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Abstract
We propose a fully automated method that takes as input an
iterative or recursive reference implementation and produces
divide-and-conquer implementations that are functionally
equivalent to the input. Three interdependent components
have to be synthesized: a function that divides the original
problem instance, a function that solves each sub-instance,
and a function that combines the results of sub-computations.
We propose a methodology that splits the synthesis problem
into three successive phases, each with a substantially re-
duced state space compared to the original monolithic task,
and therefore substantially more tractable. Our methodology
is implemented as an addition to the existing synthesis tool
Parsynt, and we demonstrate the efficacy of it by synthesiz-
ing highly nontrivial divide-and-conquer implementations
of a set of benchmarks fully automatically.
CCS Concepts. • Theory of computation → Program
reasoning; Divide and conquer; Parallel computing mod-
els; • Software and its engineering → Automatic pro-
gramming;
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1 Introduction
A divide-and-conquer computation decomposes a problem
instance into several smaller sub-problems, solves each inde-
pendently, and then combines the results to solve the origi-
nal problem. It may produce better solutions for algorithmic
problems by (i) improving the asymptotic complexity of the
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computation, for all program inputs or for generic subsets of
them, or (ii) creating the potential for leveraging parallelism,
since independent subtasks can be easily parallelized with
good speedups. Writing a good divide-and-conquer algo-
rithm is often non-trivial and can sometimes be quite tricky.
Every undergraduate algorithms textbook has a chapter on
divide-and-conquer and attempts to teach computer science
students how to do the task by example. There are some-
times several instances of a divide-and-conquer solution for
a given problem (an example follows in Section 2), and the
specific usage determines the preferred solution from the
pool of candidates. Automated synthesis can therefore offer
a lot of utility in this problem space.
This paper proposes a systematic and automatable way

of inferring a divide-and-conquer algorithm from an input
reference implementation. The target divide-and-conquer
algorithms adhere to the diagram in Figure 1. The input
is an existing (iterative or recursive) implementation of a
function f : S 7→ D, which is a single pass function over a

Divide

Join

Figure 1. D&C Schema

collection (of general type S).
The output is a divide-and-
conquer implementation of the
same function. More specifi-
cally, a triple of functional com-
ponents (⋎, f , ⊙) is synthesized
where ⋎ : S → Sn is an n-way
divide operator (n = 2 in the fig-
ure), ⊙ : Dn → D is the com-
plementary join operator, and
f computes f and potentially
some extra information which
is strictly required for ⊙ to recover f (l ) from the partial com-
putations of subtasks. f is a lifting (in the standard category
theory sense) of f .

The main restrictions of this family, compared to broadly
understood divide-and-conquer algorithms, are: (i) the di-
vide function ⋎ has to be recursively applicable to an input
collection, dividing it into smaller and smaller pieces, for an
arbitrary number of calls, and (ii) the computation performed
in each subproblem is a lifting of f . Yet, the model is very
general and admits many interesting divide-and-conquer
algorithms from the literature. In particular, it subsumes the
dc1 category from [24] which proposes a manual method-
ology for producing such algorithms, and it is substantially
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more expressive than any class of divide-and-conquer con-
sidered for automated synthesis so far. MapReduce [7], for
example, is a limited class of divide-and-conquer algorithms
that has been targeted by automated synthesis successfully
before [8, 9, 11, 22, 23]. The more general class we under-
take is strictly more challenging to synthesize since three
interdependent unknown code components (⋎, f , ⊙) need
to be synthesized simultaneously. In [11, 22, 23], the target
of synthesis is only the join operator ⊙ (i.e. the reduction
in MapReduce terminology). In [8, 9], the pair (f , ⊙) was
targeted through the simplifying assumption that ⋎ defaults
to a simple sequence split operator, which is the inverse of
sequence concatenation, i.e ⋎(x • y) = (x ,y); this is the
default assumption for all MapReduce frameworks.
We propose a phased synthesis procedure that breaks up

the task of synthesizing (⋎, f , ⊙) into three separate synthe-
sis subtasks. Figure 2 illustrates the workflow of our method-
ology. The first observation is that instead of synthesizing ⋎,
one can synthesize a divide predicate, namely a specification
for the acceptable outcome of ⋎. A predicate p is a valid
divide predicate if and only if the results of the computations
performed on the parts that satisfy p can be combined cor-
rectly. In other words, there exists a function ⊙ such that, if
a an input z is split into two parts x and y such that p (x ,y)
holds, then f (z) = f (x ) ⊙ f (y). Our approach exploits the
fact that ⊙ has to only exist and need not be determined
while p is being synthesized.

Single-pass Function f
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Figure 2. Phased Synthesis Schema

If p is successfully
synthesized, then ⋎ is
synthesized such that its
output adheres to what
p specifies. If the syn-
thesis of p fails, then
the reason for this fail-
ure may be that extra
information, which is
currently missing from
what f computes, is re-
quired for the existence
of ⊙. Therefore, an at-
tempt is made to lift
f , and it is replaced
by a new function f ,
which additionally com-
putes the missing infor-
mation. Then, the at-
tempt to synthesize p is
repeated for the new function f .

The synthesis of ⋎may also fail. In general, it is not always
possible or feasible to synthesize a piece of code (i.e. ⋎) that
adheres to a given specification (i.e. p). In this case, a new p
is requested with the hopes that a change in the predicate
will lead to a successful step (II). Once ⋎ is synthesized, the
algorithm proceeds to synthesize ⊙ as the only remaining

unknown, which is guaranteed to exist at this point. If this is
successful, the procedure concludes and (⋎, f , ⊙) is returned.

The synthesis loop is further constrained to only explore
implementations that are at least as efficient as the input
reference implementation, so that no useless divide-and-
conquer solutions are generated. One can iterate through the
loop to find a first valid solution, and continue to enumerate
several valid solutions.

Once the synthesis problem is decomposed as depicted in
Figure 2, the synthesis of ⋎ and ⊙ (boxes (II) and (III)) can
be performed in a relatively standard way through syntax-
guided synthesis, since each phase performs the synthesis of
a single unknown code component (Section 7). We propose
a novel algorithm for the synthesis of the divide predicate
p (box (I)), which also predicts if a lifting of f will be re-
quired and produces the lifting. This algorithm, in the spirit
of deductive synthesis [17], simultaneously infers p and any
required lifting f that would guarantee the existence of a
join implementation ⊙, without the need to implement the
dashed loop (for guessing f) depicted in Figure 2.
In Figure 2, the input is a single-pass function f over a

collection. In our technique, we accept an iterative or re-
cursive implementation as input and produce an equivalent
single-pass function f automatically. This step is described
in [10]. In summary, in this paper:

• We lay out the theoretical foundations to reduce the
problem of divide-and-conquer synthesis from the
specification of Figure 1 to one more amenable to au-
tomation (Section 4).
• We propose a phased synthesis algorithm that synthe-
sizes the triple of unknowns (⋎, f , ⊙) in three different
stages employing both syntax-guided synthesis and
deductive synthesis techniques (Section 5).
• We propose a novel algorithm based on deductive syn-
thesis that can efficiently discover two unknowns, a
divide predicate and a lifting of f (Section 6). Our
proposed automated lifting algorithm surpasses pre-
viously known algorithms [8, 9] in that it can infer
conditional accumulators to extend the signature of
the function which were not possible before.
• We illustrate through a set of benchmarks that an im-
plementation of our proposed approach can synthesize
highly nontrivial divide-and-conquer solutions based
on simple input implementations.

2 Motivating Example
We use an example to illustrate the types of programs that
our approach can synthesize automatically. Additionally,
the example underlines the following two observations: (i)
there are often several acceptable divide-and-conquer im-
plementations of a given function, and (ii) synthesizing a
divide-and-conquer solution is not solely about discovering
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the division and join operators, but may also require a lifting
of the original input code.
Consider a set of (input) points on a 2D plane. A point is

Pareto optimal if all the other points are either below or to
the left of this point. Let p.x and p.y denote the coordinates
of point p. Formally:

p ⋗ p ′ ⇐⇒ p.x ≥ p ′.x ∨ p.y ≥ p ′.y

POP(X ) = {p ∈ X | ∀p ′ ∈ X ,p ⋗ p ′}.

The code in Figure 3 computes POP(X ) where the inputX
List <Point > l = [];

List <Point > tmp = [];

for(i = 0; i < n; i++) {

Point p = A[i];

bool b = true;

tmp = [];

for(e in l) {

if(e ⋗ p)tmp.append(e);

b = b && (p ⋗ e); }

if (b) tmp.append(p);

l=tmp;

}

Figure 3. Single pass POP

is a list of points. At each
iteration, the set of opti-
mal points is updated by
maintaining the points
that remain optimal with
respect to the new input,
and adding the new in-
put if it is optimal with
respect to all currently
optimal points. If the di-
vide operator is taken as
the trivial split of the in-
put list, then the correct
join matching this divide has a quadratic time complexity.
By the Master Theorem [5], the complexity of the resulting
naive divide-and-conquer algorithm is O (n2), which matches
that of the original input implementation.
Other divide functions yield algorithms with lower as-

ymptotic complexities. We briefly introduce three such algo-
rithms with a two-way divide, a two-way divide with lifting
and a three-way divide, all of which our tool Parsynt can
automatically synthesize.
The solution with a two-way divide is illustrated on the

right: a (pivot) point p is chosen by taking the point with the
Pivot :
max (p.x + p.y)

maximum sum of coordinates, which is
guaranteed to be Pareto optimal. The
point set is then partitioned into two
sets: the set of points (vertically) above
and strictly belowp. The optimal points
of the original point set is then the con-
catenation of the lists of optimal points from each partition.
If the pivot is chosen at random, and therefore not guar-

anteed to be Pareto optimal, then the Pareto optimal points
Pivot :
randomly chosen
point

of the top partition all remain optimal.
But of the ones in the bottom partition,
those which are to the left of the right-
most point of the top partition have to
be removed. This cannot be done with-
out a lifting. Some additional informa-
tion, for example the rightmost point of each partition, is
needed so that the join can correctly combine the two Pareto
optimal sets by pruning the result from the bottom partition.

10 5 10 4 10 3 10 2 10 1 100

ratio optimal points / total points

0

20

40

60

80

sp
ee

du
p 

D&
C 

im
pl

em
en

ta
tio

n 
/ 

ite
ra

tiv
e

2-way divide

3-way divide

with lifting

naive

Figure 4. Speedups of sequential divide-and-conquer implemen-
tations of POP relative to implementation in Figure 3

Finally, in the implementation with a three-way divide,
a point is chosen at random and the rightmost point above
this point is chosen as the pivot. The point set is partitioned
into three subspaces (as illustrated on
the right): the points above, to the right,
and below and to the left of the pivot.
The third partition (hatched) does not
contain any Pareto optimal point. The
Pareto optimal points for the other two
partitions are optimal for the original point set and therefore
the join operator can simply concatenate the results from
these two partitions.
All algorithms, except the naive one, partition the space

in linear time, and join the results in constant or linear
time, which puts them in the same asymptotic complexity
class O (n logn). However, the performance of these solu-
tions varies significantly depending on the composition of
the input data; specifically, the ratio of the Pareto optimal
points to the total number of points. The graph in Figure 4
illustrates the speedups of the different divide-and-conquer
implementations relative to the input implementation of Fig-
ure 3. The horizontal axis is the ratio of optimal points in the
input list (of size 2× 105). When the ratio of optimal points is
very small, the naive implementation performs significantly
better than all other implementations, with speedups reach-
ing 80x. When there are very few Pareto optimal points, the
(quadratic) join operator defaults to a constant time complex-
ity. As the ratio of optimal points increases, the performance
of the naive implementation decreases to drop below all the
other algorithms. Our tool produces all algorithms automati-
cally and the user selects the best for their specific usage.

3 Background and Notation
Let Sc be a type that stands for any scalar type used in typical
programming languages, such as int and bool, whenever
the specific type is not important in the context. Scalars are

3
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assumed to be of constant size, and conversely, any constant-
size representable data type is assumed to be scalar. Con-
sequently, all operations on scalars are assumed to have
constant time complexity. Type S defines the set of all se-
quences of elements of type Sc. The concatenation operator
• : S × S → S defined over sequences is associative. The
sequence type stands in for arrays, lists, or any collection
data type that admits a linear iterator and an associative com-
position operator. A function h : S → D is rightwards iff
there exists a binary operator ⊕ : D × Sc → D such that for
all x ∈ S and a ∈ Sc, we have h(x • [a]) = h(x ) ⊕ a. A right-
wards function can be defined by a left fold over a sequence:
h(x ) = foldl ⊕ h([]) x . A leftward function is defined anal-
ogously using the recursive equation h([a] • x ) = a ⊗ h(x ).
A function is single-pass if it is leftwards or rightwards.

4 Decomposing D&C Specification
The input to our approach is an implementation of a single-
pass function f : S → D. To accommodate generic reference
implementations, whichmay be a (nested) loop or a recursive
function performing multiple passes over the input data,
we propose a (source-to-source) translation in [10]. This
translation converts an arbitrary iterative or recursive input
implementation to a single pass recursive function f .

The goal of this section is to start with a generic specifica-
tion for divide-and-conquer and transform it to a tractable
specification for search-based synthesis. A general divide-
and-conquer algorithm comprises of a divide function ⋎ :
S → Sc and a join function ⊙ : Dc → D (with c > 1) that
satisfy the specfication:

Ψ(⊙, ⋎) ≡ ∀z ∈ S :

f (z) = ⊙
(
f (⋎(z).1), f (⋎(z).2), . . . , f (⋎(z).c )

)
(1)

Since ⊙ and ⋎ must be computable, the solution space for
them is the set of recursive functions. To accommodate full
automation, we focus on a slightly more limited universe of
divide functions, namely those that partition the input space.
To simplify the formal notation, we restrict c to be pre-

cisely 2. All formal statements stated and proved in this
paper generalize to any value for c , and therefore this does
not cause a loss in generality. The stronger specification for
partition divide-and-conquer algorithms is:

Ψ◦ (⊙, ⋎) ≡ ∀z ∈ S : f (z) = f (⋎(z).1) ⊙ f (⋎(z).2)

∧ z̃ = J⋎(z).1 ∪J⋎(z).2 (2)

where z̃ denotes the set of elements of sequence z.
Note that both Ψ and Ψ◦ admit trivial (useless) solutions.

For example, a valid solution for ⋎ is to divide a sequence
s into the sequence s and the empty sequence [], and let
⊙ return its first component. To rule these out, we add a
constraint on the sizes of individual outputs generated by ⋎
over a universe of inputs. It requires the existence of at least

one input which would divide a list of lengthm + k into two
sublists of arbitrary sizesm and k . Formally:

χ (⋎) ≡ ∀m,k ∈ N,∃z ∈ S : |⋎(z).1| =m ∧ |⋎(z).2| = k

Note that this can be extended to multi-way divides in a
straightforward way. Combining Ψ◦ from Equation 2 with χ
will result in our first concrete specification with non-trivial
solutions:

Ψ• (⋎, ⊙) ≡ Ψ◦ (⋎, ⊙) ∧ χ (⋎) (3)

Ψ• (a strict strengthening of Ψ) is the precise specifica-
tion we aim to use for divide-and-conquer synthesis. Yet
this specification defines a huge (intractable) search space
for existing search-based program synthesis techniques. We
propose a way to decompose this specification such that ⋎
and ⊙ can be synthesized independently, even though they
are related through Ψ•.
Key insight. Themost straightforward division operation is
the inverse of sequence concatenation, that is, the sequence
z is divided into any pair of sequences z1 and z2 such that
z = z1 •z2. The key observation is that a general divide ⋎ sat-
isfying Ψ• can be defined as a composition of a sequence per-
mutation function and this trivial divide. That is, if Ψ• (⋎, ⊙)
then there exists a permutation function π : S → S such
that ∀z ∈ S : z = π (⋎(z).1 • ⋎(z).2). This a simple conse-
quence of the constraint z̃ = J⋎(z).1 ∪J⋎(z).2.

The insight leads to the specification below, which makes
use of a predicate p : S × S → Bool and a permutation
function π instead of the divide function ⋎:

Φ(π ,p, ⊙) ≡ χ• (p) ∧ ∀(x ,y) ∈ S2 :
p (x ,y) ⇒ f (π (x • y)) = f (x ) ⊙ f (y) (4)

where χ is reformulated for p as

χ• (p) = ∀m,k ∈ N,∃x ,y ∈ S2 : |x | =m ∧ |y | = k ∧ p (x ,y)

The new specification is only a reframing of our problem,
and as the following theorem states, Ψ• can be used instead
of Φ without a compromise.

Theorem 4.1. The specifications Ψ• (defined in Equation 3)
and Φ (defined in Equation 4) are mutually realizable.

So far, we have reformulated the problem of synthesizing
a divide and a join operation to a different yet equirealizable
problem of synthesizing a predicate p and a join operation.
This is an intermediate step that facilitates the independent
algorithmic synthesis of p and ⊙, in contrast to the mono-
lithic task that is put forward by the specification Φ. First,
we discuss how this can be achieved through a specialization
of the synthesis problem.

4.1 Permutation Invariance
If f is not sensitive to the order of elements in its input
sequence, then π can be eliminated from Φ.

4
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Definition 4.2 (Permutation invariant). A function f is per-
mutation invariant iff for all permutation functions π and all
lists x ∈ S, f (x ) = f (π (x )).

