZ4TYmNGf29LASVavzVeYUyeEw=">AAAB+3icbVDLSgNBEOz1GeMrxqOXwSB4CrtBiCcJCOIxinlAsoTZSW8yZHZ2mZkVQ8ivePGgiFd/xJt/4yTZgyYWNBRV3XR3BYng2rjut7O2vrG5tZ3bye/u7R8cFo6KTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMrmd+6xGV5rF8MOME/YgOJA85o8ZKvULxHkNUKBmSm1SyhVhyy+4cZJV4GSlBhnqv8NXtxyyNUBomqNYdz02MP6HKcCZwmu+mGhPKRnSAHUsljVD7k/ntU3JmlT4JY2VLGjJXf09MaKT1OApsZ0TNUC97M/E/r5Oa8NKfcJmkxr63WBSmgpiYzIIgfa6QGTG2hDLF7a2EDamizNi48jYEb/nlVdKslL2LcvWuUqpdZXHk4ARO4Rw8qEINbqEODWDwBM/wCm/O1Hlx3p2PReuak80cwx84nz/kApRY</latexit>

Figure 2. Synthesizing the frequency function on binary search trees.

becomes equivalent to frequency on inputs that are binary

search trees.

This skeleton is not clever; it distinguishes a base case,

includes the (generally understood) insight of comparing the

label of the node to the input parameter x, and vaguely tries

to be efficient by not recursing on the entire tree in each case.

It is in fact completely wrong: the recursive calls g(l) and
g(r) are bothmisplaced. Note that, without such restrictions,

frequency itself is a valid choice on binary search trees;

therefore, the skeleton plays an essential role.

Since the recursion skeleton is wrong, the synthesis in-

stance is unrealizable. Synduce correctly outputs that it is

unrealizable and generates a witness for this in less than a

second; i.e. two (sets of) inputs to the program that demon-

strate that a solution to the synthesis problem does not exist.

The witness pinpoints 𝑢1 as the problem: both inputs (in

the witness) have the same value for l (and therefore g(l)),
but expect different outcomes for the return value of 𝑢1.

No such function 𝑢1 can exist, which is the precise root

cause of the unrealizability. Figure 2(c) illustrates how the

programmer repairs the skeleton with the guidance of the

tool. First, they replace the argument g(l) of 𝑢1 by g(r)
(step (1) in the figure). The problem remains unrealizable

and Synduce returns a witness that points to 𝑢2 this time,

and to the fact that g(l) is missing as an argument. The

programmer then adds g(l) to the list𝑢2’s arguments
2
. After

this step, the skeleton is correct, and it is optimal in the

following sense: removing any recursive call to g results in
an unrealizable instance.

After the skeleton is repaired, Synduce synthesizes the

following solution for the unknown functions in less than

one second.

let 𝑢0 x a = if a = x then 1 else 0

let 𝑢1 z = z

let 𝑢2 x a y z = if a = x then 1 + y + z else y + z

Unrealizability witnesses play two distinct roles in this

example: (1) as discussed, they can guide the user through

the repair of the wrong skeleton, and (2) once the skeleton

is repaired, they play a vital role in the discovery of the

2
Note that swapping g(r) for g(l) in this step would lead to another

unrealizability witness. Step (2) is taking the short cut here for brevity.

solution by guiding the inference of the required invariants.

For instance, ignoring the invariant, the specification leads

to the following constraint for 𝑢1:

a < x⇒ 𝑢1 (g(r)) = count(r) + count(l). (3)

SE
2
GIS eliminates all the instances of recursion by observing

that g(r) = count(r) and replacing both terms with a fresh

variable 𝑣𝑟 , and by replacing count(l) with another fresh

variable 𝑣𝑙 , both of type integer, resulting in:

a < x⇒ 𝑢1 (𝑣𝑟) = 𝑣𝑟 + 𝑣𝑙 . (4)

This is unrealizable for a similar reason to the example in

Section 1.2. The witness to its unrealizability is a pair of

values for (𝑣𝑟 , 𝑣𝑙): (1, 1) and (1, 2). It is easy to observe that

there exists no function 𝑢1 that takes 1 as an input and re-

turns 2 in one instance and 3 in another. However, since the

original specification is realizable, this cannot be a witness to

the unrealizability of Equation 3. In particular, observe that,

under the assumption a < x, neither 1 nor 2 is a valid value

for 𝑣𝑙 = count(l), since count(l) = 0. The unrealizability

of Equation 4 is precisely due to this missing invariant. The

spurious witnesses help the bottom loop in Figure 1 infer

the (nontrivial) fact that, under the condition 𝑎 < 𝑥 , we have

count(l) = 0. The realizable constraint then becomes:

(𝑎 < 𝑥 ∧ 𝑣𝑙 = 0) ⇒ 𝑢1 (𝑣𝑟) = 𝑣𝑟 + 𝑣𝑙
After learning this invariant, a solution is synthesized. There-
fore, the solution is synthesized after one round of the top

loop (performing the partial bounding) and one round of the

bottom loop of Figure 1.

In the bottom loop, while producing the pair of witnesses

to unrealizability of the approximate specification 𝜑 , the

backend solver can make the job of the synthesis tool harder

if it produces an invalid value for 𝑣𝑟 , for example −1 that

cannot correspond to the number of occurrences of a value.

At the high level, we understand that count(r) is always non-
negative. This information, however, is missing in the tool

and can be another source of unrealizability. In cases like this,

Synduce, using the same mechanism it does for the missing

type invariants, can infer these essential missing invariants

about the reference function to help the refinement process

move ahead. In contrast to our method, the technique in [10]

requires the user to provide such invariants in advance.

Recursion Synthesis with Unrealizability Witnesses PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Synduce manages to synthesize the problem instance of

Figure 2 without bounding any input instances. In cases like

this, once a solution is synthesized, the solution is fully ver-

ified. This is in sharp contrast to the bounded verification

step employed by most tools that target recursion (or loop-

ing). In cases where Synduce performs partial bounding,

even though it cannot claim that the result is fully verified,

there is still more confidence in the correctness of the solu-

tions produced because, for the unbounded inputs, we have

a guarantee of correctness for all instances. A symbolic algo-

rithm that bounds all inputs lacks this feature and takes a

much longer time to synthesize a solution to this problem

(88 seconds compared to one second).

3 Background

The notation introduced in this section is used for formal-

izing the result of applying recursive functions to symbolic

inputs. We assume that all recursion is representable as

pattern-matching recursive schemes [31], which gives us

some well-formedness guarantees.

Recursion Skeletons. Our problemfinds a solution to Equa-

tion 1 within a family of recursion functions G. This family

of functions can be specified as a recursion skeleton:

Definition 3.1 (Recursion Skeleton). LetU be a finite set

of unknown functions from scalar types to scalar types. A

recursion skeleton G[U] is a family of recursive functions

parameterized by the unknown functionsU, such that re-

placing the unknownsU by some implementation in G[U]
results in a fully determined recursive function.

We model the family of recursive functions by recursion

skeletons in order to distinguish a set of unknown scalar

functions, which are the unknowns for which we need an

implementation. An implementation of the function inU is

all that is needed to make the recursive function G[U] fully
defined.

Terms. We make use of a set of symbols that are partitioned
into terminal symbols Σ and an infinite set of typed variables
V . We also reserve a distinguished set of symbols {◦𝑖 }𝑖∈N,
the “holes”, representing placeholders to manipulate expres-

sions and construct precise substitution functions. Terms

are defined by the grammar 𝑆 → 𝑥 | 𝑆 (𝑆) where 𝑥 is a

symbol, and 𝑆 (𝑆) is a function application. Concrete terms
𝑇 (Σ) are the terms containing only terminal symbols. Every

concrete term can be interpreted and has a concrete value.

Symbolic terms 𝑇 (Σ,V) are those containing terminal sym-

bols or variables. The relation ⪰ over symbolic terms is a

partial order where 𝑡 ⪰ 𝑡 ′ iff there exists a substitution

𝜎 : 𝐹𝑉 (𝑡) → 𝑇 (𝐹𝑉 (𝑡 ′) ∪ Σ) such that 𝑡 ′ = 𝜎𝑡 . Single vari-

ables are maximal elements according to this partial order

and concrete terms (of any depth) are minimal.

Types. We use capital letters 𝐴, 𝐵,𝐶 , and 𝐷 to refer to base

types, which are scalar types (Int, Bool,Char, . . .) or tuples of

scalar types (e.g. Int × Int). The set of variables of base type
is denotedV𝐵 .

We write 𝑥 : 𝜏 to denote that 𝑥 is of type 𝜏 . The universal

quantification with 𝑥 ranging over all the values of type 𝜏 is

written ∀𝑥 : 𝜏 . The set of variables of type 𝜏 inV is denoted

V𝜏 . For a finite set of variables 𝑉 = {𝑥1 : 𝜏1, 𝑥2 : 𝜏2, . . .} we
write the quantification ∀𝑥1 : 𝜏1, 𝑥2 : 𝜏2, . . . as ∀®𝑥 ∈ 𝑉 .

Given the distinction between base types and recursive

types, we can differentiate bounded terms, which are sym-

bolic terms where all free variables are of base type, from

unbounded terms, where free variables can be of any type,

including recursive types. An unbounded term 𝑡 is a finite

symbolic term where infinitely many bounded terms are

expansions of 𝑡 .

4 Synthesizing Recursive Functions

In this section, we first present a formal definition of the

problem posed in Section 1 as Equation (1). We then present

the formal definition of recursion-free approximations used

in our inductive synthesis algorithm. Finally, we give an

overview of our solution based on the formal version that

can be used as a road map for Sections 5 and 7.

As a first observation, remark that one can account for

the invariant 𝐼𝜏 of the source type 𝜏 using the representation

function 𝑟 : 𝜃 → 𝜏 and the invariant 𝐼𝜃 of the destination

type 𝜃 . In Equation (1), the quantification is over all possible

values of type 𝜃 , and not values of type 𝜏 . Any constraint

induced by 𝐼𝜏 can be incorporated into a modified represen-

tation function 𝑟 ′ and a type invariant 𝐼 ′
𝜃
. The new specifica-

tion, without 𝐼𝜏 , would be equivalent to the old specification

iff ∀𝑥 : 𝜃 .𝐼 ′
𝜃
(𝑥) ⇔ 𝐼𝜃 (𝑥) ∧ 𝐼𝜏 (𝑟 ′ (𝑥)). For example, if 𝐼𝜏 states

that a list is sorted and all its elements are positive, then the

original representation function can be composed with any

list sorting function, and 𝐼 ′
𝜃
ensures that individual elements

are positive.

The second observation is that the family of functions G
can be effectively and elegantly captured using a recursion
skeleton (see Definition 3.1). Using these observations, the

formal synthesis problem addressed in this paper is then:

Definition 4.1 (Recursion Synthesis Problem). Given a ref-
erence function 𝑓 : 𝜏 → 𝐷 , a representation function 𝑟 : 𝜃 → 𝜏 ,

a family of target recursive functions G[U] : 𝜃 → 𝐷 pa-

rameterized by a set of unknowns U and a type invariant
𝐼𝜃 : 𝜃 → Bool, the recursion synthesis problem consists in

finding an implementation ofU such that:

Ψ ≡ ∀𝑥 : 𝜃 · 𝐼𝜃 (𝑥) ⇒ G[U](𝑥) = (𝑓 ◦ 𝑟) (𝑥)

Two additional assumptions are made about the problem

instances: (1) recursive functions are terminating and (2)

all recursion is structural. Our technique relies on symbolic

evaluation of bounded and unbounded terms, and these con-

ditions ensure that it always terminates and yields a term.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Azadeh Farzan, Danya Lette, and Victor Nicolet

4.1 Recursion-Free Approximation

The synthesis problem of Ψ (from Definition 4.1) boils down

to the synthesis of solutions for a set of unknownsU asso-

ciated with an infinite set of programs LU .
As discussed in Section 1,Ψ is approximated by a sequence

of recursion-free approximations. These approximations and

Ψ share the same set of unknowns. The point is that it is

viable to synthesize solutions for these unknowns given

the approximate recursion-free specifications using existing

solvers, but the same is not viable given Ψ.

