Modular Synthesis of Divide-and-Conquer
Parallelism for Nested Loops
(Extended Version)

Azadeh Farzan
Department of Computer Science
University of Toronto
Toronto, Canada
azadeh@cs.toronto.edu

Abstract

We propose a methodology for automatic generation of
divide-and-conquer parallel implementations of sequential
nested loops. We focus on a class of loops that traverse read-
only multidimensional collections (lists or arrays) and com-
pute a function over these collections. Our approach is modu-
lar, in that, the inner loop nest is abstracted away to produce
a simpler loop nest for parallelization. Then, the summarized
version of the loop nest is parallelized. The main challenge
addressed by this paper is that to perform the code transfor-
mations necessary in each step, the loop nest may have to be
augmented (automatically) with extra computation to make
possible the abstraction and/or the parallelization tasks. We
present theoretical results to justify the correctness of our
modular approach, and algorithmic solutions for automa-
tion. Experimental results demonstrate that our approach
can parallelize highly non-trivial loop nests efficiently.

Keywords Divide and Conquer Parallelism, Program Syn-
thesis, Homomorphisms

1 Introduction

The advent of multicore computers and development of APIs
like OpenMP [11], CUDA [33], and TBB [35] has increased
the popularity of parallel programming for performance
gains. Despite big advances in parallelizing compilers, cor-
rect and efficient parallel code is often hand-crafted through
a time-consuming and error-prone process. These APIs im-
plement commonly used parallel programming skeletons that
ease the task of parallel programming. Instead of writing a
parallel program from scratch, a programmer needs to only
specify the key components of a particular skeleton. Divide-
and-conquer parallelism is the most commonly used of such
skeletons for which the programmer has to specify a split,
a work, and a join function. We propose a methodology to
automatically generate these components.

This is the extended version of PLDI 2019 paper by the same authors which
includes the proofs of theorems and additional details.

PLDI’19, June 22-28, 2019, Phoenix, AZ, USA
2019.

Victor Nicolet
Department of Computer Science
University of Toronto
Toronto, Canada
victorn@cs.toronto.edu

We focus on a class of divide-and-conquer parallel pro-
grams that operate on multidimensional sequences (e.g. mul-
tidimensional arrays, or in general any collection type with
similar recursive structure) in which the divide (split) op-
erator is assumed to be the inverse of the default sequence
concatenation operator (i.e. divide s into s; and s, where
s = s1 ® 53). Our input programs are loop nests that traverse
the multidimensional data in accordance with their recursive
structure. These programs are assumed to have fundamen-
tally unbreakable data flow dependencies.

Consider the code in Figure 1(a), that implements a se-
quential solution to the problem of computing, for a three
dimensional n X m X ¢ array A (with both positive and nega-
tive elements), the sum of the elements of a subarray Alk..n—
1,0..m —1,0.. — 1] (for all 0 < k < n) which has the maxi-
mum sum compared to all other such subarrays. Intuitively,
considering the array as a 3D box with height n, the goal is t
discover the max- {i5t max bot box sum = 0; ()]
imum sum of (for (i =0; i <n; it {

: int plane_sum = 0;
boxes of differ- for (j = 0; j <m; j++) {
ent heights, with for((Liniisﬁmii;ifiﬂ’jl k1 1)
the same width, max_bot_box_sum =
length and bot-
tom as the input E'int max_bot_box_sum = 0; (b).

max (max_bot_box_sum + plane_sum, 0);
box. lint =0

Note that this 5f°rir(l; ;1::1;5:::.“; 3’,'” {
optimal sequen- | for (j = 0; 3 <m; ++) {
tial i 1 t : for (k = 0; k < 1; k ++) {
lal impiementa- {plane_sum += A[i][3]1[k];} }
tion runs in sin- = + plane_sum;

. max_bot_box_sum =

gle pass hnear H max (max_bot_box_sum + plane_sum, 0);
time over the in- i}

put 3D array, at = + ; (c)’
h f imax_bot_box_sum = max (max_bot_box_sum_r,
the cost of creat- : + max_bot_box sum 1)
ing unbreakable
loop dependen-
cies. A less efficient solution that would enumerate all boxes
would have been easier to parallelize.

It is easy to observe that the code is not (divide-and-
conquer) parallelizable. Let us assume it is. There then exists
a binary function © that can combine results of two instances

b

Figure 1. Maximum bottom box sum.

PLDI’19, June 22-28, 2019, Phoenix, AZ, USA

of the code (mbbs) run on two adjacent boxes to produce the
same results for the concatenated box.

mbbs (E@ > - mbbs(@)gmbbs ()

Let b = [5] (a1 X 1 X 1 box) and consider two choices
for b’, namely [-3,3] and [0, 3] (2 X 1 X 1 boxes). Although
mbbs(b’) is 3 in both cases, the join needs to produce two
different answers for mbbs(b e b’).

Nonexistence of the join operator indicates that mbbs, the
function computed by the loop, is not a homomorphism. Now,
consider the modified code illustrated in Figure 1(b). A new
accumulator aux_sum is added (in orange), which maintains
the sum of the elements in A[0..i —1,0..m—1,0..£ — 1] at the
i-th iteration of the outer loop. Note that Ox A

mbbs(b) is producing a pair of integers parallelizable ’
now, instead of a single integer. This ex- °°Z prOJ'Cftion

tending of a function’s signature is called
lifting, in the standard sense of lifting a
morphism in category theory, and is il-
lustrated on the right. (I, O) denotes the input and output
of the original sequential loop, and a lifting of the code ad-
ditionally computes auxiliary information denoted by A. If
the lifted function is a homomorphism, then a parallel join
exists for it. Figure 1(c) illustrates the parallel join for the
lifted maximum bottom box code.

_
sequential
loop

1.1 Modular Parallelization

Figure 2(a) illustrates the flow of data in a generic nested loop
(of arbitrary depth), where s; denotes the state of the loop
nest (e.g. a tuple of program variables). The black arrows
correspond to the computation of one instance of the body
of outermost loop, while the blue arrows correspond to the
computation of one instance of the inner loop nest.

The goal is to parallelize, divide-and-conquer style, the
outermost loop with the assumption that the dependencies
are unbreakable.

In [12] we proposed a semantic solution to this problem
for simple (non-nested) loops by lifting their computations
to homomorphisms. To generalize such a semantic solution
to nested loops, one comes across the very hard problem of
computing a semantic summary of the functionality of the
inner loop nest, to be used in the analysis of the outer loop.
Despite big strides in program analysis techniques [10, 20],
this type of semantic summary computation remains limited
to classes of loops whose invariants (summaries) are within
decidable theories, and even then, mostly proof-driven rather
than summarizing full functionality.

We propose a methodology that circumvents this problem
through a modular solution. We divide the dependencies in
Figure 2(a) into two categories and resolve them separately.
The black arrows force every instance of the inner loop nest
to be executed only after the results of all previous instances
are ready. Contrast this with the diagram in Figure 2(b),
where each instance of the inner loop nest starts from a fixed

Azadeh Farzan and Victor Nicolet

to

t1

Figure 2. Dependencies in a general sequential nested loop
(a) vs. a memoryless one (b), which is summarized in (c).

(constant) initial state @, and therefore, all instances can be
run in parallel. The sequential binary operator ® merges the
results of the inner loop nest (¢;) with the current state of the
outermost loop (s;) and makes the required adjustments (to
get s;11). We call such a loop nest memoryless. The terminol-
ogy is inspired by the fact that all the instances of the inner
loop nest implement the same function (that starts from the
same initial state 0). If a general loop nest is transformed to
a memoryless one through the introduction of new compu-
tation (i.e. ®), then this results in the removal of the black
arrow dependencies. The inner loop nest can be executed
by a parallel map. The outermost loop remains sequential.
Observe that the loop in Figure 1(a) is memoryless.

Transforming a general loop to a memoryless one is not
always straightforward. Due to lack of information in the
loop state, no such binary function (operator) © may exist. In
these cases, one needs to deduce additional information to be
computed by the inner loop nest to facilitate the existence of
©, that is, the inner loop nest has to be lifted. Transforming
a general loop to a memoryless one involves solving two
subproblems: (i) producing an implementation for ®, and (ii)
discovery of auxiliary computation when such an operator
does not exist. Solving these two problems are two of our
key contributions (Sections 7.2 and 5.3).

When the loop is memoryless, the inner loop nest can be
abstracted away to get a summarized (potentially simpler)
loop. As shown in Figure 2(c), the results of the computa-
tions of the inner loop nest are assumed to be stored in
a (conceptual) array (called inner_loop[]), and therefore
the loop nest is removed. The summarized loop fetches the
results from inner_loop[] to perform its computation. Any
marized this way. For exam-{ for (i = 0; i < nj i++) {

.+ max _bot_box_sum = H
ple, the 3-nested loop of Fig-i max (max_bot. box_sum
ure 1(a) is summarized to a + inner loop[il, 0); |
single loop (illustrated on the ... :
right).

The crucial observation is that the summarized loop is
efficiently parallelizable if and only if the original one is (The-
orems 4.7 and 5.3). Therefore, the problem of parallelizing
the original loop is soundly and completely reducible to the

Modular D&C Parallelization

problems of (i) producing the summarized loop, and (ii) par-
allelizing it. Summarization can substantially simplify the
parallelization task. For example, the approach in [12] can
parallelize the summarized loop above while it is not appli-
cable to the original loop in Figure 1(a).

Summarization, however, does not always yield a non-
nested loop like the one above, and therefore, the approach
in [12] cannot always parallelize a summarized loop.

To parallelize the summarized loop, two subproblems have
to be solved: (a) Automatic lifting of nested loops to paral-
lelizable code, and (b) automatic generation of the parallel
join for nestedloops. Problem (b) is easier to solve. In Section
7, we build on our technique from [12] to extend it to nested
loops. The lifting problem is more complex. We solve it by
reducing it to two well-known problems, namely normal-
ization (in term rewriting systems) and recursion discovery.
In section 8, we discuss the reduction and propose simple
heuristics for both problems. Our modular parallelization
methodology comprises theoretical results and algorithms
for generating all required additional code. Figure 11 outlines
the applications of the theorems and the contributed algo-
rithmic modules, and therefore, serves as detailed summary
of our technical contributions. Due to the undecidability of
the problem, some of our algorithms are heuristics. We pro-
vide experimental results to demonstrate the effectiveness
of these heuristics in fully automatically and efficiently pro-
ducing divide-and-conquer parallelizations for some highly
nontrivial nested loops. Beyond facilitating full automation,
we believe that our methodology is also a systematic ap-
proach that can guide programmers in writing correct and
efficient parallel code manually.

2 Motivating Examples

We use two difficult-to-parallelize examples to underline the
challenges of parallelizing the class of nested loops targeted
in this paper and outline the strengths of our methodology.

2.1 Balanced Parentheses

This example demonstrates that transforming a nested loop
to a memoryless one can be complicated. A string is balanced
if the total number of left and right brackets match, and any
prefix of the string has at least as many left brackets as right

ones. As- 7int offset, count_lines = 0; bool bal=true;!
sume that ifor(int i = 0; i < n; i++) { :
. int line_offset = 0;

the input for(int j = 0; j < length(alil); J+4) {
is a two- line offset += a[i][j] == "(" ? +1 : 0;i

. . line offset += a[i][j] == ")" ? -1 : O0;:
dimensional if (offset + line_offset < 0) :
array con- { bal = false; }

. }
tanlnlg a offset += line_offset;
large brack- | if (bal & line offset==0 & offset==0)

: { count_lines++; }

eted math b
expression, I

Figure 3. Balanced Parentheses.
one row per

PLDI’19, June 22-28, 2019, Phoenix, AZ, USA

gint offset, count_lines = 0; bool bal = true;
ifor(int i = 0; i < n; i++) {
i int line_offset, min_offset = 0; bool 1ine_bal=true;§
for(int j = 0; j < length(a[i]); j++) { :
line_offset += a[i][j] == "(" ? +1 : O;
line_offset += a[i][j] == ")" ? -1 : O;
if (0 + line_offset < 0) {line_bal = false;}
min_offset = min(min_offset, line_offset);
}
offset += line_offset;
bal = bal && (offset + min offset > 0);
if (bal && line_offset == 0 && offset == 0)
{ count_lines++; }

Figure 4. Memoryless balanced parentheses.

each line. A line [of input x is level if we have x = x1 - [- x,
where [and x; are both balanced. The code in Figure 3 counts
the number of level lines of its input through a nontrivial
algorithm. offset maintains the excess of left over right
brackets seen so far. bal tracks if offset has always re-
mained nonnegative.

We encourage the reader to manually parallelize the outer
loop to get a sense of the difficulty of this problem.

The loop is not memoryless; unbreakable dependencies on
bal and of fset variables induce the black arrows from the
diagram in Figure 2(a). One cannot remove the dependency of
the update to bal on the value of of fset without having the
inner loop compute an extra value. Specifically, the minimum
value of 1ine_offset, during the execution of the inner loop,
should be made available to the outer loop. If this does not
cause of fset to dip below 0, then of fset + line_offset
should have remained positive throughout the inner loop
execution, and therefore the value of bal can be recovered.
The code in Figure 4 illustrates the lifted code (modifications
are highlighted). The loop in Figure 4 is memoryless and can
be summarized as below.

fint offset, count_lines = 0; bool bal = true;

ifor(int i = 0; i < n; i++) {

offset += inner loop[i].line_offset;

bal &&= (offset + inner loop[i] .min_offset > 0);

if (bal && inner loop[i].line_offset == 0 && offset == 0):
{ count_lines++; } ;

In Sections 5 and 8, we discuss how the min_offset accumu-
lator can be discovered automatically. Can the summarized
loop (above) be parallelized? No! The reader can verify that
a parallel join does not exist. Furthermore, the loop can-
not be efficiently lifted (theoretically impossible); that is, the
addition of more scalar accumulators will not transform it
to a homomorphism. The transformation of the loop to a
memoryless one parallelizes all instances of the inner loop
(implementable by a parallel map). But, the outer loop com-
putation cannot be efficiently turned into a parallel reduction.
Yet, the parallelization of the code through the discovery of
the map alone yields a reasonable speedup (Section 10).