If f is permutation invariant and (π ,p, ⊙) is a solution for
Φ, then (π ′,p, ⊙) for any permutation function π ′ is also a
valid solution to Φ. Therefore, we can simply replace π with
the identity permutation and simplify Φ to:

Φ• (p, ⊙) ≡ ∀x ,y ∈ S2 :
p (x ,y) ⇒ f (x • y) = f (x ) ⊙ f (y) ∧ χ• (p) (5)

Theorem 4.3. If the function f is permutation invariant then
the specifications Φ• and Ψ• are mutually realizable.

An insight from the proof (in Appendix B.2) is the nec-
essary relation between p and ⋎, which must satisfy ∀z ∈
S,p (⋎(z).1, ⋎(z).2).

The practicality of Φ• (over Ψ•) is that without π , one can
synthesize p and ⊙ in two independent (synthesis) steps as
discussed in Sections 5 and 6.

4.2 Splitting Divides
The results in Section 4.1 are theoretically crisp, but seem
restricted in the sense that they do not apply if the function
is not permutation invariant. It turns out that solutions to
specification Φ• go beyond divide functions for permutation
invariant functions. Consider splitting divides as formally
defined below.

Definition 4.4 (Splitting divide). Adivide function ⋎ : S →
S × S is a splitting divide if ∀z ∈ S : z = ⋎(z).1 • ⋎(z).2.

A splitting divide ⋎ can also be synthesized (indirectly)
through the specification Φ•. The reason goes as follows.
The restriction of Ψ• to splitting divides is:

Ψ⋆(⋎, ⊙) ≡ χ (⋎) ∧ (z) = f (⋎(z).1) ⊙ f (⋎(z).2)
∧ ∀z ∈ S : ⋎(z).1 • ⋎(z).2 = z (6)

Proposition 4.5. If Ψ⋆ is realizable then so is Φ•.

Proposition 4.5 concludes that whenever a splitting divide
solution exists, Φ• also presents a corresponding solution.
The converse does not hold; there may exist a solution for Φ•
while no solution for Ψ⋆ exists. Note that splitting divides
provide valid divide-and-conquer implementations for many
instances where f is not permutation invariant.
So far we have argued how Φ• can be used to generate

two different generic class of divide-and-conquer algorithms.
Theoretically, there is no guarantee that either f is a permu-
tation invariant or a splitting divide for f exists. Practically,
however, we have not come across a single case for this. Nev-
ertheless, to close the theoretical gap, in Appendix B.4, we
discuss a general construction that translates an arbitrary
function f to a permutation-invariant implementation of it

f̆ . We prove that realizability of Φ• for f implies realizability
of Φ• for f̆ . Therefore, if f is not permutation invariant and
a splitting divide does not exist, then one can theoretically
synthesize a divide-and-conquer solution for f̆ instead.

5 Synthesizing Divide-and-Conquer
The intention with the design of a divide-and-conquer imple-
mentation is to either obtain a better performing sequential
algorithm or a parallelizable algorithm. In both cases, the
resulting algorithm should not have a worse computational
complexity than the input reference implementation. Note
that the specification(s) from Section 4 carry no guaran-
tees about the computational complexity of the synthesized
code. We first introduce sufficient conditions that guarantee
a reasonable computational complexity for the synthesized
program. Then, we provide a refinement of the schema in
Figure 2 that incorporates these complexity constraints and
makes explicit use of specifications introduced in Section 4.

5.1 Complexity of Divide-And-Conquer
The time complexity of synthesized divide-and-conquer al-
gorithms can be measured through the Master Theorem
[5]. Under the assumption that the divide operator is bal-
anced, the time complexity is defined through the recurrence
T (n) = kT (n/c ) +w (n), wherew (n) captures the combined
complexities of ⊙ and ⋎, and c and k respectively determines
the number of subproblems created and recursively solved.

In our synthesis context, we assumew (n) to have simple
polynomial complexity, that is O (nm ) for somem ≥ 0, since
it is difficult to relate logarithmic complexities to syntax. We
use a triple (m,k, c ) to denote the complexity budget for a
divide-and-conquer algorithm, fromwhich (through theMas-
ter Theorem) its asymptotic complexity can be calculated.
In a typical divide-and-conquer algorithm, there is usually
a tension between the complexity of divide and join func-
tions. If the algorithm does more work upfront, to perform a
favourable division, then the task of combining will become
simpler. Conversely, if it performs a cheap division, a more
elaborate join will be required. Quick sort and merge sort can
be respectively considered instances of the two scenarios.
We use this insight to enumerate different possible solutions
to synthesis. The O (nm ) total cost for divide and join oper-
ations is computed as the combination of the complexities
O (nm⋎ ) for division and O (nm⊙ ) for join.

5.2 Synthesis Paradigm
Figure 5 illustrates a precise instantiation of the schema
presented earlier in Figure 2, incorporating a complexity
budget and the specifications introduced in Section 4. Our
synthesis algorithm maintains an internal budget for the
join operation, which is initialized to the smallest possible
value B⊙ = (m⊙,k, c ) = (0, 1, 2). The algorithm attempts to
synthesize a solution within budget B⊙ , and if it fails then it
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Single-pass Function f

<latexit sha1_base64="GBMpJ9Mliq1a8K6nxmgJ44PhW6Y=">AAACFnicbVDLSgMxFM3UV62vUZe6CLaCG8tMEeqyKIjLivYB7VAyaaYNzWSG5I5Yhm78Cj/BrX6AO3Hr1rU/YvpY2OqBC4dz7s3NPX4suAbH+bIyS8srq2vZ9dzG5tb2jr27V9dRoiir0UhEqukTzQSXrAYcBGvGipHQF6zhDy7HfuOeKc0jeQfDmHkh6UkecErASB37sK0DfMtlT7DTmGiNrxJJxxYuBIWOnXeKzgT4L3FnJI9mqHbs73Y3oknIJFBhXmu5TgxeShRwKtgo1040iwkdkB5rGSpJyLSXTq4Y4WOjdHEQKVMS8ET9PZGSUOth6JvOkEBfL3pj8T+vlUBw7qVcxgkwSaeLgkRgiPA4EtzlilEQQ0MIVdz8FdM+UYSCCW5uiwb+MDKpuIsZ/CX1UtE9K5ZvSvnKxSyfLDpAR+gEuaiMKugaVVENUfSIntELerWerDfr3fqYtmas2cw+moP1+QPH2p81</latexit>

<latexit sha1_base64="eg9bR8GZTMPjIxHxD8pSR2PkIGk="></latexit>

Synthesize p s.t.
9� 2 B� s.t. �•(p,�)

<latexit sha1_base64="qi6uh3cq5dfs6G06HSkG47d+duM="></latexit>

Synthesize g s.t.
8x 2 S : p(g(x))

success?

<latexit sha1_base64="m0QBFS0gZ2SXee1BgjDCQrofKPQ=">AAAB/nicbVBPS8MwHE3nvzn/VcWTl+AQPI12DKsXHXjxOMFtwlpGmqZbWJqUJBVGGfhVvHhQxKufw5vfxmwrotMHgcd7v1/y8sKUUaUd59MqLS2vrK6V1ysbm1vbO/buXkeJTGLSxoIJeRciRRjlpK2pZuQulQQlISPdcHQ19bv3RCoq+K0epyRI0IDTmGKkjdS3D3wV+1xQHhGuocowJkpd9u2qU3NmgE7t9LxR9zz4rbgFqYICrb794UcCZ4m5BDOkVM91Uh3kSGqKGZlU/EyRFOERGpCeoRwlRAX5LP4EHhslgrGQ5pgQM/XnRo4SpcZJaCYTpIdq0ZuK/3m9TMdnQU55mmnC8fyhOGNQCzjtAkZUEqzZ2BCEJTVZIR4iibA2jVVMCe7il/+STr3mNmreTb3avCjqKINDcAROgAs80ATXoAXaAIMcPIJn8GI9WE/Wq/U2Hy1Zxc4++AXr/QuiOJXs</latexit>

Divde-and-Conquer Code (g, f ,�)

<latexit sha1_base64="EMKuBbSp/KifsXdqjvpewa7DDtM="></latexit>

success?

<latexit sha1_base64="m0QBFS0gZ2SXee1BgjDCQrofKPQ=">AAAB/nicbVBPS8MwHE3nvzn/VcWTl+AQPI12DKsXHXjxOMFtwlpGmqZbWJqUJBVGGfhVvHhQxKufw5vfxmwrotMHgcd7v1/y8sKUUaUd59MqLS2vrK6V1ysbm1vbO/buXkeJTGLSxoIJeRciRRjlpK2pZuQulQQlISPdcHQ19bv3RCoq+K0epyRI0IDTmGKkjdS3D3wV+1xQHhGuocowJkpd9u2qU3NmgE7t9LxR9zz4rbgFqYICrb794UcCZ4m5BDOkVM91Uh3kSGqKGZlU/EyRFOERGpCeoRwlRAX5LP4EHhslgrGQ5pgQM/XnRo4SpcZJaCYTpIdq0ZuK/3m9TMdnQU55mmnC8fyhOGNQCzjtAkZUEqzZ2BCEJTVZIR4iibA2jVVMCe7il/+STr3mNmreTb3avCjqKINDcAROgAs80ATXoAXaAIMcPIJn8GI9WE/Wq/U2Hy1Zxc4++AXr/QuiOJXs</latexit>

<latexit sha1_base64="NiOUvt1z12ZpSB3EsG2Cw5fuUHQ="></latexit>

Synthesize � 2 B�
s.t.  •(g,�)

(I)

<latexit sha1_base64="C1krp8Nj01NSP4LkBpunQGO0L7Q="></latexit>

(II)

<latexit sha1_base64="S0cmBOKhuhe5NVDrl0rbasLtOjU="></latexit>

(III)

<latexit sha1_base64="FvSR3e3e2ewt5TGSEVdqf9GFugA=">AAACm3icdZHbattAEIbX6ilRT057WQpLTSGFIiTVcZy7kNzUpRcprZOAJcxoNXKWrLTq7qpghF6jT9Pb9B3yNl3ZcpuUdmBhmP+bw84kpeDa+P51z7lz9979B1vb7sNHj5887e88O9WyUgynTAqpzhPQKHiBU8ONwPNSIeSJwLPk8rjVz76h0lwWX8yyxDiHRcEzzsDY0LzvRzqLVmVmapHEte/5B6Pxu723vheOh6NgaJ290cE4DBu6O5lM3sz7gw1DNwzdMDTw/JUNSGcn853e5yiVrMqxMEyA1rPAL01cgzKcCWzcqNJYAruEBc6sW0COOq5XMzX0tY2kNJPKvsLQVfRmRg251ss8sWQO5kL/rbXBf2mzymTjuOZFWRks2LpRVglqJG33RFOukBmxtA4wxe2slF2AAmbsNm91ydJ2ACka141SzCKBpqxqmEe2uRD6awWq/WUnycRK9Xrl9ULBsqFrMBG2Xkf/wUv1u9JNwLVn2Oya/t85Db1g6O1/CgeHR91BtsgL8orskoDsk0PynpyQKWHkO/lBrshP56Vz7HxwPq5Rp9flPCe3zJn+At0azJs=</latexit>

success?

<latexit sha1_base64="m0QBFS0gZ2SXee1BgjDCQrofKPQ=">AAAB/nicbVBPS8MwHE3nvzn/VcWTl+AQPI12DKsXHXjxOMFtwlpGmqZbWJqUJBVGGfhVvHhQxKufw5vfxmwrotMHgcd7v1/y8sKUUaUd59MqLS2vrK6V1ysbm1vbO/buXkeJTGLSxoIJeRciRRjlpK2pZuQulQQlISPdcHQ19bv3RCoq+K0epyRI0IDTmGKkjdS3D3wV+1xQHhGuocowJkpd9u2qU3NmgE7t9LxR9zz4rbgFqYICrb794UcCZ4m5BDOkVM91Uh3kSGqKGZlU/EyRFOERGpCeoRwlRAX5LP4EHhslgrGQ5pgQM/XnRo4SpcZJaCYTpIdq0ZuK/3m9TMdnQU55mmnC8fyhOGNQCzjtAkZUEqzZ2BCEJTVZIR4iibA2jVVMCe7il/+STr3mNmreTb3avCjqKINDcAROgAs80ATXoAXaAIMcPIJn8GI9WE/Wq/U2Hy1Zxc4++AXr/QuiOJXs</latexit>

<latexit sha1_base64="Hr6LzJ5CPcx708hU3BUknp7PoQQ=">AAACA3icbVDLSgMxFM34rPU16k43wVZwNcwUxW7UghuXFewDOkPJZDJtaCYZkoxQSsGNv+LGhSJu/Ql3/o1pO6BWDwQO59x7c+8JU0aVdt1Pa2FxaXlltbBWXN/Y3Nq2d3abSmQSkwYWTMh2iBRhlJOGppqRdioJSkJGWuHgauK37ohUVPBbPUxJkKAepzHFSBupa+/7Kva5oDwiXMNyCs/LMEZMkUvYtUuuU/VO3EoVuo47xTfxclICOepd+8OPBM4SMwkzpFTHc1MdjJDUFDMyLvqZIinCA9QjHUM5SogKRtMbxvDIKBGMhTTPbDJVf3aMUKLUMAlNZYJ0X817E/E/r5PpuBqMKE8zTTiefRRnDGoBJ4HAiEqCNRsagrCkZleI+0girE1sRROCN3/yX9KsON6p495USrWLPI4COACH4Bh44AzUwDWogwbA4B48gmfwYj1YT9ar9TYrXbDynj3wC9b7FweNlnM=</latexit>

p = false?

<latexit sha1_base64="4WcSEa4JPGQCY/V52ljAgpBAOJQ=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4WrJFsScpePFYwX5Iu5Rsmm1Dk+ySZIVS+iu8eFDEqz/Hm//GtF1Qqw8GHu/NMDMvSgU3FuNPb2V1bX1js7BV3N7Z3dsvHRw2TZJpyho0EYluR8QwwRVrWG4Fa6eaERkJ1opG1zO/9cC04Ym6s+OUhZIMFI85JdZJ910To0wZYnulMvarwTmuVBH28RzfJMhJGXLUe6WPbj+hmWTKUkGM6QQ4teGEaMupYNNiNzMsJXREBqzjqCKSmXAyP3iKTp3SR3GiXSmL5urPiQmRxoxl5DolsUOz7M3E/7xOZuNqOOEqzSxTdLEozgSyCZp9j/pcM2rF2BFCNXe3IjokmlDrMiq6EILll/+SZsUPLnx8WynXrvI4CnAMJ3AGAVxCDW6gDg2gIOERnuHF096T9+q9LVpXvHzmCH7Be/8C1RCQaQ==</latexit>

unsat

<latexit sha1_base64="fdXGbOMAfxSNbP7ERwzaP8lRuFc=">AAACCXicbVDLSgMxFM3UV62vUZdugq3gqswUxa6k6EZ3FewDOkPJpJk2NJMMSUYoQ7du/BU3LhRx6x+482/MtANq9UDgcM495N4TxIwq7TifVmFpeWV1rbhe2tjc2t6xd/faSiQSkxYWTMhugBRhlJOWppqRbiwJigJGOsH4MvM7d0QqKvitnsTEj9CQ05BipI3Ut6GnQnjNsckoAitehPQII5ZeTPueGAhd6dtlp1p3T5xaHTpVZ4Zv4uakDHI0+/aHNxA4iQjXmCGleq4Taz9FUlPMyLTkJYrECI/RkPQM5Sgiyk9nl0zhkVEGMBTSPK7hTP2ZSFGk1CQKzGS2qVr0MvE/r5fosO6nlMeJJhzPPwoTBrWAWS1wQCXBmk0MQVhSsyvEIyQR1qa8kinBXTz5L2nXqu5p1bmplRvneR1FcAAOwTFwwRlogCvQBC2AwT14BM/gxXqwnqxX620+WrDyzD74Bev9C9dFmcg=</latexit>

Increase B�

<latexit sha1_base64="YaVyuk2pzDBMKwvyrfYIl0VRHVY=">AAAB83icdVDLSgMxFM34rPVVdekmWAQXMiS1ZepGCm5cVrAP6JSSSTNtaGYmJBmhDP0NNy4UcevPuPNvzLQVVPRA4HDOvdyTE0jBtUHow1lZXVvf2CxsFbd3dvf2SweHbZ2kirIWTUSiugHRTPCYtQw3gnWlYiQKBOsEk+vc79wzpXkS35mpZP2IjGIeckqMlXx57kfEjIMwC2eDUhm5uILwhQeRW0Weh7ElHrqs1eoQu2iOMliiOSi9+8OEphGLDRVE6x5G0vQzogyngs2KfqqZJHRCRqxnaUwipvvZPPMMnlplCMNE2RcbOFe/b2Qk0noaBXYyT6h/e7n4l9dLTVjvZzyWqWExXRwKUwFNAvMC4JArRo2YWkKo4jYrpGOiCDW2pqIt4eun8H/Srri45qLbarlxtayjAI7BCTgDGHigAW5AE7QABRI8gCfw7KTOo/PivC5GV5zlzhH4AeftE4Ckkf4=</latexit>

p, f

<latexit sha1_base64="RbGCYj56MRQl1Cf1u3hPnik10TE=">AAAB/XicdVDLSgMxFM34rPVVHzs3wSK4kCFTW6ZupODGZQX7gLaUTHqnDc08SDKFOhR/xY0LRdz6H+78G9OHoKIHAodz7uWeHC8WXGlCPqyl5ZXVtfXMRnZza3tnN7e3X1dRIhnUWCQi2fSoAsFDqGmuBTRjCTTwBDS84dXUb4xAKh6Ft3ocQyeg/ZD7nFFtpG7usM0SKcYjgLN2QPXA81N/0s3lie0UiHPuYmIXies6jiEuuSiVytixyQx5tEC1m3tv9yKWBBBqJqhSLYfEupNSqTkTMMm2EwUxZUPah5ahIQ1AddJZ+gk+MUoP+5E0L9R4pn7fSGmg1DjwzOQ0ofrtTcW/vFai/XIn5WGcaAjZ/JCfCKwjPK0C97gEpsXYEMokN1kxG1BJmTaFZU0JXz/F/5N6wXZKNrkp5iuXizoy6Agdo1PkIBdV0DWqohpi6A49oCf0bN1bj9aL9TofXbIWOwfoB6y3T2szldo=</latexit>g, f

<latexit sha1_base64="wRjJ5HmKiqMbObdXRwR2ul2/3M0=">AAACBHicdVA9SwNBEN2LXzF+RS3TLAbBQo69mHDaSMDGMoLRQC6Evc1cXNy7PXb3hHCksPGv2FgoYuuPsPPfuIkRVPTBwOO9GWbmhang2hDy7hTm5hcWl4rLpZXVtfWN8ubWhZaZYtBmUkjVCakGwRNoG24EdFIFNA4FXIbXJxP/8gaU5jI5N6MUejEdJjzijBor9cuVgGVKjG4A9oOYmqswyqPxPg7kQJp+uUpcr0a8Ax8Tt0583/Ms8clRo3GIPZdMUUUztPrlt2AgWRZDYpigWnc9kppeTpXhTMC4FGQaUsqu6RC6liY0Bt3Lp0+M8a5VBjiSylZi8FT9PpHTWOtRHNrOyaH6tzcR//K6mYkOezlP0sxAwj4XRZnARuJJInjAFTAjRpZQpri9FbMrqigzNreSDeHrU/w/uai5XsMlZ/Vq83gWRxFV0A7aQx7yUROdohZqI4Zu0T16RE/OnfPgPDsvn60FZzazjX7Aef0ARNCYfg==</latexit>g, f ,�

<latexit sha1_base64="oCyFak6Ug71Gb5S2D1LnLs9ImeY="></latexit>B� too large?