System of Guarded Functional Equations. Our

recursion-free approximations are defined by a set of

guarded equations. These mirror the structure of Ψ but they

contain only free variables of base (non-recursive) types.

Definition 4.2 (System of Guarded Functional Equations).

A system of guarded functional equations (SGE) E is a finite

set of constraints of the form {𝑝𝑖 ⇒ 𝑙𝑖 = 𝑟𝑖 }1≤𝑖≤𝑛 where 𝑛 ≥
0, and for 1 ≤ 𝑖 ≤ 𝑛, 𝑝𝑖 and 𝑟𝑖 are terms in 𝑇 (Σ,V𝐵) and 𝑙𝑖 is
a term in 𝑇 (Σ ∪U,V𝐵).

A system of functional equations E defines the following

synthesis problem:

∃U .∀®𝑥 ∈ 𝐹𝑉 (E) ·
∧

1≤𝑖≤𝑛
𝑝𝑖 ⇒ 𝑙𝑖 = 𝑟𝑖

When the types of the variables in 𝐹𝑉 (E) are sorts of

a theory supported by Satisfiability Modulo Theory (SMT)

and/or SyGuS (syntax-guided synthesis [2]) solvers, and a

context-free grammar is given for each function inU, then

the synthesis problem of a system of guarded functional

equations can be solved by one of these tools. In our inductive

synthesis loop, each approximation of Ψ is an SGE.

Approximation of Ψ. A recursion-free SGE is constructed

by systematically eliminating recursive variables and func-

tions from the specification Ψ. Our process for recursion
elimination is the same as the one introduced in [10], which

we formalize here by defining a function that performs this

elimination. In this paper, we are also interested in the in-

verse translation that would reintroduce unbounded terms.

Definition 4.3 (Recursion Elimination). LetV𝑒𝑙𝑖𝑚 be a dis-

tinguished set of variables of type 𝐷 . Let 𝛼 a bijection be-

tween V𝜃 and V𝑒𝑙𝑖𝑚 . Recursion elimination is the function

J.K𝑒𝑙𝑖𝑚 on terms 𝑇 (Σ,V) defined recursively by:

J(𝑓 ◦ 𝑟) (𝑥)K𝑒𝑙𝑖𝑚 = 𝛼 (𝑥) 𝑖 𝑓 𝑥 ∈ V𝜃

JG[U](𝑥)K𝑒𝑙𝑖𝑚 = 𝛼 (𝑥) 𝑖 𝑓 𝑥 ∈ V𝜃

J𝑥K𝑒𝑙𝑖𝑚 = 𝑥 𝑖 𝑓 𝑥 ∈ V
J𝑔(𝑡1, 𝑡2, . . .)K𝑒𝑙𝑖𝑚 = 𝑔(J𝑡1K𝑒𝑙𝑖𝑚, J𝑡2K𝑒𝑙𝑖𝑚, . . .)

We say that a term 𝑡 is canonical3 iff symbolically evaluat-

ing the reference function and the target on 𝑡 results in an

3
Canonical terms are referred to as maximally reducible in [10].

expression whose recursion elimination contains no recur-

sively typed variables. That is, 𝐹𝑉 (J(𝑓 ◦ 𝑟) (𝑡)K𝑒𝑙𝑖𝑚) ⊂ V𝐵

and 𝐹𝑉 (J(G[U])(𝑡)K𝑒𝑙𝑖𝑚) ⊂ V𝐵 .

Example 4.4. Recall the example from the introduction,

where 𝑓 = min and G[𝑏1, 𝑏2] = min𝑠 (and 𝑟 is iden-

tity). Let 𝑎1, 𝑎2 be two integer variables and 𝑙 a vari-

able of type List. Then 𝑡1 = Elt (𝑎1) is trivially a canon-

ical term: Jmin(Elt (𝑎1))K𝑒𝑙𝑖𝑚 = J𝑎1K𝑒𝑙𝑖𝑚 = 𝑎1 and

Jmin𝑠 (Elt (𝑎1))K𝑒𝑙𝑖𝑚 = 𝑏1 (𝑎1) do not contain recursively

typed variables. In general, bounded terms are canonical

terms. More interestingly, 𝑡2 = Cons(𝑎2, 𝑙) is a canonical

term. Let 𝑣𝑙 = 𝛼 (𝑙), then:
Jmin(𝑡1)K𝑒𝑙𝑖𝑚 = 𝑎2 ↓ J𝑓 (𝑙)K𝑒𝑙𝑖𝑚 = 𝑎2 ↓ 𝑣𝑙

Jmin𝑠 (𝑡1)K𝑒𝑙𝑖𝑚 = 𝑏2 (𝑎2)
are two terms free of recursively typed variables. ⌟

The map 𝛼 is a bijection and therefore recursion elimina-

tion can be inverted: J.K−1𝑒𝑙𝑖𝑚 replaces every scalar variable

𝑥 ∈ V𝑒𝑙𝑖𝑚 with a recursive call (𝑓 ◦ 𝑟) (𝛼−1 (𝑥)). Remark that

we always choose to replace 𝑥 ∈ V𝑒𝑙𝑖𝑚 with (𝑓 ◦ 𝑟) (𝛼−1 (𝑥))
rather than G[U](𝛼−1 (𝑥)).

The equation J(𝑓 ◦ 𝑟) (𝑡) = G[U](𝑡)K𝑒𝑙𝑖𝑚 is recursion free

for any canonical term 𝑡 . However, there is no guarantee that

J𝐼𝜃 (𝑡)K𝑒𝑙𝑖𝑚 is recursion-free, since the recursive functions

that appear in 𝐼𝜃 are not the ones eliminated by J.K𝑒𝑙𝑖𝑚 (which

are 𝑓 ◦ 𝑟 or G[U]). We could eliminate recursion from the

constraint 𝐼𝜃 (𝑡) ⇒ G[U](𝑡) = (𝑓 ◦ 𝑟) (𝑡) in straightforward

way by choosing a bounded term 𝑡 instead of a canonical

one. This, however, would mean that our algorithm could not

take advantage of partial bounding, which has a significant

impact on tractability [10]. Therefore, our solution offers a

way to leave 𝑡 partially bounded and aims for a recursion-free

strengthening of 𝐼𝜃 (𝑡).

Example 4.5. Recall Example 4.4. The term 𝑡2 = 𝐶𝑜𝑛𝑠 (𝑎2, 𝑙)
is canonical. However, to eliminate recursion from the term

sorted (𝑡2) = 𝑎2 ≤ ℎ𝑒𝑎𝑑 (𝑙) ∧ sorted (𝑙), one must infer (new)

properties involving sorted and head. ⌟

Our approximation is constructed with parameters𝑇 , a set

of unbounded canonical terms, and P, a set of recursion-free
terms that we call guards:

Definition 4.6 (Approximation of Ψ). Given a set of terms

𝑇 = {𝑡𝑖 }1≤𝑖≤𝑛 , and a set of guards P = {𝑝𝑖 }1≤𝑖≤𝑛 , such that

∀®𝑥 ∈ 𝐹𝑉 (𝑡𝑖) · 𝐼𝜃 (𝑡𝑖) ⇒ J𝑝𝑖K−1𝑒𝑙𝑖𝑚 , the approximation of Ψ is

E(𝑇,P) = {𝑝𝑖 ⇒ 𝑙𝑖 = 𝑟𝑖 }1≤𝑖≤𝑛
where 𝑙𝑖 = JG[U](𝑡𝑖)K𝑒𝑙𝑖𝑚 and 𝑟𝑖 = J(𝑓 ◦ 𝑟) (𝑡𝑖)K𝑒𝑙𝑖𝑚 .

Observe that each 𝑡𝑖 in the definition corresponds to one

𝑝𝑖 . So, given an approximation E(𝑇,P), each term 𝑡 ∈ 𝑇 has

a unique corresponding predicate in P. We also require

that the terms of𝑇 have no shared free variables: for 𝑖 ≠ 𝑗 ,

𝑡𝑖 and 𝑡 𝑗 have no free variables in common.

Recursion Synthesis with Unrealizability Witnesses PLDI ’22, June 13–17, 2022, San Diego, CA, USA

This approximate specification is a recursion-free guarded

system of functional equations (Definition 4.2) which can be

solved by off-the-shelf synthesis solvers. The two parame-

ters of the approximation, 𝑇 and P, determine the precision

of the approximation. The larger 𝑇 is, the more likely it is

for a solution of E(𝑇,P) to be a solution of Ψ (analogous

to increasing the set of input-output examples in CEGIS).

The stronger the predicates in P are, the more likely it is

for a witness of unrealizability of E(𝑇,P) to be a witness

of Ψ. With this insight in mind, we describe our synthesis

algorithm.

Example 4.7. Recall Example 4.4. Let 𝑇 = {𝑡1, 𝑡2} a set of
canonical terms. Let P = {𝑝1, 𝑝2} where 𝑝1 = 𝑝2 = ⊤. Then
the approximation is:

E(𝑇,P) = {⊤ ⇒ 𝑏1 (𝑎1) = 𝑎1,⊤ ⇒ 𝑏2 (𝑎2) = 𝑎2 ↓ 𝑣𝑙 }

Note that this approximate specification is unrealizable due

to its second constraint and the fact that 𝑝2 = ⊤. Another
valid choice for 𝑝2 is 𝑎2 ≤ 𝑣𝑙 , since sorted (Cons(𝑎2, 𝑙)) ⇒
𝑎2 ≤ min(𝑙), as we argued in Section 1. With this choice,

𝑏1 = 𝑏2 = 𝜆𝑥 .𝑥 is a solution. ⌟

4.2 Symbolic SE
2
GIS with Partial Bounding

With our approximate specification formally defined, let us

recall the overview of SE
2
GIS from Figure 1 to make its key

steps more concrete and provide a roadmap to the rest of the

technical presentation in this paper.

In Figure 1, the approximate specification 𝜑 is a system of

guarded functional equations E(𝑇,P). The top loop is the

refinement loop from [10] that updates𝑇 to make the solution

space of E(𝑇,P) smaller. The set 𝑇 is strictly increasing

through refinement rounds of this loop. The bottom loop

updates P to make the set of unrealizability witnesses for

E(𝑇,P) smaller. We refer to this loop as the coarsening loop,

in the sense that it is the dual of the standard refinement
loop. The guards P are strictly strengthened across rounds

of coarsening.

Figure 3 illustrates how a run of SE
2
GIS makes progress

across multiple refinement and coarsening rounds. Solid

circles identify realizable approximations and hollow ones

stand for unrealizable ones. Initially, SE
2
GIS starts with a

minimal set of initial terms 𝑇0 and the trivial set of guards

P0 = {𝑡𝑟𝑢𝑒}. In each round, if E(𝑇,P) is realizable and yet

does not yield a solution to Ψ, then 𝑇 is augmented with

new (canonical) terms. This step also ensures that the new

canonical terms have no free variables in common with the

previous ones, as required for the construction of E(𝑇,P).
If E(𝑇,P) is unrealizable and yet does not yield an un-

realizability witness for Ψ, then P is strengthened by the

coarsening loop. An update of P0 to P1 strengthens the con-
straints imposed on the approximate specification to rule

out unrealizability witnesses that do not satisfy the type

invariants or some invariant of the reference function 𝑓 .