PLDI’19, June 22-28, 2019, Phoenix, AZ, USA

i int rec[];
i for (i = 0; i < n; i++) {
: int row_sum = 0;
for (jJ = 0; j <m; j++) {
row_sum += A[i][j];
rec[j] += row_sum; H
mtl _rec = max(mtl_rec, rec[J]),E;

ilint rec[];
iiint mtl_rec = 0;

lifor (i = 0; i < n; i++) {

removed inner loop

// the loop implementing (©

for (j = 0; J <m; j++) {

rec[j] = rec[j] + inner_loop[i][]]
} §§ mtl rec = max(mtl_rec, recl[j]l);

Azadeh Farzan and Victor Nicolet

nt rec[], max_rec[];
nt mtl_rec = 0;
or (i = 0; i < n; i++) {
removed inner loop
// the loop implementing ©
for (j = 0; j <m; j++) {
rec[j] = rec[j] + inner_loop[i][Jj];
max_rec[j] = max(max _rec[j], rec[jl);:
mtl_rec = max(mtl_rec, rec[jl);

}

Figure 5. Maximum top-left subarray sum (a), its summarized version (b), and the lifting to parallelizable code (c)

2.2 Maximum Top-Left Subarray Sum

This example demonstrates that parallelization of the outer
loop may be nontrivial even after a successful summarization.
Consider a two-dimensional array of integers (with both
positive and negative) elements. Assume that the goal is to
compute the maximum sum of the elements of a subarray
A[0..k,0..0]forall0 < k < nand 0 < ¢ < m,i.e. all subarrays
that include the top-left corner (0, 0).

The code in Figure 5(a) is a clever single-pass implemen-
tation of this function. Note that the inner loop has a state
(variable) rec[] that is the same size as the width of a row
(m). In rec[j], the loop maintains the sum of all elements
in the subarray A[0..i, 0..j]. The loop is not memoryless due
to the dependencies induced by both rec[] and mtl_rec.
Again, we encourage the reader to think about how they
would parallelize the code manually.

Figure 5(b) illustrates the memoryless and summarized
variation of the code. The transformation is straightforward,
but the summarized loop is still a 2-nested loop and not par-
allelizable (i.e. not a homomorphism); that is, the operator ®
from Figure 2(b) has to be implemented as a simple loop to
correctly update variables rec[] and mt1_rec. The transfor-
mation underlines a subtle point, namely that, the relevant
information from the input array is the sum values of the
subarrays starting from the (0, 0) and ending at (i, j), and not
the values of A[1][j]’s. This abstraction is a key to the simpli-
fication of the lifting of the outer loop to a homomorphism
for parallelization.

The code needs to be lifted as illustrated in Figure 5(c). A
new variable max_rec[] has to be introduced where each
cell max_rec[j] maintains the maximum value of rec[j]
(for 0 < j < n). Discovery of such variables, that is arrays
of accumulators, is not required for parallelization of simple
loops [12]. The time complexity budget for a parallel join
operator of a simple loop is constant time, and therefore

iint rec[] = rec_ 1], [1 = [1;

Eint mtl_rec = mtl_rec_1;

ifor (3 =0; j <m; jH+) {

rec[j] = rec[j] + rec_rl[jl; :
[31 = max([31, rec_1[31 + [31); |

mtl_rec = max(mtl_rec, [31);

Figure 6. The parallel join for Figure5(c).

non-constant sized variables are pointless. For nested loops,
however, as this example demonstrates, they may be essen-
tial. In Section 8, we propose a new algorithm for discovering
liftings like this automatically.

Now, a parallel join operator can combine the value of
rec[] from the top thread and max_rec[] from the bottom
thread to account for subarrays that intersect two adjacent
array chunks, as illustrated in Figure 6. The two challenges
underlined by this example are (i) the synthesis problem of
a parallel join operator which is a looping computation, and
(ii) the discovery of auxiliary information for lifting which
is not constant-sized.

3 Notation and Background

This section introduces the notation used in the remainder
of the paper. While the formal work is based on studying
functions on sequences, the description of the algorithm
requires to define our inputs programs and a model for loop
bodies which can be translated to a functional form.

3.1 Sequences and Functions.

We assume a generic type Sc that refers to any scalar type
used in typical programming languages, such as int and
bool whenever the specific type is not important in the
context. Scalars are assumed to be of constant size, and con-
versely, any constant-size representable data type is assumed
to be scalar. Consequently, all operations on scalars are as-
sumed to have constant time complexity. Type S defines
the set of all sequences of elements of type Sc. For any se-
quence x, x[i] (for 0 < i < |x|) denotes the element of the
sequence at index i, and x[i..j] denotes the subsequence be-
tween indexes i and j (inclusive). The concatenation operator
o : SX8 — Sisdefined over sequences in the standard way,
and is associative. The sequence type stands in for arrays,
lists, or any collection data type that admits a linear iterator
and an associative composition operator.

Definition 3.1. A function h: § — D is rightward iff there
exists a binary operator @ : D X S¢c — D such that for all
x € S and a € Sc, we have h(x o [a]) = h(x) & a.

Note that the notion of associativity for @ is not well-defined,
since it is not a binary operation defined over a set (i.e. the

Modular D&C Parallelization

two arguments to the operator have different types). A left-
ward function is defined analogously using the recursive
equation h([a] ® x) = a ® h(x).

Homomorphisms are a well-studied class of mathematical
functions. We are interested in a special class of homomor-
phisms, where the source structure is a set of sequences with
the standard concatenation operator.

Definition 3.2. A function h : § — D is ®-homomorphic
for binary operator ® : D x D — D iff for all sequences
x,y € S we have h(x o y) = h(x) © h(y).

Note that © is necessarily associative since concatenation
is associative (over sequences). Moreover, h([]) (where [] is
the empty sequence) is the unit of ©, since [] is the unit of
concatenation. If © has no unit, then h([]) is undefined. There
is formal connection between homomorphisms and divide-
and-conquer style parallelism, when the divide operator is
the inverse of concatenation:

Proposition 3.3. (from [17]) A function f is a homomor-
phism if and only if it can be written as a composition of a
map and a reduction.

In the context of this paper, parallelization is formally the
above transformation to a map and a reduction composition.

3.2 Model of a loop body

Our input programs are imperative whereas the representa-
tion of the loop nests for the theoretical results in this paper
and for algorithmic units is functional. The input program
is translated to nested systems of equations, which can eas-
ily be converted to a recursive functional form. Here, we
quickly outline the steps of this transformation and define
the program models at each stage.

Input programs Figure 7 presents the syntax of the input
sequential programs. We assume an imperative language
with basic constructs for branching and looping. Variables
are of scalar types int or bool and we can build nested
sequences from these types.

For readability in our paper, we use simple iterators and
integer indexes (instead of the generic i € 7). In principle,
any collection with an iterator and a split function that im-
plements the inverse of concatenation works. There has been
a lot of research on iteration spaces and iterators (e.g. [44] in
the context of translation validation and [25] in the context
of partitioning) that formalize complex traversals by abstract
iterators.

State and Input Variables Let Var be the set of all vari-
ables that appear in the loop nest. We partition Var into two
sets of variables: SVar denotes the set of state variables which
are those that appear on the left-hand side of an assignment
statement (anywhere, even outside the loop nest). [Var de-
notes the set of input variables and |Var = Var — SVar. Note
that state variables may be subscripted array accesses.

PLDI’19, June 22-28, 2019, Phoenix, AZ, USA

v € LhVar := v/[e] v’ € LhVar, e € Exp

| x x € Var
ecExpu=eoe e,e’ € Exp
le©e’ e.e’ € Exp
| be A be’|—be be, be’ € Exp
| v v € LhVar

| if be then e else e’
| k keZ QR

| true | false

Program == ¢;¢’ ¢,c’ € Program
lv:=e v € LhVar, e € Exp
|if (e) {ct}else{cy.} be € Exp,ct,ci € Program
[for(iel) {c} i € lterator

Figure 7. Program Syntax . The binary o operator represents any
arithmetic operation (+, —, ¥, /), © operator represents any com-
parator (<, <,>, >,=,#). I is an iteration domain, and A operator
represents any boolean operation (A, V).

v1 = Expi(SVar, [Var)

E= (sil,siz,...,sip) =for(jed) {E}

vg = Expg(SVar, IVar)

Figure 8. Nested systems of equations: E’ is
nested in E.

Nested systems of equations A loop body is modelled by
a system of ordered recurrence equations, where each equa-
tion is either a simple equation or a loop equation. Given
state variables SVar = {sy, ..., s} and input variables IVar, a
simple equation is of the form v; = Exp;(SVar, IVar) where
v; € LhVar and the right hand side is a constant-time com-
putable expression of the input program (see Figure 7). A
loop equation is of the form of the middle line of Figure 8,
where {s;,, Siy, - - . » si, } are all the variables modified by the
loop body, j € J is an arbitrary iterator, and E’ is the body
of the nested loop.

The body of any loop in our input language can be trans-
lated to the system of recurrence equations defined above.

Conversion to a system of equations Converting the body
of a loop nest to a system of ordered recurrence equations
(of the type outlined by Figure 8) is a process that involves a
transformation of the loop and conditional statements, and
a mapping of simple assignments (v:=e) to equations.

For a conditional statement if (e) {ct} else {c,} where e
is an expression of the input program and c+ and c, are two
programs, we apply the conversion procedure recursively
to each of the programs, and obtain two systems of ordered
recurrence equations E+ and E, . For each variable v; that ap-
pears either in E+ or E; on the left hand side of an equation,

PLDI’19, June 22-28, 2019, Phoenix, AZ, USA

we add an equation of the form v; = e ? Expt : Exp, in the
current system, where the expressions Expr and Exp, are
the expressions on the right hand side of v; = ... in E+ and
E, respectively. If the equation assigning v; is not present
in one of the branches, the expression on the right hand side
is just the variable itself (the branch does not modify it).

For a loop for (i € I') { ¢} where c is a program, we
apply the conversion procedure to ¢ and obtain a system E’.
In the parent system, we add the equation (s;,, Si,, - . -, ;) =
for (i € I) { E’ } where (si;, siy, - . -, Si,) are the state vari-
ables modified by the body c. If only one cell of a collection
is assigned in the loop body ¢, we consider that the whole
collection has been modified.

Conversion to functional form Given a loop body in the
form of a system of ordered recurrence equations, one can
produce a function (implemented in a simple functional lan-
guage with let-bindings) by replacing each equation by a
binding and creating a recursive function for each of the
inner loops. We choose to represent arrays by lists, and an
assignment to a cell in the system of equations is translated
by binding a list where the corresponding element has been

modified.

4 Multidimensional Collections

Type 8" is inductively defined as the set of all n-dimensional
sequences (for n > 1), with the base case of S° = Sc (set of
scalars). We generalize the standard sequence concatenation
operator e to a family of operators @ : S” x S" — S” (for
all n € N*). For any ¢ € 8""!, we have [¢] € 8" which is
an n-dimensional sequence with a single element o.

4.1 Functions over Multidimensional Collections

In Section 3, we noted that loop nests are translated to func-
tional form. We use this functional form as the formal repre-
sentation for all of our theoretical results.

Definition 4.1. (Multidimensional Rightward) A function
f: 8™ > D (n > 1) is rightward iff there exists a family of
rightward (or leftward) functions G : D — (8""! — D) and
an operator ® : DxXD — Dsuchthatforallo € 8", § € 8",

we have f(a [5]) = f(0) ® G(f(0))(&).

The base case of n = 1 falls on the classic Definition
3.1. A rightward function’s computation is illustrated in the
diagram in Figure 2(a). Note that the value of f (o) (as the
selector in the family of functions) serves as a type of carry
over state and corresponds to the data flow represented by
the black arrows in Figure 2(a). The family of functions can
be viewed as only differing in their recursion base case.

When f corresponds to a loop nest, the family of right-
ward functions G represents all the instances of the inner
loop nest (in isolation from the outermost loop) and the op-
erator ® represents the (loop free) computation performed

Azadeh Farzan and Victor Nicolet

in the body of the outer loop. The domain D corresponds to
all valuations of the state variables (SVar) of the loop nest.

A special case of Definition 4.1 is when the family of func-
tions collapses into exactly one function, which corresponds
to memoryless loops as introduced in Section 1.1. We can
formally define memoryless functions by removing the de-
pendency on the context as follows:

Definition 4.2. (Memoryless) A function f : 8" — D
is (rightward) memoryless iff there exists a rightward (or
leftward) function g : S"! — D and a binary operator
®:DxD — Dsuch that forall ¢ € 8*,§ € S™ ! we have

f(oe[8]) = f(o) ®g().

The key difference between the formulation in Definition
4.1, and that of Definition 4.2 is the computation performed
over § (i.e. function g) has no dependency on the partially
computed value of f(o); hence the use of terminology mem-
oryless. Figure 2(b) illustrates the computation of a memory-
less function. As the example in Section 2.1 demonstrated,
not all rightward functions are memoryless.

Proposition 4.3. For every rightward memoryless function
f (from Definition 4.2), we have f (o) = foldl(®) o map(g)(c).

The proof of the above proposition is straightforward. It
suggests that all instances of g (the inner loop nest) can be
parallelized, through the map, even if their results have to
be combined sequentially in the outermost loop with foldl.

4.2 Multidimensional Homomorphisms

Definition 3.2 applies to multidimensional rightward func-
tions in a straightforward way. Function & : 8" — D is
©-homomorphic for the binary operator © : D x D — D iff
for all sequences 0,0’ € S™, we have h(cec’) = h(o)Oh(c’).
An interesting link exists between the structure of a multidi-
mensional rightward function and its homomorphic proper-
ties, which is captured by the proposition below:

Proposition 4.4. If a function h : S — D is a homomor-
phism, then it is memoryless.

Proof. Since h is ©®-homomorphic, for all sequences 0,0’ €
S™ we have:

h(c e ¢’) = h(c) © h(c”)

and therefore, more specifically, for all 0 € S” and § € S""!
we have:

h(c @ [6]) = h(c) © h([5])
. Now, let g : S""! — D’ be defined so that g(§) = h([5])
and let ® = ® in Definition 4.2; we can conclude that A is
memoryless. o

The converse of Proposition 4.4 does not hold.

Example 4.5. Recall the maximum bottom box example
from Section 1. The function corresponding to Figure 1 is
memoryless, but as discussed, not a homomorphism.

Modular D&C Parallelization

For a memoryless function to be a homomorphism, an
extra condition is required which is outlined below.

Proposition 4.6. If a function f : S — D is (rightward)
memoryless and defined by function g and binary operator &
(of Definition 4.2), and if the function h : Sp — D defined as

h(]) = f(ID
YaeD:h(xe[a]) =h(x)Da

is ®-homomorphic for some binary operator © : D X D —
D, then f is ®-homomorphic. We refer to function h as the
summarized version of f.

Function h corresponds to the concept of a summarized
loop as introduced in Section 1.1. In fact, we can prove that
the sufficient conditions in Proposition 4.6 are also necessary.

Theorem 4.7. The following two statements are equivalent:

1. Multidimensional rightward function f is ©-homomorphic
for some binary operator © : DX D — D.

2. f is memoryless and function h : Sp — D, the sum-
marized version of f (see Prop. 4.6) is ©-homomorphic.