<latexit sha1_base64="NZwoXvfFz2UdGmNN49qZgM4Lb/w=">AAAB63icdVDLSgMxFM34rPVVdekmWARXQ6a1Y5dFN11WsA9oh5JJM21okhmSjFCG/oIbF4q49Yfc+Tdm2goqeuDC4Zx7ufeeMOFMG4Q+nLX1jc2t7cJOcXdv/+CwdHTc0XGqCG2TmMeqF2JNOZO0bZjhtJcoikXIaTec3uR+954qzWJ5Z2YJDQQeSxYxgk0uNTE3w1IZucivVvw6RG615tUuK5b4HvJRFXouWqAMVmgNS++DUUxSQaUhHGvd91Biggwrwwin8+Ig1TTBZIrHtG+pxILqIFvcOofnVhnBKFa2pIEL9ftEhoXWMxHaToHNRP/2cvEvr5+aqB5kTCapoZIsF0UphyaG+eNwxBQlhs8swUQxeyskE6wwMTaeog3h61P4P+lUXK/mottKuXG9iqMATsEZuAAeuAIN0AQt0AYETMADeALPjnAenRfnddm65qxmTsAPOG+fTiKOag==</latexit>

Halt

Figure 5. Phased Synthesis Schema

increases the budget until it reaches a limit, where the divide-
and-conquer code will end up with higher computational
complexity than the input implementation. At the high level,
the algorithm proceeds in three phases:

(I) The weakest divide predicate p is synthesized that sat-
isfies the specification ∃⊙ : Φ• (p, ⊙). At this stage,
the algorithm does not synthesize an implementation
for ⊙ but rather guarantees its existence within bud-
get B⊙ . An algorithm for (I) is the key (algorithmic)
contribution of this paper and appears in Section 6.

(II) A divide operation ⋎ matching p is synthesized. ⋎
is the lowest (time) complexity divide operation that
satisfies ∀x ∈ S : p (⋎(x )). As a direct consequence
of the conceptual contributions presented in Section
4, this phase can be efficiently implemented using a
straightforward syntax-guided synthesis routine.

(III) An implementation of ⊙ (within budget B⊙) is synthe-
sized such that Ψ• (⋎, ⊙) holds. Similar to (II), this step
can be implemented using a straightforward syntax-
guided synthesis routine.

The loop between steps (I) and (II) may succeed several
times, for increasing values of B⊙ , and therefore, it can enu-
merate many valid solutions when more than one exist.

If step (I) fails to discover a predicate p, the default value
false is returned which triggers the step to be repeated with
a higher budget B⊙ . The fact that p is the weakest predicate
implicitly guarantees that it satisfies χ•, and therefore, it
does not have to explicitly appear as part of Φ• (p, ⊙).
The algorithm also produces a lifting of f to guarantee

the existence of ⊙ in step (I), if one is required. In other
words, the f as it appears in Φ• (p, ⊙) may be the original
f or a lifting f (of f ) that facilitates the existence of the ⊙.
Our proposed algorithm for synthesis of p in Section 6 also
accommodates the computation of f , if necessary.

In step (II), the algorithm attempts to synthesize ⋎ such
that total complexity of divide-and-conquer algorithm based
on the budget (max (m⊙,m⋎ ),k, c ) is at most as computa-
tionally expensive as f . A failure in this step means that a
divide function matching the predicate p cannot be synthe-
sized. If step (II) fails, then B⊙ is increased so that a different
predicate is produced in step (I).
B⊙ = (m⊙,k, c ) is increased first by incrementing k until

k = c , and then by incrementingm until the complexity of
f is reached, and finally by incrementing c . Note that there
is no theoretical bound on c , but it is often a small constant
and therefore a small bound is preset for it in this loop. The
loop terminates when B⊙ reaches its limit.
By the end of step (II), the algorithm has synthesized

a divide operation ⋎ that satisfies the specification ∃⊙ :
Ψ• (⋎, ⊙) such that the combined cost of ⋎, known since it
has been synthesized, and ⊙, known through B⊙ , does not
surpass the asymptotic complexity of f . Therefore, step (III)
is guaranteed to succeed.
The solution space of possible divide-and-conquer algo-

rithms in each iteration subsumes that of the previous itera-
tion since B⊙ is increased. Therefore, a predicate solution
from an earlier iteration is a valid solution for a later itera-
tion. However, a new predicate, admitted through a bigger
B⊙ , is strictly weaker than a predicate from an earlier itera-
tion . This is precisely why to ensure progress, we actively
seek the weakest predicate that satisfies the constraints in
step (I). This also guarantees that upon termination, the al-
gorithm explores all possible divide-and-conquer solutions
with a join function of polynomial time complexity within
acceptable range.

6 Deductive Recursion Synthesis
This section presents an algorithm for step (I) in Figure 5.
The goal is to find a divide predicate p such that there is a
join function ⊙ within a given budget B⊙ = (m⊙,k, c ) that
satisfies Φ• (p, ⊙), that is (for c = 2):

∀x ,y ∈ S2 : p (x ,y) ⇒ f (x • y) = f (x ) ⊙ f (y). (7)
Key insight. In the above specification, f is the known
recursive function, p is an unknown recursive predicate and
⊙ is an unknown recursive function. The idea is to use the
recursive definition of f to infer the recursive definition
of p (and ⊙). We do this by induction on the two f input
parameters x and y, and the two ⊙ input parameters f (x )
and f (y) (unless they are scalars). Starting with empty lists,
one can solve forp and ⊙ for lists of increasing sizes, and then
extrapolate a recursive definition for p (and for ⊙). Since f is
rightwards single-pass, it is sufficient to perform induction
only ony and on f (x ), but not on x . We start with an intuitive
explanation of the algorithm through an example, and then
present the formal details.
Recall example POP from Section 2. We illustrate how a

recursive definition of p may be discovered for the 2-way
6
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Figure 6. Expression of the unfolding POP(x • [a1])

divide in one of the divide-and-conquer instances discussed
for POP. To simplify the presentation of this instance, we
assume that we know ⊙ = • a priori, even though this is
not generally the case. We start by doing induction on y and
POP(x ). We let y = [a1] and y = [a1,a2] for two different
instances, and POP(x ) = [s1, s2]. Note that the list elements
are symbolically denoted by variables a1, a2, s1, and s2.
Expression (i ) in Figure 6 is the result of inlining the

recursive definition of POP(x • [a1]). Since x is fixed, one
can view POP(x • [a1]) as the unfolding of function POP
starting from POP(x ). Observe that expression (i ) in no way
resembles the format of Equation 7, and the expression of p
cannot be guessed from it. Using a few simple rewrite rules,
specifically (c ? a : b) ⊕ d → c ? a ⊕ d : b ⊕ d and the
factoring of conditionals, expression (i ) can be rewritten
to expression (ii ) 1. Note that in expression (ii ), the then-
expression is equal to POP(x ) • POP([a1]). Therefore, if the
highlighted expression is true, then POP(x•[a1]) = POP(x )•
POP([a1]), which makes the highlighted expression our best
conjecture for p (x , [a1]). Yet, one unfolding is not sufficient
for deducing a recursive definition forp. Therefore, we repeat
this process with y as a list of two elements, which will
produce a conjecture for p (x • [a1,a2]). If we compute the
expression for POP(x • [a1,a2]) and rewrite it, we get:
POP(x • [a1,a2]) =

(
¬(a1 ⋗ a2) ∨ p (x , [a1])

)
∧
(
¬(a2 ⋗ a1)∨

(s1 ⋗ a2 ∧ s2 ⋗ a2 ∧ a2 ⋗ s1 ∧ a2 ⋗ s2)
)
?

POP(x ) • POP([a1,a2]) : POP(x • [a1,a2])

The expression for p (x , [a1,a2]) is again identifiable from
the conditional operator at the root. Observe that both ex-
pressions are instances of the more general pattern ∀r ∈
POP(y),∀s ∈ POP(x ), s ⋗ r ∧ r ⋗ s , which is precisely the re-
cursive definition that our algorithm extrapolates from these
two instances through a recursion discovery (RD) step. We
say well-formed expressions like these are in normal form.
Φ• can be transformed to:
∀(x ,y) ∈ S2 : f (x •y) = p (x ,y) ? f (x )⊙ f (y) : f (x •y) (8)

where p appears as a conditional subexpression of the right-
hand side, rather than as a precondition in Equation 7. This
facilitates the identification of normal forms through the
transformation of the expression of f (x • y).
We made the simplifying assumption that ⊙ = •, but

in general, it is unknown. Therefore, instead of knowing
that POP(x ) • POP([a1,a2]) is the join expression, we have
1Appendix C.1 spells out the rewriting steps for the interested reader.

to characterize the shape of valid join expressions. Then,
based on Equation 8, a guess is made for a subexpression
representing p based on the expression under the condition
having the right shape.

<latexit sha1_base64="KR6ZtxiPlqKxHOZvtXBPGt3L2J4=">AAACO3icbVDLTgIxFO3gC/E16tJNI5igMWSGhOgSdaM7TOSRMIR0Oh1o6HQmbcdAJnyPX+EnuNW4ZmfcurcDLAS8SZOTc+7NOT1uxKhUlvVpZNbWNza3stu5nd29/QPz8Kghw1hgUschC0XLRZIwykldUcVIKxIEBS4jTXdwl+rNZyIkDfmTGkWkE6Aepz7FSGmqa944PKTcI1xBR/rwgXsxThVYQwIFROlT6DjQ6csIYXKRlCuRGkNY8IvD88IlLIwKXTNvlazpwFVgz0EezKfWNSeOF+I40J6YISnbthWpToKEopiRcc6JJdFmA9QjbQ25jiE7yfSrY3imGQ/6odBPZ56yfy8SFEg5Cly9GSDVl8taSv6ntWPlX3cSyqNYEY5nRn7MoAph2hv0qCBYsZEGCAuqs0Lc1x3htKIFF6nocKxbsZc7WAWNcsmulKzHcr56O+8nC07AKSgCG1yBKrgHNVAHGLyAN/AOPoxXY2J8Gd+z1YwxvzkGC2P8/AL8cazc</latexit>

Induction Parameters
f (x), y

<latexit sha1_base64="Ly/VQ8o/1wJO8oiZqfw5ljrnzYs=">AAACEHicbVC7TsMwFHV4lvIKMLJYtIiyVEklBGMFC2OR+pKaqHIcp7VqO5HtIKqon8DCr7AwgBArIxt/g9tmgJYjWTo69+FzT5AwqrTjfFsrq2vrG5uFreL2zu7evn1w2FZxKjFp4ZjFshsgRRgVpKWpZqSbSIJ4wEgnGN1M6517IhWNRVOPE+JzNBA0ohhpI/XtM09FnoipCInQsCmRUFEsOSxHlQfoBSljRMPxeblvl5yqMwNcJm5OSiBHo29/eWGMU27WYoaU6rlOov0MSU0xI5OilyqSIDxCA9IzVCBOlJ/NDprAU6OE0Bgxz9iaqb8nMsSVGvPAdHKkh2qxNhX/q/VSHV35GRVJqonA84+ilEEdw2k6MKSSYM3GhiAsqfEK8RBJhLXJsGhCcBdPXibtWtW9qDp3tVL9Oo+jAI7BCagAF1yCOrgFDdACGDyCZ/AK3qwn68V6tz7mrStWPnME/sD6/AF9/Zwz</latexit>

Transform f(x • y)

<latexit sha1_base64="HnFjzpuG6ocK8bj1m3rmUvIt4wQ=">AAAB83icdVDLSgMxFM34rPVVdekmWARXQ1Jbpu6KIrisYB/QKSWTZtrQTGZIMkIZ+htuXCji1p9x59+YaSuo6IHA4Zx7uScnSATXBqEPZ2V1bX1js7BV3N7Z3dsvHRy2dZwqylo0FrHqBkQzwSVrGW4E6yaKkSgQrBNMrnK/c8+U5rG8M9OE9SMykjzklBgr+dcDPyJmHIRZOBuUysjFFYTPPYjcKvI8jC3x0EWtVofYRXOUwRLNQendH8Y0jZg0VBCtexglpp8RZTgVbFb0U80SQidkxHqWShIx3c/mmWfw1CpDGMbKPmngXP2+kZFI62kU2Mk8of7t5eJfXi81Yb2fcZmkhkm6OBSmApoY5gXAIVeMGjG1hFDFbVZIx0QRamxNRVvC10/h/6RdcXHNRbfVcuNyWUcBHIMTcAYw8EAD3IAmaAEKEvAAnsCzkzqPzovzuhhdcZY7R+AHnLdPjh2SCg==</latexit>

Ef

<latexit sha1_base64="mthpZToxkoCiN4HowJaDX9rn3Ww=">AAAB7nicdVDLSgMxFM34rPVVdekmWARXQ1Jbpu6KIrisYB/QDiWTybShmcmQZIQy9CPcuFDErd/jzr8xfQgqeuDC4Zx7ufeeIBVcG4Q+nJXVtfWNzcJWcXtnd2+/dHDY1jJTlLWoFFJ1A6KZ4AlrGW4E66aKkTgQrBOMr2Z+554pzWVyZyYp82MyTHjEKTFW6lwP+jKUZlAqIxdXED73IHKryPMwtsRDF7VaHWIXzVEGSzQHpfd+KGkWs8RQQbTuYZQaPyfKcCrYtNjPNEsJHZMh61makJhpP5+fO4WnVglhJJWtxMC5+n0iJ7HWkziwnTExI/3bm4l/eb3MRHU/50maGZbQxaIoE9BIOPsdhlwxasTEEkIVt7dCOiKKUGMTKtoQvj6F/5N2xcU1F91Wy43LZRwFcAxOwBnAwAMNcAOaoAUoGIMH8ASendR5dF6c10XrirOcOQI/4Lx9ApRUj74=</latexit>

E�
<latexit sha1_base64="Nj9UT3Mh49+GnVq40sj3jsaxi+M=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GnqyjDkGRfAY0cRAMoSeTk/SpGehu0cIQz7BiwdFvPpF3vwbO4ugog8KHu9VUVXPTwRXGuMPK7eyura+kd8sbG3v7O4V9w/aKk4lZS0ai1h2fKKY4BFraa4F6ySSkdAX7M4fX8z8u3smFY+jWz1JmBeSYcQDTok20s1lP+kXS9jGbqXs1hG2KzWnVi0b4jrYxRXk2HiOEizR7Bffe4OYpiGLNBVEqa6DE+1lRGpOBZsWeqliCaFjMmRdQyMSMuVl81On6MQoAxTE0lSk0Vz9PpGRUKlJ6JvOkOiR+u3NxL+8bqqDupfxKEk1i+hiUZAKpGM0+xsNuGRUi4khhEpubkV0RCSh2qRTMCF8fYr+J+2y7dRsfF0tNc6XceThCI7hFBw4gwZcQRNaQGEID/AEz5awHq0X63XRmrOWM4fwA9bbJ3daje0=</latexit>