<latexit sha1_base64="ssIRHD5Q6AMo8pNqIF/rv8nD3G8=">AAAB8nicbVDLSsNAFL3xWeur6tLNYBFclaSIuiy6cVnBPqANZTKdtEMnkzBzI5TQz3DjQhG3fo07/8ZJm4W2Hhg4nHMvc+4JEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJXe53nrg2IlaPOE24H9GREqFgFK3U60cUx4zKrDkbVKpuzZ2DrBKvIFUo0BxUvvrDmKURV8gkNabnuQn6GdUomOSzcj81PKFsQke8Z6miETd+No88I+dWGZIw1vYpJHP190ZGI2OmUWAn84hm2cvF/7xeiuGNnwmVpMgVW3wUppJgTPL7yVBozlBOLaFMC5uVsDHVlKFtqWxL8JZPXiXtes27qtUfLquN26KOEpzCGVyAB9fQgHtoQgsYxPAMr/DmoPPivDsfi9E1p9g5gT9wPn8AiWORbQ==</latexit>P

<latexit sha1_base64="GnpFZvzCLYEzbeLTNB0PLjjqYJE=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKewGUY9BLx4TyAuSJcxOepMxs7PLzKwQQr7AiwdFvPpJ3vwbJ8keNLGgoajqprsrSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8P/fbT6g0j2XDTBL0IzqUPOSMGivVG/1iyS27C5B14mWkBBlq/eJXbxCzNEJpmKBadz03Mf6UKsOZwFmhl2pMKBvTIXYtlTRC7U8Xh87IhVUGJIyVLWnIQv09MaWR1pMosJ0RNSO96s3F/7xuasJbf8plkhqUbLkoTAUxMZl/TQZcITNiYgllittbCRtRRZmx2RRsCN7qy+ukVSl71+VK/apUvcviyMMZnMMleHADVXiAGjSBAcIzvMKb8+i8OO/Ox7I152Qzp/AHzucPsfOM3w==</latexit>

T

<latexit sha1_base64="1XHrVoRvnEbRG9fHjbiff0pCM4Y=">AAAB8XicdVDLSgMxFM34rPVVdekmWARXQ2aobd0V3bisYB/YDiWTZtrQJDMkGaEM/Qs3LhRx69+4829M2xFU9MCFwzn3cu89YcKZNgh9OCura+sbm4Wt4vbO7t5+6eCwreNUEdoiMY9VN8SaciZpyzDDaTdRFIuQ0044uZr7nXuqNIvlrZkmNBB4JFnECDZWuuuTMSUTgdVkUCojFy0AkVs99xDyLfGrtYt6BXq5VQY5moPSe38Yk1RQaQjHWvc8lJggw8owwums2E81TTCZ4BHtWSqxoDrIFhfP4KlVhjCKlS1p4EL9PpFhofVUhLZTYDPWv725+JfXS01UDzImk9RQSZaLopRDE8P5+3DIFCWGTy3BRDF7KyRjrDAxNqSiDeHrU/g/afuuV3X9m0q5cZnHUQDH4AScAQ/UQANcgyZoAQIkeABP4NnRzqPz4rwuW1ecfOYI/IDz9gnvrpEc</latexit>X

<latexit sha1_base64="3JL/NTG9YThCZ1OO327nfFNUY0Y=">AAACCHicdZDLSsNAFIYnXmu9RV26cLAIFaQkaWmDq4IILiv0Bm0Jk+m0HTqZhJmJUEKXbnwVNy4UcesjuPNtnLRVVPSHgY//nMOc8/sRo1JZ1ruxtLyyurae2chubm3v7Jp7+00ZxgKTBg5ZKNo+koRRThqKKkbakSAo8Blp+eOLtN66IULSkNfVJCK9AA05HVCMlLY886gbIDXCiCWX03zds87gl1GbetapZ+asguO6ju1CDeVSpWinUCo6GuyCNVMOLFTzzLduP8RxQLjCDEnZsa1I9RIkFMWMTLPdWJII4TEako5GjgIie8nskCk80U4fDkKhH1dw5n6fSFAg5STwdWe6pfxdS82/ap1YDdxeQnkUK8Lx/KNBzKAKYZoK7FNBsGITDQgLqneFeIQEwkpnl9UhfF4K/4emU7DLBee6lKueL+LIgENwDPLABhVQBVegBhoAg1twDx7Bk3FnPBjPxsu8dclYzByAHzJePwC4vpkj</latexit>E(T0, P0)
<latexit sha1_base64="6Lj8kBpbeHbTYfk7yjdrAGE21eg=">AAACCHicdZDLSsNAFIYnXmu9RV26cLAIFaQkaWmDq4IILiv0Bm0Jk+m0HTqZhJmJUEKXbnwVNy4UcesjuPNtnLRVVPSHgY//nMOc8/sRo1JZ1ruxtLyyurae2chubm3v7Jp7+00ZxgKTBg5ZKNo+koRRThqKKkbakSAo8Blp+eOLtN66IULSkNfVJCK9AA05HVCMlLY886gbIDXCiCWX03zds8/gl1GbetapZ+asguO6ju1CDeVSpWinUCo6GuyCNVMOLFTzzLduP8RxQLjCDEnZsa1I9RIkFMWMTLPdWJII4TEako5GjgIie8nskCk80U4fDkKhH1dw5n6fSFAg5STwdWe6pfxdS82/ap1YDdxeQnkUK8Lx/KNBzKAKYZoK7FNBsGITDQgLqneFeIQEwkpnl9UhfF4K/4emU7DLBee6lKueL+LIgENwDPLABhVQBVegBhoAg1twDx7Bk3FnPBjPxsu8dclYzByAHzJePwC6Upkk</latexit>E(T1, P0)

<latexit sha1_base64="OXBoJTEdM/DLI6ovkPgUfU3Zy3I=">AAACCHicdZDLSsNAFIYnXmu9RV26cLAIFaQkaWmDq4IILiv0Bm0Jk+m0HTqZhJmJUEKXbnwVNy4UcesjuPNtnLRVVPSHgY//nMOc8/sRo1JZ1ruxtLyyurae2chubm3v7Jp7+00ZxgKTBg5ZKNo+koRRThqKKkbakSAo8Blp+eOLtN66IULSkNfVJCK9AA05HVCMlLY886gbIDXCiCWX03zds8/gl1GbevapZ+asguO6ju1CDeVSpWinUCo6GuyCNVMOLFTzzLduP8RxQLjCDEnZsa1I9RIkFMWMTLPdWJII4TEako5GjgIie8nskCk80U4fDkKhH1dw5n6fSFAg5STwdWe6pfxdS82/ap1YDdxeQnkUK8Lx/KNBzKAKYZoK7FNBsGITDQgLqneFeIQEwkpnl9UhfF4K/4emU7DLBee6lKueL+LIgENwDPLABhVQBVegBhoAg1twDx7Bk3FnPBjPxsu8dclYzByAHzJePwC715kl</latexit>E(T1, P1)
<latexit sha1_base64="3N9OgPlRbo286tpWUX8LYJZr5LU=">AAACCHicdZDLSsNAFIYnXmu9RV26cLAIFaQkaWmDq4IILiv0Bm0Jk+m0HTqZhJmJUEKXbnwVNy4UcesjuPNtnLRVVPSHgY//nMOc8/sRo1JZ1ruxtLyyurae2chubm3v7Jp7+00ZxgKTBg5ZKNo+koRRThqKKkbakSAo8Blp+eOLtN66IULSkNfVJCK9AA05HVCMlLY886gbIDXCiCWX03zdc87gl1GbevapZ+asguO6ju1CDeVSpWinUCo6GuyCNVMOLFTzzLduP8RxQLjCDEnZsa1I9RIkFMWMTLPdWJII4TEako5GjgIie8nskCk80U4fDkKhH1dw5n6fSFAg5STwdWe6pfxdS82/ap1YDdxeQnkUK8Lx/KNBzKAKYZoK7FNBsGITDQgLqneFeIQEwkpnl9UhfF4K/4emU7DLBee6lKueL+LIgENwDPLABhVQBVegBhoAg1twDx7Bk3FnPBjPxsu8dclYzByAHzJePwC9a5km</latexit>E(T2, P1)

<latexit sha1_base64="CP3wh/bmlU3LlMq3Kazvr3CaJfo=">AAACCHicdZDLSsNAFIYnXmu9RV26cLAIFaQkaWmDq4IILiv0Bm0Jk+m0HTqZhJmJUEKXbnwVNy4UcesjuPNtnLRVVPSHgY//nMOc8/sRo1JZ1ruxtLyyurae2chubm3v7Jp7+00ZxgKTBg5ZKNo+koRRThqKKkbakSAo8Blp+eOLtN66IULSkNfVJCK9AA05HVCMlLY886gbIDXCiCWX03zdc87gl1Gbes6pZ+asguO6ju1CDeVSpWinUCo6GuyCNVMOLFTzzLduP8RxQLjCDEnZsa1I9RIkFMWMTLPdWJII4TEako5GjgIie8nskCk80U4fDkKhH1dw5n6fSFAg5STwdWe6pfxdS82/ap1YDdxeQnkUK8Lx/KNBzKAKYZoK7FNBsGITDQgLqneFeIQEwkpnl9UhfF4K/4emU7DLBee6lKueL+LIgENwDPLABhVQBVegBhoAg1twDx7Bk3FnPBjPxsu8dclYzByAHzJePwC+8Jkn</latexit>E(T2, P2)

<latexit sha1_base64="rCnjAoHI6IHwZDxSNI8ycaSci4c=">AAACCHicdZDLSsNAFIYnXmu9VV26cLAIFSQkaWmLq4IILiv0Bm0Ik+mkHTq5MDMRSsjSja/ixoUibn0Ed76Nk7aKiv4w8PGfc5hzfjdiVEjDeNeWlldW19ZzG/nNre2d3cLefkeEMcekjUMW8p6LBGE0IG1JJSO9iBPku4x03clFVu/eEC5oGLTkNCK2j0YB9ShGUllO4WjgIznGiCWXaanllM/gl9FMHevUKRQN3arXLbMOFVQrtbKZQaVsKTB1Y6YiWKjpFN4GwxDHPgkkZkiIvmlE0k4QlxQzkuYHsSARwhM0In2FAfKJsJPZISk8Uc4QeiFXL5Bw5n6fSJAvxNR3VWe2pfhdy8y/av1YenU7oUEUSxLg+UdezKAMYZYKHFJOsGRTBQhzqnaFeIw4wlJll1chfF4K/4eOpZtV3bquFBvnizhy4BAcgxIwQQ00wBVogjbA4Bbcg0fwpN1pD9qz9jJvXdIWMwfgh7TXD8CEmSg=</latexit>E(T3, P2)

fe
w

er
sp

ur
io

us
w

it
ne

ss
es

to
un

re
al

iz
ab

ili
ty

<latexit sha1_base64="7qO5K65R01AD+s1gSbQiurc43VA=">AAACKHicdVDLSgMxFM3Ud31VXboJFkEQynQodtwJblwqWFuopWTSOxqayQzJjVJLP8Lf8Afc6h+4E7cu/A4ztYIVPRA4nHMfuSfKpDDo+29eYWZ2bn5hcam4vLK6tl7a2LwwqdUcGjyVqW5FzIAUChooUEIr08CSSEIz6h/nfvMGtBGpOsdBBp2EXSkRC87QSd3Sfgy3oKnJrBapNfRWoAJjwFBMqVVulBR3LBJS4KBbKvuVWhiEYUAdOQgPAz8nh75fC2i14o9RJhOcdksfl72U2wQUcsmMaVf9DDtDplFwCaPipTWQMd5nV9B2VLEETGc4PmpEd53So3Gq3VNIx+rPjiFLjBkkkatMGF6b314u/uW1LcZhZyhUZhEU/1oUW5kfnCdEe0IDRzlwhHEt3F8pv2aacXQ5Tm3JZSeOXDDf19P/yUVQqdYq9bOgfFSbRLRItskO2SNVUidH5ISckgbh5J48kify7D14L96r9/ZVWvAmPVtkCt77J2rCqLQ=</latexit>

fewer spurious solutions to synthesis

<latexit sha1_base64="u/lXlnUll4lM/s4j40kWvSpiH0g=">AAACInicdVDLSgMxFM34rO+qSzfBIrgq06HYcSe4cVnBqlBLyaR3bDCTDLmJUkq/wN/wB9zqH7gTV4Jrv8NMraCiBwKHc+7l5pwklwJtGL4GU9Mzs3PzpYXFpeWV1bXy+sYpamc4tLiW2pwnDEEKBS0rrITz3ADLEglnydVh4Z9dg0Gh1Ykd5NDJ2KUSqeDMeqlb3knhBgzF3BmhHVLU0hUOUqspDpTtAwrslithtR5HcRxRT/bi/SgsyH4Y1iNaq4ZjVMgEzW75/aKnuctAWS4ZYrsW5rYzZMYKLmG0eOEQcsav2CW0PVUsA+wMx3FGdMcrPZpq45+ydKx+3xiyDHGQJX4yY7aPv71C/MtrO5vGnaFQubOg+Oeh1MkiatEN7QkD3MqBJ4wb4f9KeZ8Zxq1v8MeVQvbiyBfzlZ7+T06jaq1ebRxHlYP6pKIS2SLbZJfUSIMckCPSJC3CyS25Jw/kMbgLnoLn4OVzdCqY7GySHwjePgBfIKYV</latexit>