Proof. =: By Proposition 4.4, we can conclude that f is
memoryless. Let x,y € Sp,y =y o...0yk, y; = g(5;)
for some §; € S" L, x =x; ... 0x,,and x; = g(y;)
for some y; € ™71

h(xey) =h(x e[y ...yx])
=h(xe[y...yk-1]) ® yx
(h(x o [y1...yr—2]) ® yx-1) ® Y

=(..(h(x)®Yy)®...) DYk

=(..((Dex)e...)®y
=(..(fDegn)e®...)®g(5)

=f(y1e...0y, 081 0...5)
=f(y10...07,) O f(510...5)

= h(x) © h(y)

=: Leto=y;o...0y,,0 =510...0k,y=ye...0y,
Y; =9g(5;),x =x10...0x,,and x; = g(y;).

PLDI’19, June 22-28, 2019, Phoenix, AZ, USA

f(oced’)=f(y1e...0y, edelta; o ... deltay)

(..(fDegn)e...)®g()
(..(Dex)e...)dyk

= h(x e y)
h(x) © h(y)

=f(r1o...0ym) O f(S10...6)
= f(o) © f(o)

Theorem 4.7 states the necessary and sufficient condi-
tions for a recursive function to be parallelizable. For one-
dimensional sequences, the statement becomes trivial when
the summarized version of the function and the function
itself coincide.

The condition of memorylessness captures the essence of
modularity of our approach. Instead of determining paral-
lelizability of f through a direct discovery of a join (©) for
f, Theorem 4.7 lets us check if f is memoryless first, and
then discover a join for a simplified (summarized) version of
f (i.e h). Recall the diagram in Figure 2(b). Memorylessness
of f corresponds to the existence of the map part a paral-
lel computation of f. Parallelizability of h corresponds to
the existence of the reduction part of a parallelizaiton of f.
The combination of the existence of both the map and the
reduction is equivalent to f being homomorphic (according
to Proposition 3.3). Theorem 4.7 makes this formal.

5 Manufacturing Homomorphisms

If a function is not a homomorphism, then the first step to
parallelization is to [ift it to a homomorphism.

Definition 5.1. (Lifting) Let f : 8™ — D be a rightward
multidimensional function. f D", 8" — Dx D’ is a lifting of
f if and only if f* is rightward and f = 7p o f?’, where
7p is the standard projection down to D.

This definition is mostly consistent with the standard defi-
nition of lifting in category theory, other than the additional
condition of rightward computability of the extension.

Two types of liftings of a non-homomorphic function f are
of interest in this paper: (1) a lifting of a non-memoryless f to
a memoryless function; we call this the memoryless lift, and
(2) a lifting of a non-homomorphic f to a homomorphism;
this is called a homomorphism lift.

PLDI’19, June 22-28, 2019, Phoenix, AZ, USA

5.1 Homomorphism Lift

Every non-homomorphic function can be made homomor-
phic by a rather trivial lifting. The observation, previously
made in [19], is formalized below:

Proposition 5.2. Given a rightward function f : S™ — D,
the function f X1 (function product) is a homomorphism where
1: 8™ — 8" is the identity function.

Intuitively, the extension to the function remembers the
entire input, and the join performs the original computa-
tion over the concatenated inputs from scratch, ignoring the
partially computed results.

Proof. Ttis straightforward to see that fx:is a ®-homomorphic
with the join operator ® : (D x 8") X (D x S8") - D x 8"
which is defined as

Ya,b € D,0,6' € 8" : (a,0) @ (b,c") = (f(c ®c’),c80")

since

fxuoeo)=(floea’)oed)
= (f(0).0) ® (f(c").0")

]

Note that this trivial lifting does not really correspond to a
parallelization of the function. Formally, it provides us with
an associative reduction (hence the applicability of Proposi-
tion 3.3). Practically, it is analogous to a sequential computa-
tion. Proposition 5.2 is trivial but significant in that it states
that a function can always be made homomorphic. It is then
important to seek an efficient lifting of a non-homomorphic
function to a homomorphism for the purpose of code paral-
lelization. In Section 6.1, we formulate efficient liftings.

Here, we state a result which parallels Theorem 4.7, pro-
vides the theoretical guarantee that it is sound and complete
to use the summarized loop for lifting instead of the original.
Consider the diagram below:

f -S" 3 D summarize h . SD - D

lift lift

f:8"=DxD summarize pr.g oy

h:Sp > DxD

f is summarized and then lifted on the top, whereas it is
first lifted and then summarized on the bottom part of the
diagram. Note that h and ’ do not have the same function
signature; they agree on their ranges, but their domains are
sequences of two different types. Therefore, this is not a
clean commutative diagram. The key insight is that the two
functions are identical up to a limitation of h” that forgets the
extra information in its input sequences from D’; information

= fxuo)® f xi(c)

Azadeh Farzan and Victor Nicolet

that is provably redundant for the computation of A’. The
diagram commutes after this restriction is applied to A’ to
get to h.

The main ingredients of a lift, that is what the extra in-
formation D’ is and how it should be computed, are both
discoverable through a lifting of the simple function A in
place of f.

Theorem 5.3. Let f : 8™ — D be a (rightward) memoryless
function, and summarized as h : Sp — D. There exists a
homomorphic lifting h:Sp— DxD’ of h if and only if there
exists a homomorphic liftingf: 8" — DX D’ of f. Moreover,
h coincides with a summarization off.

Additionally, the theorem guarantees that auxiliary code
synthesized for the summarized loop constitutes a lifting of
the original loop.

In order to give a proof of Theorem 5.3, we state and prove
each path in the diagram as a separate proposition, which
correspond to the if and the only if directions of Theorem
5.3.

Proposition 5.4. Let f : 8" — D be a rightward) memo-
ryless function defined by helper function g (from Definition
4.2), and let h : Sp — D be its summarized version defined
through &@. If h can be lifted to a ©-homomorphic function
h’ : Sp — DXD’, then there exists a lifting f' : S — Dx D’
of f that is ©-homomorphic, and h is equivalent to the sum-
mary of f’ up to the projection of its input sequence down to
domain D.

Proof. Assume there exists a lifting of h called A’ that is ©-
homomorphic. Then, for all sequences x,y € Sp we have:

W (xey)=h(x)©h(y)
and therefore, more specifically, for all x € Sp and d € D
we have:

h'(x o [d]) = k' (x) © h'([d])

Now, let g’ : 8™ — D x D’ be defined so that ¢'(§) =
h’([g(8)]). Define f” as:

f (D =hrD)
f'(oe[8]) = (o) ©9'(5)
which is by definition memoryless. For all § € 8", we have:
7p0g'(8) = 1p o ' 0 g(6)
=hog(d)
= f([6])
=9(5)

based on the assumption that h([]) is defined and therefore
has to be the unit of ©. It is easy to show (by induction

Modular D&C Parallelization

and definition) that for all §y,...,8,, € 8™ — 1 where o =

[61] ®...®[5,,], we have:

(o) =h ([g(61)] ®
Leto,0’ € S"and o’ = [5;] ®

* [9(6m)]) (1)
.. [5,] where §; € S™L.

We have:
flloea)=(-(f(0)2g (1)@) ©g'(5m)
=f'(0) © (g’ (61) ©--- 0 g'(5m))
— f/(o_) ®fl(gl)

by associativity of ®. Therefore, f” is also © homomorphic.
f’ is a lifting of f since:

mp o f'([1) = mp o h'([) = h(() = £(])

mp o f'(o) =npoh’([g(6)]e...o[g(5m)
= h([g(61)] » [(Om)])
= f(o)

It remains to show that h’ is a summary of f” up to projec-
tion. Let A : Spxpr — D X D’ be the summary of f’ defined
through © that is

Yy € Spxp,b € DX D" : h(y (b)) =h(y) @b

Observe that &’ and & have the same range, but the se-
quences in the domain of h have strictly more information
in each element of the sequence than those in h’. The claim
that we want to prove is that

W=hox D
where 7p is the natural extension of the projection function
from elements to sequence of elements.

We have h'([]) = f'([]1) = h([]), by definition. This serves
as our inductic_)n base case. Let y € Spxpr, and assume that
h’ o ap(y) = h(y). Let a € D X D’ and a = ¢’() for some
§eS™ L

h o wp(y e [a]) = h'(2p(y) ® 7p(a))
=h" o 7p(y) © h'(p(a))
=h op(y) ©h'(7p(g'(9)))
=h" o wp(y) © h'(9(9))
) ©9'(5)

]

Proposition 5.5. Let f : 8" — D be a (rightward) memo-
ryless function defined by helper function g (from Definition
4.2), and let h : Sp — D be its summarized version. If f can
be lifted to a homomorphism ' : Sp — D X D', then there
exists a lifting b’ : S™ — DX D’ of h that is a homomorphism,

PLDI’19, June 22-28, 2019, Phoenix, AZ, USA

and k' is equivalent to the summary of f' up to projection of
its input sequence down to domain D.

Proof. Assume there exists a lifting f’ of f which is ® ho-
momorphic. Note that:
f'(oed) =f'(o)© f([6])
Let g’ : S"! — D x D’ be defined as ¢’(§) = f([§
Define b’ as:
W) = ()

VYx € Sp,a € D(s.t.a=g(8)): h'(xea)=h(x)®g ()
Let us argue that 4’ is ©®-homomorphic and a lifting of h.
The former is immediately implied by associativity of ®. For
the latter, we need to show that zp o b’ = h (rightward
computability of &’ is implied by the computability of ©).
Observe that:

mp o h'([1) = 7p o (1) = £([]) = h([))

Letx e Spandx =d; e
mp o h'(x) = wp(h'(x))
ap(f'([&] ® [6m]))
=f([61]e...®[6m])

= h([g(5:)] e ... [g(6m)])
= h(x)

..dm where d; = g(J;) . Then:

(f” is a lifting of f)
(by equation 1)

Finally, it remains to show that h’ is a summarized version of
f’ up to projection. Let h : Spxpr — D X D’ be the summary
of f’ defined through © that is

(=1
Yy € Spxp,b € DX D' : h(ye[b]) =h(y) ©b
The claim that we want to prove is that

W=hox D
where 7p is the natural extension of the projection function
from elements to sequence of elements. The argument is
identical to the one made at the end of the proof of Proposi-

tion 5.4 to prove the same claim.
]

5.2 Memoryless Lift

When a rightward function f : 8" — D is not memoryless,
a lifting may be required to add extra information to the
signature of the function (state of the loop) so that functions
g and ® from Definition 4.2 exist. Every non-memoryless
function can be made memoryless by a rather trivial lifting.

Proposition 5.6. Given a rightward function f : S™ — D,
the function f X 1" (function product) is memoryless where 1" :
S" — 8" isdefinedas¥5 € S" 1,0 € 8" : /(ce[5]) =6

PLDI’19, June 22-28, 2019, Phoenix, AZ, USA

Proof. Since f is rightward, there exists a binary operator
® and family of functions G such that for all ¢ € S™ and
seS8SL

f(oed) = f(o) ® G(f(0))(5)

Note that the signature of the lifted function f x " is S —
DxS8" !l Letd: (DxS") x (DxS"1) - DxS"!be
defined as:

Va,beD,8,5 € 8" (a,8) ® (b,8') = (a® G(a)(5'),)

Let i/ : 8! — 8" be defined as V6§ € S™! : //(8) = [J]
andlet g : "' — DxS™! to be function that on all inputs
d returns (9, §) for some constant value § € D.

It is straightforward to see that f X i’ is memoryless with
the loop join operator @ and helper function g since:

fxi(ce[d]) =(f(ce[8]). (o e[d])
= (f(o) ® G(f(0))(5).9)
= (f(0)./'(0)) ® (9.9)
=[x/ (o) ®9(5)

Therefore, by definition 4.2, we can conclude that f x /" is
memoryless. O

Complexity preservation of the trivial memoryless lift.
It is easy to intuitively see why a trivial lift like the above
does not increase the time complexity of computation of f.
To argue for this, it is easier to think about the loops (instead
of functions). Imagine the original function corresponds to
the loop:

for(int i = @; i < n; i++) {
for(int j = 0; j <m; j++) {

}
}

which has complexity O(nm). Then the lifted one would
correspond to the loop:

for(int i = @; i < n; i++) {
for(int j = 0; j <m; j++) {

}
for(int j = 0; j <m; j++) {

}
}

where the second copy of the inner loop effectively re-
does the computation of the inner loop. This still has the
complexity O(nm) albeit with larger constants.

In this trivial lifting, the extension to the function remem-
bers the last line of the input o e [§], that is §, in a new
component and the join effectively processes d from scratch,
ignoring the partially computed results by the inner loop
computation.

Azadeh Farzan and Victor Nicolet

It is essential, however, that the cheapest possible (non-
trivial) lifting is used, to gain optimal parallelism. Recall the
balanced bracket example from Section 2.1. The lifting (ad-
ditions of min_offset and 1ine_bal state variables) in that
example is an instance of a non-trivial lifting. Proposition
5.6, in contrast, would suggest a simple admissible lifting
which would not lead to as much parallelism.

5.3 Algorithmic Memoryless Lift

Algorithmically, the problems of lifting a function to a homo-
morphism or to a memoryless function are related. When a
function is not memoryless, it means that there is not enough
information for a memoryless join operator (©) to exist in the
style of the diagram in Figure 2(b). Where the homomorphic
lifting algorithm asks what extra computation is required
for the results of two instances of the entire loop nest to
be joined together, an algorithm for memoryless lifting asks
what extra computation is required for an instance of the
loop nest to be joined with an instance of the inner loop nest.
Considering that the two functions share the same signature,
the problem is formally that of joining an inner loop nest
to an arbitrary state §, which is the same problem as the
homomorphism lift of the inner loop nest. The following
proposition makes this observation precise.

Proposition 5.7. A multidimensional rightwards function f
defined through a family of functions G (as in Definition 4.1)
can be lifted to a memoryless function if every member of G
can be lifted to a ®-homomorphism for some ®.

Proof. Consider a multidimensional rightward function f :
8™ — D that is not memoryless, defined by a family of
functions G : D — (S"! — D) as in Definition 4.1. The
function is effectively defined using the recursive equation

f(o e [8]) = f(o) ® G(f(0))(d).

Let us show that lifting G to a family of homomorphisms
(Definition 7.4) is sufficient to lift f to a memoryless function.
For any d € D, G(d) is defined by:

G () =d
Gd) (G e[y]) =G@) () ey

Imagine that we lift gg = G(0) for some 6 € D to a ho-
momorphism. We will have a g, such that there exists a [
operator that satisfies for all §,6” € "1

Go” (80 0") = ds” () B 6y (8")
We define the lifting of G(d) by using the homomorphic
lifting of gy:

~ D , ~ D
G(d) " (6)=d @g" (8)
where 7np(d’) = d and npy (d') = npy (g@D/([])).
sz)D is naturally a homomorphism since ¢, is one.
We can verify that it is a lifting of G(d) by projecting to
D. We use w the weak inverse of g};Dl defined by Vd’ €

Modular D&C Parallelization
D, Gs” (8)ow (d) =d'.