Ep

<latexit sha1_base64="A0nemM4wcx7RnOY48sh+Ws01CA4=">AAACBXicbVC7TsMwFHV4lvIKMMJg0SKVpUoqIRgrYGAsiD6kJqocx2mtOnZkO0hV1IWFX2FhACFW/oGNv8FtM0DLkSwdnXPv9b0nSBhV2nG+raXlldW19cJGcXNre2fX3ttvKZFKTJpYMCE7AVKEUU6ammpGOokkKA4YaQfDq4nffiBSUcHv9Sghfoz6nEYUI22knn3kqcjjgvKQcA3vrqHnwUrZE6HQ5dOeXXKqzhRwkbg5KYEcjZ795YUCp7GZhRlSqus6ifYzJDXFjIyLXqpIgvAQ9UnXUI5iovxsesUYnhglhJGQ5pldpurvjgzFSo3iwFTGSA/UvDcR//O6qY4u/IzyJNWE49lHUcqgFnASCQypJFizkSEIS2p2hXiAJMLaBFc0IbjzJy+SVq3qnlWd21qpfpnHUQCH4BhUgAvOQR3cgAZoAgwewTN4BW/Wk/VivVsfs9IlK+85AH9gff4ALP+XDg==</latexit>

RD
(�)

<latexit sha1_base64="daz0T0RmVSi/0ZqbEUAQnr0BB3w=">AAACAXicbVDLSgMxFM34rPU16kZwE2yFuikzBdFlURcuq9gHdIaSyWTa0EwyJBmhDHXjr7hxoYhb/8Kdf2PazkJbDwQO59x7c+8JEkaVdpxva2l5ZXVtvbBR3Nza3tm19/ZbSqQSkyYWTMhOgBRhlJOmppqRTiIJigNG2sHwauK3H4hUVPB7PUqIH6M+pxHFSBupZx96KvK4oDwkXMO7a+h5sFJOyqc9u+RUnSngInFzUgI5Gj37ywsFTmMzBzOkVNd1Eu1nSGqKGRkXvVSRBOEh6pOuoRzFRPnZ9IIxPDFKCCMhzTN7TNXfHRmKlRrFgamMkR6oeW8i/ud1Ux1d+BnlSaoJx7OPopRBLeAkDhhSSbBmI0MQltTsCvEASYS1Ca1oQnDnT14krVrVPas6t7VS/TKPowCOwDGoABecgzq4AQ3QBBg8gmfwCt6sJ+vFerc+ZqVLVt5zAP7A+vwB+4uVRA==</latexit>

RD
(p)

<latexit sha1_base64="bINoimekAW7CKOoFTX12Vz2/6oE=">AAACC3icbVC7TsMwFHV4lvIKMLJYbZHKUiWVEIwVMDAWRB9SE1WO67RWHTuyHaQq6s7Cr7AwgBArP8DG3+C0GaDlSJaOzn343BPEjCrtON/Wyura+sZmYau4vbO7t28fHLaVSCQmLSyYkN0AKcIoJy1NNSPdWBIUBYx0gvFVVu88EKmo4Pd6EhM/QkNOQ4qRNlLfLnlcUD4gXENPhfDuGnoerFa8COlREKbhtHLat8tOzZkBLhM3J2WQo9m3v7yBwElklmKGlOq5Tqz9FElNMSPTopcoEiM8RkPSM5SjiCg/nd0yhSdGGcBQSPOMqZn6eyJFkVKTKDCdmUe1WMvE/2q9RIcXfkp5nGjC8fyjMGFQC5gFAwdUEqzZxBCEJTVeIR4hibA28RVNCO7iycukXa+5ZzXntl5uXOZxFMAxKIEqcME5aIAb0AQtgMEjeAav4M16sl6sd+tj3rpi5TNH4A+szx+omZmE</latexit>

RD
(f)

The diagram on the right summa-
rizes the procedure. First, based on in-
duction parameters of increasing size,
the expressions of the unfoldings of
f (x • y) are transformed to normal
forms (see Section 6.1). The relevant
sets of subexpressions for p, ⊙, and a
possible lifting f are extracted from the
normal forms for successive unfoldings
(see Section 6.2). Synthesizing p is the
main goal of this procedure. In some instances, when the
transformation works well, the set E⊙ is precise enough so
that ⊙ can be discovered through recursion discovery. But,
this is not always the case, and the only guarantee of this
step is its existence within budget B⊙ . Lifting is done when
required, and the transformation produces the candidate
set Ef (see Section 6.3). Finally, a recursion discovery (RD)
subroutine extrapolates recursive definitions for p, ⊙, and
f respectively out of the sets of expressions Ep , E⊙ , and Ef .
(see Section 6.4).

6.1 Normal Forms
We first present a characterization of the expression (a nor-
mal form) of ⊙ informed by a budget B⊙ .
B⊙-normal form. TheB⊙-normal form intuitively describes
the shape of the expression of f (x ) ⊙ f (y). To characterize
the unfolded expression of a join within
budget B⊙ we define B⊙-normal forms
parameterized by the budget, and the in-
put expressions of the join f (x ) and f (y).
For a budgetB⊙ = (m⊙,k, c ), the normal
form illustrated on the right character-
izes the expression of the join in the form of the expression
skeleton Ṡ . The leaves completing the skeleton are the inputs
to ⊙ which should be filled with f (x ) or f (y). If Ṡ is meant
to characterize a join within budget B⊙ , then it can admit
at most k inputs parameters. For example, since both f (x )
and f (y) appear in the expression on the right, it is only in
normal form for k = 2.

The join should be computable inO (nm⊙ ) time. Recall that
normal forms are defined for expressions of fixed size result-
ing from unfoldings on inputs of fixed size, as the example in
the beginning of this section suggests. We define a notion of
cost for these expressions such that when a general recursive
⊙ is synthesized using the normal form, we will have the
guarantee that ⊙ ∈ O (nm⊙ ). An expression is in normal form
if it adheres to a particular shape and has a particular cost.
An expression skeleton of degree k , denoted Ṡk , is an ab-

stract syntax tree (AST) described by the grammar on the
7



PLDI ’21, June 20–25, 2021, Virtual, Canada Azadeh Farzan and Victor Nicolet

Ṡk =Ṡk ⊖ Ṡk | Ṡk < Ṡk

| ¬Ṡk | Ṡk • Ṡk

| Ṡk .m

| Ṡk [j] where j ∈ N
| Ṡk ? Ṡk : Ṡk

| ??i where 0 < i ≤ k

| true | false | n ∈ int
⊖: arithmetic or boolean
operator.
<: comparison operator.
.m: field acessor.

right, where the leaves are con-
stants or indexed holes ??i with
1 ≤ i ≤ k . Given a set of input ex-
pressions E = {ei }1≤i≤k , Ṡk [E] de-
notes the expression constructed
by replacing the hole ??i in Ṡk by
expression ei , for all 1 ≤ i ≤ k .
In our algorithm, Ṡk character-
izes the shape of a join of arity
k , and the ei ’s stand for the in-
puts to the join function, for in-
stance f (x ) and f (y). Note that
skeletons have a fixed degree k , since k is the number of
parameters of ⊙ fixed by the budget.
The cost associated to each skeleton is a vector m⃗ of

length c (the number of partitions produced by ⋎). Semanti-
cally, it represents the conjecture that Ṡk [E] is computable
in O (nmax (m⃗) )2 time for arbitrary inputs E of size n. Note
thatG is a bounded expression, and the ei that the algorithm
considers are bounded, at each step of the inductive reason-
ing. Yet, the final join function has to have the right time
complexity over arbitrary-sized inputs.
Intuitively, one can establish the complexity of the join

operator by examining the candidate skeletons over different
induction steps. The skeleton from the previous induction
step and its associated cost forms a context that is used as a
parameter to determine the cost of the new skeleton for the
current induction step.

The context consists of a skeleton Ṡkprev , a cost conjecture
m⃗, and an identifier 0 < ic ≤ c for the induction parameter
expanded in the current induction step. Initially, m⃗ = 0⃗, and
a skeleton of minimal size is assumed in the first induction
step. The cost m⃗ of a skeleton Ṡk is determined based on
the subexpression relation between Ṡk and Ṡkprev . If Ṡk is
not changed in the current induction step, one can infer
that its computation takes constant time with respect to
the current induction parameter ic . Otherwise, Ṡkprev must
appear as a subexpression of Ṡk , since the target of synthe-
sis is a recursive function. If there is a new hole ??i in Ṡk ,
which is not part of Ṡkprev , then the induction component µ (i )
that corresponds to the hole is updated (µ maps the input
of the skeleton to induction components). Otherwise, the
current induction component is updated. Intuitively, since

if Ṡk = Ṡkprev then
m⃗[ic ] = 0;

else if No new hole in Ṡk then
m⃗[ic ] = 1;

else if New hole ??i in Ṡk then
m⃗[µ (i )] = 1;

. . .;

an extra subexpression ap-
pears in Ṡk , there is an ad-
ditional computation step
required for one induction
step, and the computation
takes linear time. The algo-
rithm is illustrated on the
right, but it is missing a few
cases, which seem to be uncommon in practice and did not
2max (v⃗ ) is the maximum of the components of vector v⃗ .

occur in the synthesis of any of our benchmarks. The com-
plete algorithm, listing all cases, appears in Appendix C.2.

Definition 6.1 (B⊙-normal form). An expression e is inB⊙-
normal form in contextC , for a budget B⊙ = (m⊙,k, c ), with
respect to a family of expressions E = {ei }1<i≤k , iff there
exists a skeleton Ṡk such that e = Ṡk [E] andmax (m⃗) =m⊙ ,
where m⃗ is the cost of Ṡk in context C .

We say that an expression isB⊙-normalizable in context
C with respect to E if it can be rewritten to an expression in
B⊙-normal form in contextC with respect to E. The context
is only mentioned explicitly if it is relevant.
Multi-way conditional expression. If p (x ,y) ≡ true, that
is if any division is acceptable, then f (x•y) isB⊙-normalizable
with respect to { f (x ), f (y)}. But, if a special division is nec-
essary, then the shape of the expression p (x ,y)?f (x ) ⊙ f (y) :
f (x •y) (from Equation 8) hints at the fact that only a subtree
of the AST, after rewriting, is in B⊙-normal form. This is
the subexpression that appears under the then branch of the
conditional expression.

Definition 6.2. An expression e = {ei if bi | i ∈ I } is a multi-
way conditional expression (MC-expression) with branch
conditions {bi }i ∈I , if branch expressions {ei }i ∈I do not con-
tain any

Example 6.3. Let ↑ denote the infix operator returning the
maximum of two values.We use a computation of the longest
increasing subsequence (LIS) of a list of integers as our
running example in this section. The single-pass function
LIS : [int] → int × int × int with signature (cl ,ml ,prev ),
whereml is the length of the longest increasing subsequence
and cl is the length of the longest increasing suffix, is defined
as (for any sequence x , state s , and integer a):

LIS([]) = (0, 0,−∞) LIS(x • [a]) = LIS(x ) ⊕ a

s ⊕ a = let cl = s .prev < a ? s .cl + 1 : 0 in (cl , cl ↑ s .ml ,a)

We consider the second unfolding starting from LIS(x ) =
(cl0,ml0,prev0), with input [a1,a2]. The expression of LIS(x•
[a1,a2]).ml is translated to a MC-expression with 4 branches:

1:ml0 ↑ cl0 + 1 ↑ cl0 + 1 + 1 if (a1 < a2) ∧ (prev0 < a1)

2: ml0 ↑ cl0 + 1 ↑ 0 if (a1 ≥ a2) ∧ (prev0 < a1)

3: ml0 ↑ 0 ↑ 0 + 1 if (a1 < a2) ∧ (prev0 ≥ a1)

4: ml0 ↑ 0 ↑ 0 if (a1 ≥ a2) ∧ (prev0 ≥ a1)
⌟

The expression of the divide predicate p intuitively corre-
sponds to the subset of brancheswhere the expressions under
guards match the expressions of the function ⊙. Formally, in
a MC-expression e = {ei if bi | i ∈ I }, a boolean expression b
isolates the subset of branches I ′ ⊆ I iff ∀i ∈ I ′ : bi =⇒ b
and ∀i ∈ I \ I ′ : bi =⇒ ¬b.
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6.2 Expression Transformation
Given an unfolding of f (x • y), we first transform it into an
MC-expression. Then we check which branches have expres-
sions that are B⊙-normalizable by attempting to normalize
them. The expression of p is exactly the expression isolating
the subset of branches that are successfully rewritable to
B⊙-normal forms, and the expression of ⊙ is the skeleton
defining the normal forms.

Example 6.4. Recall Example 6.3 and suppose that we have
a constant time budget for ⊙. In the second induction step,
the two inputs of the join are {(cl0,ml0,prev0), LIS([a1,a2])}.
Branch 3 and 4 expressions can be rewritten to a B⊙-normal
form, witnessed by the skeleton Ṡ2 =??1.ml ↑??2.ml , which
can be computed in constant timewith cost (0, 0) (accounting
for the context from previous step).
However, there is no normal form of cost (0, 0) for the

branches 1 and 2: the branches contain subexpressions of
the form cl0 + 1 + . . . that grow in size with each induction
step, so the inferred cost in these branches is (0, 1).

Branches (3,4) are normalizable for a constant-time budget,
and the expression of the predicate is identified by isolating
those branches: p (LIS(x ), [a1,a2]) = a1 ≤ prev0. ⌟

Any expression in the program can be transformed to an
MC-expression. The first step consists in using a strongly nor-
malizing rewrite system, with rules similar to the ones used
in the introductory example of this section (complete list
in Appendix A.3). The expression generated by the rewrite
system is an MC-expression. Then a solver eliminates the
branches that are infeasible; that is, each branch with index
i such that ¬bi is valid is removed.

The B⊙-normal form generalizes the constant normal
forms and recursive normal forms defined in [9]. Normal-
izing a symbolic expression to a B⊙-normal form can be
done by small adjustments in the rewriting process from
[9], which in turn is a relatively standard cost-based rewrite
system. We list the rewrite rules used in Appendix A.2. Note
that the context forB⊙-normalization depends on the branch
of the MC-expression. Each branch has a matching branch at
the previous induction step, from which the context is taken.
With an ideal normalization process, the predicate ex-

pressions synthesized are guaranteed to correspond to the
expressions of the weakest predicate that ensures a join op-
erator ⊙ exists within budget B⊙ , since at each unfolding
stage, all the branches that are B⊙-normalizable are isolated.
But, since reachability of an existing B⊙-normal form is un-
decidable [8, 9], the weakness of p cannot be theoretically
guaranteed for all inputs. This also implies that the join
cannot be always synthesized by our algorithm.

6.3 Automatic Lifting
During the process of identifying B⊙-normalizable subex-
pressions, instead of discovering a clean B⊙-normal form,

the expression sometimes normalizes to a tree of the form
illustrated on the right. There are leaves corresponding to
f (x ) and f (y) as before, but there is also
a leaf that corresponds to subcomputa-
tions not already performed by f . The
figure labels this as a new function д(y).
The normal form implies that the join op-
erator needs access to the result of д(y)
to produce the overall result. Hence, f needs to lifted to
compute д in addition to its original computation.
Normalization of a single branch of an MC-expression

can have three possible outcomes: (i) success (i.e. no lifting
required), (ii) lifting required, or (iii) failure, when the cost
of the expression surpasses the budget. One can aim for a
solution based on all branches in class (i) (with no lifting), or
for one based on all branches in classes (i) and (ii) to produce
the weakest predicate supported by the lifting.

Example 6.5. Recall Example 6.4; a predicate p is discovered
without a need for lifting (i.e. branches 3 and 4 belong in
class (i)). Suppose now that we aim to identify all branches
as normalizable; this will lead to p ≡ true , then ⋎ being the
random splitting, an instance of a MapReduce solution. For
this a lifting is required, since subexpressions of the form
cl0 + (1 + . . .), which appear branches 1 and 2, have to be
precomputed to maintain the possibility of a constant-time
join. The exact expression depends on the condition a1 < a2,
therefore we derive the auxiliary computation д1 ([a1,a2]) =
a1 < a2 ? 1 + 1 : 1. Additionally, the condition isolating
branches (3,4), a1 ≤ prev0 has to be available for join, the
extra auxiliary д2 ([a1,a2]) = a1 is also required. Therefore,
branches 1 and 2 belong in class (ii). ⌟

A similar deductive-style automated lifting was intro-
duced for lists in [8] and extended to multidimensional lists
in [9]. But with the aid of MC-expressions, we can infer
strictly more expressive auxiliary computation in this paper,
in particular we can synthesize conditional auxiliary compu-
tations. More details about the procedure and an example
are presented in Appendix C.3.

6.4 Recursion Discovery
The goal of recursion discovery is to deduce the recursive
definition of a function from its unfoldings. In [8, 9], a proce-
dure is proposed for solving this exact problem. It operates
by using subtree isomorphisms to identify different stages of
a recursive computation in an input set of expressions. We
apply their procedure as a black-box in two instances: the
divide predicate and the lifting discovery.

