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Abstract
Divide-and-conquer is a common parallel programming
skeleton supported by many cross-platform multithreaded
libraries, and most commonly used by programmers for par-
allelization. The challenges of producing (manually or au-
tomatically) a correct divide-and-conquer parallel program
from a given sequential code are two-fold: (1) assuming that
a good solution exists where individual worker threads exe-
cute a code identical to the sequential one, the programmer
has to provide the extra code for dividing the tasks and com-
bining the partial results (i.e. joins), and (2) the sequential
code may not be suitable for divide-and-conquer paralleliza-
tion as is, and may need to be modified to become a part of
a good solution. We address both challenges in this paper.
We present an automated synthesis technique to synthesize
correct joins and an algorithm for modifying the sequential
code to make it suitable for parallelization when modifica-
tions are necessary. We focus on a class of loops that tra-
verse a read-only collection and compute a scalar function
over that collection. We present theoretical results for when
the necessary modifications to sequential code are possi-
ble, theoretical guarantees for the algorithmic solutions pre-
sented here, and experimental evaluation of the approach’s
success in practice and the quality of the produced parallel
programs.
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1. Introduction
Despite big advances in optimizing and parallelizing compil-
ers, correct and efficient parallel code is often hand-crafted
in a difficult and error-prone process. The introduction of
libraries like Intel’s TBB [39] was motivated by this diffi-
culty and with the aim of making the task of writing well-
performing parallel programs easier for an average program-
mer. These libraries offer efficient implementations for com-
monly used parallel skeletons, which makes it easier for the
programmer to write code in the style of a given skeleton
without having to make special considerations for important
performance factors like scalability of memory allocation or
task scheduling. Divide-and-conquer parallelism is the most
commonly used of these skeletons.

sum = 0;
for (i = 0; i < |s|; i++) {

sum = sum + s[i];
}

Consider the function
sum that returns the sum
of the elements of an ar-
ray of integers. The code
on the right is a sequential loop that computes this function.
To compute the sum, in the style of divide and conquer par-
allelism, the computation should be structured as illustrated
in Figure 1. The array s of length ∣s∣ is partitioned into n+1
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sum(s[0..k1]) sum(s[k1 + 1..k2]) sum(s[kn�1 + 1..kn]) sum(s[kn + 1..|s| � 1])

sum(s[kn�1 + 1..|s| � 1])sum(s[0..k2])

sum(s)

Figure 1: Divide and conquer style computation of sum .

chunks, and sum is individually computed for each chunk.
The results of these partial sum computations are joined
(operator⊙) into results for the combined chunks at each in-
termediate step, with the join at the root of the tree returning
the result of sum for the entire array. The burden of a correct
design is to come up with the correct implementation of the
join operator. In this example, it is easy to quickly observe
that the join has to simply return the sum of the two partial
results. In general, it could be tricky to reformulate an arbi-
trary sequential computation in this style. Recent advances
in program synthesis [2] demonstrate the power of synthesis
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in producing non-trivial computations. A natural question to
ask is whether this power can be leveraged for this problem.

In this paper, we focus on a class of divide-and-conquer
parallel programs that operate on sequences (lists, arrays, or
in general any collection type with a linear traversal itera-
tor) in which the divide operator is assumed to be the default
sequence concatenation operator (i.e. divide s into s1 and
s2 where s = s1 • s2). In Section 4, we discuss how we use
syntax-guided synthesis (SyGuS) [2] efficiently to synthesize
the join operators. Moreover, in Section 7, we discuss how
the proofs of correctness for synthesized join operations can
be automatically generated and checked. This addresses a
challenge that many SyGuS schemes seem to bypass, in that,
they only guarantee the synthesized artifact be correct for the
set of examples used in the synthesis process (or boundedly
many input instances), and do not provide a proof of correct-
ness for the entire (infinite) data domain of program inputs.

A general divide-and-conquer parallel solution is not al-
ways as simple as the diagram in Figure 1. Consider the
function is-sorted(s) which returns true if an array is sorted,
and false otherwise. Providing the partial computation re-
sults, a boolean value in this case, from both sides (of a join)
will not suffice. If both sub-arrays are sorted, the join cannot
make a decision about the sortedness of the concatenated ar-
ray. In other words, a join cannot be defined solely in terms
of the sortedness of the subarrays.

To a human programmer, it is clear that the join re-
quires the last element of the first subarray and the first
element of the second subarray to connect the dots. The
extra information in this case is as simple as remember-
ing two extra values. But, as we demonstrate with an-
other example in Section 2, the extra information required
for the join may need to be computed by worker threads
to be available to the join. Intuitively, this means that

I O

O ⇥ A

loop
sequential

parallelizable
projectionloop

worker threads have to be
modified (compared to the
sequential code) to compute
this extra information in or-
der to guarantee the exis-
tence of a join operator. We
call this modification of the code, lifting 1, for short, after
the identical standard mathematical concept as illustrated in
the diagram above, where A stands for the extra (auxiliary)
information that needs to be computed by the loop.