750 G{d)” (8 » [al) = 7p(d B 6" (5))
= 7 (gs” (w(d') » 8))
= go(w(d’) ® 5)
= (... (o(w(d))) ©61...08)
=(...(d©6)...06)
= G(d)(9)

Since GZd)D is a lifting of G(d) we can use its projection
on D to redefine f:

N A D A~ D /or
floe[8]) =5@ (p o (G(d) (D)D" ()

f can be lifted to a memoryless function, explicitly by
defining a lifted operator " . D’ x D’ = D such that for
any £,/ € D', with§=zpotands = zpot

70 (F&” 7)) =5 e (1p o (Gld) () @)
TTpr © (?@D, ?) = TTpr © ?

The lifted function f D’ is defined by:

ATy ATy ~D D

P8 =P ()& G (9)
which matches the definition of a memoryless function. Re-
mark that it is a valid lifting of f since 7p o f2° = f by
construction of the lifted operator. O

6 Algorithmic Parallelization

In Sections 4 and 5, we presented the theoretical foundations
of our approach. Theorem 4.7 guarantees that it is sound
and complete to parallelize the summarized loop in place of
the original loop nest. Proposition 5.6 guarantees that any
loop nest can be transformed into one that is summarizable.
Finally, Theorem 5.3 guarantees that a summarized loop
can be soundly and completely lifted to a homomorphism
in place of the original loop. In this section, we outline our
algorithmic approach to parallelization.

6.1 Efficient Divide-and-Conquer Solution

Consider a loop nest L of depth n where the number of itera-
tions of every loop is bounded by a parameter m. Assuming
no function calls are made, the loop nest has a time com-
plexity of O(m™). Since the translation to functional form
preserves time complexity, this is also the time complexity
of the function hy : 8™ — D corresponding to the loop nest.
For a parallel implementation of A7, based on a join operator
© to have reasonable speedups over constantly many pro-
cessors, the (sequential) complexity of the implementation
based on the join should not be higher than that of the origi-
nal code. Constantly many processors cannot compensate
for a variable increase in complexity.

PLDI’19, June 22-28, 2019, Phoenix, AZ, USA

Proposition 6.1. Let hy € O(m") be ®-homomorphic. The
sequential implementation of hy, based on © is in O(m™) if
© € O(m™™).

Proof. Tt is straightforward to see that for a rightward func-
tion f : 8" — D with time complexity O(m") defined

through the recursive equation f(ce[d]) = f(0)G(f(0,d))(d)

we have:

e Every g € G is a (leftward or) rightward function of
complexity O(m"™1).

e Any d € D is strictly of space complexity O(m

e ® is computable in time O(m"™!).

n—l)_l

Since if any of the upper bounds are violated, then one can
show that the time complexity of f would surpass O(m™).
Now, if Ay is a homomorphism and we want the parallel
computation based on the homomorphism’s join operator
© to have the same complexity as hy. © replaces ®, and we
can conclude ® € O(m"™™1).

O

This observation leads to a formal definition of paralleliz-
ability.

Definition 6.2. (Parallelizability) A rightward (respectively
leftward) function hy € O(m") is efficiently parallelizable if
and only if it is ®-homomorphic and ® € O(m"™1).

The deduced upper bound on © is crucial to justify the
algorithmic choices made in Sections 7, where the time com-
plexity budget for join informs the choices of syntax for
syntax-guided synthesis [1]. Similarly, there are time and
space complexity budgets for an efficient lifting.

Corollary 6.3. If a function h;, € O(m") is lifted to hALD €
O(m"), then any d’ € D’ has space complexity O(m"™1).

The proof follows directly from that of Proposition 6.1,
which also imposes the time complexity of O(m™!) for com-
puting d’. The time and space complexity bounds for d’
inform the syntactic form of the auxiliary accumulators and
the computation that produces them. In Section 6.2, we pro-
vide a variation of the example from Section 2.2, and a proof
that any lifting of that function to a homomorphism has a
space complexity beyond the budget specified in Corollary
6.3. This information-theoretic proof is very involved, but
makes the important point that an efficient lifting may not al-
ways exist, and consequently neither does a complete lifting
algorithm.

6.2 Incompleteness

Consider a two-dimensional array of integers (with both

I This is under the assumption that the data is fully read. So, this excludes,
for example, operations on lists performed through reference manipulation
without reading the entire list content.

PLDI’19, June 22-28, 2019, Phoenix, AZ, USA

Azadeh Farzan and Victor Nicolet

£ 1) L L
-L—-f([1:1]) L+ f([2:2]) 0
e 0 ~L- £([2:2) L+ £(3:3)
L+ (22 L+ (01 2])/2 L= f([3:3)
—L—f(1:2])/2 f([2:3])/2— f([1:2])/2 L+ f([2:3])/2
L+ f([1:3]))/3 f([1:3])/3—-f([2:3])/2 f([1:3])/3— f([2:3])/2
Figure 9. Definition of Matrix A
positive and R I § and the maximum top subarray sum of A is
Zﬁiﬁze);sl: ;th: n(lix:;?ci:‘o’;” ith) | H(A) == maxjer, pa(J).
. ¢ int max_rrec = 0;

sume that the :
goal is to com-
pute the max- |
imumsumof | }
the elements
of a subar-
ray A[0..¢, j..k]
forall0 < £ <nand 0 < j < k < n, i.e. all subarrays that
start from the top row of the original array, but can include
a subset of its rows and columns. The code in Figure 10 is a
clever single-pass implementation of this function. We will
prove that this code, although very similar syntactically to
the one in Figure 5, does not admit an efficient divide-and-
conquer parallelization.

Let R* be the set of positive real numbers. For integers

for (j =0; j < m;
col[j]l += A[i][]];
max_rrec = max(0, max_rrec + col[j])
max_trec = max(max_trec, max_rrec);

j++) |

Figure 10. Maximum top subarray sum.

i <j,let [i: j] denote the set {i,...,j}, and for each integer
nand r < n define

Io={[i:jl:1<i<j<n|j<i+r}.
We write I,, for I7'. Note that |I}| = O(nr) and in particular
L] = O(n?).

We call a function f : I, - R* graded if for any J, J’ € I},
with |J] < |J']:

FNIN > fFUNNTN-

Lemma 6.4. Given an arbitrary function f : I, - R* and
X 2 maxy, per|f(J) = f(J'), the function f defined as

FU) = Uln = 1IDX + 1J1FQ), @
is graded.
Proof. If |J| < |J|:
%_% = (T 1=-UNX+f)-fU") = X+f()-fU") > 0.

[m]

Given a matrix A = [a;;] with n columns, the column-
interval maximum prefix sum of A is a real-valued function
114 defined over I, as

k
A(J) == maxg s, Z Z aij,

i=1 jeJ

Lemma 6.5. For any graded function f : I, —» R*, there is
an n-column matrix A with O(nr) rows for which ps = f.

Proof. Choose L > maxjer f(J). We construct the matrix A
by stacking r groups of rows, where the ith group is a set of
n —i+ 1 rows, each of which corresponding to one of the
distinct sets J € I7, with |J| = i, thus the total number of
rows adding up to }}_ (n—i+ 1) = O(nr).

Let k; denote the row that corresponds to the set J € I7.
The entries in row kj are determined as follows: for any

. kj—
column j, let s; = Ziill

w = { FDII=s;

a;j. Then we set

jelJ

-L-s; otherwise.

For example, for n = 3 and f defined on I, the matrix A
would be as illustrated in Figure 9.
The matrix for I’, would simply keep the first r groups of
the one for I,,.
We claim that for any J € I}, pa(J)
number k define for a column j,
k
sj(k) = aij,

i=1

= f(J). For any row

and for an J € I,, define
s(k) =) 5j(k).
jeJ
It can be readily confirmed from our construction that for
any J € I}, and any column j:

(k) = { ol jel

otherwise.

In particular, we have sy(ky) = f(J), immediately imply-

ing that ua(J) > f(J). To prove pa(J) = f(J), we show next
that for any k # kj, sy(k) < f(J). By our construction, if
k = kp # kj, for some J' € I, then

= > FUNI= D L= AT fUNNT LI,

jernj JENT'
3)
If k < kj, then
sk() =1 nJIfUNNT =L\ < fJ)=LIJ\JI <0,

Modular D&C Parallelization

PLDI’19, June 22-28, 2019, Phoenix, AZ, USA

Sequential Loop Nest L

translate to fr,

Is f; memoryless?

(1)
Synthesize summarized
outer loop function hp

Is h; a homomorphism?

k: summarized loopnest depth

(Theorem 4.7) (@)

Divde-and-Conquer

Synthesize Parallel Join Parallel Code

NO

Add the auxiliary
n: loop nest depth

1
(or the default one)

Try a homomorphism
lift of dimension k — 1

Try a memoryless lift of

max dimension n — 2 (Proposition 5.4)

(IV) (Proposition 6.1)

(Corollary 6.3)‘

Add the ;Imxili:u'y
(Theorem 5.3) Parallelize map only
(Propositions 4.3 and 5.2)
succeeded? |
YES
(I11) NO Lo)ol.v nest cannot .be
i > n>k? —, efficiently parallelized
failed? divide-&-conquer style

(Theorem 6.4)

Figure 11. Parallelization Schema

where the last inequality follows because J* # J and f(J’) <
L. In fact, the above inequality holds true by the same rea-
soning, even if k > k; but J \ J* # 0. To complete the proof,
suppose k > kjy and J C J/, then

sk()) = UIfFUNNTT < £OD),

where this final inequality follows from the fact that f is
graded. O

The construction in the proof of the above Lemma can
be regarded as an encoding: any function f : I, > R*, can
be encoded by a tuple (A, X), where A is the constructed
O(nr) X n matrix and X is strict upper bound on the absolute
value of the difference between values of f from the proof of
the Lemma 6.4 needed for turning f into the graded f . The
decoding for input J € I’ is done by as:

F) = paD/I = (n=1JDX.

Let us now restrict the range of values of f to the set
of positive integers {1, ..., 2~} representable by O(k) bits.
Thus X = 25 + 1 would be a valid upper bound to form
values f which would then be O(k) bit integers themselves.
Observe also that by construction f (J) is always divisible by
|J|. Following the arithmetics in Lemma 6.5, it can be verified
that the entries of matrix A will all be O(k)-bit integers. We
can thus state the following.

Lemma 6.6. Let C be an algorithm that given an mXn matrix
A, with O(k)-bit integer entries and with m < n(n + 1)/2,
produces a data structure C(A) that can be used (independently
of A) to evaluate yia(J) for every J € 1,, then C(A) needs
Q(km) bits of space.

Proof. Let r = O(m/n). From the above discussion, we can
encode any mapping from I, to k-bit integers using an m X n
matrix A of O(k)-bit integers (plus O(k) bits to represent
X from Lemma 6.4). Since there are 2°(*"") such mappings,
C(A) must use at least the logarithm of that many bits to
be able to distinguish different functions from each other,
meaning it must have size Q(knr) = Q(km). O

Theorem 6.7. For any divide and conquer algorithm for com-
puting pi(-) of n-column matrices of O(k)-bit integers, the out-
put of a sub-problem of r < n(n + 1)/2 rows has size Q(kr).
In particular, solutions to subproblems of size O(n?) require
Q(kn?) bits.

Proof. Let Ay and A; be two consecutive subproblems with
A; consisting of r rows. Let Ay represent the concatena-
tion of Ay and A;. We show that setting a single row of A,
adversarially is enough to force the join of Ay and A; to
compute y;(A;) for any J € I},. Lemma 6.6 then implies
that the output computed for A; must have size Q(kr). Let
[i : j] € I, and let L > maxjerr pa, (J). We set the entries
one row of Ag to L for columns in [i : j] and —L for the re-
maining columns. All other rows of A, are set to zero. Since
pa,(J) < Lfor all J. u(A) has to use as many L entries in
our set row and no —L entries to be maximized. Therefore,
H(Ao1) = IJIL + pa, (J)- o

Therefore, we can conclude with the following theorem:

Theorem 6.8. An efficient lifting of a (multidimensional)
rightward function may not always exist.

6.3 Parallelization Schema

The diagram in Figure 11 illustrates the algorithmic steps
in our methodology to parallelize an input sequential pro-
gram. The light grey section performs the summarization of
the loop, which corresponds to the discovery of a map. The
light blue section parallelizes the summarized loop, which
corresponds to the discovery of a reduction. The key algo-
rithmic steps are the synthesis of the summarized outer loop
and the parallel join (respectively labeled as (II) and (I) in
Figure 11), which are solved using syntax-guided synthesis
(Section 7), and the memoryless lift and the homomorphism
lift (boxes respectively labeled as (IV) and (III) in Figure 11)
which are performed using a deductive-style algorithm (Sec-
tion 8). Each step of the process is labeled with the theorem
justifying it.

The test for a homomorphism in the schema is only nomi-
nal and implemented practically through the success or fail-
ure of join synthesis algorithm. It is important to note that

PLDI’19, June 22-28, 2019, Phoenix, AZ, USA

Rice’s theorem dictates that deciding whether a computable
function is a homomorphism in general is undecidable, and
therefore there exists no decision procedure for this test.

If a function is not memoryless, then in (IV), an efficient
memoryless lift is attempted; that is, the most efficient lift
whose time complexity is no more than O(m™?2). If this fails,
we know we can always rely on the default admissible mem-
oryless lift (which is incidentally of complexity O(m™™1)). If
a homomorphism lift within the complexity budget (deter-
mined by k, the summarized loop depth) exists, then a classic
divide-and-conquer parallel program is produced. Otherwise,
we opt to parallelize the inner loop through the map and
leave the outer loop’s computation as sequential (as is the
case for the example in Section 2.1). When summarization
does not reduce the depth of the loop (i.e n = k), then there
is no benefit in parallelizing the inner loop nest through a
parallel map; i.e. the parallelization has failed.

7 Join Synthesis

In this section, we address the algorithmic problems of gen-
eration of the parallel join operator and the summarized outer
loop, respectively steps (I) and (I) from the general schema
of Figure 11. Although the two problems seem independent,
the latter turns out to be a special instance of the former.

7.1 Syntax-guided Synthesis of Parallel Join

We employ syntax-guided synthesis (SyGuS)[1] to generate
the parallel join. Given a correctness specification ¢ and syn-
tactic constraints describing the syntactic space $ of possible
implementations for join, a syntax-guided synthesis solver
finds a solution x € $ where ¢(x) holds. The correctness
specification for the join operator © is that h; (the summa-
rized loop function) forms a homomorphism with ® (i.e. Defi-
nition 3.2); i.e., p(®) = Vx,y € Sp, hp(xey) = hy(x) © hr(y).

The main challenge in SyGusS is to appropriately define
the syntactic restrictions. On one hand, they need to be
expressive enough to include an efficient © that satisfies ¢ if
one exists. On the other hand, the smaller the state space 5,
the more tractable the search problem for its synthesis.