At each step of the induction process, the unfoldings of the
rightwards single-pass function f from an initial state f (x )
on sequence y are transformed to expressions of the form
p ( f (x ),y) ? f (x ) ⊙ f (y) : f (x • y). With an ideal normaliza-
tion process, this would allow to identify the unfoldings of ⊙,

9



PLDI ’21, June 20–25, 2021, Virtual, Canada Azadeh Farzan and Victor Nicolet

p and д, a function that computes the information required
in addition to f in the lifting f . As noted in Section 6.1 no
such ideal procedure exists, and in practice we can only iden-
tify the expressions of p ( f (x ),y) and д(y), but not ⊙, for the
different values of f (x ) and y during the induction process.

Recursion discovery is used to produce a recursive defini-
tion of p0 : D × S → Bool from the unfoldings of p0, i.e. the
expressions of the form p0 ( f (x ),y), for different inputs f (x )
and y. The function p0 is defined recursively by an operator
⊗ such thatp0 ( f (x ),y•[a]) = p0 ( f (x ),y)⊗ ( f (x ),y,a). Note
thatp0 ( f (x ),y)may be false, whichmeans no corresponding
divide can be discovered. Once p0 is discovered, the divide
predicate p is simply defined as p (x ,y) = p0 ( f (x ),y).
Recursion discovery is also used to discover a recursive

definition of a lifting of f when necessary. It produces a
function д from the expressions д(y) (for different values of
y) identified after normalization, which is then tupled with
f to form a lifting f .

Example 6.6. In Example 6.5, we identified bounded expres-
sions that correspond to the required lifting. From a set of
such expressions, recursion discovery deduces a recursive
definition for д1, with signature (cond,aux ):
д1 (x • [a]) = let c = д1 (x ).cond ∧ ( f (x ).prev < a) in

let b = д1 (x ).aux in (c, c ? b + 1 : b)

The final lifting of LIS is LIS′(x ) = (LIS(x ),д1 (x ),head (x ))
since head is the trivial result of recursion discovery from
the unfoldings of д2 in Example 6.5. ⌟

7 Synthesizing Divide and Join
Once the divide predicate p is successfully synthesized, the
two remaining tasks are the synthesis of the join function and
the synthesis the divide function using p as its specification.
These are simple tractable synthesis problems for search-
based synthesis tools, which is precisely the reason why
we decomposed the problem in this particular manner. We
briefly explain each task (at the high level) for the sake of
the completeness of the paper.

7.1 Divide Function Synthesis
We use syntax-guided synthesis [3] to synthesize a divide
function according to specification ∀z ∈ S,p (⋎(z)) ∧ χ (⋎)
(from Section 4). For a SyGuS solution, the search space for
synthesis has to be defined.
If p (x ,y) ≡ true, then the inverse of concatenation is a

valid solution. Incidentally, it is the only valid constant-time
divide function. If p (x ,y) . true, we assume that ⋎ has at
least linear time complexity. By analyzing the predicate p,
we can distinguish whether only a splitting divide (Defini-
tion 4.4) is required, or a partition divide needs to be syn-
thesized. If the predicate p (x ,y) is a condition on a prefix of
its second argument y, then a splitting divide is synthesized.
The divide is constructed as a function that scans the input

sequence from a random location, until the condition on the
prefix starting from the location is met, at which point the
sequence is split into the current prefix and the suffix.
Otherwise, the divide is sketched [3] as a partition func-

tion that operates in two phases, first by selecting one or
more pivots, and then partitioning the elements of the inputs
list according to their relation to these pivots. For a given
sketch, a number q of pivots is fixed. For a budget (m,k, c ),
the unknowns are the q pivot selection functions and c − 1
two-way partition functions using the pivots. If no solution
for a given q is found, q can be increased. 2 pivots seemed to
be sufficient to cover all our benchmarks. The time complex-
ity is at least linear, but can be higher if the selection of pivot
requires super-linear time. While none of our benchmarks
required a super-linear pivot selection function, we success-
fully experimented with synthesizing one with our tool to
test its robustness. The example is a pivot constrained to be
the median of a list. Detailed descriptions of these sketches
are given in Appendix C.4.
7.2 Join Operator Synthesis
With ⋎ known, the specification is simplified to∀z ∈ S, f (z) =
f (⋎(z).1) ⊙ f (⋎(z).2). In general case, this synthesis prob-
lem is identical to a similar problem that was solved in [9],
with good theoretical guarantees. We do not repeat that
contribution here. Whenever the procedure described in Sec-
tion 6 succeeds in producing the join, the synthesis step in
(III) is effectively reduced to a bounded verification of the
already discovered ⊙, effectively checking that the divide-
and-conquer algorithm with the divide synthesized in step
(II) and the join operator inferred at step (I) is functionally
equivalent to the original function. For example, concatena-
tion, as the join for the two-way divide solution of POP, is
inferred at the divide predicate synthesis step.

8 Experimental Results
Our approach is implemented as an extension of the tool
Parsynt [20], which accepts as input C-like iterative pro-
grams with loops or functional programs written in Scheme.
It is implemented in OCaml [16] and uses Z3 [6] as SMT
solver and Rosette [25] as syntax-guided synthesis solver.
All experiments were run on a desktop with two 8-core Intel
Xeon E5-2620 and 32GB of RAM running Ubuntu 18.04.

To the best of our knowledge Parsynt is the only fully
automatic tool that can synthesize divide-and-conquer pro-
grams of the class described in this paper from a reference
implementation. A number of tools, including BIGλ [23], and
Casper [1], synthesize various types of MapReduce [7] pro-
grams. The MapReduce model is too restrictive for splitting
or partitioning divides, and all the tools mentioned fail to
synthesize a solution for POP example from Section 2 or LIS
example from Section 6. GraSSP [11] goes slightly beyond
MapReduce and parallelizes single pass array computations,
but the most expressive class they target is subsumed by
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our solutions with splitting divides. An earlier version of
Parsynt [9] targets nested loops and performs lifting, but
the divide operations are limited to the inverse of concate-
nation. We use the most difficult benchmarks from GraSSP
as some of our simplest benchmarks.

Benchmarks. The theoretical results of Section 4 suggest
a classification of the algorithms targeted in this paper into
those with splitting divides (e.g. LIS) and those with partition-
ing divides (e.g. POP). We evaluate the efficacy and efficiency
of Parsynt in synthesizing divide-and-conquer algorithms
for two sets of benchmarks, one for each category. We col-
lected our benchmarks from algorithm textbooks and related
work on divide-and-conquer programming. These are non-
trivial iterative algorithms for which equivalent divide-and-
conquer algorithms according to Equation 1 exist. Those that
have a solution with a partitioning divide are listed in Table 1
and those with a splitting divide in Table 7(a). The first set
includes sophisticated algorithms, where some have several
distinct divide-and-conquer implementations, synthesized
using different budgets. The second set is composed of single-
pass algorithms computing counts or maximal lengths of
subsequences that have a given property.

Performance of Parsynt. Table 1 and Figure 7(a) report
B⊙ p ⋎ ⊙ O (?)

Sorting (0,2,2) 4.5 1.1 5.1 n logn
k-largest (0,2,2) 3.4 1.2 120 n logn

Closest pair (0,2,2) 5.6 1.2 10 n logn
Intersecting (0,2,2) 12 54 30 n logn
intervals (0,3,3) 31 421 1.5 n logn
Histogram (0,2,2) 4.1 1.1 25.3 n logn

(2,2,2) 3.0 † 9.4 n2

POP (0,2,2) 5.3 69 8.7 n logn
(1,2,2) 6.2 20 240 n logn
(2,2,2) 3.1 † 12 n2

(0,2,3) 35 1560 91 n logn
Minimal (0,2,2) 5.0 64 10.5 n logn
points (1,2,2) 6.4 21.5 206 n logn

(2,2,2) 3.0 † 11.5 n2

(0,2,3) 35 1430 87.0 n logn
Quadrant (0,2,2) 5.2 67 13 n logn
orthogonal (1,2,2) 6.7 24.5 201 n logn
convex hull (2,2,2) 3.0 † 12 n2

(0,2,3) 35 1540 88 n logn
Orthogonal (1,2,2) × × × n logn
convex hull (2,2,2) 6.1 † 24 n2

Encircling set (0,2,2) × × × n logn

Table 1. Partitioning Divides: Columns
p, ⋎, ⊙ present the synthesis time (in sec-
onds) for the respective functions, and
columnO (?) lists the time complexity of
the synthesized code. † indicates that no
divide needs to be synthesized, a greyed
cell signals that lifting was required, and
× means that Parsynt fails.

the synthesis times for
each phase of the syn-
thesis procedure. For
each synthesis task
in Table 1, we report
the synthesis times
separately for each
budget that led to a
synthesized solution.
When the predicate
synthesized is trivially
true, there is no need
to synthesize a di-
vide; these cases are
denoted by †. The
synthesis times range
from a few seconds
to up to 26 min. The
solutions with three-
way divides (c =

3) require significantly
more time to be syn-
thesized. This is due to
the fact that the size
of the bounded model
required by the syn-
thesis needs to be in-
creased to take in ac-
count the increase in
dimension. All input implementations have O (n2) time

complexity3, and therefore the synthesized solutions with
O (n logn) complexity are highly non-trivial, on par with the
three solutions of POP discussed in Section 2.
In Table 7(a), we report the times spent in the predicate

and the join synthesis steps. Note that the predicate synthesis
times listed are the combined times for both lifting and the
predicate synthesis step (which take place in one step).

The benchmarks for which GraSSP [11] can also synthe-
size a solution are highlighted in blue. Note that Parsynt
synthesizes two solutions for each benchmark against one for
the other tool. The synthesis times are overall small for these
benchmarks, but Parsynt still illustrates a time advantage
(see Appendix D.1). The rest of our benchmarks are rejected
by other tools (including GraSSP), because they require
lifting in the form of addition of one or more conditional
accumulators with a non-trivial accumulation operation.
Quality of the synthesized code. The synthesized imple-
mentations for the benchmarks in Table 1 belong to one of
the two categories: (1) the synthesized divide-and-conquer
algorithm has a strictly lower asymptotic complexity than the
input sequential code (any row with O (n logn) complexity)
or (2) its asymptotic complexity is the same (about 22% of
the cases). In Section 2, we discussed how different input
distributions may result in a preference for one solution over
another, for the latter case.
The solutions with a splitting divide lead to scalable par-

allel implementations, as showcased in Figures 7(b) and 7(c).
In Figure 7(b) we compare the speedup of the different par-
allel implementations of the benchmarks of Table 7(a) with
varying number of threads, for an input of 1010 integers with
indivisible blocks of 100 elements in average. For each bench-
mark, we have two solutions: one with a splitting divide (plot-
ted with a continuous line) and one with a lifting (dashed
line). Both implementations scale in parallel with compa-
rable performance gains. The relative speedups for these
can also depend on the input data composition. Figure 7(c)
compares the relative speedups of the two implementations
of LIS, for varying sizes of increasing sequences in the input.
When increasing sequences are long, the splitting divide im-
plementation performs significantly worse than the one with
lifting. This observation generalizes across all benchmarks
that have splitting divide and lifting solutions, and makes a
case for why synthesizing two solutions is useful.
Limitations. Each table also lists the benchmarks that un-
derline the limitations of the various steps of our synthesis
process. We indicate by × the synthesis steps for which
Parsynt fails. For example, in Table 1 the solution for B⊙ =
(1, 2, 2) of the orthogonal convex hull benchmark, which re-
quires a complex lifting, could not be automatically synthe-
sized. The tool cannot synthesize the divide for the encircling
set benchmark because it involves the synthesis of a func-
tion with non-linear arithmetic operations. The benchmark
3For the k-largest benchmark we consider the case where k is large.
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(a)
p + ⋎ ⊙

Count 1(0+) 0.1 1.2
Count 1(0*)2 0.1 1.4
Count 1*2*3 0.2 3.1

Max dist. between 1s 0.2 2.6
Max sum between 0s 0.2 1.8

LIS 0.1 1.3
Largest peak 0.1 1.2
Longest 1* 0.1 1.2

Longest 1(0*)2 0.2 3.1
Longest even 0* 0.2 19.1
Longest odd (01)* 0.2 25.0
Longest 1(0*)2(0*)3 × ×

(b)

Lifted Splitting

(c)

Figure 7. Splitting Divides: Table (a) lists the synthesis times (in seconds) of the benchmarks with splitting divides. × indicates that the
tool failed to find a solution. Figure (b) illustrates the speedups of the parallel implementations. Figure (c) compares the speedups of two
parallel implementations of the LIS benchmark, for different ratios of size of increasing sequences to total size of input.

Longest 1(0*)2(0*)3 in the last row of Table 7(a) (where the
code computes the length of the longest substring matching
the regular expression 1(0∗)2(0∗)3) admits a splitting divide,
but the deductive synthesis procedure cannot infer a divide
predicate due to the large number of new variables required
to compute the predicate. The reader can refer to Appen-
dix E.1 where we outline how difficult it is to derive these
divide-and-conquer algorithms, even manually.

9 Related Work
There is a vast body of work on program synthesis. Here
we only survey the work related to divide-and-conquer syn-
thesis. Map-reduce is one of the most popular subclasses
of divide-and-conquer, which formally relies on the com-
putation being a list homomorphism, the precise class of
functions that can be written as a composition of a map and
a reduction (cf. first homomorphism theorem). The litera-
ture on divide-and-conquer synthesis can be divided into
two categories based on the class of input computations
targeted: (1) those with list homomorphisms as input, with
the aim of synthesizing efficient map-reduce [7] programs
[1, 14, 21, 23], (2) those that go beyond list homomorphisms
[8, 9, 11, 15, 19, 22], and target code with more dependen-
cies. In category (2), the techniques in [8, 9, 11] synthesize
list homomorphisms through some variation of lifting, the
approach in [22] uses symbolic execution at runtime and
to identify and defer dependencies, and Bellmania [15] tar-
gets input programs in the style of dynamic programming
and orchestrates an efficient execution schedule to accom-
modate the dependencies. A direct comparison with work
in [1, 9, 11, 23] with respect to the class of input programs
appears in Section 8.

Derivation of list homomorphisms includes approaches
based on the third homomorphism theorem [13, 14, 19], func-
tion composition [12], and quantifier elimination [18], as well
as those based on recurrence equations [4]. These techniques
are either not fully automatic, or rely on additional guidance
from the programmer beyond the input sequential code. In
contrast, the techniques in [8, 9, 11, 22] derive list homomor-
phisms automatically through lifting. The lifting performed
in [9] is strictly the most general one and subsumes the rest.
The class of divide-and-conquer algorithms targeted in

this paper is strictly more general than list homomorphisms,
and therefore more general than both categories (1) and (2)
of work mentioned earlier. To the best of our knowledge, no
prior work targets a class as general as this automatically. In
[24], manual synthesis of general classes is discussed.

10 Conclusion
We solve a program synthesis problem with three unknown
components, related through a single specification, by de-
composing it into tractable subtasks. The key takeaways
are: (1) our deductive synthesis technique based on induc-
tion, rewriting, and recursion discovery is a powerful method
for the synthesis of recursive code where another recursive
code is available as the functional specification, and (2) an
imperfect deductive synthesis algorithm can be utilized as
an oracle producing powerful hints, which can be used to
decompose a monolithic synthesis problem with multiple un-
knowns into a sequence of more tractable synthesis problems
over subsets of these unknowns.
Our deductive synthesis module differs from the classic

one in that instead of operating on the source code, it manip-
ulates the results of its symbolic evaluation. Small variations
in code may result in the same symbolically evaluated term,
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and therefore, the technique is more robust with respect to
syntactic variations in the input implementations.

Our approach in decomposing the monolithic divide-and-
conquer specification is in the spirit of multi-abduction [2]:
a specification with multiple unknowns is decomposed into
specifications for each unknown. The problem is that in this
domain, like many others, individual maximal specifications
for each component do not exist; a stronger specification on
divide would imply less work to be done at join time. We
exploit the structure of the problem to effectively enumer-
ate all admissible pairs of specifications, by relying on the
complexity of the join function to guide this enumeration.
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A Additional Background
A.1 Model of an Input Imperative Program
This section introduces the syntax of the sequential imper-
ative programs. Figure 8 presents the syntax of the input
sequential programs. We assume an imperative language
with basic constructs for branching and looping. Scalar vari-
ables or of int or bool type, and we can build sequences
from these types. We can also have sequence variables, to
which elements can be appended either via append or by
concatenation of a singleton list.

v ∈ LhVar ::= v ′[e] v ′ ∈ LhVar, e ∈ Exp
| x x ∈ Var

e ∈ Exp ::= e ◦ e ′ e, e ′ ∈ Exp
| e < e ′ e, e ′ ∈ Exp
| be ⋏ be ′ |¬be be,be ′ ∈ Exp
| le • le ′ le, le ′ ∈ Exp
| v v ∈ LhVar
| if be then e else e ′

| k k ∈ Z,Q,R
| true | false

Program ::= c; c ′ c, c ′ ∈ Program
| v:=e v ∈ LhVar, e ∈ Exp
| if (e ) {c} else {c ′} be ∈ Exp, c, c ′ ∈

Program
| for (i ∈ I) {c} i ∈ Iterator

Figure 8. Program Syntax The binary ◦ operator represents any
arithmetic operation (+,−, ∗, /), < operator represents any com-
parator (<, ≤, >, ≥,=,,). • is the list concatenation operator. I
is an iteration domain, and ⋏ operator represents any boolean
operation (∧,∨).