C
oa

rs
en

in
g

<latexit sha1_base64="aLP8r4mleKF6CDEV6qXvpjuvymI=">AAACBXicdVDLSgNBEJyNrxhfUY9eBoPgKewm0QRPgVw8RjAPTJYwO+lNhszOLjOzQlhy9ge86h94E69+hz/gdzibRDCiBQ1FVTfdXV7EmdK2/WFl1tY3Nrey27md3b39g/zhUVuFsaTQoiEPZdcjCjgT0NJMc+hGEkjgceh4k0bqd+5BKhaKWz2NwA3ISDCfUaKNdNcIiVQgmBgN8gW7aNvli0oNz0mlWl6Qy5KDHUNSFNASzUH+sz8MaRyA0JQTpXqOHWk3IVIzymGW68cKIkInZAQ9QwUJQLnJ/OIZPjPKEPuhNCU0nqs/JxISKDUNPNMZED1Wv71U/MvrxdqvuQkTUaxB0MUiP+ZYhzh9Hw+ZBKr51BBCJTO3YjomklBtQlrZkspGnJlgvr/H/5N2qehUitWbUqF+tYwoi07QKTpHDqqiOrpGTdRCFAn0iJ7Qs/VgvViv1tuiNWMtZ47RCqz3L4ikmeY=</latexit>

Refinement

<latexit sha1_base64="cUCnL2OtJA/esdaKHzNK4f9dpUU=">AAACBXicdVDLSsNAFJ3UV62vqks3g0VwVZK22uKq4MZlFfvANpTJ9KYdOpmEmYlQQtf+gFv9A3fi1u/wB/wOJ20FK3rgwuGce7gPL+JMadv+sDIrq2vrG9nN3Nb2zu5efv+gpcJYUmjSkIey4xEFnAloaqY5dCIJJPA4tL3xZeq370EqFopbPYnADchQMJ9Roo10dwO+CQYgdD9fsIu2XT6r1PCMVKrlOTkvOdgxJEUBLdDo5z97g5DGaZZyolTXsSPtJkRqRjlMc71YQUTomAyha6ggASg3mW08xSdGGWA/lKaExjP1ZyIhgVKTwDOdAdEj9dtLxb+8bqz9mpswEcUaBJ0P8mOOdYjT8/GASaCaTwwhVDKzK6YjIgnV5klLU1LZiFPzmO/r8f+kVSo6lWL1ulSoXyxelEVH6BidIgdVUR1doQZqIooEekRP6Nl6sF6sV+tt3pqxFplDtATr/QuPBJnq</latexit>

Figure 3. Symbolic SE
2
GIS with Partial Bounding

The Coarsening step relies on two subroutines: one that

generates an unrealizability witness for E(𝑇,P) and one that
checks if this witness is spurious, i.e., if it corresponds to a
witness to the unrealizability of Ψ. In Section 5, we formalize

the concept of unrealizability witnesses and categorize them

as valid and spurious. In Sections 6, we present a decision

procedure for producing a family of unrealizability witnesses

for an unrealizable SGE E(𝑇,P). In Section 7, we present an

algorithm for strengthening the guards P based on spurious

unrealizability witnesses. Combined, they guarantee that

our proposed coarsening loop has the same soundness and

progress properties as the refinement loop while enjoying

the benefits of the partial bounding technique. We then show

that SE
2
GIS – that is, the combination of the two loops –

retains the benefits of partial bounding and has the same

soundness and progress properties as the individual loops.

5 Unrealizability Witnesses

Program synthesis techniques are mostly focused on syn-

thesizing a solution and often fail or diverge if the synthesis

problem is unrealizable. SE
2
GIS actively generates unrealiz-

able synthesis subproblems and relies on the unrealizability

witnesses for them to make progress in the high level synthe-

sis goal. In this section, we formally define these witnesses

for systems of guarded functional equations (SGEs).

Valid and Spurious Witnesses. Recall that all variables in

an SGE have base type, i.e., they may be scalars or tuples of

scalars. A valuation for these variables is amodel𝑚, which is

a map from Dom(𝑚) ⊂ V𝐵 to values of the appropriate type.

A model can be used to evaluate a term: given a term 𝑡 such

that 𝐹𝑉 (𝑡) ⊆ Dom(𝑚), J𝑡K𝑚 is the value of the term 𝑡 where

all its free variables have been assigned their value in the

model𝑚. Unrealizability witnesses of SGEs can be formally

defined based on such models:

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Azadeh Farzan, Danya Lette, and Victor Nicolet

Definition 5.1 (Unrealizability Witness of an SGE). An

unrealizability witness of a system of guarded functional

equations E of size 𝑛 is a finite set 𝑀 of models such that:

∀U · ∃𝑖 ∈ [1, 𝑛] · ∃𝑚 ∈ 𝑀 · J𝑝𝑖K𝑚 ∧ J𝑙𝑖K𝑚 ≠ J𝑟𝑖K𝑚 .

If 𝑀 is an unrealizability witness for an SGE E, then E
has no solutions. However, there exist SGEs that have no

solutions and yet no (finite) unrealizability witness exists for

them.

Let the SGE E(𝑇,P) be an approximation of Ψ. The un-
realizability of E(𝑇,P) does not necessarily imply the un-

realizability of Ψ. Let 𝑀 be an unrealizability witness for

E(𝑇,P). We need a way to determine if𝑀 also witnesses the
unrealizability of Ψ. The difficulty is that the models in𝑀 are

valuations of base-type variables, whereas a witness to the

unrealizability of Ψ must be a set of terms of (recursive) type

𝜃 , since Ψ is universally quantified over 𝜃 . The following

definition, inspired by recursion elimination (Definition 4.3),

suggests how𝑀 can be transformed into a potential witness

for unrealizability of Ψ.

Definition 5.2 (Inverse of a model). Let𝑚 be a model for

some variables inV𝐵 ∪V𝑒𝑙𝑖𝑚 . For 𝑥 ∈ Dom(𝑚) define:

𝑚−1 (𝑥) ≡
{
(𝑓 ◦ 𝑟) (𝛼−1 (𝑥)) = J𝑥K𝑚 𝑥 ∈ V𝑒𝑙𝑖𝑚

𝑥 = J𝑥K𝑚 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The inverse𝑚−1 maps a variable to an equality constraint,

depending on the nature of the variable. For example, the

model𝑚 = [𝑎2 ← 0, 𝛼 (𝑙) ← 1] inverted yields the equality

constraints 𝑎2 = 0 and (𝑓 ◦ 𝑟) (𝑙) = 1.

We say a term 𝑡 is compatible with a model𝑚 iff there is

some assignment of 𝑡 ’s free variables that is compatible with

the values of𝑚 given the definition of 𝑓 ◦ 𝑟 . More formally,

consider a model 𝑚 and an unbounded term 𝑡 , where all

variables that are assigned in the model pertain to 𝑡 . That

is, ∀𝑣 ∈ Dom(𝑚) · (𝑣 ∈ 𝐹𝑉 (𝑡) ∨ 𝛼−1 (𝑣) ∈ 𝐹𝑉 (𝑡)). Define the
relation ⋉ as

𝑡 ⋉𝑚 ≡
∧

𝑥∈Dom(𝑚)
𝑚−1 (𝑥).

We say 𝑡 is compatible with𝑚 iff 𝑡 ⋉𝑚 is satisfiable.

This relation between (recursively typed) terms and mod-

els is the key in distinguishing between valid and spurious
unrealizability witnesses for SGEs, which are, respectively,

witnesses that do and do not correspond to an unrealizability

witness for the high level specification Ψ.

Definition 5.3 (Spurious Witness). Let the SGE E(𝑇,P) be
an approximation of Ψ and let the set of models 𝑀 be an

unrealizability witness for E(𝑇,P). We call 𝑀 spurious iff
there is a model𝑚 in𝑀 such that∀𝑥 :𝜃 ·∀®𝑧 ∈ 𝐹𝑉 (𝑥) · 𝑥⋉𝑚 ⇒
¬𝐼𝜃 (𝑥).

The key to designing a decision procedure for spurious-
ness is the observation that the quantification of ∀𝑥 : 𝜃 in

Definition 5.3 is not really necessary. It suffices to limit the

quantifier to the set of terms 𝑇 that defines E. This gives us
a straightforward way of checking if a witness is spurious.

Proposition 5.4. Let E(𝑇,P) an approximation and𝑀 an
unrealizability witness for it. Then the witness𝑀 is spurious
iff ∃𝑚 ∈ 𝑀 · ∀𝑡 ∈ 𝑇 · 𝑡 ⋉𝑚 ⇒ ¬𝐼𝜃 (𝑡).

Example 5.5. Let us assume in this example that the refer-

ence function 𝑓 returns the length of a list, and 𝑟 is identity.

Let 𝑎 an integer, 𝑙 a list variable, 𝑣𝑙 = 𝛼 (𝑙), and 𝑡 = Cons(𝑎, 𝑙).
Let 𝑀 be the witness {[𝑎 ← 0, 𝑣𝑙 ← 1], [𝑎 ← 0, 𝑣𝑙 ← −1]},
a set of two models. Then 𝑡 is compatible with 𝑀 (0) since
𝑎 = 0 ∧ (𝑓 ◦ 𝑟) (𝑙) = 1 is satisfiable. For instance, it may be

satisfied by assigning 0 to 𝑎 and Cons(2,Nil) to 𝑙 . However,
𝑡 is not compatible with𝑀 (1), since there is no list of length
−1. So,𝑀 would be spurious, independently of 𝐼𝜃 .

Now let us assume 𝐼𝜃 is the invariant that lists are sorted

in strictly decreasing order, and have only non-negative ele-
ments. Then𝑀 is a spurious witness, regardless of𝑀 (1): 𝑡 is
compatible with𝑀 (0) but then cannot satisfy the invariant.

There is no list 𝑡 = 𝐶𝑜𝑛𝑠 (𝑎, 𝑙) such that 𝑎 = 0∧ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑙) = 1

where 𝑡 is a list of strictly decreasing non-negative values. ⌟

Proposition 5.4 gives us a straightforward way of check-

ing if an unrealizability witness is spurious by discharging

the logical constraint to an SMT solver. Additionally, the

construction of E(𝑇,P) (Definition 4.6) guarantees that the

terms in 𝑇 have no free variables in common. This further

simplifies the spuriousness check. For each model𝑚 in 𝑀 ,

there can only be one term in 𝑇 that matches the domain

of𝑚 and therefore could be compatible with it. So, for each

model 𝑚 in 𝑀 , one can select the unique term 𝑡 in 𝑇 that

matches the domain of𝑚. Given 𝑡 and𝑚, one can check that

𝑡 ⋉𝑚 ⇒ ¬𝐼𝜃 (𝑡) using an SMT solver with induction support.

If this formula is valid, then𝑀 is a spurious witness.

Definition 5.6. [S-Certificate] For a spurious unrealizability

witness𝑀 , the pair (𝑚, 𝑡), where𝑚 ∈ 𝑀 and 𝑡 ∈ 𝑇 matches

the domain of𝑚, is a certificate of spuriousness (s-certificate)
of𝑀 iff ∀®𝑧 ∈ 𝐹𝑉 (𝑡).𝑡 ⋉𝑚 ⇒ ¬𝐼𝜃 (𝑡).