We use an insight to define $ effectively. A function f~!
is a weak inverse of a function f iff fo f~1 o f = f, and
f always has at least one weak inverse iff f is computable
and its domain is countable. All the functions of interest
in this paper have weak inverses of signature D — S". In
the proof of the third homomorphism theorem in [17], it
is observed that a join © for a homomorphism h; can be
constructively defined based on h;’s weak inverse. That is,
for all d,d’ € D we have d © d’ = hy(h;'(d) e h{'(d")).
This implies an © with a similar syntactic structure to Ap,
exists. Moreover, Proposition 6.1 implies that for ® to remain
within the complexity budget, h;'(d) and h;'(d’) need to
have constant length.

Azadeh Farzan and Victor Nicolet

Example 7.1. Recall the maximum top-left subarray sum
example from Figure 5(c). The summarized function h,,;5’s
signature is the tuple of state variables (rec,max_rec, row_mrec,
mtl_rec) and its weak inverse is a 2-row array with the same
width as the original input. It is illustrated below.

Ajoincon- | pax rec[0] ‘
structed based
on this weak
inverse executes h,,,;;s on 4 rows; the concatenation of 2 sets
of 2 rows coming from the left and the right threads.

‘ max rec[k — 1]}

rec[0] —max rec [0]‘ e

rec[k — 1] —max rec[k — 1]}

In syntax-guided synthesis, $ is defined by a sketch (a pro-
gram with unknowns) and an expression grammar G speci-
fying possible completions for the holes (unknowns). Intu-
itively, the solver searches for substitutions from expressions
in G for all holes in the sketch, such that the resulting pro-
gram satisfies the correctness specification. The construction
of the sketch we use is an extension of the one in [12]. It
needs to be extended, since this paper introduces a technique
to synthesize superscalar joins, and in [12] only constant-
time computable joins are considered.

Sketch To obtain the sketch, a compilation function C (pre-
sented in Figure 12) is applied to the system of recurrence
equations representing the body of the summarized loop.
The result is a system of equations where the right-hand side
of the equations become expressions with holes. We define
C on expressions first, and then extend it to a systems of
equations.

In Figure 12(a), we recall the compilation function C of
[12]. It transforms expressions of the input loop body into
expressions of the sketch by replacing variables with holes.
Recall that the join takes as input the computation results
of two threads: we will refer to them as the left thread and
the right thread. In order to reduce the size of the state
space of solutions, we identify two types of holes: (1) right
holes ??g, which can be completed by expressions using
only variables from the right thread and (2) left holes ??g,
which can completed using variables from both threads. The
compilation function C is defined recursively on expressions
e of the input language. op is an operator, x is a (possibly
subscripted) variable, and c is a constant.

Since the join will use recursion (or, equivalently iteration
with accumulation), we need to allow the use of recursion
variables in the join. We extend the compilation function
with Cye. and add a third type of hole: recursive hole ??g,.
which can completed using variables from both threads and
local variables defined in the join. Cy.. is defined in Figure
12(b): it coincides with C on constants and expressions, and
replaces state variables with recursive holes ??g,. instead of
left-right holes ??1g.

Finally, the compilation function is defined over a system
of recurrence equations E in Figure 12(c). C(E) is the result
of applying the compilation functions to the expressions on

Modular D&C Parallelization

Ck) = 7x
??R if x € IVar
¢l = {??LR if x € SVar

C(op(er, ... em)) = op(Cle), ..., Clem))

(a) Sketch compilation for scalar joins from [12].

7R if x € IVar

Crec(x) = { if x € SVar

??Rec

(b) Extension of the compilation function with Cyec.

s1 = C(Exps (IVar, SVar))
C(E) =|(5iy» Siys - - -» 5ip) = for (i € I) { Crec(Eroop) |

sq = Crec(Expg(IVar, SVar))

(c) Compilation of the sketch body from the system of equations E.

Figure 12. Sketch compilation function C

the right-hand side of the equations in the loop body. C is
applied to the right-hand side of simple equations appearing
before all loop equations. Cy. is used for the body of a loop
equation (Crec(Ejoop)) and all the equations after. Crec(E)
is defined similarly in a recursive manner, but only C,. is
applied to the expressions of the right hand side of each equa-
tion in E. Remark that for local variables to be used in the
loop of the sketch, the local variables will first need to be ini-
tialized, and we will add equations s; =??1 g for any variable
s; that can be used in a loop and that has not been initial-
ized before that loop. To include the solutions described in
Example 7.1, we allow bounded repetitions of the sketch. To
produce the exact join of this example, four would have been
necessary. But, practically, in the vast majority of the cases
one repetition of the sketch is sufficient. Additionally, we ex-
tend the state space of solutions represented by the sketch to
include potential summarized solutions: any equation sketch
s; = Crec(Exp) appearing after a loop is copied in the body
of the preceding loop. The construction still ensures that the
solution based on the weak inverse is in the space of possible
solutions.

For example, consider {int mtl_rec = ?22;

the sketch illustrated on ;int * rec = ??;

. . . tint * = ??;
the right, ertt.en in the for (320; 3 < n; 344 {
syntax of the input lan- | recp4] = 22 + 22;

guage for simplicity. The [3] = max(2?,?2);
crucial difference between mtl_rec = max(??,??); |
a looped sketch like this
one and those in [12] is that in a loop, variables may have
to be referenced on the right-hand side of the assignments
to effectively implement recursion. Therefore, the extended
sketch allows for join variables to appear on the righthand
side of the expressions (i.e. ?? stands for all variables in

PLDI’19, June 22-28, 2019, Phoenix, AZ, USA

contrast to just left and right variables). A complete sketch
admits bounded repetitions of the above loop (not illustrated),
which then produces exactly the solution from Example 7.1
in 4 repetitions. But, one can piggy back on the first loop to
update mt1l_rec simultaneously with max_rec[] instead of
having to wait for the next loop in the repetition. This leads
to the discovery of an optimal join (i.e. the one in Section
2.2), compared to a less efficient join of Example 7.1. Note
that both joins are valid solutions of the sketch. In the imple-
mentation we first search for the simplest join by initially
allowing only one repetition.

Assuming that hzl returns a constant-length (multidimen-
sional) sequence, and hy is a homomorphism, then a join
is guaranteed to exist in the space described by our sketch.
The synthesis procedure can soundly declare hy not to be a
a homomorphism when it cannot find a join.

Expression grammar The grammar of expressions used
to complete the holes ??g, ??1 g and ??g.. during the syntax-
guided synthesis of the join operator is presented in Figure
13. This grammar is parameterized by (1) the operators that
can be used in the expression and (2) the set of expressions
(nVars and bVars) that can be used in the leaves of the expres-
sion tree and (3) the maximal expression height allowed «.
Sets of operators of different types (&, © and @®) are given in
the figure and can be extended if the input program uses ad-
ditional operators. In practice, the set of available operators
is gradually increased until a solution is found, starting with
the set of operators that appear in the input program. The set
of variables available in the expression depends on the hole
type (??r, ??Lr or ??Rec), as discussed previously. Finally, the
parameter x is gradually increased until a solution is found;
in practice, we observed that k¥ < 2.

For example, in the sketch presented above, most holes
only need to be replaced by a single variable and only one
hole needs to be replaced by an expression of height one
(rec_1[j]1 + max_rec_r[j]) to get the solution presented
in Figure 6.

7.2 Summarized Loop Synthesis

Assuming that the loop is memoryless, summarization of
the loop boils down to the synthesis of the operator ® from
Figure 2. We argue why this problem is nearly identical to
the synthesis of a homomorphic join.

Proposition 7.2. A multidimensional rightwards function is
memoryless iff we have @ and §, that satisfy the specification

de
0©.0,) L vd e D5 € 1, G(d)(©8) = d© G(d,)(&).
It is straightforward to see why the above characterization

is equivalent to the one given in Definition 4.2. One can also
show that ¢ is identical to the definition of a homomorphism.

Proposition 7.3. ¢ holds for a family of functions G iff every
member of the family is ©-homomorphic.

PLDI’19, June 22-28, 2019, Phoenix, AZ, USA

negy == x | x[ej] | ¢ x € nVars, ¢ a numeric constant
nex>o = nex-1 ® nex—1| —nex—1
| if (bex—1) nex—1 else ne,_q
bey == b |b[ej]|| true | false b ebVars
bewso n= bex—1 ® bex—1 | ~bex—q
| nex-1 © nex—1
| if (beK_l) beK_l else beK_l
ej := Jj®&c janiterator, c integer constant
&) =+, —, min, max, X, + binary numeric
Q = >, >= <, <=, = comparisons
® = AV binary boolean

Figure 13. Grammar of expressions used for ??g, ??1r and ??Rec
holes. ne, and bey correspond to expressions of depth up to and
equal to k. nVars and bVars stand for numeric and booleans vari-
ables.

Proof. Consider a family of rightwards (or leftwards) func-
tions G : D — (8"! — D) defined by ¥d € D,§ €
S™1, G(d)(6) = foldl(®) § d with some operator & : D x
S8™?% > D.

Let us first define what it means for a function in G to
be homomorphic, since their signature is slightly different
from the functions in Definition 3.2. Then, we remark in
Proposition 7.5 that for every g in GG to be ©-homomorphic,
that is for the family of functions to be homomorphic (defined
below in Definition 7.4), we only need to prove that the
function G(0y) : S"' — D is ®-homomorphic, for some
04 in D. This leads us to our conclusion, equating ¢ to the
specification of a family of homomorphisms.

Definition 7.4. A family of rightwards (or leftwards) func-
tions G : D — (8"! — D) is a family of ®-homomorphisms
for binary operator ® : D X D — D with identity element
9 € D iff for all sequences 5,5’ € 8" and ¥d € D we have
G(d)(6 0 6') = G(d)(5) @ G(9)(5).

Remark the asymmetry in the definition: the right hand
operand of the ® operator is independent from d. This is
necessary, as illustrated by the following example. Take the
family of sum functions initialized with an arbitrary integer:
we have D = int and G(d)(6) = d + sum(5) where sum
returns the sum of all the elements of §. Then, for every
integer d:

G (d)(508") = d+sum(8)+0+sum(8’) = G(d)(8)+G(0)(5").

Using d on both side of + would have yielded the wrong
answer. The asymmetry allows for every member of the
family to have the same homomorphic join operator, in this
case +.

To prove that a family of rightwards functions is homomor-
phic, there is no need to prove that for every d, the function
(G(d) is homomorphic. It suffices to prove it for G(8), as the
following proposition states.

Azadeh Farzan and Victor Nicolet

Proposition 7.5. A family of rightwards (or leftwards) func-
tions G is a family of homomorphisms iff there is an ele-
ment § € D such that G(0) is ©-homomorphic for some
©:DXD — D.

Remark that if G is a family of homomorphisms, then in
particular G(9) is a homomorphism.

Now, assume that we have an element § and operator ©®
such that G(0) is ®-homomorphic. We are only interested
in computable functions that have a countable domain, and
therefore have weak inverses. We denote the weak inverse
of G(0) by G(9)~: we have Vd € D, G(0)(G(9)~1(d) = d.
Let § = [y, . ..,] a sequence of length n, we can develop
the function application as follows (where y = G(9)~!(d) =

Yo, - s yw]):
Gd)G)=(...d®8&)®...05)
= (... (GO (GO () @) ®...05)
= ((..00p) .. Om) B8 D...08,)
= G(0)(y » 5) = G(0)(G(0)™'(d) ® 5)

Let § and 8’ two sequences. We use the previous result,
and the fact that (G(@) is homomorphic:

G(d)(8 0 8') = GO)(G(0) ' (d) e 5 &)
= G(0)(G(0)'(d) ¢ §) © G(9)(5")
= G(d)(5) @ G(0)(5")

Therefore, G is a family of homomorphisms.

Proposition 7.5 justifies the Definition 7.4 by proving that
the latter matches exactly the definition of a homomorphism
in Definition 3.2.

Let us come back to the original problem. Recall the cor-
rectness specification used in the summarized loop synthesis:

9(®,0) =V¥d € D,¥§ € 8", G(d)(8) = d © G(9)(5)

We want to prove that ¢ holds for the family of function G
iff every g in GG is a homomorphism.

If G is a family of homomorphisms, then ¢ is satisfied: it
is the homomorphism definition with § = [] and § = §’.

If ¢ is satisfied, we have © and ¢ such that Yd € D,V§ €
Sl

G(0)(G(0)'(d) ¢) = GONG(®) ™' (d) © G(9)(S)

which shows that G(0) is ®-homomorphic, and, by Proposi-
tion 7.5, every g in G is @-homomorphic. O

Therefore, the operator ® can be synthesized as a homo-
morphism join operator of the functions in family G, which
is the problem that we have already addressed in the pre-
vious subsection. The only point of difference is that the
complexity budget set for a memoryless join operator ® and
the parallel join operator © (previously discussed) are dif-
ferent. The budget for © is determined by the depth of the
summarized loop, whereas the budget for ® is determined

Modular D&C Parallelization

by the original loop nest’s depth, as indicated in Figure 11
respectively by k and n.

There are two modifications to the sketch compilation
function of the join synthesis. First, instead of replacing
state variables x € SVar by holes, we simply put the variable
xr, from the left thread, since the right operand of ® is the
result of applying g to only one element of S”~! and looking
for a join that iterates on its inputs more than once makes
no sense. Then, the sketch compiled from the body of g is
wrapped in a loop iterating over the size of an element of D
instead of a constant. That is, if D contains scalar elements,
the sketch is constant-time.

If the loop is memoryless, this synthesis procedure always
succeeds, even if it has to fall back on returning the trivial
answer (see Proposition 5.6). But, as discussed in section
5, the goal is to find the simplest join. This is achieved by
two mechanisms. First, the sketch complexity is at most the
complexity of the data. For example, a linear join for scalar
variables will only be necessary if a linear variable has been
added through lifting. Second, the expressions completing
the holes are the simplest possible, because the search for a
solution increases the depth x until a solution is found.

8 Automatic Lifting

As argued in Section 5.3, a memoryless lift is a special in-
stance of the homomorphism lift and both problems admit
the same algorithmic solution. Here, we present an algo-
rithm for discovering a homomorphism lift, which would
respectively apply to modules (IIT) and (IV) in Figure 11.

8.1 Rewriting Oracle

Assume a memoryless function f : 8" — D defined re-
cursively as f(o) = foldl(®) o map(g)(c) is not a homomor-
phism. Let & : Sp — D be the summarization of f, as defined
in Proposition 4.6, that is:

h(]) = £([D)
YaeD:h(xeo[a]) =h(x)®a

for x € Sp and a € D. Recall that according to Theorem 5.3,

a lifting for h can be computed instead of a lifting for f.
Letx,y € Sp,s = h(x),andy = [ay, . .., ar] (with a; € D).