A.2 Rewrite Rules for B⊙-Normalization
Figure 9 represents the rewrite rules using in the normaliza-
tion process. Similarly to [8, 9] the rules are applied when
they reduce the cost of an expression. In the context of B⊙-
normalization, the cost is minimal when the expression is
in B⊙-normal form. A difference from the previous work
[8, 9] using a similar approach is that there are cases where
induction on the leftmost input of the join is required. In pre-
vious work, the cost function was defined as to measure the
depth and number of occurrences of symbols corresponding
to the initial state of the unfoldings. In this work, we add
an additional step to the cost inference, which consists in
reducing the value of the cost when subexpressions can be
summarized as the initial state (as opposed to single symbols
being the initial state).

A.3 Multi-way Conditional Expressions
Any expression from the language can be translated to a
multi-way conditional form in two steps. Figure 10 presents
the rewrite rules that allow to rewrite an expression of the
language with conditionals to an expression where all the

a ⊙ b → b ⊙ a

(a ⊙ b) ⊙ c → a ⊙ (b ⊙ c )

(a ⊙ b) ⊗ c → (a ⊗ c ) ⊙ (b ⊗ c )

(a ⊗ c ) ⊙ (b ⊗ c ) → (a ⊙ b) ⊗ c factor-right

(c ? x : y) ⊙ z → c ? (x ⊙ z) : (y ⊙ z)
z ⊙ (c ? x : y) → c ? (z ⊙ x ) : (z ⊙ y)
c ? (x ⊙ z) : (y ⊙ z) → (c ? x : y) ⊙ z
c ? (z ⊙ x ) : (z ⊙ y) → z ⊙ (c ? x : y)
c1 ? (c2 ? x : y) : z → c1 ∧ c2 ? x : (¬c2 ? y : z)
max (a, b) > c → a > c ∨ b > c

c > max (a, b) → c > a ∧ c > b

max (a, b) < c → a < c ∧ b < c

c < max (a, b) → c < a ∨ c < b

min(a, b) > c → a > c ∧ b > c min-distr->

c > min(a, b) → c > a ∨ c > b min-distr->-left

min(a, b) < c → a < c ∨ b < c min-distr-<

c < min(a, b) → c < a ∧ c < b min-distr-<-left

¬(a ∧ b) → (¬a) ∨ (¬b)

¬(a ∨ b) → (¬a) ∧ (¬b) push-neg-down’

−(a + b) → (−a) − b

−(a − b) → b − a push-min-down’

a > c ∨ b > c → max (a, b) > c

c > a ∧ c > b → c > max (a, b)

c < max (a, b) → c < a ∨ c < b

a < c ∧ b < c → max (a, b) < c

Figure 9. Algebraic rewrite rules. a, b and c are expressions. ⊙
stands for any associative and commutative operator.

conditionals are at the top of the expression tree, and all the
leaves are unconditional expressions. From the expression
resulting of applying the rewrite rules, the multi-way con-
ditional can be obtained by searching for the unconditional
expressions while memorizing the conditional path in the
expression tree. For each of the unconditional expressions,
one branch of the multi-way is produced. The second step
uses a solver to eliminate all the branches that are unfeasible.
By construction, the disjunction of all the branch conditions
is valid since all the conditionals in the function are balanced.

B Proofs
B.1 Proof of Lemma B.1
Lemma B.1. Ψ• (⋎, ⊙) =⇒ Φ(π ,p, ⊙) if for all sequences z
we have p (⋎(z).1, ⋎(z).2) and z = π (⋎(z).1 • ⋎(z).2).

The proof is trivial, the lemma simply makes the rela-
tion between the divide function and the permutation and
predicate function explicit.

Assume we have a valid solution (⋎, ⊙) for Ψ•, a predicate
p and a permutation function π such that ∀z ∈ S : p (⋎(z))∧
z = π (⋎(z).1 • ⋎(z).2). Additionally, we know that since
(⋎, ⊙) satisfy Ψ• then ⋎ satisfies χ . So for any m,k ∈ N,
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c ? e1 : e2 ⊕ c ′ ? e ′1 : e ′2 → c ? (c ′ ? e1 ⊕ e ′1 : e1 ⊕ e ′2) : (c ′ ? e2 ⊕ e ′1 : e2 ⊕ e ′2)
e ⊕ (c ′ ? e1 : e2) → c ′ ? e ⊕ e1 : e ⊕ e2
(c ′ ? e1 : e2) ⊕ e → c ′ ? e1 ⊕ e : e2 ⊕ e
⊖c ′ ? e1 : e2 → c ′ ? ⊖ e1 : ⊖e2

(c ? c1 : c2) ? e1 : e2 → (c ∧ c1) ∨ (¬c ∧ c2) ? e1 : e2

Figure 10. Rewrite rules for translation to multi-way conditional form.

there exists z ∈ S such that ⋎(z).1 = m ∧ ⋎(z).2 = k and
since p (⋎(z).1 • ⋎(z).2) we have χ• (p).

B.2 Proof of Theorem 4.3 and B.2
The proof relies on the following lemma, which defines the
relation between divide predicates and divide functions:

Lemma B.2. Φ• (p, ⊙) =⇒ Ψ• (⋎, ⊙) under the assumption
that ∀z ∈ S : p (⋎(z).1, ⋎(z).2).

Let us first prove this lemma. Suppose we have (p, ⊙)
a valid solution to specification Φ•, and a ⋎ function that
satisfies:

∀z ∈ S : p (⋎(z).1, ⋎(z).2)
Suppose z ∈ S. We have p (⋎(z).1, ⋎(z).2) =⇒ f (⋎(z).1 •
⋎(z).2) = f (⋎(z).1) ⊙ f (⋎(z).2) since (p, ⊙) is a solution
of Φ•. Since f is permutation invariant, we can rewrite
p (⋎(z).1, ⋎(z).2) =⇒ f (z) = f (⋎(z).1) ⊙ f (⋎(z).2). By
construction of ⋎, p (⋎(z).1, ⋎(z).2) holds, therefore f (z) =
f (⋎(z).1) ⊙ f (⋎(z).2).
Since p, ⊙ is a solution of Φ•, χ• (p) holds. That is, ∀m,k ∈

N,∃x ,y ∈ S2 : |x | = m ∧ |y | = k ∧ p (x ,y). Therefore, for
any k,m ∈ N there are two sequences in the image of ⋎ (two
sequences x ,y such that p (x ,y) holds) of lengths k andm.
If the sequences are in the image of ⋎, then there exists a
sequence in the domain of divide, therefore χ (⋎).
To prove Theorem 4.3, we prove the other realizability

implication.
((3) =⇒ (5)) Suppose we have a join function ⊙ and a di-

vide ⋎ such thatΨ• (⋎, ⊙). Since the domain of ⋎ is countable
we can define the predicate p as follows, for any sequences x
and y: p (x ,y) = ∃π : (x ,y) = ⋎(π (x • y)). The existence of
a permutation π can be determined by enumerating all the
permutations of x •y until dividing the permutation returns
(x ,y). If no such permutation is found, then there is no so-
lution. We have then x ,y ∈ S2 such that p (x ,y) =⇒ ∃z ∈
S, ⋎(z) = (x ,y), and so there is a permutation π such that
p (x ,y) =⇒ f (π (z)) = f (x ) ⊙ f (y). Since f is permutation
invariant, we can rewrite p (x ,y) =⇒ f (x •y) = f (x )• f (y)
and therefore (p, ⊙) is a solution of Φ• (noting the the gen-
erality constraints transfer as in the proof of Lemma B.1).

B.3 Proof of Proposition 4.5
(6 =⇒ 5) Trivial: we do not need the permutation in the
proof of 4.3 because of the splitting divide hypothesis.

Counterexample for the converse: Pareto is a counterex-
ample for this particular case.

B.4 Ranking Lifting
Given a sequence x we denote by x̆ as the sequence of ele-
ments of x paired with their rank (position) in x . We denote
by π̆ the function that projects a sequence of elements with
their rank to the sequence of element in the original order
given the rank of their elements. Given a function f , one can
define a function f̆ by f̆ (x̆ ) = f (π̆ (x̆ )). Then f̆ is permuta-
tion invariant. Remark the the constructed f̆ would not be
an efficient function if there are no simplifications to make.

Suppose there exists a predicate p, a permutation function
π and a join ⊙ such that

∀x ,y ∈ S,p (x ,y) =⇒ f (π (x • y)) = f (x ) ⊙ f (y)

Then there is a predicate p̆ and join ⊙ such that:

∀x ,y ∈ S, p̆ (x̆ , y̆) =⇒ f̆ (x̆ • y̆) = f̆ (x̆ ) ⊙ f̆ (y̆))

p̆ can be constructed simply by p̆ (x̆ , y̆) = p (π̆ (x̆ ), π̆ (y̆)). Since
f̆ is permutation invariant, we have the guarantee that a
divide operation that satisfies Ψ• (⋎, ⊙) for f̆ exists. Remark
that such a divide operation will be invertible since it oper-
ates on sequences of elements that remember their rank.

C Extras
C.1 Detailed Example: Rewriting POP

This example details the rewriting steps taken in order to
discover a divide predicate in the introductory example of
Section 6. We assumed that the starting state POP(x ) =
[s1, s2] is of length two. Let us compute a first unfolding of
the function starting from this state. We want to compute
the expression of POP(x • [a1]) for some point a1. Simply
using the function definition we have:

POP(x • [a1]) = (s1 ⋗ a1 ? [s1] : [])
• (s2 ⋗ a1 ? [s2] : [])

• (a1 ⋗ s1 ∧ a1 ⋗ s2 ? [a1] : [])

We can distribute the concatenation operations inside the
conditionals using the rewrite rule (c ? a : b)⊕d → c ? a⊕d :
b ⊕ d . Distributing the second line in the first line of the
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expression above yields:

(s1 ⋗ a1 ?[s1] • (s2 ⋗ a1 ? [s2] : [])
: [] • (s2 ⋗ a1 ? [s2] : []))

• (a1 ⋗ s1 ∧ a1 ⋗ s2 ? [a1] : [])
Let us write c1 = a1 ⋗ s1 ∧ a1 ⋗ s2. Distributing the third line
inside yields:

(s1 ⋗ a1 ?[s1] • (s2 ⋗ a1 ? [s2] : []) • (c1 ? [a1] : [])
: [] • (s2 ⋗ a1 ? [s2] : []) • (c1 ? [a1] : []))

We used the right-distributivity rule so far. We can also use
left-distributivity, rewriting the expression above as follows:

(s1 ⋗ a1 ?
(s2 ⋗ a1 ?

(c1 ? [s1] • [s2] • [a1] : [s1] • [s2] • [])
: (c1 ? [s1] • [] • [a1] : [s1] • [] • []))

: (s2 ⋗ a1 ?
(c1 ? [] • [s2] • [a1] : [] • [s2] • [])
: (c1 ? [] • [] • [a1] : [] • [] • [])))

In the above expression, we have identified the branch ex-
pression that corresponds to POP(x ) • POP([a1]). The other
expressions cannot be directly constructed from POP(x ) and
POP([a1]). We can rewrite the complete expression by fac-
toring the conditionals, i.e. c ? (d ?a : e ) : b → c ∧ d ?a :
(c ? e : b). Using this rule twice, we obtain the following
expression:

(s1 ⋗ a1 ∧ s2 ⋗ a1 ∧ c1 ? [s1] • [s2] • [a1] : . . .)

Where the else-branches of the conditional have been omit-
ted. Note that the omitted expression can always be replaced
by POP(x • [a1]), since it is the original expression being
rewritten. We can conclude that:

POP(x • [a1) =
s1 ⋗ a1 ∧ s2 ⋗ a2 ∧ a1 ⋗ s1 ∧ a1 ⋗ s2?

POP(x ) • POP([a1]) : POP(x • [a1])

The rewriting steps for POP(x • [a1,a2]) are similar.

C.2 Inductive Cost Inference of Skeletons
In this section, we describe how the cost of an expression
skeleton Ṡk is inferred during the induction process. In the
instance where c = 2 and the input function f is rightwards
single pass, the induction is done on f (x ) (when it is not a
scalar) and y. In the general case with B⊙ = (m⊙,k, c ), we
have c induction parameters indexed by 0 < ic ≤ c , and
at each step one of the induction parameters is expanded. For
example, when f is rightwards and c = 2, then parameter

ic = 1 is f (x ) and parameter ic = 2 is y. The inputs of the
join are directly related to the induction parameters, e.g if
k = 2 then the inputs are f (x ) and f (y).

At each induction step, the cost vector m⃗ is of size c .
Intuitively, it represents the conjectures that the computa-
tion time of the join varies as a polynomial of degree m⃗[ic ]
with respect to the input of the join matching the induc-
tion parameter ic , and the join computation is of asymptotic
complexity O (nmax (m⃗) ).
Algorithm 1 presents how the cost of a skeleton Ṡk is

inferred, given the skeleton Ṡkprev at the previous step, and
the cost m⃗ inferred at the previous step. It is a generalization
of the pseudo-algorithm presented in Section 6.1, where the
cases were limited to identifying whether a join is linear
or constant time. The main difference here is that the sub-
expression relation can be more complicated, and more than
one hole can appear in a new skeleton.
We assume that the skeletons are always of degree k .

If the skeleton at the current step is of degree larger than
k , then considering its cost is not necessary, since it does
not even adhere to the required shape. If the degree is l less
than k , the skeleton can always be considered as of degree
k , where some of the holes ??i for l < i ≤ k simply do not
appear.
We also assume that we have a mapping µ : [1,k] →

[1, c] from the induction parameter indices to the holes in-
dices. The mapping is simply required because the c outputs
of the divide (which correspond to the induction parameters)
are fixed for the problem, but the k inputs of the join can be
chosen.
Algorithm1:Computing the cost of an expression skele-
ton after an induction step.
Input: A context: the previous skeleton Ṡkprev and its

cost m⃗, and the induction parameter index
0 < ic ≤ c .

Output: The updated m⃗ of the current skeleton Ṡk

if Ṡk = Ṡkprev then
m⃗[iC ] = 0;

else
if ∃??i ∈ Ṡk \ Ṡkprev then

foreach ??i ∈ Ṡk \ Ṡkprev do
d = Deдree (??i , Ṡk \ Ṡkprev );
m⃗[µ (i )] =max (d,m⃗[µ (i )]);

else
m⃗[ic ] =max (1,m⃗[ic ])

return m⃗;

The algorithm implements the following intuition. If the
new skeleton is the same as the previous skeleton, it means
that for an additional step of induction on a given parameter,
the time required to compute the join is unchanged, and
therefore it must be constant. If the new skeleton is different,
there must be a subexpression relation between Ṡk and Ṡkprev
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(we are considering recursively defined functions). Ṡk \ Ṡkprev
is the smallest tree constituted of the parts of Ṡk that could
not be mapped by a bijection to subexpressions of Ṡkprev .
To compute Ṡk \ Ṡkprev , one must find a maximal bijection
between subtrees of Ṡk and Ṡkprev . In the simplest case, Ṡkprev
is a subtree of Ṡk .

When no holes appear in Ṡk \Ṡkprev , (there are no new holes
in Ṡk ) then there are only constants that appear. Therefore, an
induction step on parameter ic implies an additional constant
time step in the computation of Ṡk , and the latter is linear
on ic .
If new holes appear, the index of the holes gives an indi-

cation that an induction step on parameter iC requires an
additional step of computation involving another parameter
(or ic itself). Deдree (??i , Ṡk \ Ṡkprev ) is an approximation of
the computation required. If there is only one occurrence of
??i in Ṡk \ Ṡkprev then Deдree (??i , Ṡk \ Ṡkprev ) = 1. If there are
n occurrences of ??i , where n is the number of times parame-
ter µ (i ) has been unfolded during the induction process, then
Deдree (??i , Ṡk \ Ṡkprev ) = 2. An implementation for this pro-
cedure is heuristic by nature: it is impossible to determine
with certainty at each step the computational cost of the
function being discovered. However, the inductive process
permits the generalization of good observations and the in-
validation of bad ones, which is the source of the robustness
of our algorithm.

C.3 Synthesizing Conditional Auxiliaries
In this section, we present an algorithm that discovers a
certain type of lifting, conditional accumulators. In Exam-
ple 6.6, we give a high-level intuition of how the general
lifting algorithm works on the LIS example.