Example 5.7. Recall Example 4.7. The unrealizable approx-

imate specification, with 𝑇 = {Elt (𝑎1),Cons(𝑎2, 𝑙)} and
𝑝1 = 𝑝2 = ⊤, admits a witness 𝑀 = {[𝑎2 ← 1, 𝑣𝑙 ←
0], [𝑎2 ← 1, 𝑣𝑙 ← 1]}.
This witness is spurious. The term Cons(𝑎2, 𝑙) from 𝑇

matches the domains of the models in 𝑀 . The resulting

compatibility Cons(𝑎2, 𝑙) ⋉ [𝑎2 ← 1, 𝑣𝑙 ← 0] means that

the minimum of the tail of the list 𝑙 is 0 and its first el-

ement is 1. This contradicts the invariant that the list is

sorted in increasing order, and therefore, implies its nega-

tion: ¬𝑠𝑜𝑟𝑡𝑒𝑑 (Cons(𝑎2, 𝑙)). Therefore, ([𝑎2 ← 1, 𝑣𝑙 ←
0],Cons(𝑎2, 𝑙)) is an s-certificate. As mentioned before, for a

model [𝑎2 ← 1, 𝑣𝑙 ← 0], there is always exactly one compat-

ible term from𝑇 , and the reader may observe in this example

that Elt (𝑎1) is not compatible. ⌟

Recursion Synthesis with Unrealizability Witnesses PLDI ’22, June 13–17, 2022, San Diego, CA, USA

The existence of an s-certificate for a spurious witness𝑀

is guaranteed by Proposition 5.4. Intuitively, s-certificates

play the same role in the dual loop that counterexamples do

in the classical CEGIS loop. In Section 7, we will show how

an s-certificate is used to strengthen the predicates in P.

6 Functional Unrealizability

So far, we have established a way of categorizing unrealiz-

ability witnesses for SGEs into valid and spurious. But, where
do these witnesses come from? Checking the unrealizabil-

ity of recursion-free specifications like SGEs is, in general,

undecidable [7]. There are approximate techniques [15, 16]
to prove unrealizability in the context of syntax-guided syn-

thesis. However, they target cases where a grammar for the

unknowns exists and the limitations of this grammar is the

root cause of unrealizability.

We propose an alternative approach that forgoes the above

limitations at the cost of other limitations. Our technique is

not specific to syntax-guided synthesis (and does not rely on

a grammar). Instead, it focuses on a subset of possibilities for

unrealizability. Specifically, it considers synthesis problems

where the nonexistence of any solutions stems from the fact

that the components of the solution must be functions.
Consider a constraint of the form ℎ(𝑥1, . . . 𝑥𝑛) = 𝑥0 for

some function ℎ and terms 𝑥0, . . . , 𝑥𝑛 . Consider two different

evaluations of the 𝑥𝑖 terms 𝑣0, . . . 𝑣𝑛 and 𝑣 ′
0
, . . . , 𝑣 ′𝑛 such that

we have 𝑣1 = 𝑣 ′
1
, . . . , 𝑣𝑛 = 𝑣 ′𝑛 and 𝑣0 ≠ 𝑣 ′

0
. These evaluations

suggest that, on equal inputs, ℎ must produce different out-

puts, which violates the definition of ℎ as a function. A pair
of models forms an unrealizability witness, if the instanti-

ation of one or two equations from the SGE produces two

constraints of the above form. This idea is the essence of

functional unrealizability.

Definition 6.1 (Functional Unrealizability). We say an SGE

is functionally unrealizable iff there exists a pair of models

(𝑚,𝑚′) and two equations 𝑝𝑖 ⇒ 𝑙𝑖 = 𝑟𝑖 and 𝑝 𝑗 ⇒ 𝑙 𝑗 = 𝑟 𝑗
(including the 𝑖 = 𝑗 case) such that the following is unsatisfi-

able:

J𝑝𝑖K𝑚 ⇒ J𝑙𝑖K𝑚 = J𝑟𝑖K𝑚 ∧ J𝑝 𝑗 K𝑚′ ⇒ J𝑙 𝑗 K𝑚′ = J𝑟 𝑗 K𝑚′

Note that these form a strict subset of all unrealizable

SGEs. More generally, one may ask if the SGE (as a synthesis

specification with one alternation of quantifiers) is realizable.

The boolean query for this can be discharged to an SMT

solver that handles the “exists forall” fragment [6], as long

as the underlying theory admits model based projection

[21]. In our context, we are interested in cases that may

(at least lightly) step outside these clean theories, but more

importantly, we are not purely interested in the boolean

answer to the query. We need the pair of models (𝑚,𝑚′) to
make progress in the coarsening loop. Z3 [9, 13] can produce

proofs for unsatisfiable ∃∀ queries, but they are verbose, and
it is unclear if one can extract a witness (𝑚,𝑚′) from the

proof, since they are not actively targeting the subclass of

interest. Instead, we propose a lightweight algorithm that

targets the limited class directly and seems to work very

well in practice when the goal is the generation of (𝑚,𝑚′).
In [30], we discuss two small examples that show where our

technique fails and Z3 succeeds, as well as the converse.

For example, the pair of models [𝑥 ← −3, 𝑦 ← 2] and
[𝑥 ← −1, 𝑦 ← 2] witness the unrealizability of the equation

ℎ1 (max (𝑥, 0)) + ℎ2 (𝑦) = max (𝑥 +𝑦, 0). (This corresponds to
a case where 𝑖 = 𝑗 in Definition 6.1.) To see why, define ℎ′

as ℎ′ (𝑎, 𝑏) = ℎ1 (𝑎) + ℎ2 (𝑏), and the pair of models witness

that ℎ′ cannot be a well-defined function. Below, we formally

define the generic form of the syntactic manipulation we

call framing that transforms a term with unknown functions

into a single function application over subterms.

Proposition 6.2. Any term 𝑒 in𝑇 (Σ ∪U,V) can be framed
as a pair of a term 𝐹 with 𝑐 ≥ 0 holes and no variables (𝐹 ∈
𝑇 (Σ ∪ U ∪ {◦𝑖 }1≤𝑖≤𝑐)) and a tuple of 𝑐 terms 𝑡1, . . . , 𝑡𝑐 (∈
𝑇 (Σ,V)) such that 𝑒 = 𝐹 [𝑡1/◦1] [. . .] [𝑡𝑐/◦𝑐].

𝐹 (𝑡1, . . . , 𝑡𝑐) denotes the substitution of the indexed holes

by the terms, i.e., short for 𝐹 [𝑡1/◦1] [. . .] [𝑡𝑐/◦𝑐]. This propo-
sition makes the concept of the frame of a term well-defined.

A frame (𝐹, (𝑡1, . . . 𝑡𝑐)) is maximal if for any other frame

(𝐹 ′, (𝑡 ′
1
, . . . 𝑡 ′𝑐)), we have 𝐹 ⪰ 𝐹 ′. Maximal frames are the

ones we use for our syntactic manipulation.

In an SGE, we can obtain unrealizability witnesses from

pairs of different constraints, as long as they share the same

frame. Suppose that, in our previous example, we also had

the constraint ℎ1 (0) + ℎ2 (𝑧) = 𝑧, which can be framed as

ℎ′ (0, 𝑧) = 𝑧. The pair of models [𝑧 ← 2] and [𝑥 ← −3, 𝑦 ←
2] (for the earlier constraint) also form a unrealizability wit-

ness. The new constraint gives us ℎ′ (0, 2) = 2 whereas the

previous one gives us ℎ′ (0, 2) = −1. If the earlier constraint
had been framed as ℎ′′ (𝑥,𝑦) = ℎ1 (max (𝑥, 0)) + ℎ2 (𝑦), cap-
turing only 𝑥 instead of max (𝑥, 0), then we would not be

able to produce a witness of unrealizability for the pair, since

ℎ′′ ≠ ℎ′.
Consider an SGE E of size 𝑛. The left-hand side 𝑙𝑖 of ev-

ery equation can be framed as 𝐹𝑖 (𝑡𝑖,1, . . . , 𝑡𝑖,𝑐𝑖), and there-

fore, every constraint can then be transformed to 𝑝𝑖 ⇒
𝐹𝑖 (𝑡𝑖,1, . . . , 𝑡𝑖,𝑐𝑖) = 𝑟𝑖 . Observe that 𝑝𝑖 , 𝑡𝑖,1, . . . , 𝑡𝑖,𝑐𝑖 and 𝑟𝑖 con-

tain only variables and no unknowns and, in contrast, 𝐹𝑖
contains no variables and all the unknowns. After framing

the left-hand side of all equations in an SGE, we define wit-
nesses to functional unrealizability:

Definition 6.3 (Witness). Let E be the system of functional

equations {𝑝𝑖 ⇒ 𝐹𝑖 (𝑡𝑖,1, . . . , 𝑡𝑖,𝑐𝑖) = 𝑟𝑖 }1≤𝑖≤𝑛 with unknowns

U. A witness to the functional unrealizability of E is a pair

of models (𝑚𝑖 ,𝑚 𝑗) (1 ≤ 𝑖, 𝑗 ≤ 𝑛) such that:

• 𝐹𝑖 = 𝐹 𝑗 (and therefore 𝑐𝑖 = 𝑐 𝑗)

• J𝑝𝑖K𝑚𝑖
and J𝑝 𝑗 K𝑚 𝑗

(are true).

• J𝑟𝑖K𝑚𝑖
≠ J𝑟 𝑗 K𝑚 𝑗

and ∀𝑘 ∈ [1, 𝑐𝑖] .J𝑡𝑖,𝑘K𝑚𝑖
= J𝑡 𝑗,𝑘K𝑚 𝑗

.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Azadeh Farzan, Danya Lette, and Victor Nicolet

Algorithm 1: For Generating Witness𝑀 to Functional

Unrealizability of SGE E.
Input: E = {𝑝𝑖 ⇒ 𝑙𝑖 = 𝑟𝑖 }1≤𝑖≤𝑛

1 𝑀 ← ∅;
2 forall 1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑛 do

3 𝐹𝑖 , (𝑡𝑖,1, . . . , 𝑡𝑖,𝑐𝑖) ← Frame(𝑙𝑖);
4 𝐹 𝑗 , (𝑡 𝑗,1, . . . , 𝑡 𝑗,𝑐 𝑗) ← Frame(𝑙 𝑗);
5 if 𝐹𝑖 = 𝐹 𝑗 then

6 𝑝′𝑗 , 𝑟
′
𝑗 , 𝑡
′
𝑗,1, . . . , 𝑡

′
𝑗,𝑐 𝑗
←

Rename(𝑝 𝑗 , 𝑟 𝑗 , 𝑡 𝑗,1, . . . , 𝑡 𝑗,𝑐 𝑗);
7 𝜇 ← Solve(𝑝𝑖 ∧ 𝑝′𝑗 ∧ 𝑟𝑖 ≠ 𝑟 ′𝑗

∧
1≤𝑘≤𝑐𝑖 𝑡𝑖,𝑘 = 𝑡 ′

𝑗,𝑘
);

8 if 𝜇 is a satisyfing assignment then
9 𝑀 ← 𝑀 ∪ {Proj(𝜇, 𝐹𝑉 (𝑙𝑖 , 𝑟𝑖)),

Proj(𝜇, 𝐹𝑉 (𝑙 𝑗 , 𝑟 𝑗))};
10 return M

It is straightforward to see that a witness to the functional

unrealizability of an SGE is an unrealizability witness in

the more general sense (Definition 5.1). Remark that, Defini-

tion 6.3 only considers maximal frames. This is because one

can show that this can be done without loss of generality: if

functional unrealizability can be derived from constraints

with two arbitrary frames 𝐹 and 𝐹 ′, then it can be derived us-

ing maximal frames. The extended version of this paper [30]

includes a proof for this fact.

Generating aWitness to Functional Realizability. Algo-

rithm 1 outlines our procedure for generating the functional

unrealizability witnesses of Definition 6.3. The algorithm

relies on Frame, that returns a maximal frame, and Solve,

which is implemented by an SMT query.

Algorithm 1 inspects every pair of constraint indices 𝑖, 𝑗

in the input SGE, including pairs where 𝑖 = 𝑗 . If the frames

𝐹𝑖 and 𝐹 𝑗 match, the variables of constraint 𝑗 are given fresh

names in order to ensure that variables in each constraint are

distinct (even in the case 𝑖 = 𝑗). The procedure Solve then

solves the formula that corresponds to the constraints of Def-

inition 6.3. If that formula has a satisfying assignment, then

a new witness has been found. The Proj function projects

the model on the variables of each constraint, resulting in

two models: one that assigns values to the free variables of

the constraint 𝑝𝑖 ⇒ 𝑙𝑖 = 𝑟𝑖 and another for the free variables

of 𝑝 𝑗 ⇒ 𝑙 𝑗 = 𝑟 𝑗 .

Under the assumption that Solve is a decision procedure,

Algorithm 1 becomes a decision procedure for Definition 6.3.