The sequential computation of A(x e y) can be written as:

hixela,....ak]) =(---S@a)®---)®ar. (4

Lifting h to a homomorphism hY’ corresponds to extend-
ing the image of h to D X D’ and lifting the initial state to

(S0, s%) = hY (.1t h isa homomorphism, then there exists
a binary operator © such that ((5,) = fD/(a)):
WP (xoy) = G5 0 h” ([an,. .. k)

=550 (- (5, 5)daNd -)dar) . (5)

PLDI’19, June 22-28, 2019, Phoenix, AZ, USA

Sequential unfolding of
maximum top-left rectangle

;ec[m - 1]+ Zf:[] a;[m —1]

T T g
rec[0] + Zfzo a;[0]) I

" @ad
&I”
g
(me) /
/ recm — 1]+
/
/

recim — 1] ;
+aglm—-1] /

Parallel join
-

{ mtl fec rec[0] +0mza<xk Z a;[0]

mtl rec rec[0] + ap[0] ! i<k,

Figure 14. Sequential (a) vs parallel (b) computations.

First, the following proposition, adapted from Theorem
6.2 of [12], indicates that s” is not relevant to the discovery

of the lifting AP,

Proposition 8.1. Ifthere exists a ©-homomorphic lifting hY’
of h, then there exists a ®-homomorphic lifting AP’ where for
allc,d € D and ¢’,d’ € D’, there exists functions 0 and 6’
such that

(c,c)® (d,d) = (0(c,d, d),0(c,d,c’,d)).

The significance of Proposition 8.1 is that the value of
the D component of the join result (i.e. 6(c, d,d’)) need not
depend on the value of the D’ component of its left input
(i.e. ¢’). Interpreting this for equation 5, we conclude that
the value of 7p(h(x) © szl([al, ...,ax])), only depends on
h(x) and le'([al, ..., ak]). Therefore, one can imagine an
algorithm that starts from an arbitrary state § = h(x) and
tries to guess what lAlD/([al, ...,ax])) should look like (as in
what D’ should be) so that such a join exists. Specifically,
there is a function 6 such that:

(- (Coa)®---)dar) = (6)
06, h([ai,. .. ,ax)))

and, the third component of 0 is the auxiliary computation
that needs to be discovered. Note that 6 could stand for the
computation of a loop nest, in contrast to the setting in [12]
where it stood for an expression (i.e. loop-free code), which
means the lifting algorithm in [12] is not applicable and a
new lifting algorithm is required. Equation 6 is the key to
our algorithmic solution. The left hand side corresponds to
the sequential execution and the right hand side corresponds
to a parallel one. Since the join does not have access to the
input (ie. ag,.. ., ax])
(i.e. the extra information in the signature of hP ") has to be
computed by the worker threads and passed on to the join.

La)), o AP ([ay, . ..

., ax), the value of np o ﬁD/([al, ..

PLDI’19, June 22-28, 2019, Phoenix, AZ, USA

Example 8.2. Figure 14 illustrates the two sides of Equation
6 for the maximum top-left rectangle example of Section 2.2.
Variables in red indicate the values of state variables from .
Each « technically should include a field for rec[] and a field
for mt1l_rec of the saved states after summarization. But, we
abuse notation and take «[i] to mean a.rec[i] for brevity.
Note that the sequential computation executes k instances of
a loop that iterates m times to update the value of mt1_rec
variable; one for each row of the original input. However, in
the parallel join, there is budget only for one (or generally
constantly many) of these loops. The two (expression) trees
(a) and (b) correspond to equivalent computations. The tree
(b) is more compact provided that the values of the terms
maxo<i<k Lo<j<i @;[l] are available (i.e. computed before
the join). These are exactly the auxiliary computation that
are extrapolated, once the left tree (a) is rewritten to the
equivalent right tree (b), and are stored in the max_rec[]
variable in Figure 5(c).

8.2 The Algorithm

If one starts from an arbitrary unfolding of the sequential
computation (i.e. the lefthand side of Equation 6 for an ar-
bitrary k), and attempts to rewrite it to a form that adheres
to the righthand side, then one can extrapolate a guess for
T oh? from T OED'([al, ..., ag]). Let us assume an oracle
Normalize performs the left-to-right hand side transforma-
tion, and another oracle Discover-Recursion discovers the
implementation of D’ components of hP’. The Normalize
oracle transforms an expression into another, while the goal
of Discover-Recursion is to synthesize a function f’ from the
expression of its unfolding on an input sequence. We propose
heuristic algorithms implementing these two oracles.

The algorithm for Normalize uses (generic) algebraic equal-
ities, applies them step by step until it reaches the desired
form. The key question is, how would the algorithm know
that it has reached its target? To characterize this, we need
to define a normal form for 6.

Normal form. An expression e, over scalar ®
variables is in constant normal form if it is of

the form illustrated on the right where exp, €Tps €xp;
is an expression containing only state variables, exp; is an
expression of input variables of ay, as, . . . ax, and @ stands for
a constant-size expression skeleton consisting of operators
and constants (i.e. no variables).

Definition 8.3. An expression e is in @-recursive normal
form if it is defined recursively using an operator @ as e =
e. | ec @ e, where e, is in constant normal form (the base
case) and © satisfies the same condition as ®.

For example, in Figure 14(b), each leaf of the tree is in
constant normal form, and therefore, the entire tree is in
max-recursive normal form.

Azadeh Farzan and Victor Nicolet

The normal form does not have to be unique, and in the
context of parallelization, one aims for the simplest normal
form. Intuitively, the constant normal form corresponds to a
constant time join. The expressions over input variables are
precisely what need to be additionally computed and made
available to the parallel join. However, the parallel join, in
general, may not be constant time and the recursive nature
of the definition addresses this. Note that the definition can
be easily generalized to higher dimensions by replacing the
constant normal form by another recursive normal form
(over a distinct fresh operator, e.g. ®).

Normalization. Implementing an ideal rewriting oracle is
impossible, since the problem of existence of a normal form is
undecidable in the general case (equivalent to the word prob-
lem). There has been a lot of research in the area of rewrite
systems notably for associative and commutative operators
[29, 32] that can inspire several heuristics for normalization.
We employ a cost-based search for the normal form as a
heuristic to workaround the undecidability. Our algorithm
uses a set of standard algebraic equalities as rewrite rules
R and searches for the shortest normal form. The rewrite
rules in R are applied to an expression if they reduce its cost,
and the rewriting process terminates when no rule can be
applied.

Our algorithm operates in two phases. In the first phase, its
goal is to find a constant normal form. If it succeeds, the task
is done (e.g. this is the case for lifting the example from the
introduction). If it fails, the second phase tries to rewrite the
result of the first phase into a recursive normal form. Both
phases perform a cost-based search and are distinguished by
their cost functions. The cost function for the first phase is
defined by the number of occurrences and the depth of the
state variables (of h) in the expression tree. The cost function
is identical to the one from [12], which is no coincidence
since [12] focuses solely on constant normal forms.

In the second phase, the algorithm makes a guess about
@, inspired by expression e which is the result of the first
phase, and attempts to rewrite e to a @-recursive normal
form. Since phase one forces § (or h(x)) to the lowest possible
depth, operators that appear near the root of expression e are
good candidates for @. The algorithm chooses the simplest @
such thate = e, ©e’, where e, is in constant normal form and
e’ is an arbitrary expression. For a fixed @, a cost function
is defined. It combines the sum of the sizes of expression
not in constant normal form and the count of expressions in
constant normal form. Formally:

Definition 8.4. The cost function Costg : Exp — int X int
relative to operator @ returning a pair (size, c¢g) is defined
by:
{Cost@(el) + Costg(e2) ife=e @ ey,
Costg(e) = 1(0,1) if e is in constant normal form,
(expsize(e), 0) otherwise.

where expsize returns the size of the expression tree.

Modular D&C Parallelization

Intuitively, the expression is in @-recursive normal form
when it has cost (0,_). Moreover, we are interested in the
normal form with the smallest count of subexpressions in
constant normal form. A rule is applied if it decreases size or,
if it increases cg when size cannot be decreased and size > 0.

In the example of Figure 14, the expression in (a) is initially
in max-recursive normal form with cost (0, km + 1). When
the expression is rewritten in the first phase (using the cost
function from [12]) with the aim of reducing the occurrences
and depths of state variables, the cost goes down, but the nor-
mal form is lost. Since a constant normal form is not reached
at the end of the first phase, the second phase is applied,
using the cost function above, which yields the expression
in Figure 14(b). This expression is in max-recursive normal
form with cost (0, m + 1).

If the process fails to find a normal form for @, then an-
other operator @® is guessed and the process is repeated.
Since the expressions are finite-sized, only a finite number
of guesses are necessary, and the process is guaranteed to
terminate. This simple heuristic is a small part of the contri-
butions of this paper, though it is promisingly effective as
demonstrated in Section 10.

Recursion discovery The normalize heuristic distills the
7p © sz'([al, ...,ax]) part from its input expression, which
we know is required for a join operation to exist. It remains
to discover the recursive (i.e. looped) computation that can
be added to the original program that would produce this
required information. More precisely, the goal of recursion
discovery is to synthesize a function that computes the ex-
pression uy = mp o ﬁD,([al, ...,ax]) for any k > 0. Recur-
sion discovery, based on input/output examples, has been
previously studied [26]. Our specific instance of the problem
is simpler and amenable to a simple heuristic solution.

Since uy is recursively (rightward) computable, there is
an operator B such that up = ug_; B ai for k > 0. If ug_
and uy are simple expressions, we can extrapolate a hint on
what B8 is by identifying uy_; as a subexpression of uy (that is
precisely the subtree isomorphism [39]). In general, however,
Uy, Ux—1 and ay can be collections of complex expressions;
i.e. lists of expressions as is the case for the example of Sec-
tion 2.2. The solution remains the same, except, we identify
families of subtree isomorphisms. In our implementation,
we simplify the problem further by looking for specific pat-
terns of subtree isomorphisms corresponding to recursion
schemes such as zip, scans or folds. For example, a zip opera-
tor translates to having each expression in ug_; isomorphic
to a subtree of one expression in uy.

For example, the list of expressions maxo<;<k 2 0<j<i @[]
(for 0 < I < m) from Figure 14(b) can be computed in an
auxiliary array max_rec[] using a zip operation and the
state variable rec[] as follows:

max_rec = zip (max) rec max_rec.

PLDI’19, June 22-28, 2019, Phoenix, AZ, USA

The next section illustrates how this auxiliary can be found.

9 An extended example

In this section, we go through steps of the automated par-
allelization process for the maximum top-left subarray sum
example of Section 2.2. The goal is to give a good intuition
of how the heuristic algorithms described in this paper work
on an example but not to describe them precisely.

The code is given in Figure 5(a). We call the corresponding
function mtls, which is of type int[][] — int[] X int X int
(before lifting) and the state is a triple of variables SVar =
{rec[], row_sum,mtl_rec}.

9.1 Summarizing the loop nest

The first step in the parallelization process is to synthesize
the summarized loop ((I) in Figure 11). As stated in Section
7, the problem is similar to synthesizing a parallel join with a
few modifications. We explain here how the sketch is gener-
ated and the solution found by the syntax-guided synthesis
solver.

From the code in Figure 5(a) we synthesize the sketch that
corresponds to finding a parallel join for the inner loop, with
the complexity budget that is enforced by the budget for the
summarized function. Remark that for this reason, the sketch
resulting from the application of the compilation function of
Section 7 can be repeated more than a constant number of
times. Since there is a linear variable (rec[]), we will need
a loop on the dimension of this linear variable. The solution
will require a loop of the size of rec[].

Figure 15 presents the sketch for the memoryless join ®
and a solution (each hole has been completed). Given the
generic correctness specification ¢(®,0,) = Vd € D,a €
int[]1,G(d)(a) = a © G(9,)(a), the sketch and the generic
grammar of Figure 13, the solver finds the solution presented.

int mtl_rec = ??;R;

int recl[] = ??LR;

int row_sum = ??;R;

for(j=0; j < m; j++){
row_sum = ??Rec + ?7R;
rec[j] = ??Rec * ??Rec;
mtl_rec = max(??Rec, ??Rec);

}

int mtl_rec = mtl_rec_l;

int rec[] = rec_1[];

int row_sum = 0;

for(j=0; j <m; j++){
row_sum = row_sum + rec_r[jl;
rec[j] = rec[j] + rec_r[jl;
mtl_rec = max(mtl_rec, rec[jl);

3

Figure 15. Sketch and solution for the memoryless join of
mtls (Sec. 2.2)

PLDI’19, June 22-28, 2019, Phoenix, AZ, USA

Variables ending by _1 are variables from the left input of
the join and the variables ending by _r are the right input
of the join. The identity state 0, is {[0], 0, 0}.

Then, we obtain the summarized loop of Figure 5(b) by re-
moving row_sum which is not necessary for the computation
of mtl_rec anymore, and inserting the loop implementing
d © inner_loop[i] where inner_loop[] is the conceptual
array representing the results of mapping the inner loop
instances to the input. Remark that in the general case, the
elements of inner_loop[] are of type D, but in this case,
the only element of D that is required is the variable rec[].

In the case where the variables are linear and every cell is
modified in the inner loop, we cannot reduce the complexity
of the loop nest. However, the summarized loop abstracts all
the unnecessary information that the inner loop has com-
puted. This will become more apparent in the next section,
where the unfoldings of the function on symbolic inputs
need to be inspected. In this example, the elements of rec
that were column sums of prefix sums are summarized as
simple column sums. In the symbolic execution, we reduce
the amount of information in the cells from quadratic to
linear.

9.2 Lifting

The first attempt at synthesizing a join will fail for this ex-
ample since the summarized loop cannot be parallelized. We
need to lift the summarized function to a homomorphism
((IIT) in Figure 11), if possible. The codomain of the summa-
rized function hy,s is D = int[] X int before lifting. We
drop row_sum from the state, since it does not appear in the
summarized loop of Figure 5(b).

Normalization First, we compute the unfolding of A,

over an input o e [ay, . .., ar]. Each g; for 0 < i < isitself an

integer array of size m. We denote the different projections of

hmt1s(o) over the different parts of the codomain by rec(o)

and mtl_rec(o).

Let us start with k = 1:
mtl_rec(o ® [a;]) = max(ai[m—1]+rec(o)[m—-1],

max(ai[m — 2] + rec(o)[m — 2],
max(ay[0] + rec(c)[0],

mtl_rec(c))...)))

We can visualize the expression as a tree:

rec(o)[m — 1] + a1 [m — 1]

rec(o)[m — 2] + a1 [m — 2]

mtl_rec(o) rec(o)[0] + a1[0]

Remark that this expression is in max-recursive normal
form, and computable with a loop of size m and it is already
in the shortest (max)-recursive normal form. This is not

Azadeh Farzan and Victor Nicolet

rec(o)[m — 2] + a1 [m — 2] + az[m — 2]

rec(o)[m — 1] 4+ a;[m — 1]
+ az[m — 1]

()] + ap [0] + az [0]

rec(o)[m — 1] + ay[m — 1]

rec(o)[m — 2] + ay[m — 2]

mtlrec(o) rec(o)[0] + a1[0]

(a) Expression tree after unfolding

maz(ay[m — 1],

- —1
rec(o)fm — 1] ai[m — 1] + as[m — 1])

/' rec(o)[m — 2] maz(ay[m — 2],
/ a[m — 2] + as[m — 2])

mtl rec(o) rec(o)[0] max(a;[0],a1[0] + az(0])

(b) Normalized expression tree

Figure 16. Expression trees of mtl_rec(o ® [a;, az])

surprising, since we only unfolded the function on one line
of input.