The necessity of lifting in some cases raises two ques-
tions: (1) does such a lifting always exist? And, (2) can
the overhead from lifting and the accompanying join over-
shadow the performance gains from parallelization? In Sec-
tion 5, we address both questions. The challenge for automa-
tion is to modify the original sequential loop in a way that it
computes enough additional information such that (i) a join
does exist, (ii) the join is efficient, and (iii) the overhead
of lifting is not unreasonably high. We lay the theoretical

1 Not to be confused with lambda lifting or the informal use of it in [24].

foundations to answer these questions, and in Section 6, we
present an algorithm for producing this lifting automatically
that satisfies all aforementioned criteria. In summary, the pa-
per makes the following contributions:

• We present an algorithm to synthesize a join for divide-
and-conquer parallelism when one exists. Moreover,
these joins are accompanied by automatically generated
machine-checked proofs of correctness (Sections 4, 7).

• We present an algorithm for automatic lifting of non-
parallelizable loops (where a join does not exist) to trans-
form them into parallelizable ones (Section 6).

• We lay the theoretical foundations for when a loop is ef-
ficiently parallelized (divide-and-conquer-style), and ex-
plore when an efficient lift exists and when it can be au-
tomatically discovered (Sections 5, 6).

• We built a tool, PARSYNT, and present experimental
results that demonstrate the efficacy of the approach and
the efficiency of the produced parallel code (Section 8).

2. Overview
We start by presenting an overview of our contributions by
way of two examples that demonstrate the challenges of con-
verting a sequential computation to divide-and-conquer par-
allelism and help us illustrate our solution. We use sequences
as linear collections that abstract any collection data type
with a linear traversal iterator.

Figure 2: Second Smallest
m = MAX_INT;
m2 = MAX_INT;
for (i = 0; i < |s|; i++) {

m2 = min(m2, max(m,s[i]));
m = min(m, s[i]);

}

Second Smallest. Con-
sider the loop implemen-
tation of the function
min2 on the right, that re-
turns the second smallest
element of a sequence.
Functions min and max

are used for brevity and can be replaced by their standard
definitions min(a, b) = a < b ? a ∶ b and max(a, b) = a >
b ? a ∶ b. Here, m and m2 keep track of the smallest and the
second smallest elements of the sequence respectively.

m = min(ml, mr)
m2 = min(m2l, m2r)

For a novice, in devising a join for
a divide and conquer paralleliza-
tion of this example, it is easy to
make the mistake of using the incorrect updates illustrated
on the right2.

The correct join operator computes the combined small-
est and second smallest of two subsequences according the
following two equations, where the l and r subscripts distin-
guish the values coming from the left and the right subse-
quences (respectively):

m = min(ml, mr)
m2 = min(min(m2l, m2r),max(ml, mr))

2 A significant percentage of undergraduate students in an elementary algo-
rithms class routinely make this mistake when given this exercise.



We use syntax-guided synthesis, to synthesize the correct
join operators for sequential loops like this one. We use a
template which is based on the code of the loop body with
strategically introduced unknowns to define the state space
of synthesis, and we use homomorphisms to introduce a
sufficient correctness specification for synthesis (more on
this in Section 4) that lends itself to efficient synthesis and
facilitates automatic generation of correctness proofs for the
synthesized code (more on this in Section 7).

Maximum Tail Sum. Consider the function mts that re-
turns the maximum suffix sum of a sequence of integers
(positive and negative). For example, mts([1,−2, 3,−1, 3]) =
5, which is associated to sum of the suffix [3,−1, 3].

mts = 0;
for (i = 0; i < |s|; i++) {

mts = max(mts + s[i], 0)
}

The code on the right il-
lustrates a loop that imple-
ments mts . To parallelize
this loop, the programmer
needs to come up with a correct join operator. In this case,
even the most clever programmer would be at a loss, since
no correct join operator exists. Consider the partial sequence
[1, 3], when joined with two different partial sequences
[−2, 5] and [0, 5]. We have:

mts([1, 3]) = 4

mts([−2, 5]) = 5

mts([1, 3,−2, 5]) = 7

mts([1, 3]) = 4

mts([0, 5]) = 5

mts([1, 3, 0, 5]) = 9

The values of mts for both pairs of partial sequences are the
same, yet, the values of the mts for the two concatenations
are different. If a join function ⊙ exists such that mts(s •
t) = mts(s) ⊙ mts(t), then this function would have to
produce two different results for 4 ⊙ 5 in the two instances
above. In other words, the mts value of the concatenation
is not computable solely based on the mts values of partial
sequences. What is to be done?