Definition C.1 (Conditional accumulation). A conditional
accumulation f : S → Bool × D is a single-pass function
defined by a boolean operation ? : Bool × Sc → Bool and
two scalar operations ⊕+, ⊕− : D × Sc → D with two initial
values c0 ∈ Bool and f0 ∈ D as follows:

f ([]) = (c0, f0)

f (x • [a]) = let c, s = f (x ) in (c ? a, c ? a ? s ⊕+ a : s ⊕− a)

We describe in Algorithm 2 an algorithm for the lifting
procedure of the general auxiliary and predicate synthesis
that synthesizes conditional auxiliaries. The algorithm relies
on the Normalize procedure that rewrites an expression to
B⊙-normal form, and a Collect procedure that collect the
expressions of the auxiliaries for which a recursive definition
needs to be found. Collect simply collects the expression
that are not computed by the function under the expression
skeleton Ṡ .
Suppose that two successive unfoldings of f have been

rewritten into MC-expressions:
e (u−1) = {ci

(u−1) : ei (u−1) | 1 ≤ i ≤ n(u−1) }

Algorithm 2: Conditional auxiliary synthesis.
Input : Two successive unfoldings in mcnf:

e (u−1) = {ci
(u−1) : ei (u−1) | 1 ≤ i ≤ n(u−1) }

and
e (u ) = {ci

(u ) : ei (u ) | 1 ≤ i ≤ n(u ) }
Output :A conditional accumulation with operations

?, ⊕+, ⊕−

Normalize the branch expressions and collect auxiliaries
to be computed.;
Eu =
Collect{ci

(u−1) : Normalize(ei (u−1) ) | 1 ≤ i ≤ n(u−1) };
Eu’ = Collect{ci

(u ) : Normalize(ei (u ) ) | 1 ≤ i ≤ n(u ) };
for aux (u ) ∈ Eu’ do

Annotate the branches with the corresponding branch
in the previous unfolding;
aux (u ) = {ci

(u )[ci (u ) ⇒ c j
(u−1)] : auxi (u ) | 1 ≤ i ≤

n(u ) };
Find the different subtree isomorphisms, store them in
the set Op;
Op = ∅;
for
(
ci

(u )[ci (u ) ⇒ c j
(u−1)] : auxi (u )

)
∈ aux (u ) do

Add(Op, Find(⊕ : auxi (u ) = aux j
(u−1) ⊕ a[u]));

if |Op| > 2 then return;
else ⊕+, ⊕− = Op;

I+ (u ) ={
1 ≤ i ≤ n(u ) | ci

(u )[ci (u ) ⇒ c j
(u−1)] : aux j (u−1) ⊕+ a[u]

}
;

I− (u ) ={
1 ≤ i ≤ n(u ) | ci

(u )[ci (u ) ⇒ c j
(u−1)] : aux j (u−1) ⊕− a[u]

}
;

φ (u ) ←
(
∀i ∈ I+ (u ), ci

(u ) ⇒ c (u )
)
∧(

∀i ∈ I− (u ), ci
(u ) ⇒ ¬c (u )

)
∧(

c (u ) = c (u−1) ? a[u]
)
∧ φ (u−1) ;

?← Synthesize(∃?,φ)

e (u ) = {ci
(u ) : ei (u ) | 1 ≤ i ≤ n(u ) }

The MC-expression of unfolding u − 1 has n(u−1) branches,
and the MC-expression of unfolding u has n(u ) branches.

The normalization procedure Normalize is applied to the
expressions in the branches, and then the sub-expressions
that need to be computed are collected in each branch of the
MC-expression of the unfolding. Then an MC-expression
is built from the result of the collection. When collecting a
subexpression, the information about where the subexpres-
sion appears is used to identify different types of auxiliaries.

For each type of auxiliary aux we have:

aux (u−1) = {ci
(u−1) : auxi (u−1) | 1 ≤ i ≤ n(u−1) }
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aux (u ) = {ci
(u ) : auxi (u ) | 1 ≤ i ≤ n(u ) }

The conditions of the branches of the second unfolding
are annotated with the branch they are issued from, that is a
branch condition in the previous unfolding. The annotation,
given below, is a logical implication that can be checked by
a solver:

aux (u ) = {ci
(u )[ci (u ) ⇒ c j

(u−1)] : auxi (u ) | 1 ≤ i ≤ n(u ) }

The subtree relations mapping the expressions aux j (u−1)
to subexpressions of aux j (u ) are then computed, given the
annotations computed previously. That is, subexpression
mappings are computed between auxi

(u−1) and aux j
(u ) if

c j
(u ) =⇒ ci

(u−1)]. If the goal auxiliary is a conditional
accumulation, then there will be only two types of subex-
pression mappings, which correspond to the operators ⊕+
and ⊕−. If we denote the inputs read at unfolding u by a[u],
the auxiliary computation has the following form:

aux (u ) =⋃
i ∈I+ (u )

{ci
(u )[ci (u ) ⇒ c j

(u−1)] : aux j (u−1) ⊕+ a[u]}⋃
i ∈I− (u )

{ci
(u )[ci (u ) ⇒ c j

(u−1)] : aux j (u−1) ⊕− a[u]}

Once the two operators ⊕+ and ⊕− have been found, the
conditional accumulator can be synthesized. The specifica-
tion φ (u ) gives the constraints that the expression of the
conditional accumulator has to satisfy.
The success of the conditional auxiliary synthesis algo-

rithm depends on the Normalize procedure. That is, if there
is a conditional auxiliary that allows to parallelize the func-
tion and we have and ideal Normalize procedure, then the
algorithm discovers this auxiliary. In practice the Normalize
procedure is implemented in a similar way as the one de-
scribed in [8, 9]. That is, a symbolic expression is rewritten by
applying a set of rewrite rules that decrease a predetermined
cost. This cost is defined to be minimal when a B⊙-normal
form is reached during the rewrite process.

Remark that this algorithm can be extended to recognize
more than two accumulation schemes. For n operators, n − 1
conditionals will need discovering.

Example C.2 (Expressions of the conditional auxiliary for
LIS). Recall the LIS function, given in Example 6.3. We re-
mind the MC-expression obtained for the second unfolding
of the function:
1:ml0 ↑ cl0 + 1 ↑ cl0 + 1 + 1 if (a2 > a1) ∧ (a1 > prev0)

2: ml0 ↑ cl0 + 1 ↑ 0 if (a2 ≤ a1) ∧ (a1 > prev0)

3: ml0 ↑ 0 ↑ 0 + 1 if (a2 > a1) ∧ (a1 ≤ prev0)

4: ml0 ↑ 0 ↑ 0 if (a2 ≤ a1) ∧ (a1 ≤ prev0)

In Example 6.4 we have deduced the expression of predicate
that isolates the branches that are not normalizable with an

auxiliary and the branches that require an auxiliary. The
auxiliary synthesis focuses on the branches that requires
an auxiliary synthesis. By assuming (a1 ≤ prev0) the MC-
expression can be simplified to:

1:ml0 ↑ cl0 + 1 + 1 if (a2 > a1)
2:ml0 ↑ cl0 + 1 ↑ 0 if (a2 ≤ a1)

The same process can be repeated for the third unfolding of
LIS. The expression of LIS(x • [a1,a2,a3]) is written to an
MC-expression, the same predicate expression is deduced to
separate the branches that require and unfolding from those
who do not. The resulting MC-expression after simplification
is:

1’(1):ml0 ↑ cl0 + 1 + 1 + 1 if (a3 > a2) ∧ (a2 > a1)
2’(2): ml0 ↑ cl0 + 1 ↑ 1 if (a3 > a2) ∧ (a2 ≤ a1)
3’(1):ml0 ↑ cl0 + 1 + 1 ↑ 0 if (a3 ≤ a2) ∧ (a2 > a1)
4’(2): ml0 ↑ cl0 + 1 ↑ 0 if (a3 ≤ a2) ∧ (a2 ≤ a1)

A pattern is emerging between the sums of ones. In the previ-
ousMC-expression, each branch has been annotated with the
predecessor branch number in the previous unfolding. For
example, the expression of branch 1’ comes from branch 1.
Note that a +1 has been added to the expressions that require
lifting only in branch 1. In other branches, we have deduced
that the auxiliary does not need changing. By extrapolating
the sequence (a2 > a1), (a3 > a2) ∧ (a2 > a1), . . . one can
discover the conditional auxiliary for the LIS example.

Example C.3. In Example 6.6, we determine that a function
д1 such that д1 ([a1,a2]) = a1 < a2 ? 1 + 1 : 1 is required for
a join to exist without a predicate (for all the branches in
the unfoldings of f to be normalizable). The same normal-
ization process yields the expression of the next unfolding,
which can be written as д1 ([a1,a2,a3]) = a2 < a3 ∧ a1 <
a1 ? д1 ([a1,a2]) + 1 : д1 ([a1,a2]). Some subexpressions have
been replaced by the expressions of the previous unfolding
to highlight recursion. Then recursion discovery deduces
that д1 can be computed, with two components (cond,aux ),
by the following recursion relation:

д1 (x • [a]) = let c = д1 (x ).cond ∧ ( f (x ).prev < a) in
let b = д1 (x ).aux in (c, c ? b + 1 : b)

The final lifting of LIS is LIS′(x ) = (LIS(x ),д1 (x ),head (x ))
since head is the trivial result of recursion discovery from
the unfoldings of д2 in Example 6.5. ⌟

C.4 Divide Function Synthesis
Conditional predicate. If the divide predicate p (x ,y) is
defined by a constant time computation on a suffix of x and
prefix ofy, then the splitting divide function is constructed as
follows. First, it splits its input z randomly into x ,y such that
z = x •y, and then computes the prefixy0 ofy (y = y0 •yr est )
such that p (x • y0,yr est ) holds. This computation is linear
time in the length of the average prefix length y0.
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General case. The sketches are Racket functions that are
solved by the Rosette [25] syntax-guided synthesis solver. A
pivot partition sketch with two outputs has the following
form:
(define (div X)

(let ([ pivot (foldl (lambda (x piv)

(if ?? x piv)) (car X) X)])

(partition (lambda (x) ??) X)))

where ?? stands for a hole that has to be filled with an expres-
sion. A sketch for more than two partitions is constructed
by nesting partitions. For example, the following sketch can
be completed to implement a function that partitions a list
X into three partitions:
(define (div X)

(let ([ pivot (foldl (lambda (x piv)

(if ?? x piv)) (car X) X)])

(let*-values

([(X1 Y) (partition (lambda (x) ??) X)]

[(X2 X3) (partition (lambda (x) ??) Y)])

(values X1 X2 X3))))

In syntax-guided synthesis, the user provides the grammar
of expressions from which an expression can be drawn to fill
a hole. In our case, the grammar depends on the operators
used in the predicate that the divide has to match, and the
data type of the elements of the list. The holes in the above
sketches are all of boolean type, and complete by expressions
in the following grammar with start symbol P :

P → C ∧ P | C ∨ P

C → ¬C | A op> A | b

A → A op+ A | x | n

where op> is a comparison operator that appears in the pred-
icate or reference implementation, op+ is an arithmetic oper-
ator appearing in the predicate, b is a boolean variable and
x an integer variable, and n is an integer constant. If there
are no boolean variables or integer variables (this depends
on the input data type), then the grammar is restricted ac-
cordingly. If no solution is found with the restricted set of
operators, the set of operators is extended to include every
comparison operator of the language and every arithmetic
operator. Practically, the tool tries out both possibilities in
parallel.
The expression grammar for the first hole for the pivot

selection also contains the constant false #f, which allows a
solution to skip the pivot selection, and use the first element
of the list as pivot.

In our set of benchmarks, no example required a partition
that is more than linear time. We test the divide synthesis on
a fabricated example, where the following predicate p had
to be satisfied:
∀x ,y ∈ S : p (x ,y) = (∀a ∈ x ,∀b ∈ y : a < b) ∧ |x | > |y |

A partition that selects its pivot in quadratic time is synthe-
sized by extending the sketch with another fold function for

Parsynt GraSSP
Count 1(0*)2 1.5 2.1
Count 1*2*3 3.3 11.6

Max dist. between 1s 2.8 1.8
Max sum between 0s 2.0 5.0

Table 2. Comparison of Parsynt with GraSSP on the bench-
marks that have a solution for all tools.

the pivot selection, and a restricted space for hole comple-
tion.

D Additional Experimental Results
D.1 Additional Experiments for Table 7(a)
Table 2 compares our tool Parsynt with GraSSP [11] on the
benchmarks for which both can synthesize solutions. Remark
that our tool is more expressive as illustrated by Table 7(a),
and it also synthesizes two solutions for the problem for
these benchmarks: a splitting divide solution, and a solution
with lifting.

D.2 Quality of Synthesized Solutions from Table 1
In this section, we give additional insight on the quality of the
solutions synthesized for the benchmarks given in Table 1. In
some cases the performance depends on the input distribu-
tion, which is specific to each benchmark. In the case of the
POP example, one possible measure of the distribution is to
count how many points are optimal in the input. In Figure 4,
the performance of the POP divide-and-conquer implemen-
tations is analyzed with varying ratios of optimal points to
total number of points in the input. Figure 11 presents similar
plots, which are explained in the following paragraph.
Sorting. The first benchmark is the selection sort algorithm,
which takes O (n2) algorithm, and the output, for budget
B⊙ = (0, 2, 2) is the quicksort algorithm. In the solution
synthesized, the pivot chosen is the first element of the input
of the divide. One can improve on this choice by taking
a random pivot, but our default solution performs well in
average, as expected of a quicksort algorithm.
k-largest. This benchmark selects the k-largest elements in
a list. The input algorithm is inO (nk ), similar to the selection
sort above but the size of the output is of size k only. In
Figure 11(a), we plot the speedup of two divide-and-conquer
implementations compared to the naive sequential input,
with varying values of k , represented as the ratio of k to
the input size. On the left of the graph, for small values of
k , the speedup is small: O (nk ) is comparable to n. However,
for larger values of k , the implementation synthesized by
Parsynt for B⊙ = (0, 2, 2) is significantly faster. The naive
solution, for a budget B⊙ = (2, 2, 2) consists in splitting the
input at random, computing thek-largest of each subdivision,
and in the join computing the k-largest of the concatenation
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(a) k-largest: speedup of two divide-and-conquer implementations
with respect to the input single-pass implementation, with increas-
ing ratio of k to total input size. Input size is 105. The synthesized
solution for B⊙ = (0, 2, 2) is compared to a naive quadratic solu-
tion (where the budget would be B⊙ = (2, 2, 2)).
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(b) Closest pair: speedup of two divide-and-conquer implemen-
tations with respect to the input single-pass implementation.
Parsynt synthesizes the solution with B = (0, 2, 2). The input
is a sorted array of 105 elements, which are then swapped, and the
y-axis represents the ratio of elements that are still sorted in the
input.
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(c) Intersecting intervals: speedup of two divide-and-conquer imple-
mentations with respect to the input single-pass implementation,
with varying ratio of number of pairs of intersecting intervals to
input size.
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(d) Histogram: speedup of two divide-and-conquer implementa-
tions with respect to the input single-pass implementation, with
varying ratio of number of input classes to total input size.

10 5 10 4 10 3 10 2 10 1 100
minimal points / total points

0

20

40

60

80

sp
ee
du
p 
d&
c 
im
pl
em
en
ta
ti
on
 /
 i
te
ra
ti
ve

B = (0,2,2)
B = (0,2,3)
B = (1,2,2)
B = (2,2,2)

(e) Minimal points: speedup of three divide-and-conquer imple-
mentations with respect to the input single-pass implementation,
with varying ratio of number of minimal points in input to total
input size.
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(f) Quadrant orthogonal convex hull: speedup of two divide-and-
conquer implementations with respect to the input single-pass
implementation, with varying ratio of number of points in the
convex hull to total input size.

Figure 11. Additional plots evaluating the quality of the code synthesized for the benchmarks in Table 1. Divide-and-conquer implementa-
tions of k-largest (a), closest pairs (b), intersecting intervals (c), histogram (d), minimal points (e) and quadrant orthogonal convex hull (f) are
evaluated, with the speedup compared to the single-pass implementations with a single thread plotted with varying input distributions in
each case.
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of the two partial results. This solution performs worse than
the one synthesized by Parsynt, except for small values of
k , but in that case the divide-and-conquer implementations
do not yield a significant performance advantage.

Closest pair. This benchmark is an algorithm that search a
pair of integers in a list of integers, such that the distance be-
tween the two elements is minimal. The input algorithm is a
naiveO (n2) algorithm that explores all the possible pairs. Fig-
ure 11(b) shows the performance of the synthesized solution.
We also added a naive solution, which would be synthesized
for B⊙ = (2, 2, 2), but this solution does not have any perfor-
mance advantage. The synthesized solution performs well,
independently of the distribution of the input data, for the
measure chosen. Note that the speedup depends on the in-
put size, and varies as n

logn . In this instance, the theoretical
speedup would be 25000×, but we observe 500×.

Intersecting intervals. The input algorithm in this bench-
marks checks whether there is a pair of intersecting intervals
within a list of intervals. The input algorithm is a naiveO (n2)
algorithm that checks every pair. Parsynt synthesized two
implementations. The implementation with B⊙ = (0, 2, 2)
requires a simple lifting that consists in remembering the in-
tervals with the smallest lower bound and the largest upper
bound. The join is constant time and takes the disjunction
of the partial result and whether the intervals in the lifting
intersect. The implementation with B⊙ = (0, 3, 3) splits the
space in three subspaces: given a pivot p, all the intervals
that intersect with p, all the intervals whose upper bound
is smaller than p’s lower bound, and all the interval whose
lower bound is larger than p’s upper bound. Remark that
is the first partition has more than two elements, there is
(trivially) a pair of intersecting intervals. However the solu-
tion synthesized does not benefit from this simple intuitive
optimization. The comparison of the two implementations
is done in Figure 11(c), for varying ratios of intersecting
intervals. Remark that the relative speedup is independent
from this measure, but the solution with B⊙ = (0, 3, 3) per-
forms worse since more work needs to be done in the divide
function.

Histogram. The histogram algorithm is a well known ex-
ample. In our paper, we use an implementation using only
lists. The input is a list of pairs, where the first element is the
class of the element, and the second element is the value of
the element. The input algorithm is in the worst case O (n2),
if every element has a different class. Figure 11(d) shows the
performance of the synthesized solution, for varying number
of classes as ratio to the input size.