The second unfolding will be computed with a loop of size
2m: we need a loop of size m to compute mtl_rec(c e [a1])
and m additional iterations to compute the rest of the expres-
sion.

mtl_rec(o e [a1,a;]) =
max(ai[m — 1] + az[m — 1] + rec(o)[m — 1],
max(a,[m— 2] + az[m — 1] + rec(o)[m — 2],
max(ay[0] + a[0] + rec(o)[0],
mtl_rec(o e [a1]))...)))

Remark that the expression is already in max-normal form,
since each subexpression (of the form a;[j]+az [j]+rec(o)[j])
or a;[j] + rec(o)[j])) is in constant normal form. However,
this normal form does not represent a computationally ef-
ficient parallel join, since for an arbitrary k we would need
km iterations, which is not acceptable under Proposition 6.1
(the join would be O(m"™) for n lines of input). However, we
can normalize the expression to a shorter normal form. We
write the expression tree in Figure 16(a).

Some terms in this expression tree can be factored together
using the associativity of max to reorganize the tree, and
the factorization rule max(a + b,a + c¢) — a + max(b, c). For
example, the two expressions linked by the double arrow

Modular D&C Parallelization

can be factored together: max(rec(c)[0] + a;[0], rec(o)[0] +
a1[0] + a2[0]) = rec[0] + max(a;[0], a;[0] + a[0]). This rule
decreases the number of occurrences of state variables (the
rec[j]) and is applied during the first phase of the normal-
ization process. We can apply the same rule for all m pairs
of subexpressions and this yields the expression in Figure
16(b).

No rewrite rule can be applied to this expression in the
first phase, but the above is not in constant normal form.
When starting the second phase, the max operator is picked
and the matching expression cost is (0,m + 1). The max-
recursive normal form uses m + 1 max operators, and is
computable using a loop of size m and one additional state-
ment. Each of the subexpressions under the tree spine of
max operators is in constant normal form: it is either only a
state variable (mtl_rec(c)) or an expression that has the root
operator + and on one side, the state variable mtl_rec(o)[;j]
and on the other side the input-only dependent expression
max(ai[j], a1[j] + az[j]), for 0 < j < m. The second phase
concludes immediately, and returns the expressions in max-
recursive normal form.

Remark that this generalizes to any unfolding k (as seen in
Section 8). We will have a max-recursive normal form with
a spine of length m + 1, and the constant normal forms e, [J]
that have input and state variables will be:

k

ec[j] = mtl_rec(o)[jl+max(a [l a[j] + &2ljl, ... > ailj])

I=1

Recursion discovery In the next step, we want to extract
the information that needs to be computed in the threads
for the join from the expression in normal form. We de-
note the expressions that consitute this information by uy =

~ D

7y © hmsis ([a1, - - ., ak]). In the expression tree, it corre-
sponds to the blue input dependent expression in each of the
constant normal forms. For any unfolding k > 0 we have:

k
Up = {max(al[j],al[j] +a2[j],...,2ai[]']) [0<j< m}

We have collected u; and now need to discover a recur-
sive function that can compute them. The codomain of the
function needs to be extended. Since in this case u; is an
integer collection of size m, we extend the codomain by an
array of integers D’ = int[]. We have to discover an operator
i : D’ X int[] — D’ such that ug,1 = ux B ag,1. To do so, we
look for subtree isomorphisms (or, subexpression relations)
between the elements of u; and the elements of .

For any j € [0..m] the following equality defines a family
of subtree isomorphisms for each pair uy1[j], ux [j]:

k+1

werl[j] = max(uelil,) aljl)

i=1

PLDI’19, June 22-28, 2019, Phoenix, AZ, USA

This is not sufficient yet, since the sum term needs to be
computed in non-constant time. But this sum is already part
of the computation we are lifting, we have:

k+1
rec((ar,....ax, apa)] = Y axlj]
i=1
The operator of the lifting B can in use parts of the exist-
ing function. In this case, the max_rec auxiliary is created,

defined by:
max_rec = zip(max) rec max_rec

Which concludes our description of the lifting. A description
of the last step in the parallelization process, the join synthe-
sis ((I) in Figure 11), has already been included as part of the
example developed in Section 7.

10 Experimental Evaluation

Implementation Our methodology is implemented as an
addition to our existing too PARSYNT from [12]. We em-
ploy a new incremental approach to synthesizing the join
to mitigate the large search problem. The state of the loop
is partitioned into substates, and the join is synthesized for
each substate separately, while preserving correctness. All
synthesis times improve as a result of this strategy, but the
complex ones improve more substantially; for example, for
maximum top-left subarray, the synthesis time is reduced
from over 1000 to 116.3 seconds.

The main idea behind this optimization is that if a function
h: 8™ — D is homomorphic, then any projection of h over
a domain D’ ¢ D will be homomorphic, if the projection is
well defined. The projection on D’ is well defined if there is
no variable in D’ that depends on a variable in D \ D’. We
first define a sequence of sets D; C D, C -+ C D such that
the projection of h over the D; are well defined.

Then, we start by solving the synthesis problem for h pro-
jected on Dy. We continue to zp, o h. But at this point, we
can use the solution of the previous problem to solve part
of the current problem. Intuitively, only the part concerning
the variables in D, \ D; needs to be dealt with. We go on
incrementally with the next projections, and finally with h.

10.1 Evaluation

To the best of our knowledge, there is no tool or technique
that can parallelize the class of programs considered in this
paper, and therefore, our evaluation of PARSYNT is not com-
parative. The theoretical results presented in this paper jus-
tify many of the choices made in our proposed methodology.
There are two key parts of the algorithmic modules, however,
that require empirical evaluation: (1) The effectiveness of
the heuristics proposed in Section 8 for lifting; the (neces-
sarily) incomplete algorithm has no theoretical guarantees
for success. And, (2) the efficiency of SyGuS-based solution
for parallel join generation and loop summarization; since it

PLDI’19, June 22-28, 2019, Phoenix, AZ, USA

Azadeh Farzan and Victor Nicolet

20 loop/input 30 loop/input | 20 loop, 10 inputs
o N s |8 o 2
c | c a | = ~ o 1) o) .
213 Tls|al ™ 2 - 2lal|s 3 b
T IR R o | E 2|2 |&E o) 2| x 219
C o — c [+ + . Y= [B c oo | X - o > o0
o0 e 8l8|w| 8 |&| "] 8 - I s T = N = < A B By 2|8
FIB x| x|ZalEB|B|E] 2| & & | d | B |o|l8|lald] w|& B |-
B|I2|S|E|E|2| 8|8 |2 o B - T I T = I Tl B sl 2 |¢
s[EIE|R|E[|3Bx| x| x| x| 32 x x | Tl o [S|6|x|8] x| x| B|x|3|L]a
3 o (5] - = o= @ © © @© © 153 o o] Q i= > > @ e} © @ o © @ c o
0 2 > el 13 1= 0 1S3 1= 153 1S3 e E o o o o 1= 5 1S3 1= 153 1= e} el —
Summarization time|1.2{1.3|1.1|1.2|1.2({1.5|4.6|1.2| 1.2 | 1.2 | 1.6 | 1.4 [30.2| 1.4 | 53 | 6.2 |2.5/1.3]1.3]|1.3]| 1.3 | 2.1 | 2.4 |1.4]|54.9|1.3|2.3
Aux required -1l 1] 2 - 1 1 1 ™ |2f2|-(1{2|-1-1-|-1-1]X
Join synthesis time |2.3(1.1|1.1(1.1|2.5(2.3|5.4(6.1|11.8|64.1|11.2|{116.3|216.2|313.5|8.1 1[10.5|2.6/3.3|2.5|7.1|52.3|11.2|122.7|4.0{11.5|1.5| X
Table 1. Experimental results for performance of PARSYNT . Times are in seconds. “-” indicates that lifting was not required. Hardware:

desktop with 8G RAM and Intel dual core m3-6Y30. The starred numbers of the middle row correspond to auxiliaries for a memoryless lift, and
otherwise for a homomorphism lift. §: time reported is spent by the solver to answer unsat, since the summarized loop is not parallelizable.

is impossible to predict synthesis times for the search-based
routine.

Benchmarks. We use a diverse set of benchmarks, where
some implement highly non-trivial single-pass algorithms.
Since a standard set of benchmarks for this problem space
does not exist, we included any example we could find in
the related work and parallel programming/algorithms text
books, but only those that admit a divide-and-conquer solu-
tion according to Definition 6.2. Table 1 includes a complete
list. It is important to note that the difficulty of an instance is
not directly co-related with code size or the classic notions
of dependence such as sparsity of dependencies. Rather, it
depends on how complex the required added computation
is.

The code of the benchmarks is available at https://github.
com/victornicolet/parsynt-pldi19-benchmarks.

Performance of ParSynt. Table 1 presents the times spent
in the two steps summarized loop and parallel join gener-
ation. The synthesis time have been measured on a laptop
with an dual core Intel Core m3-6Y30 CPU and 6 Gb RAM
running 64-bit Ubuntu 16.04. Our goal is to provide an imple-
mentation that can synthesize the parallel implementation
of a sequential algorithm in reasonable time, and much faster
than a programmer. It is not aimed at being integrated in a
compiler, but rather in a programmer-aid tool.

We do not report the individual times for liftings, since
they are negligible compared to the synthesis times; largest
lifting time was 12ms (3 orders of magnitude less than small-
est synthesis times).

Table 1 reports how many auxiliary accumulators were
discovered during the lifting. To get a sense of how signifi-
cant the syntactic restrictions based on the weak inverse are,
consider as an example that synthesizing a join for bench-
mark max top strip without them would take 12.1 seconds.
Moreover, using a straightforward syntax-guided synthesis
scheme (instead of deductive style algorithm of Section 8), it
took over 40 minutes to find the auxiliary for mbbs which is
arguably the simplest instance that requires lifting.

357

sorted
©osum

—— max segment box
—— max seg strip
vertical grad. —— max top box
diagonal grad. ~——— max top strip
increasing ranges —— min-max
intersecting r. min-max-col
balanced substr.
max bot strip

w
o

mode
—— mtls (Sec 2.2)
mbbs max top-right rect
max dist —— overlapping r.
max left box pyramid r.
—— max bot-left rect —=— saddle point
—— max left strip —=— bp (Sec 2.1)

N
w

Lo N
w o

=
o

speedup parallel / sequential

10 15 20

number of threads

25 30

Figure 17. Speedups relative to the sequential implementation.
Hardware: 8 eight-core Intel X6550 processors (64 cores total) and
256G of RAM running 64-bit Ubuntu

Quality of the Synthesized Code. A divide-and-conquer
parallelization, in the style of this paper, is data parallel
program with no inter-thread dependencies, and therefore,
reasonable parallelization speedups are expected. We imple-
mented our produced parallel solutions using Intel’s Thread
Building Blocks (TBB) [35] as well as OpenMP, to measure
the speedups over the sequential variations. TBB turned out
to produce better performing parallel programs. Speedups
for four instances (one from each category) at 16 threads are
compared below.

max bot strip | mbbs | mode | bp
OpenMP 11.0 8.6 11.0 | 7.8
TBB 12.7 10.7 115 | 89

Figure 17 illustrates the TBB speedups for up to 32 cores.
In the experiments, the size of the input arrays is about
2bn elements and the grain size is set at 50k. We used gcc
7.3.0 to compile the parallelized benchmarks. On average,
the speedups are close to linear on the number of cores
up to around 32 cores. Speedup is measured by dividing
the running time of the parallel implementation with the

https://github.com/victornicolet/parsynt-pldi19-benchmarks
https://github.com/victornicolet/parsynt-pldi19-benchmarks

Modular D&C Parallelization

running time of the sequential implementation without aux-
iliaries. Therefore, the speedup reported for 0 is always 1,
and the speedup for 1 core is the parallel implementation
with auxiliaries running on a single thread (which explains
the inflexion of the curve at the beginning of the graph). The
examples with smaller speedups over larger number of cores
are those that have a more complex parallel join operator; in
particular, those with looped joins. It is also known [9] that
the overhead of TBB increases with more cores and becomes
very significant at 32 cores.

Correctness. ROSETTE performs bounded verification for
the solutions it generates. To have correctness over all in-
puts, we use the same scheme as [12] to produce correctness
proofs verified through Dafny [28]. The majority of the pro-
grams were verified using the same proof generation scheme
as [12]. However, the bold benchmarks in the table required
additional simple and generic lemmas that lift standard al-
gebraic identities over integers to those over sequences of
integers; for example, ¥ + max(y/,Z) = max(X + §,X + 2).

11 Discussion and Future Work

Input Programs. Theoretically, our approach admits any
program that can be semantically translated to a nested sys-
tem of recurrence equations. In this model, each loop is a
system of recurrence equations nested in the correspond-
ing system for its surrounding loop. This is in contrast to
other widely used models like System of Affine Recurrence
Equations (SARE) [41], designed to track dependencies, that
represent the loop nest as a flat system of equations associ-
ated with an iteration domain. The only strict limitation for
our input programs is that the input should not be modified
by the program. More details on our input model can be
found in [13].

Limitations. Not all loop nests admit an efficient divide-
and-conquer parallel solution with a syntactic divide opera-
tor that is the inverse of concatenation; for example, quick
sort is a divide-and-conquer solution with a non-trivial di-
vide operation whereas merge sort is a divide-and-conquer
solution with a divide that is inverse of concatenation. Syn-
thesis of non-trivial divide operators is an interesting topic
of research for future work.

The dynamic programming instances considered in Bell-
mania [23] also do not admit an efficient parallelization ac-
cording to Definition 6.2. Bellmania uses tiling (a different
divide) and a necessary scheduling of dependent tiles to cor-
rectly parallelize dynamic programming code. The produced
code, however, is not fully data parallel in the manner result-
ing from manufacturing homomorphisms. A homomorphism
can be executed in parallel without the need for scheduling.

LCS (longest common substring), a dynamic programming
algorithm, can be rewritten to admit an efficient paralleliza-
tion (according to Definition 6.2). We used PARSYNT on the

PLDI’19, June 22-28, 2019, Phoenix, AZ, USA

modified code, which failed to parallelize it. This is due to the
fact that the auxiliary accumulators required for its lifting
are conditional, and therefore fall beyond the reach of the
heuristics of recursion discovery currently implemented in
PARSYNT . To sum up, within the class of programs that do
admit efficient parallelizations (as defined in Definition 6.2),
the limitations of PARSYNT are mainly due to the heuristic
natures of the implementations of the normalization and re-
cursion discovery methods. For more complex computations,
one can imagine that limitations of SYGUS solvers can play
a role in not discovery a join that theoretically exists.