At this point, a clever programmer makes the observa-
tion that the loop is not parallelizable in its original form.
She discovers that beyond knowing mts([1, 3]) = 4 and
mts([−2, 5]) = 5, she needs to know that sum([−2, 5]) =
3, in order to conclude that mts([1, 3,−2, 5]) = 7.

mts = 0;
sum = 0;
for (i = 0; i < |s|; i++) {

mts = max(mts + s[i], 0);
sum = sum + s[i];

}

Consider a modifica-
tion of the previous se-
quential loop for mts on
the right. There is an addi-
tional loop variable, sum,
that records the sum of all the sequence elements. In the
sequential loop that computes mts , this is a redundant com-
putation. We call sum an auxiliary accumulator, and the new
loop a lifting of the sequential loop.

sum = suml + sumr

mts = max(mtsr, sumr + mtsl)
The lifted code can now
be parallelized using
the join operator on the
right. For loops like this, the burden of the programmer is

more than just coming up with the correct join implemen-
tation. She has to modify the original sequential code to
make it parallelizable, and then devise the correct join for
the lifted sequential loop. The algorithm presented in Sec-
tion 6 does exactly that. Let us illustrate how the algorithm
discovers the auxiliary accumulator sum.

Consider the general case of computing mts(s) sequen-
tially, where sequence s is of length n. Imagine a point in the
middle of the computation, when the sequence s has been
processed up to and including the index i computing the
value mtsi. We have the following sequence of recurrence-
like equations that represent the first two unfoldings of this
sequential loop starting from index i + 1:

mtsi+1 = max(mtsi+s[i + 1], 0) (1)

mtsi+2 = max(mtsi+1 + s[i + 2], 0)
= max(max(mtsi + s[i + 1], 0) + s[i + 2], 0) (2)

When the (unfolded) computation above starts, the initial
value of mtsi is not available to it, since it is being computed
by a different thread simultaneously. The challenge is to
perform the computation above, without having the value of
mtsi in the beginning, and then adjust the computed value
accordingly once the value becomes available (at join time).
Looking at Equation 1, if the value of s[i + 1] is known to
the join operator, then it can plug values mtsi, s[i + 1], and
0 (a program constant) into the expression on the righthand
side and compute the correct value of mtsi+1. At this stage,
our algorithm (presented in Section 6) conjectures s[i + 1]
as an auxiliary value and + as its accumulator, since it is
actively looking for accumulators to learn, and + appears
next to s[i + 1] in the expression.

Once an auxiliary accumulator is conjectured, the algo-
rithm turns its attention to the next unfolding, namely Equa-
tion 2 to test its conjecture. Here, the unknown mtsi is sitting
one level deeper in the expression. This means that the join
has to perform more steps to compute the value of mtsi+2. It
is easy to see that the depth of mtsi will linearly increase for
mtsi+3 and so on. At this point, the tool decides to use a set
of standard algebraic equalities to rewrite the righthand side
of Equation 2 to a different expression where mtsi appears
at a lower depth, following the insight that the closer it is to
the root, the less the amount of work left to the join opera-
tor. The step by step rewriting of the expression happens as
follows:
mtsi+2 = max(max(mtsi + s[i + 1], 0) + s[i + 2], 0)
= max(max(max(mtsi + s[i + 1], s[i + 1]), 0) + s[i + 2], 0)
= max(max(max(mtsi + s[i + 1] + s[i + 2],

s[i + 1] + s[i + 2]), s[i + 2]), 0)
= max(mtsi + s[i + 1] + s[i + 2],

max(s[i + 1] + s[i + 2], s[i + 2], 0))
= max(mtsi+s[i + 1] + s[i + 2],mts([s[i + 1..i + 2])).

The structure of the expression in the last line provides
a clue to how the parallel computation can be organized.
While one thread is computing mtsi (i.e. mts(s[0..i])),
the second thread computes mts(s[i + 1..i + 2]). To com-
pute the overall value of mts(s[0..i + 2]), the join would



need the partial results mtsi and mts(s[i + 1..i + 2]),
and the value of s[i + 1] + s[i + 2]. The algorithm decides
at this point that s[i + 1] + s[i + 2] is the auxiliary value
that needs to be computed, and realizes that the conjectured
accumulator from the previous round makes this informa-
tion already available. Therefore, not having seen anything
new, it stops and concludes that the auxiliary accumulator
sum = sum + s[k] (where k is the current iteration num-
ber) is the new auxiliary computation required to make the
loop parallelizable.

3. Background and Notation
This section introduces the notation used in the remainder of
the paper. It includes definitions of some new concepts, and
some already known in the literature.