Minimal points. In this benchmark, the algorithm com-
putes the set of points that are minimal within a set of points
on a plan, where minimal means that there is no other point
that has both a lower x and a lower y coordinate. Four solu-
tions are synthesized. The speedups of each implementation

Point[] O = [];

int i,j;

for(i = 0; i < n; i++){

bool b1, b2, b3, b4 = true;

for(j = 0; j < n; j++){

b1 = b1 && comp1(S[i], S[j]);

b2 = b2 && comp2(S[i], S[j]);

b3 = b3 && comp3(S[i], S[j]);

b4 = b4 && comp4(S[i], S[j]);

}

if(b1 || b2 || b3 || b4)

O += [S[i]];

}

Figure 12. Computing the orthogonal convex hull of S.

with respect to the sequential input implementation is repre-
sented in Figure 11(e), represented on the graph for a varying
ratio of minimal points to the total input size.
Quadrant orthogonal convex hull. This algorithm com-
putes the set of points that form an orthogonal convex hull,
for points that are in one quadrant of the 2D space. The four
solutions synthesized are compared in Figure 11(f), for a
varying ratio of points in the orthogonal convex hull to total
size of input. The performance of the solution for budget
B⊙ = (0, 2, 3) is highly variable for a fixed ratio but different
generated inputs, since it depends on a good selection of a
pivot. This can be mitigated by simple adjustments to the
pivot selection. The solution with three partitions is more
sensitive to these changes than the other solutions, because
the efficiency depends on how much is discarded in one of
the partition. In the other solutions, no points are discarded
after the divide function. This sensitivity to the pivot selec-
tion explains the high variability of the performance of the
solution plotted with a black line.

E Benchmarks
This section gives a detailed explanation of the benchmarks
used in this paper. Section E.1 explains the benchmarks that
show the limitation of our tool Parsynt. Section E.2 gives
the input implementations of the benchmarks for which
the tool succeeds, that is, at least one divide-and-conquer
implementation is synthesized.

E.1 Limitations of Parsynt
In this section, we briefly describe three different bench-
marks that showcase the limitations of the synthesis steps in
our method. We give the input implementation and outline
where the difficulty in the automated synthesis process lies.

E.1.1 Orthogonal Convex Hull
The orthogonal convex hull of a set of points S in the 2D
plane is the smallest area orthogonal polygonO such that (i)
each point p in S lies insideO , and the intersection ofO with
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bool a, b = false;

int cl = 0;

int ml = 0;

int i;

for(i = 0; i < n; i++) {

cl = A[i] = 3 && b || a || b ? cl + 1 : 0;

ml += A[i] == 3 && b ? max(ml, cl) : ml;

b = A[i] == 2 && a || A[i] == 0 && d;

a = A[i] == 1 || A[i] == 0 && a;

}

return count;

Figure 13. Longest substring of A matching 1(0*)2(0*)3

any horizontal or vertical line is either empty, or exactly one
segment.
The implementation in Figure 12 stems from the obser-

vation that a point is in the orthogonal convex hull iff all
the other points are all in one of the four quadrants that
are defined by splitting the space with a vertical and a hori-
zontal line passing through the point. The four comparison
functions are comp1(p,q)= p.x >= q.x && p.y >= q.y, comp2(p,q)
= p.x >= q.x && p.y <= q.y, comp3(p,q)= p.x <= q.x && p.y >=

q.y and comp4(p,q)= p.x <= q.x && p.y <= q.y. After the inner
loop, one of the booleans is true iff the point S[i] is in the
orthogonal convex hull O.
This implementation requires a non-trivial lifting to syn-

thesize a single-pass function. Intuitively, a point is optimal
for one of the four reasons encoded in each of the differ-
ent booleans computed in the inner loop. However, once
the point has been added to the convex hull, this imple-
mentation forgets about why it is optimal. In a single pass
function, the points of set are read sequentially. But the list
of optimal points O does not contain enough information
to decide which points must be kept in O and which ones
must be removed when adding a new point to the set. To
solve this problem, one can lift the list O to some list O' that
contains quintuples, where the first element is a point, and
the four other elements are the booleans b1, b2, b3, b4 that
were computed when adding the point.

E.1.2 Longest Substring Matching 1(0*)2(0*)3
The program in Figure 13 computes the length of the longest
substring matching 1(0∗)2(0∗)3 using two boolean variables
a, b and one counter variable count. The splitting divide
function for this benchmark ensures that the substrings
matching 1(0∗)2(0∗)3 cannot be split arbitrary in the middle.
While the verification of the solution in a bounded case only
takes a few seconds, the complexity lies in inferring all the
possible ways the regular expression could be split. Our de-
ductive synthesis procedure is currently unable to do so, but
this exercise would take significant effort, even for a good
programmer.

int i, j;

for(i =0; i < n; i++){

b = true;

d = dist(S[i], c);

for(j = 0; j < n; j++){

b = b && ! col(S[i], S[j], c)

|| dist(S[j], c) >= d;

}

if(b) Y += [S[i]];

}

Figure 14. Computing the encircling set of a point c

E.1.3 Encircling Set of a Point
Suppose we have a set X of points in the plane and a point
c . We want to compute the set of encircling points Y of c ,
which is the subset of points of X such that for any of the
points a in this subset, there is no point in X between a and
c .

A quadratic implementation is presented in Figure 14. The
squared distance between two points is dist(p,p')= sq(p.x -

p'.x)+ sq(p.y - p'.y) and the colinearity function is col(p_1,
p_2, p_3)= p_1.x(p_2.y - p_3.y)+ p_2.x(p_3.y - p_1.y)+ p_3.x(

p_1.x - p_2.y)= 0.
The difficulty in automatically synthesizing a divide-and-

conquer algorithm for this example lies in the non-linear
operations in the distance and colinearity functions. We
could not verify the correctness of the hand written solu-
tions for the functional translation, divide synthesis and join
synthesis steps in less than 10 minutes each with Rosette,
the syntax guided synthesis tool we use.

E.2 Code of the Benchmarks
Section E.2.1 describes the input algorithm for each of the
benchmarks in Table 1. Section E.2.2 describes the bench-
marks of Table 7(a). The implementations presented here are
written in a simple imperative language with lists, and list
concatenation is the operator +.

E.2.1 Benchmarks of Table 1
• Sorting. The input algorithm for sorting is a selection
sort algorithm. The implementation is presented in Fig-
ure 15. The implementation presented here is single-
pass: each input element is read only once, and the
inner loop iterates over the state (the list of sorted ele-
ments) to insert each new element. For B⊙ = (0, 2, 2),
the solution synthesized is the quicksort algorithm.
• k-largest. This benchmark is an O (nk ) algorithm that
collects the k largest element in an input list. Figure 16
is a single-pass input implementation: each element
of the input list is read only once and stored in the
list part of the state if it is larger than some element
already stored, or if there are not yet k elements stored.
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• Closest pair. Figure 17 is an implementation of an algo-
rithm that computes the closest pair of elements in an
input of integers. The distance between to elements
of the list a and b is |a − b |. The input implementation
is not single pass, and first needs to be translated to a
single pass version using the technique described in
[10].
• Intersecting intervals. This algorithm returns a boolean
representing whether there is a pair of (distinct) in-
tersecting intervals in an input list, where an interval
[lo,hi] is a pair of an integer lower bound lo and in-
teger upper bound [hi]. Figure 18 presents an O (n2)
implementation, that needs to be translated to a single-
pass implementation.
• Histogram.We model the histogram as a list of pairs
of class and count, not as a map. Therefore, updating
the count for a given class takes linear time. The input
algorithm , presented in Figure 19, is worst caseO (n2),
if every cell of the input array has a different class.
• POP. In the main body of the paper, we presented
the code in Figure 3. Parsynt accepts a more naive
algorithm, and then translates it to the code presented
in the paper using the technique described in [10].
Figure 20 presents an input iterative implementation,
and remark that this implementation is not single-pass.
• Minimal points. The minimal points of a set of points
on a plane are a subset of the points such that all the
other points have either a greater x- or y-coordinate.
Figure 21 presents an implementation that is not single-
pass and requires the functional translation step de-
scribed in [10].
• Quadrant orthogonal convex hull. The implementation
of Figure 22 collects the points that are in one quadrant
of the orthogonal convex hull of a set of points with
integer coordinates. In our example, the quadrant is
the upper left part of the hull.

E.2.2 Benchmarks of Table 7(a)
All the benchmarks in Table 7(a) are linear time single-pass
function over an input list. For each of these benchmarks,
there are two solutions: a solution with a splitting divide
(Definition 4.4) and a solution with a lifting, in which case
the divide is the arbitrary splitting. The algorithms in this
category can be seen as an integer.
• Count 1(0+). The implementation in Figure 23 counts
the number of occurrences of substrings matching
1(0+) in the input list in a single pass.
• Count 1(0∗)2. In this benchmark, we have an algorithm
that counts the number of substrings that match the
regular expression 1(0∗)2. The code is in Figure 24.
• Count 1∗2∗3∗. The benchmark is similar to the previous
ones, but now we count the number of occurrences of
1∗2∗3∗. The code is in Figure 25.

list <int > tmp;

bool added;

int i, j;

list <int > sorted = [];

for(i = 0; i < n; i++) {

tmp = [];

added = false;

for(j = 0; j < sorted.length (); j++) {

if(!added && A[i] > sorted[j]) {

tmp += [A[i],sorted[j]]; added = true;

} else {

tmp += [sorted[j]];

}

}

if(!added) tmp += [A[i]];

sorted = tmp;

}

return sorted;

Figure 15. Sorting: selection sort implementation sorts an
input list A of length n.

list <int > tmp;

bool added;

int i, j, counter;

list <int > klargest = [];

for(i = 0; i < n; i++) {

tmp = [];

added = false;

count = 0;

for(j = 0; j < klargest.length (); j++) {

if(!added && A[i] > klargest[j]) {

tmp += [A[i]];

added = true;

count += 1;

if(count < k - 1){

tmp += [klargest[i]];

count += 1;

}

}

if(!added && count < k - 1) tmp += [A[i]];

klargest = tmp;

}

return klargest;

Figure 16. k-largest: the algorithm returns the k largest ele-
ments in the input array A of length n. We assume k < n and
k > 2.

• Max sum between ones. The algorithm in Figure 26
counts the maximum sum of elements between two
ones, in a list of integers.
• Max distance between zeroes.The algorithm in Figure 27
measures the maximum distance between two zeroes
in a list of integers.
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bool added;

int i, j;

int dist , min_dist;

pair p; // a struct {a : int; b : int}

p = {a = min(a[0],a[1]), b=max(a[0], a[1])};

min_dist = abs(p.b-p.a);

for(i = 0; i < n; i++) {

for(j = 0; j < n; j++){

dist = abs(A[i] - A[j]);

if(dist > 0 && dist < min_dist) {

min_dist = dist;

p = {a = min(a[i],a[i]),

b = max(a[j], a[j])};

}

}

return p;

Figure 17. Closest pair: the algorithm returns the pair of
(distinct) closest elements in the input array A of length n.

// A is a list of

// struct {lo : int; hi : int}

bool intersect = false;

int i,j;

for(i = 0; i < n; i++) {

for(j = 0; j < i; j++){

intersect = intersect ||

(!((x.lo == y.lo) && (x.hi == y.hi))

&& ((x.lo < y.hi) && (x.hi > y.lo)));

}

}

return intersect;

Figure 18. Intersecting intervals: the algorithm returns
whether there is a pair of intersecting intervals in the in-
put array A of length n.

• Largest peak. In Figure 29, we give a single pass algo-
rithm to compute the largest peak in a list of integers.
A peak is a sublist of positive elements only, and the
largest peak is the sublist, such that the sum of its el-
ements is maximal. In other words, we compute the
maximum segment sum of segments of positive ele-
ments.
• LIS. The implementation in Figure 28 is the imperative
code for Example 6.3.
• Longest 1∗. The code in Figure 30 computes the length
of the longest block of continuous ones in a list of
integers.
• Longest 1(0∗)2. The code in Figure 31 computes the
length of the largest substring matching 1(0∗)2 in a
list of integers, in a single pass.

// A is a list of

// struct {key : int; count : int} data

list <data > hist = [];

list <data > tmp = [];

int i,j;

bool b;

for(i = 0; i < n; i++) {

b = false;

tmp = [];

for(j = 0; j < hist.length (); j++){

if(hist[j].key == A[i].key) {

tmp += [{key = A[i].key;

count = hist[j].count +

A[i].count }];

k = true;

} else {

tmp += [hist[j]];

}

}

if(!k) hist += {A[i]};

hist = tmp;

}

return hist;

Figure 19. Histogram: the algorithm returns the histogram
of an array A of length n. The histogram is a list of pairs of
key and count.

// A is a list of

// struct {x : int; y : int} point

list <point > optimal_points = [];

bool optimal;

for(i = 0; i < n; i++){

optimal = true;

for(j = 0; j < n; j++){

is_opt = is_opt &

((A[i].x >= A[j].x) || (A[i].y >= A[j].y));

}

if(is_opt) optimal_points += [A[i]];

}

return optimal_points;

Figure 20. POP: this algorithm is an alternative to the algo-
rithm presented in Figure 3, and is not single pass.

• Longest even 0∗. The code in Figure 32 computes the
lengths of the longest block of zeroes of even length
in a list of integers.
• Longest odd (10)∗. In Figure 33, we show an algorithm
that computes the longest block matching (01)∗ of odd
length, in a list of integers.
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// A is a list of

// struct {x : int; y : int} point

list <point > minpoints = [];

bool bx;

for(i = 0; i < n; i++){

bx = false;

for(j = 0; j < n; j++){

bx = bx || (A[j].x < A[i].x

&& A[j].y < A[i].y);

}

if(!bx) minpoints += [A[i]];

}

return minpoints;

Figure 21. Minimal points.

// A is a list of

// struct {x : int; y : int} point

bool is_hull;

list <point > hull = [];

point p1 , p2;

for(i = 0; i < n; i++){

is_hull = true;

p1 = A[i];

if(p1.x <= 0 && p1.y >= 0){

for(j = 0; j < n; j++){

p2 = A[j];

is_hull &= p1.x <= p2.x || p1.y >= p2.y;

}

if(is_hull) hull += [A[i]];

}

}

return hull;

Figure 22. Quadrant Orthogonal Convex Hull.

bool s0 = false;

bool s1 = false;

int scount = 0;

int i;

for(i = 0; i < n; i++){

scount += (s1 && (A[i] != 0)) ? 1 : 0;

s1 = (A[i] == 0) && (s0 || s1);

s0 = A[i] == 1;

}

return scount;

Figure 23. Count 1(0+).

bool s0 = false;

int c = 0;

int i;

for(i = 0; i < n; i++){

c += s0 && A[i] == 2 ? 1 : 0;

s0 = A[i] == 1 || (s0 && A[i] == 0);

}

return c;

Figure 24. Count 1(0∗)2.

bool s1 = false;

bool s2 = false; bool s3 = false;

bool fin = false; int c = 0;

for(i = 0; i < n; i++) {

c = c + ((x == 3 && (s2 || s1)) ? 1 : 0);

s2 = (x == 2) && (s1 || s2);

s1 = x == 1;

}

return c;

Figure 25. Count 1∗2∗3∗

int ms = 0;

int cs = 0;

for(i = 0; i < n; i++){

cs = A[i] != 1 ? cs + A[i] : 0;

ms = max(ms, cs);

}

return ms;

Figure 26. Max sum between ones.

int md = 0;

int cd = 0;

int i;

for(i = 0; i < n; i++){

cd = A[i] != 0 ? cd + 1 : 0;

md = max(md, cd);

}

return md;

Figure 27. Max distance between zeroes.
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int cl = 0, ml = 0;

int prev = A[0];

int i;

for(i = 1; i < n; i++){

cl = prev < A[i] ? cl + 1 : 0;

ml = max(ml , cl);

prev = A[i];

}

return ml;

Figure 28. LIS.

int cmo =0, lpeak = 0;

int i;

for(i = 1; i < n; i++){

cmo = A[i] > 0 ? cl + A[i] : 0;

lpeak = max(cmo , lpeak);

}

return lpeak;

Figure 29. Largest peak.

int ml = 0, len = 0;

int i;

for(i = 1; i < n; i++){

len = A[i] == 1 ? len + 1 : 0;

ml = max(ml , len);

}

return ml;

Figure 30. Longest 1∗.

bool s0 = false , s1 = false;

int ml = 0, len = 0;

int i;

for(i = 1; i < n; i++){

s1 = s0 && A[i] == 2;

s0 = A[i] == 1 || (A[i] == 0 && s0);

len = (s1 || s0) ? len + 1 : 0;

ml = s1 ? max(ml, len) : ml;

}

return ml;

Figure 31. Longest 1(0∗)2.

int i;

int cl = 0, ml = 0, ml_tmp = 0;

for(i = 1; i < n; i++){

cl = A[i] == 0 ? cl + 1 : 0;

ml_tmp = max(ml_tmp , cl);

if(ml_tmp % 2 == 0)

ml = ml_tmp;

}

return ml;

Figure 32. Longest even 0∗.

int i;

bool s1 = false , s2 = false;

int cl = 0, ml = 0;

for(i = 0; i < n; i++){

s1 = s2 && A[i] == 1;

cl = s1 ? cl + 1 : (s2 ? cl : 0);

ml = cl % 2 == 1 ? max(ml, cl) : ml;

s2 = x == 0;

}

return ml;

Figure 33. Longest odd (10)∗.
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