Predictability. Due to the semantic nature of our approach,
one cannot predict parallelizability of a loop nest based on
any of its syntactic properties. Since parallelizability is equiv-
alent to the computation being semantically a homomor-
phism (or liftable to one), the only way to know if a loop nest
is parallelizable is to try to parallelize it. In fact, a negative
is quite hard to prove as the proof of Theorem 6.8 indicates.

Future work. The focus of this paper (and its predeces-
sor [12]) has been on synthesizing homomorphisms which
have fixed simple divide operations. An interesting direc-
tion for future research would be solutions for synthesizing
non-trivial divide operations. Note that with the join and
(potentially) the lifting being unknown, this adds one more
unknown dimension to the problem which can make it sub-
stantially more difficult/interesting to solve.

12 Related Work

There is a vast body of literature on parallelizing code. We
review only the closely related work to our approach here.

Homomorphisms for Parallelization Our work is most
closely related to those that exploit homomorphisms for
parallelization [18, 31], and builds up on our recent work
[12], where sequence (list) homomorphisms are automati-
cally synthesized to parallelize simple (non-nested) loops.
This paper is a highly non-trivial generalization of the work
in [12] to arbitrarily nested loops. Less recent attempts in
using derivation of list homomorphisms for parallelization
included methods based on the third homomorphism theo-
rem [16, 18, 31], function composition [15], and quantifier
elimination [30], as well as those based on recurrence equa-
tions [4]. These techniques are either not fully automatic, or
rely on additional guidance from the programmer beyond
the input sequential code.

Simple Loop Parallelization More recently in [38], sym-
bolic execution is used to identify and break dependencies
in loops that are hard to parallelize. This approach can be re-
garded as a dynamic counterpart to that of [12], and its scope
is similarly limited to simple loops. In distributed computing,
a related vein of research has been focused on automatic
production of map/reduce programs, for example, by means

PLDI’19, June 22-28, 2019, Phoenix, AZ, USA

of specific rewrite rules [37] or synthesis [40]. GraSSP [14]
parallelizes a sequential implementation by analyzing data
dependencies and its scope is functions over lists. The (con-
stant sized) prefix information used in [14] is essentially a
special case of the auxiliary accumulators in [12].

Program Synthesis for Parallel Code Generation In
this paper, the specification for synthesis is the sequential in-
put program, and no other information (such as input/output
examples or a sketch) is required from the programmer. Syn-
thesis techniques have been leveraged for parallel programs
before, instances of which include synthesis of distributed
map/reduce programs from input/output examples [40] and
optimization and parallelization of stencils [24]. Aside from
the use of synthesis, these problem areas and the solutions
have little in common with the scope and approach in this
paper. Bellmania [23] synthesizes divide-and-conquer vari-
ations of a class of dynamic programming algorithms with
programmer’s guidance and the notion of divide-and-conquer
(with a fixed divide) in this paper differs from the one that
Bellmania uses.

Parallelizing Compilers and Runtime Environments
Automatic parallelization in compilers has been a prolific
and highly effective field of research, with source-to-source
compilers using highly sophisticated methods to parallelize
generic code [2, 7, 21, 34] or more specialized nested loops
with polyhedral optimization [3, 8, 42, 43]. There is a body of
work specific to reductions and parallel-prefix computations
[5, 22, 27] that deals with dependencies that cannot be bro-
ken. In contrast to correct source-to-source transformation
achieved through provably correct program transformation
rules, the aim of this paper is to use search (in the style
of synthesis), which facilitates the discovery of equivalent
parallel implementations that are not reachable through a
pre-established set of correct transformation rules. There
is work in the literature on breaking static dependencies at
runtime [36] based on the observation that actual runtime
dependencies happen rarely in some sparse problems. The
scope of applicability of our method is different and we con-
sider these techniques to be complementary. In [6], a static
two-phase solution is proposed that resolves dependencies
in the first phase, and can proceed to perform independent
parallel tasks in the second. We view the approach in this
paper as complimentary to these techniques.

Azadeh Farzan and Victor Nicolet

Modular D&C Parallelization

References

(1]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund
Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama,
Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In
Formal Methods in Computer-Aided Design (FMCAD), 2013. IEEE, 1-8.
David F. Bacon, Susan L. Graham, and Oliver J. Sharp. 1994. Compiler
Transformations for High-performance Computing. ACM Comput.
Surv. 26, 4 (Dec. 1994), 345-420.

Cédric Bastoul. 2004. Code Generation in the Polyhedral Model Is Eas-
ier Than You Think (29 September - 3 October 2004, Antibes Juan-les-Pins,
France). IEEE Computer Society, 7-16. https://hal.archives-ouvertes.
fr/hal-00017260

Yosi Ben-Asher and Gadi Haber. 2001. Parallel Solutions of Simple
Indexed Recurrence Equations. IEEE Trans. Parallel Distrib. Syst. 12, 1
(Jan. 2001), 22-37.

Guy E Blelloch. 1990. Prefix sums and their applications. (1990).
Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian
Shun. 2012. Internally deterministic parallel algorithms can be fast.
In Proceedings of Symposium on Principles and Practice of Parallel Pro-
gramming, PPOPP 2012. 181-192.

William Blume, Ramon Doallo, Rudolf Eigenmann, John Grout, Jay
Hoeflinger, Thomas Lawrence, Jaejin Lee, David Padua, Yunheung
Paek, Bill Pottenger, Lawrence Rauchwerger, and Peng Tu. 1996. Par-
allel Programming with Polaris. Computer 29, 12 (Dec. 1996), 78-82.
Uday Bondhugula, Albert Hartono, Jagannathan Ramanujam, and
Ponnuswamy Sadayappan. 2008. A practical automatic polyhedral
parallelizer and locality optimizer. In Acm Sigplan Notices, Vol. 43.
ACM, 101-113.

Gilberto Contreras and Margaret Martonosi. 2008. Characterizing and
improving the performance of Intel Threading Building Blocks. In 4th
International Symposium on Workload Characterization (IISWC 2008),
Seattle, Washington, USA, September 14-16, 2008. 57-66.

Daniel Cordes, Heiko Falk, and Peter Marwedel. 2009. A fast and
precise static loop analysis based on abstract interpretation, program
slicing and polytope models. In Code Generation and Optimization,
2009. CGO 2009. International Symposium on. IEEE, 136-146.
Leonardo Dagum and Ramesh Menon. 1998. OpenMP: an industry
standard API for shared-memory programming. IEEE computational
science and engineering 5, 1 (1998), 46-55.

Azadeh Farzan and Victor Nicolet. 2017. Synthesis of divide and
conquer parallelism for loops. In ACM SIGPLAN Notices, Vol. 52. ACM,
540-555.

Azadeh Farzan and Victor Nicolet. 2019. Modular Synthesis of
Divide-and-Conquer Parallelism for Nested Loops (Extended Version).
arXiv:cs.PL/submit/2613711

Grigory Fedyukovich, Ahmad Maaz Bin Safeer, and Rastislav Bodik.
2017. Gradual Synthesis for Static Parallelization of Single-Pass Array-
Processing Programs. In PLDL

Allan L. Fisher and Anwar M. Ghuloum. 1994. Parallelizing Complex
Scans and Reductions. In Proceedings of the ACM SIGPLAN 1994 Con-
ference on Programming Language Design and Implementation (PLDI
’94). 135-146.

Alfons Geser and Sergei Gorlatch. 1997. Parallelizing Functional Pro-
grams by Generalization. In Proceedings of the 6th International Joint
Conference on Algebraic and Logic Programming (ALP *97-HOA ’97).
46-60.

Jeremy Gibbons. 1996. The Third Homomorphism Theorem. . Funct.
Program. 6, 4 (1996), 657—665.

Sergei Gorlatch. 1996. Systematic Extraction and Implementation of
Divide-and-Conquer Parallelism. In Proceedings of the 8th International
Symposium on Programming Languages: Implementations, Logics, and
Programs (PLILP ’96). 274-288.

Sergei Gorlatch. 1999. Extracting and Implementing List Homomor-
phisms in Parallel Program Development. Sci. Comput. Program. 33, 1

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

PLDI’19, June 22-28, 2019, Phoenix, AZ, USA

(Jan. 1999), 1-27.

Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, and Bjorn
Lisper. 2006. Automatic derivation of loop bounds and infeasible paths
for WCET analysis using abstract execution. In Real-Time Systems
Symposium, 2006. RTSS 06. 27th IEEE International. IEEE, 57-66.
Hwansoo Han and Chau-Wen Tseng. 2001. A comparison of paralleliza-
tion techniques for irregular reductions. In Parallel and Distributed
Processing Symposium., Proceedings 15th International. 27.

W Daniel Hillis and Guy L Steele Jr. 1986. Data parallel algorithms.
Commun. ACM 29, 12 (1986), 1170-1183.

Shachar Itzhaky, Rohit Singh, Armando Solar-Lezama, Kuat Yessenov,
Yongquan Lu, Charles E. Leiserson, and Rezaul Alam Chowdhury.
2016. Deriving divide-and-conquer dynamic programming algorithms
using solver-aided transformations. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2016. 145-164.

Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, and Armando Solar-
Lezama. 2016. Verified Lifting of Stencil Computations. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’16). 711-726.

Arun Kejariwal, Paolo D’Alberto, Alexandru Nicolau, and Constan-
tine D. Polychronopoulos. 2005. A Geometric Approach for Partition-
ing N-dimensional Non-rectangular Iteration Spaces. In Proceedings of
the 17th International Conference on Languages and Compilers for High
Performance Computing (LCPC’04). 102-116.

Emanuel Kitzelmann and Ute Schmid. 2006. Inductive synthesis of
functional programs: An explanation based generalization approach.
Journal of Machine Learning Research 7, Feb (2006), 429-454.

Richard E Ladner and Michael J Fischer. 1980. Parallel prefix computa-
tion. Journal of the ACM (JACM) 27, 4 (1980), 831-838.

K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for
Functional Correctness. In Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR). 348-370.

Claude Marché and Xavier Urbain. 1998. Termination of associative-
commutative rewriting by dependency pairs. Springer Berlin Heidelberg,
Berlin, Heidelberg, 241-255.

Akimasa Morihata and Kiminori Matsuzaki. 2010. Automatic Paral-
lelization of Recursive Functions Using Quantifier Elimination. In Func-
tional and Logic Programming, 10th International Symposium, FLOPS
2010, Sendai, Japan, April 19-21, 2010. Proceedings. 321-336.

Kazutaka Morita, Akimasa Morihata, Kiminori Matsuzaki, Zhenjiang
Hu, and Masato Takeichi. 2007. Automatic Inversion Generates Divide-
and-conquer Parallel Programs. In Proceedings of the 28th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (PLDI ’07). 146-155.

Paliath Narendran and Michaél Rusinowitch. 1991. Any ground
associative-commutative theory has a finite canonical system. Springer
Berlin Heidelberg, Berlin, Heidelberg, 423-434.

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. 2008.
Scalable parallel programming with CUDA. In ACM SIGGRAPH 2008
classes. ACM, 16.

David A. Padua and Michael]J. Wolfe. 1986. Advanced Compiler
Optimizations for Supercomputers. Commun. ACM 29, 12 (Dec. 1986),
1184-1201.

Chuck Pheatt. 2008. Intel® threading building blocks. Journal of
Computing Sciences in Colleges 23, 4 (2008), 298-298.

Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher,
M. Amber Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew
Lenharth, Roman Manevich, Mario Méndez-Lojo, Dimitrios Prountzos,
and Xin Sui. 2011. The Tao of Parallelism in Algorithms. SIGPLAN
Not. 46, 6 (June 2011), 12-25.

Cosmin Radoi, Stephen J. Fink, Rodric Rabbah, and Manu Sridharan.
2014. Translating Imperative Code to MapReduce. In Proceedings of the
2014 ACM International Conference on Object Oriented Programming

https://hal.archives-ouvertes.fr/hal-00017260
https://hal.archives-ouvertes.fr/hal-00017260
http://arxiv.org/abs/cs.PL/submit/2613711

PLDI’19, June 22-28, 2019, Phoenix, AZ, USA

(38

=

[44]

Systems Languages & Applications (OOPSLA °14). 909-927.

Veselin Raychev, Madanlal Musuvathi, and Todd Mytkowicz. 2015.
Parallelizing User-defined Aggregations Using Symbolic Execution.
In Proceedings of the 25th Symposium on Operating Systems Principles
(SOSP *15). 153-167.

Ron Shamir and Dekel Tsur. 1999. Faster subtree isomorphism. Journal
of Algorithms 33, 2 (1999), 267-280.

Calvin Smith and Aws Albarghouthi. 2016. MapReduce Program
Synthesis. SIGPLAN Not. 51, 6 (June 2016), 326—-340.

YN Srikant and Priti Shankar. 2002. The compiler design handbook:
optimizations and machine code generation. CRC Press.

Nicolas Vasilache, Cédric Bastoul, and Albert Cohen. 2006. Polyhe-
dral Code Generation in the Real World. In Proceedings of the 15th
International Conference on Compiler Construction (CC’06). 185-201.
Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, Jose Igna-
cio Gomez, Christian Tenllado, and Francky Catthoor. 2013. Polyhedral
parallel code generation for CUDA. ACM Transactions on Architecture
and Code Optimization (TACO) 9, 4 (2013), 54.

Lenore D. Zuck, Amir Pnueli, Yi Fang, Benjamin Goldberg, and Ying
Hu. 2002. Translation and Run-Time Validation of Optimized Code.
Electr. Notes Theor. Comput. Sci. 70, 4 (2002), 179-200.

Azadeh Farzan and Victor Nicolet

	Abstract
	1 Introduction
	1.1 Modular Parallelization

	2 Motivating Examples
	2.1 Balanced Parentheses
	2.2 Maximum Top-Left Subarray Sum

	3 Notation and Background
	3.1 Sequences and Functions.
	3.2 Model of a loop body

	4 Multidimensional Collections
	4.1 Functions over Multidimensional Collections
	4.2 Multidimensional Homomorphisms

	5 Manufacturing Homomorphisms
	5.1 Homomorphism Lift
	5.2 Memoryless Lift
	5.3 Algorithmic Memoryless Lift

	6 Algorithmic Parallelization
	6.1 Efficient Divide-and-Conquer Solution
	6.2 Incompleteness
	6.3 Parallelization Schema

	7 Join Synthesis
	7.1 Syntax-guided Synthesis of Parallel Join
	7.2 Summarized Loop Synthesis

	8 Automatic Lifting
	8.1 Rewriting Oracle
	8.2 The Algorithm

	9 An extended example
	9.1 Summarizing the loop nest
	9.2 Lifting

	10 Experimental Evaluation
	10.1 Evaluation

	11 Discussion and Future Work
	12 Related Work
	References