It is important to note that, theoretically, Definition 6.3 may

not compute all pairs (𝑚,𝑚′) from Defintion 6.1; the ex-

tended version of this paper [30] provides an example.

7 Invariant Inference

If the unrealizability witness𝑀 is spurious, the set of guards

P in the approximate specification E(𝑇,P) have to be

strengthened. As discussed in Section 5, a spurious unrealiz-

ability witness𝑀 yields a set 𝐶 of s-certificates (Definition

5.6). In this section, we discuss how s-certificates are used in

the coarsening loop of SE
2
GIS.

7.1 Classification of S-Certificates

First, the set 𝐶 of s-certificates is partitioned into two types

of s-certificates. Intuitively, the first class captures the cases

where the spuriousness is caused by the return values for a

function symbol being strictly more limited than otherwise

indicated by its return type. The second class captures the

cases where the model is spurious due a violation of the type

invariant for one of the input values.

Definition 7.1 (s-certificate classification). An s-certificate

(𝑚, 𝑡) is called:
• an unsatisfiable certificate if ∀®𝑧 ∈ 𝐹𝑉 (𝑡) · ¬(𝑡 ⋉𝑚).
• a mistyped certificate if ∃®𝑧 ∈ 𝐹𝑉 (𝑡).𝑡 ⋉𝑚 and ∀®𝑧 ∈
𝐹𝑉 (𝑡) · (𝑡 ⋉𝑚 ⇒ ¬𝐼𝜃 (𝑡)).

Example 7.2. Let 𝑡2 = 𝐶𝑜𝑛𝑠 (𝑎2, 𝑙), 𝑡3 =

𝐶𝑜𝑛𝑠 (𝑎3,𝐶𝑜𝑛𝑠 (𝑎4, 𝑙 ′)). Recall Example 5.5, where

𝑓 ◦ 𝑟 = length gives the length of a list. The spurious

witness 𝑚 = [𝑎2 → 0, 𝑣𝑙 → −1] for term 𝑡2 yields the

s-certificate 𝑐1 = ([𝑎2 → 0, 𝑣𝑙 → −1], 𝑡2). This is an

unsatisfiable certificate because there is no valuation of 𝑙

that satisfies 𝑙𝑒𝑛𝑔𝑡ℎ(𝑙) = −1. So, 𝑡2 is not compatible with𝑚.

In the setup of the example in Section 1.1 (last seen in

Example 5.7), 𝑓 ◦ 𝑟 = min returns the smallest item in a list;

the type invariant sorted asserts that lists are sorted in in-

creasing order. The s-certificate 𝑐2 = ([𝑎2 → 1, 𝑣𝑙 → −1], 𝑡2)
is amistyped certificate because any valuation of 𝑎2 and

𝑙 that satisfies 𝑎2 = 1 ∧min(𝑙) = −1 does not satisfy sorted;
similarly for the mistyped certificate 𝑐3 = ([𝑎3 → 1, 𝑎4 →
0, 𝑣𝑙 ′ → 2], 𝑡3), since 𝑎4 should be greater than 𝑎3. ⌟

The guards P in the approximate specification E(𝑇,P)
tentatively approximate both types of missing invariants,
and the classification signals which type of invariant has to

be strengthened in the next round. A mistyped certificate

triggers the coarsening step presented in Section 7.2.1 that

learns a stronger recursion-free approximation of the type

invariant 𝐼𝜃 ; an unsatisfiable certificate triggers the coarsen-

ing step presented in Section 7.2.2 that learns a new invariant

about the reference function.

It is straightforward to see that the above partitioning

is well-defined: each s-certificate belongs to one of the two

classes and the classes are disjoint.We classify the certificates

of 𝐶 by encoding the conditions of Definition 7.1 for each

𝑐 ∈ 𝐶 into an SMT query that is passed to a black-box solver;

[30] includes an extended example.

7.2 Learning Invariants

To strengthen the set of guards P, we generate a new set

of predicates and strengthen each new predicate’s relevant

Recursion Synthesis with Unrealizability Witnesses PLDI ’22, June 13–17, 2022, San Diego, CA, USA

guards in P by adding the new predicate as a conjunct of

the existing one. These new predicates are learned from

examples: the negative examples are extracted directly from

s-certificates and the positive examples are generated from

incorrect candidates during the learning process.

Algorithm 2 presents the learning routine. It calls on sub-

routines Negative and Verify, which have different im-

plementations for the two classes of s-certificates. For Syn-

thesize, any synthesis-by-example tool that admits positive

and negative examples can be used. The algorithm starts

with a fixed set of negative examples extracted from the

s-certificates by Negative and iteratively adds positive ex-

amples obtained from a failed verification by Verify. The

learning algorithm converges when Verify succeeds. In the

following, we fully instantiate Algorithm 2 for s-certificates

of each type.

Algorithm 2: InferInvariant(𝑐)

Input: 𝑐 is an s-certificate

1 pred (𝑥0, ..., 𝑥𝑘) ← ⊥;
2 positive← ∅ ;
3 negative← { Negative (𝑐)} ;
4 while ¬ Verify(pred) do
5 𝑐′ ← a counterexample to Verify(pred) ;
6 positive ← positive ∪ {𝑐′} ;
7 pred ← Synthesize(positive, negative);
8 return pred

7.2.1 Learning fromMistypedCertificates. Amistyped

certificate signals that the spurious unrealizability witness

cannot correspond to an actual recursive input that satisfies

𝐼𝜃 . Our goal is to strengthen the guards P according to 𝐼𝜃 to

exclude this witness. We construct P′ by accumulating the

contributions of each mistyped certificate 𝑐 in 𝐶 by calling

InferInvariant(𝑐). Let 𝑐 = (𝑚, 𝑡) be a mistyped certificate

whereDom(𝑚) = 𝑥0, ..., 𝑥𝑘 and 𝑝𝑖 is the guard of the equation

that is relevant to 𝑐 in the current approximation.

Negative. The extraction of negative examples is straight-

forward in this case. The model, being an evaluation, is the

negative example; for instance𝑚 = [𝑎 ← 1, 𝑣𝑙 ← −1].
Verify. The goal is to strengthen 𝑝𝑖 such that the negative

example is excluded, but the new guard should be supported
by the type invariant 𝐼𝜃 . Recall from Definition 4.6 that all

𝑝𝑖 ∈ P have to satisfy the constraint ∀®𝑧 ∈ 𝐹𝑉 (𝑡) · 𝐼𝜃 (𝑡) ⇒
J𝑝𝑖K−1𝑒𝑙𝑖𝑚 . Therefore, Verify performs this exact check

as an SMT query. When the check fails, its negation —

an existential formula ∃®𝑧 ∈ 𝐹𝑉 (𝑡) · . . . — is satisfiable. We

can map such a ®𝑧 to a unique model𝑚′ by directly taking

the scalar-type variables of ®𝑧 and by applying (𝑓 ◦ 𝑟) to
the inductively-typed variables of ®𝑧. This𝑚′ is what Verify
produces as a counterexample and is subsequently added to

the synthesis constraints as a positive example.

To illustrate, suppose that we are calling InferInvariant

on the s-certificate 𝑐2 of Example 7.2. Our aim is to guess a

predicate pred that meets the conditions ¬pred (1,−1) and
Verify(pred). The Verify(pred) subroutine checks whether
∀𝑎2, 𝑙 · sorted(Cons(𝑎2, 𝑙)) ⇒ pred(𝑎2,min(𝑙)) holds and, if
not, produces a counterexample.

Initially, pred (𝑎2, 𝑙) = ⊥, which does not satisfy Ver-

ify. This incorrect guess may yield the positive example

Cons(1, Elt (2)). As a result, the next guess for predmust be so

that pred(1, 2) holds. If we then guess pred(𝑎2, 𝑣𝑙) = 𝑎2 < 𝑣𝑙 ,

Verify holds and 𝑝2 is subsequently updated to 𝑝2 ∧ 𝑎2 < 𝑣𝑙 .

7.2.2 Learning from Unsatisfiable Certificates. In the

case of an unsatisfiable certificate, the new learned predicate

is a useful invariant of the reference implementation 𝑓 . First,

let us make a helpful observation.

Lemma 7.3 (Unsatisfiable Model). An s-certificate (𝑚, 𝑡)
arising from a witness to the functional unrealizability of an
approximation of Ψ is an unsatisfiable certificate if and only if

∃𝑣 ∈ V𝑒𝑙𝑖𝑚 ∩ 𝐷𝑜𝑚(𝑚) · ∀𝑡 : 𝜃 · (𝑓 ◦ 𝑟) (𝑡) ≠ J𝑣K𝑚

The satisfiability of a unsatisfiable certificate (𝑚, 𝑡) cor-
responds directly to the question of whether there is an

elimination variable whose value under𝑚 is not in the im-

age of 𝑓 ◦ 𝑟 . Intuitively, the predicate we would like to learn

captures an invariant of the image of 𝑓 ◦ 𝑟 and adding it to

P amounts to a restriction of V𝑒𝑙𝑖𝑚 to the image of 𝑓 ◦ 𝑟 .
The predicate’s domain is then simply one (fresh) variable 𝑥

which ranges over the return type of 𝑓 .

Negative. A negative example is any value from𝑚 (for

an elimination variable) that lies outside the image of (𝑓 ◦
𝑟). Lemma 7.3 guarantees that each unsatisfiable certificate

includes at least one such value, but there may be several

such choices. For example, if𝑚 = [𝑎2 ← 0, 𝑣𝑙 ← −1], 𝑡2 =

Cons(𝑎2, 𝑙), and (𝑓 ◦𝑟) is length, we add the negative example

−1 to our constraints.

Verify. Verify(pred) simply checks that pred is an invari-

ant of the image of (𝑓 ◦ 𝑟), that is, ∀𝑡 : 𝜃 · pred ((𝑓 ◦ 𝑟) (𝑡))
is checked by querying an SMT solver. When this check

fails, there must be some term 𝑡 such that ¬pred ((𝑓 ◦ 𝑟) (𝑡)).
Then, Verify returns 𝑐′ = (𝑓 ◦ 𝑟) (𝑡) to be added to the set

of positive example.

7.3 Correctness of SE
2
GIS

Algorithm 2 has a weak progress guarantee which ensures

that an unrealizability witness from any coarsening round

will not appear in the next round.

Proposition 7.4. Let𝑀 be a spurious unrealizability witness
for E(𝑇,P) and P′ be a strengthening of P resulting from
Algorithm 2 with s-certificates extracted from𝑀 . Then,𝑀 is
not an unrealizability witness for E(𝑇,P′).

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Azadeh Farzan, Danya Lette, and Victor Nicolet

It is straightforward to generalize the above proposition,

through an induction argument on the number of coarsen-

ing rounds, to hold for an arbitrary number of coarsening

rounds between E(𝑇,P) and E(𝑇,P′). In [10], similar weak

progress results are presented for the refinement loop. It

remains to show that any arbitrary alternation of refine-

ment and coarsening loops satisfies a similar weak progress

property.

Theorem 7.5 (Progress of SE
2
GIS). Let E(𝑇,P) and

E(𝑇 ′,P′) be two approximations from two arbitrary rounds
of the SE2GIS algorithm, where E(𝑇,P) appears in an earlier
round. We have:

• If E(𝑇,P) is unrealizable with a spurious witness 𝑀
which is used in the coarsening loop, then 𝑀 does not
witness unrealizability of E(𝑇 ′,P′).
• If E(𝑇,P) is realizable with a solution 𝑠 which is used in
the refinement loop, then 𝑠 is not a solution to E(𝑇 ′,P′).

The theorem is not surprising but the interaction between

the two loops is not straightforward, hence the proof appears

in [30]. Algorithm 2 is similarly guaranteed to return the

correct result, simply by relying on the soundness of its

Verify subroutine. Based on the soundness result for the

refinement loop from [10], we can conclude:

Theorem 7.6 (Soundness of SE
2
GIS). If SE2GIS outputs a

witness for unrealizability or a solution, then they are valid.

8 Experimental Results

The SE
2
GIS algorithm is implemented as part of the tool

Synduce [10, 29]. Synduce is written in OCaml [24] and

accepts OCaml programs as inputs.We use syntax extensions

to identify the different components of the specification. The

tool interfaces with solvers using the SMT-LIB standard [?]

and makes syntax-guided synthesis queries via the SyGuS

standard [35]. In our experiments, we use CVC4 [4] version

1.8 for SMT queries when support for induction is required,

and otherwise Z3 [9] version 4.8.10. CVC4 is also used for

syntax-guided synthesis.

The SMT calls for invariant inference, which are all implic-

itly queries of the form ∀𝑡 : 𝜃 · 𝑝 (𝑡) for some predicate 𝑝 , are

implemented as parallel calls to two solver instances. The

first instance attempts to prove ∀𝑡 : 𝜃 ·𝑝 (𝑡) by induction. The
second does a bounded check of its negation (∃𝑡 : 𝜃 · ¬𝑝 (𝑡))
by unrolling bounded symbolic terms of type 𝜃 up to a fixed

depth.

8.1 Experimental Setup

The goal of our experimentation is the evaluation of our two

main contributions. We investigate the following questions:

Q1: How well does SE
2
GIS work for recursion synthesis?

Q2: How well does our unrealizability checker (and witness

generator) work, independent of the SE
2
GIS context?

Due to differences in problem setup, Synduce cannot be

compared directly against any of the existing synthesis recur-

sion tools. To evaluate the additive value of the novel ideas

of the SE
2
GIS algorithm, we built two baseline variations as

described below.

Symbolic CEGIS. Much of the innovation in SE
2
GIS has

been centred around taking full advantage of partial bound-
ing. To support our decision to use partial bounding, we

have two baseline versions of Synduce called SEGIS and

SEGIS+UC that forgo partial bounding in favour of the clas-

sic full bounding for synthesis. SEGIS performs a symbolic

CEGIS loop using only bounded terms, in the style of the

baseline of [10]. In this case, there is no need to infer in-

variants, since bounded versions of invariants are effectively

present in the fully bounded approximate specification.

SEGIS+UC is an extension of SEGIS that has access to our

unrealizability checker and witness generator. SEGIS+UC

uses fully bounded approximate specifications, but can

produce unrealizability outcomes. Experimentation with

SEGIS+UC lets us isolate the effectiveness of our unreal-

izability checker in a neutral context. Moreover, comparing

SEGIS+UC against SE
2
GIS over unrealizable benchmarks

isolates the impact of partial bounding for detection of unre-

alizability.

Benchmarks. We evaluated our implementation on a set

of 140 benchmarks that cover a wide range of recursive

function synthesis problems. We devised these by drawing

standard examples of recursive functions from the literature

and textbooks. Some of our benchmarks are variations on the

benchmarks of [10], to which we have added type invariants

and modified the skeletons so that invariants are required in

order for the synthesis problem to be solvable.

Our benchmarks operate on 8 distinct
4
recursive data

types and 18 type invariants. These include data types such

as lists and trees with constraints on ordering (sorted lists,

unimodal lists, constant lists, and binary search trees), struc-
ture (balanced trees, symmetric trees, perfect trees, and trees

with an empty subtree), contents (positive elements, distinct

elements, and even or odd elements), and auxiliary data
(memoized sum, max, min, and number of children). We use

8 different representation functions to map these types.

Our benchmark set includes 67 different reference func-

tions and 20 target recursion skeletons. The reference func-

tions used are straightforward implementations of com-

monly used algorithms. Each reference function can instan-

tiate a distinctly new problem when combined with differ-

ent type invariants and target recursion skeletons. Target

recursion skeletons represent programs that have a vari-

ety of desirable features, such as parallelism or better time

complexity. A significant number of our benchmarks aim

at synthesizing more efficient traversals of a data structure.

4
We do not count small differences in the base constructor of the datatypes

or added data fields for memoization as differences.

Recursion Synthesis with Unrealizability Witnesses PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Figure 4. Comparison based on the number of solved benchmarks.

The example discussed in Section 2 is a fair representative

of this set. Others involve synthesizing efficient implemen-

tations using memoized data in nodes or performing binary

search over data structure satisfying interesting invariants.

Our tool can also be used to synthesize divide-and-conquer
parallelism.

We also include 45 unrealizable benchmarks to evaluate

the efficacy of our unrealizability technique. The majority

of these benchmarks are variations of the realizable bench-

marks from the set, in which some parts have been modified

to make it unrealizable, in the spirit of the example from

Section 2.

8.2 Results

Our experiments were run on a laptop with an Intel Core i7-

8750H 6-core processor and 32 GB of RAM running Ubuntu

21.04. Each benchmark is run 10 times and the resulting run-

times are averaged. The timeout is 400 seconds. An extended

version of the results presented here appears in [30].

The quantile plot in Figure 4 compares SE
2
GIS, SEGIS and

SEGIS+UC based on how many benchmarks, from a total

of 140, each can solve. The vertical axis is time (in seconds)

taken to solve the corresponding benchmark. The set of all

such times are displayed in non-decreasing order for each

algorithm. The precise count of benchmarks solved by each

algorithm is listed below.

SE
2
GIS SEGIS+UC SEGIS

Realizable 93 70 70

Unrealizable 44 25 0

Total 137 95 70

Other highlights from the detailed results are: (1) SE
2
GIS

solves the easier benchmarks in one alternation between

the refinement and the coarsening loops, but does more

alternations for the more complex benchmarks, and (2) in

70% of the cases, the inferred invariants are proved correct

by induction, and the rest are checked for bounded inputs.

The scatter plot in Figure 5 compares the running times of

SE
2
GIS and SEGIS+UC for the benchmarks that do not time

out in either method. For the realizable instances that were

solved by both methods, SEGIS+UC is faster than SE
2
GIS

in 60% of the cases. This is due to the tension between the

complexity of the required invariants and that of the solution

for the unknowns. When the solution is syntactically very

simple, SEGIS has a higher chance of finding it faster, mainly

by pure luck, while SE
2
GIS has to spend a lot of time inferring

missing complex invariants. In contrast, partial bounding

has the biggest impact when the solution is complex and the

invariants are simple. In one extreme case, (see [30]), SE
2
GIS

times out because invariant inference diverges.

SE
2
GIS and SEGIS+UC can easily complement each other

in a portfolio version of Synduce, which runs both algo-

rithms in parallel, and waits for the first result.

Unrealizability Checker. Whenever Synduce declares a

problem unrealizable, it is provably unrealizable. This is in

contrast to solutions to realizable instances that just pass a

bounded verification check in most synthesis tools. Unsur-

prisingly, all the benchmarks solved by SEGIS+UC but not

by SEGIS are unrealizable benchmarks. This difference is pre-

cisely the contribution of our unrealizability solver in a neu-

tral context. SE
2
GIS solves more unrealizability benchmarks

than SEGIS+UC, which demonstrates that partial bounding

additionally contributes to unrealizability outcomes as well

as it does to synthesis of solutions in realizable instances. In

Figure 5, over the mutually solved unrealizability instances,

SE
2
GIS is faster in 50% of cases. SEGIS+UC performs best

for unrealizable instances where unrealizability is provable

with a very shallow level of bounding. Otherwise, SE
2
GIS is

more reliable.

Invariants Synthesized. In 79 of the 137 benchmarks, Syn-

duce infers invariants. The following table lists the number

of benchmarks for which an invariant on the reference imple-

mentation (Section 7.2.2) or the input datatype (Section 7.2.1)

is inferred, categorized by the realizability of the instances.

Reference Datatype Total

Realizable 10 57 67

Unrealizable 0 12 12

Total 10 69 79

For unrealizable benchmarks, both spurious and non-

spurious witnesses are generated during the process. Syn-

duce only learns invariants when the witness to the approx-

imate specification happens to be spurious. Therefore, the

need for invariant inference in these cases partly depends on

whether Synduce gets lucky with the witness draw or not.

When the input datatype invariant is present and matters (84

out of 95 benchmarks), Synduce has to synthesize an invari-

ant only when partial bounding is used. For bounded inputs,

the given invariant of the datatype can be used directly.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Azadeh Farzan, Danya Lette, and Victor Nicolet

Figure 5. Comparing the running times (in seconds) of

SE
2
GIS and SEGIS+UC in logarithmic scale. Blue points are

unrealizable and red points are realizable benchmarks.

Limitations. We have already discussed how learning com-

plex invariants can be the Achilles heel of SE
2
GIS. Another

point of failure for SE
2
GIS is that the lightweight method for

producing functional unrealizability witnesses can theoret-

ically fail; a discussion on this issue appeared in Section 6.

In practice, this lightweight method works remarkably well

and did not fail for any of our benchmarks, but the theo-

retical possibility exists. It would be interesting to see if

more expressive witnesses produced out of this step can

help ameliorate some of the problems when learning com-

plex invariants. Finally, the synthesis step for SGEs (done

by SyGuS in our implementation) can become a bottleneck,

even in unrealizable instances. In some cases, it becomes the

cause of a timeout, even if the problem is unrealizable; in

order to derive unrealizability, SE
2
GIS must first complete a

refinement step (see [30] for a concrete example).

9 Related Work

In this section, we focus on work related to the synthesis of

recursive functions only and refer the reader to [14] for a

broader survey of program synthesis techniques.

Recursive Function Synthesis. Synthesis of recursive

functions dates back to inductive techniques used to synthe-

size recursive programs from input/output examples [38],

which has recently been further extended in [17, 18]. Types

have been extensively used to direct the search for a pro-

gram [11, 12, 32, 34]. 𝜆2 [11], Myth [32], Myth2 [12] and

SMyth [25] accept input/output examples as specifications,

which are a good choice to specify simple recursive functions

with little data manipulation. In contrast, we target more

sophisticated synthesis tasks such as maximum sums or in-

clusion checking with non-trivial predicates. SynQuid [34]

and ReSyn [20] take refinement types as specifications. Type-

based approaches work very well within the expressivity of

refinement-types as specifications, but refinement types can-

not express constraints for all desired synthesis tasks. These

techniques, and others like Escher [1], require the user to

provide the components used as building blocks of recursion

synthesis. In contrast, we focus on synthesizing these com-

ponents when a recursive skeleton is provided. As such, the

two sets of methods are complementary.

Leon [19], the older version of Synduce from [10], and

Burst [27] all accept specifications that are close to ours.

Neither tool handles unrealizability. Burst [27] accepts mul-

tiple forms of specifications (input/output, reference imple-

mentations, and logical specifications). However, we cannot

directly encode our problem into a specification for Burst,

notably because we cannot specify type invariants. Leon [19]

is the technique that accepts specifications that are closest

in form to ours, since one can write specifications with func-

tional equivalence constraints. We can also encode recursion

skeletons, but Leon seems to lack the mechanisms for rea-

soning about unknowns within a recursive function. We did

not succeed in synthesizing solutions, even for simple bench-

marks. The older version of Synducefrom [10] can handle

some of our benchmarks, by asking the user to input the

missing reference function invariants. It cannot handle the

benchmarks that rely on type invariants.

On a technical front, we borrow the idea of partial bound-
ing from [10]. This idea and our invariant inference routine

is similar to specification strengthening in Burst [27].

Invariant Inference. Example-driven [28, 33] and formula-

driven [39] invariant and lemma inference has been used in

program verification. Theory exploration techniques [3, 8,

36] aim at generating a collection of lemmas pertaining to

a set of possibly recursive components by eagerly proving

lemmas before they are known to be needed. Our technique,

on the other hand, is parsimonious and generates invariants

only when they are required in order to rule out a spurious

unrealizability witness.

In the 30% of the cases where Synduce fails to prove an

inferred invariant correct by induction, it currently uses

bounded checks to verify it. Theory exploration techniques

may be useful to prove these remaining 30% of inferred in-

variants by supplying helper lemmas.

Unrealizability. Traditionally, program synthesis, espe-

cially syntax-guided synthesis, has been biased towards find-

ing solutions and not proving unrealizability. Unrealizability

is undecidable [7] for syntax-guided synthesis, but, recently,

approximate techniques [15, 16, 26] for checking unrealiz-

ability of such instances have been proposed. There are re-

stricted instances where unrealizability (and realizability) is

decidable, notably for uninterpreted functions [23] and, more

generally, finite variable logics [22]. We found the reliance

of these techniques on a specific grammar to be limiting for

our context. Our technique is lightweight and can be directly

integrated as a preprocessing check for SyGuS inputs, an

existing standard.

Recursion Synthesis with Unrealizability Witnesses PLDI ’22, June 13–17, 2022, San Diego, CA, USA

References

[1] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Recur-

sive Program Synthesis. In Computer Aided Verification (Berlin, Hei-

delberg, 2013) (Lecture Notes in Computer Science, Vol. 8044), Natasha
Sharygina and Helmut Veith (Eds.). 934–950. https://doi.org/10.1007/
978-3-642-39799-8_67

[2] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin,

Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando

Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-

Guided Synthesis. In 2013 Formal Methods in Computer-Aided Design
(Portland, OR, 2013-10). 1–8. https://doi.org/10.1109/FMCAD.2013.
6679385

[3] Haniel Barbosa, Pascal Fontaine, and Andrew Reynolds. 2017. Con-

gruence Closure with Free Variables. In Tools and Algorithms for the
Construction and Analysis of Systems (Berlin, Heidelberg, 2017) (Lecture
Notes in Computer Science), Axel Legay and Tiziana Margaria (Eds.).

214–230. https://doi.org/10.1007/978-3-662-54580-5_13
[4] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,

Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli.

2011. CVC4. In Computer Aided Verification (Berlin, Heidelberg, 2011)

(Lecture Notes in Computer Science), Ganesh Gopalakrishnan and Shaz

Qadeer (Eds.). 171–177. https://doi.org/10.1007/978-3-642-22110-1_14
[5]]smtlib Clark Barrett, Pascal Fontaine, and Aaron Stump. [n. d.]. The

SMT-LIB Standard. ([n. d.]), 104.

[6] Nikolaj Bjorner and Mikolas Janota. 2016. Playing with Quantified

Satisfaction (LPAR-20). 15–1. https://doi.org/10.29007/vv21
[7] Benjamin Caulfield, Markus N. Rabe, Sanjit A. Seshia, and Stavros

Tripakis. 2016. What’s Decidable about Syntax-Guided Synthesis?
arXiv:1510.08393 [cs]

[8] Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone.

2013. Automating Inductive Proofs Using Theory Exploration. In

Automated Deduction – CADE-24, Maria Paola Bonacina (Ed.). Lecture

Notes in Computer Science, Vol. 7898. 392–406. https://doi.org/10.
1007/978-3-642-38574-2_27

[9] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT

Solver. In Tools and Algorithms for the Construction and Analysis of
Systems (Berlin, Heidelberg, 2008) (Lecture Notes in Computer Science),
C. R. Ramakrishnan and Jakob Rehof (Eds.). 337–340. https://doi.org/
10.1007/978-3-540-78800-3_24

[10] Azadeh Farzan and Victor Nicolet. 2021. Counterexample-Guided

Partial Bounding for Recursive Function Synthesis. In Computer Aided
Verification (Virtual, USA, 2021-07-20) (Lecture Notes in Computer Sci-
ence, Vol. 1). 23.

[11] John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesiz-

ing Data Structure Transformations from Input-Output Examples. In

Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (New York, NY, USA, 2015-06-03)

(PLDI ’15). 229–239. https://doi.org/10.1145/2737924.2737977
[12] Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve

Zdancewic. 2016. Example-Directed Synthesis: A Type-Theoretic In-

terpretation. 51, 1 (2016), 802–815. https://doi.org/10.1145/2914770.
2837629

[13] Yeting Ge and Leonardo Moura. 2009. Complete Instantiation for

Quantified Formulas in Satisfiabiliby Modulo Theories. In Proceedings
of the 21st International Conference on Computer Aided Verification
(Grenoble, France, 2009-06-23) (CAV ’09). 306–320. https://doi.org/10.
1007/978-3-642-02658-4_25

[14] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Pro-
gram Synthesis. Number 4.2017, 1-2 in Foundations and Trends in

Programming Languages.

[15] QinhepingHu, Jason Breck, John Cyphert, Loris D’Antoni, and Thomas

Reps. 2019. Proving Unrealizability for Syntax-Guided Synthesis.

In Computer Aided Verification (Cham, 2019-07-13) (Lecture Notes
in Computer Science), Isil Dillig and Serdar Tasiran (Eds.). 335–352.

https://doi.org/10.1007/978-3-030-25540-4_18
[16] Qinheping Hu, John Cyphert, Loris D’Antoni, and Thomas Reps. 2020.

Exact and Approximate Methods for Proving Unrealizability of Syntax-

Guided Synthesis Problems. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation (Lon-
don UK, 2020-06-11). 1128–1142. https://doi.org/10.1145/3385412.
3385979

[17] Susumu Katayama. 2012. An Analytical Inductive Functional Program-

ming System That Avoids Unintended Programs. In Proceedings of
the ACM SIGPLAN 2012 Workshop on Partial Evaluation and Program
Manipulation (New York, NY, USA, 2012-01-23) (PEPM ’12). 43–52.
https://doi.org/10.1145/2103746.2103758

[18] Emanuel Kitzelmann and Ute Schmid. 2006. Inductive Synthesis of

Functional Programs: An Explanation Based Generalization Approach.

7, 7 (2006), 26.

[19] Etienne Kneuss, Ivan Kuraj, Viktor Kuncak, and Philippe Suter. 2013.

Synthesis modulo Recursive Functions. In Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications (Indianapolis Indiana USA, 2013-10-
29). 407–426. https://doi.org/10.1145/2509136.2509555

[20] Tristan Knoth, Di Wang, Nadia Polikarpova, and Jan Hoffmann. 2019.

Resource-Guided Program Synthesis. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (Phoenix AZ USA, 2019-06-08). 253–268. https://doi.org/10.
1145/3314221.3314602

[21] Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. 2016. SMT-

based Model Checking for Recursive Programs. 48, 3 (2016), 175–205.

https://doi.org/10.1007/s10703-016-0249-4
[22] Paul Krogmeier and P. Madhusudan. 2021. Learning Formulas in Finite

Variable Logics. arXiv:2111.03534 [cs]
[23] Paul Krogmeier, Umang Mathur, Adithya Murali, P. Madhusudan, and

Mahesh Viswanathan. 2020. Decidable Synthesis of Programs with

Uninterpreted Functions. In Computer Aided Verification (Cham, 2020)

(Lecture Notes in Computer Science), Shuvendu K. Lahiri and Chao

Wang (Eds.). 634–657. https://doi.org/10.1007/978-3-030-53291-8_32
[24] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier

Rémy, and Jérôme Vouillon. 2020. The OCaml System Release 4.11:

Documentation and User’s Manual.

[25] Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh. 2020. Program

Sketching with Live Bidirectional Evaluation. 4 (2020), 109:1–109:29.

Issue ICFP. https://doi.org/10.1145/3408991
[26] P. Madhusudan, Umang Mathur, Shambwaditya Saha, and Mahesh

Viswanathan. 2018. A Decidable Fragment of Second Order Logic With
Applications to Synthesis. https://doi.org/10.4230/LIPIcs.CSL.2018.31
arXiv:1712.05513 [cs]

[27] Anders Miltner, Adrian Trejo Nuñez, Ana Brendel, Swarat Chaudhuri,

and Isil Dillig. 2022. Bottom-up Synthesis of Recursive Functional Pro-

grams Using Angelic Execution. In Proceedings of the 49th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(2022), Vol. 1. 31.

[28] Anders Miltner, Saswat Padhi, Todd Millstein, and David Walker. 2020.

Data-Driven Inference of Representation Invariants. In Proceedings of
the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation (London UK, 2020-06-11). 1–15. https://doi.org/
10.1145/3385412.3385967

[29] Victor Nicolet and Danya Lette. 2022. Synduce.
[30] Victor Nicolet, Danya Lette, and Azadeh Farzan. 2022. Recursion

Synthesis with Unrealizability Witnesses (Extended Version).

[31] C.-H. Luke Ong and Steven J. Ramsay. 2011. Verifying Higher-Order

Functional Programs with Pattern-Matching Algebraic Data Types. In

Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (New York, NY, USA, 2011-01-26)

(POPL ’11). 587–598. https://doi.org/10.1145/1926385.1926453

https://doi.org/10.1007/978-3-642-39799-8_67
https://doi.org/10.1007/978-3-642-39799-8_67
https://doi.org/10.1109/FMCAD.2013.6679385
https://doi.org/10.1109/FMCAD.2013.6679385
https://doi.org/10.1007/978-3-662-54580-5_13
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.29007/vv21
https://arxiv.org/abs/1510.08393
https://doi.org/10.1007/978-3-642-38574-2_27
https://doi.org/10.1007/978-3-642-38574-2_27
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2737924.2737977
https://doi.org/10.1145/2914770.2837629
https://doi.org/10.1145/2914770.2837629
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-030-25540-4_18
https://doi.org/10.1145/3385412.3385979
https://doi.org/10.1145/3385412.3385979
https://doi.org/10.1145/2103746.2103758
https://doi.org/10.1145/2509136.2509555
https://doi.org/10.1145/3314221.3314602
https://doi.org/10.1145/3314221.3314602
https://doi.org/10.1007/s10703-016-0249-4
https://arxiv.org/abs/2111.03534
https://doi.org/10.1007/978-3-030-53291-8_32
https://doi.org/10.1145/3408991
https://doi.org/10.4230/LIPIcs.CSL.2018.31
https://arxiv.org/abs/1712.05513
https://doi.org/10.1145/3385412.3385967
https://doi.org/10.1145/3385412.3385967
https://doi.org/10.1145/1926385.1926453

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Azadeh Farzan, Danya Lette, and Victor Nicolet

[32] Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-Example-

Directed Program Synthesis. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation (New
York, NY, USA, 2015-06-03) (PLDI ’15). 619–630. https://doi.org/10.
1145/2737924.2738007

[33] Saswat Padhi, Rahul Sharma, and Todd Millstein. 2016. Data-Driven

Precondition Inference with Learned Features. In Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design and
Implementation (New York, NY, USA, 2016-06-02) (PLDI ’16). 42–56.
https://doi.org/10.1145/2908080.2908099

[34] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Pro-

gram Synthesis from Polymorphic Refinement Types. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (New York, NY, USA, 2016-06-02) (PLDI ’16).
522–538. https://doi.org/10.1145/2908080.2908093

[35] Mukund Raghothaman, Andrew Reynolds, and Abhishek Udupa. 2019.

The SyGuS Language Standard Version 2.0. (2019), 22.

[36] Eytan Singher and Shachar Itzhaky. 2021. Theory Exploration Powered

by Deductive Synthesis. In Computer Aided Verification, Alexandra
Silva and K. RustanM. Leino (Eds.). Lecture Notes in Computer Science,

Vol. 12760. 125–148. https://doi.org/10.1007/978-3-030-81688-9_6
[37] Armando Solar-Lezama. 2013. Program Sketching. 15, 5 (2013), 475–

495. https://doi.org/10.1007/s10009-012-0249-7
[38] Phillip D. Summers. 1977. A Methodology for LISP Program Construc-

tion from Examples. 24, 1 (1977), 161–175. https://doi.org/10.1145/
321992.322002

[39] Weikun Yang, Grigory Fedyukovich, and Aarti Gupta. 2019. Lemma

Synthesis for Automating Induction over Algebraic Data Types. In

Principles and Practice of Constraint Programming (Cham, 2019) (Lecture
Notes in Computer Science), Thomas Schiex and Simon de Givry (Eds.).

600–617. https://doi.org/10.1007/978-3-030-30048-7_35

https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1007/978-3-030-81688-9_6
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1145/321992.322002
https://doi.org/10.1145/321992.322002
https://doi.org/10.1007/978-3-030-30048-7_35

	Abstract
	1 Introduction
	1.1 Partial Bounding
	1.2 Revising Unrealizable Approximations
	1.3 SE2GIS

	2 Motivating Example
	3 Background
	4 Synthesizing Recursive Functions
	4.1 Recursion-Free Approximation
	4.2 Symbolic SE2GIS with Partial Bounding

	5 Unrealizability Witnesses
	6 Functional Unrealizability
	7 Invariant Inference
	7.1 Classification of S-Certificates
	7.2 Learning Invariants
	7.3 Correctness of SE2GIS

	8 Experimental Results
	8.1 Experimental Setup
	8.2 Results

	9 Related Work
	References