3.1 Sequences and Functions
We assume a generic type Sc that refers to any scalar types
used in typical programming languages, such as int, float,
char, and bool whenever the specific type is not important
in the context. The significance of the type is that scalars are
assumed to be of constant size, and conversely, any constant-
size representable data type is assumed to be scalar in this
paper. Moreover, we assume all operations on scalars to have
constant-time complexity.

Type S defines the set of all sequences of elements of type
Sc. For any sequence x, we use ∣x∣ to denote the length of
the sequence. x[i] (for 0 ≤ i < ∣x∣) denotes the element of
the sequence at index i, and x[i..j] denotes the subsequence
between indexes i and j (inclusive). Concatenation operator
• ∶ S×S → S is defined over sequences in the standard way,
and is associative. The sequence type stands in for many
collection types such as arrays, lists, or any other collection
that admits a linear iterator and an associative composition
operator (i.e. concatenation).

In this paper, our focus is on single-pass computable
functions on sequences (of scalars to scalars). The assump-
tion is that a sequential implementation for the function is
given as an imperative sequential loop. Below, we formally
define what a single-pass computable function is.

Definition 3.1. A function h ∶ S → D is called rightwards
iff there exists a binary operator ⊕ ∶ D × Sc → D such that
for all x ∈ S and a ∈ Sc, we have h(x • [a]) = h(x)⊕ a

Note that the notion of associativity for ⊕ is not well-
defined, since it is not a binary operation defined over a set
(i.e. the two arguments to the operator have different types).

Definition 3.2. A function h ∶ S → D is called leftwards iff
there exists a binary operator ⊗ ∶ Sc × D → D such that
for all x ∈ S and a ∈ Sc, we have h([a] • x) = a⊗ h(x).

Associativity of ⊗ is likewise not well-defined.

e ∈ Exp ∶∶= e○ e
′

e, e
′
∈ Exp

∣x ∣ k x ∈ Var, k ∈ Z
∣s[e] s ∈ SeVar, e ∈ Exp
∣if be then e else e

′

Expressions

be ∈ BExp ∶∶= e< e
′

e, e
′
∈ Exp

∣be ⋏ be′∣¬be be, be
′
∈ BExp

∣t[e] t ∈ BSVar, e ∈ Exp
∣true ∣ false

Boolean Exps

Program ∶∶= c; c
′

c, c
′
∈ Program

∣x:=e x ∈ Var, e ∈ Exp
∣b:=be b ∈ BVar, be ∈ Exp
∣if(e){c}else{c′} be ∈ Exp, c, c

′
∈ Program

∣for(i ∈ I){c} i ∈ Iterator

Figure 3: Program Syntax . The binary ○ operator represents
any arithmetic operation (+,−,∗, /), < operator represents any
comparator (<,≤,>,≥,=,≠). I is an iteration domain, and ⋏
operator represents any boolean operation (∧,∨).

Definition 3.3 (Single-Pass Computable). Function h ∶
S → D is single-pass computable iff it is rightwards or
leftwards.

3.2 Homomorphisms
Homomorphisms are a well-studied class of mathematical
functions. In this paper, we focus on a special class of homo-
morphisms, where the source structure is a set of sequences
with the standard concatenation operator.

Definition 3.4. A function h ∶ S → D is called ⊙-
homomorphic for binary operator ⊙ ∶ D × D → D iff
for all sequences x, y ∈ S we have h(x•y) = h(x)⊙h(y).

Note that, even though it is not explicitly stated in the def-
inition above, ⊙ is necessarily associative on D since con-
catenation is associative (over sequences). Moreover, h([])
(where [] is the empty sequence) is the unit of ⊙, because
[] is the unit of concatenation. If ⊙ has no unit, that means
h([]) is undefined. For example, function head(x), that re-
turns the first element of a sequence, is not defined for an
empty list. head(x) is ⊛-homomorphic, where a ⊛ b = a
(for all a, b) but ⊛ does not have a left unit element.

3.3 Programs and Loops
For the presentation of the results in this paper, we assume
that our sequential program is written in a simple imperative
language with basic constructs for branching and looping.
We assume that the language includes scalar types int and
bool, and a collection type seq. The syntax of our input pro-
grams is illustrated in Figure 3. We forego a semantic defini-
tion since it is standard and intuitively clear. For readability,
we use a simple iterator and an integer index (instead of the
generic i ∈ I), and use the standard array random access
notation a[i] to refer to each element of a collection type. In
principle, any collection with an iterator and a split function
(that implements inverse of concatenation) works. There has
been a lot of research on iteration spaces and iterators (e.g.



[51] in the context of translation validation and [25] in the
context of partitioning) that formalize complex traversals by
abstract iterators.

State and Input Variables. Every variable that appears on
the lefthand side of an assignment statement in a loop body
is called a state variable, and the set of state variables is
denoted by SVar. Every other variable is an input variable,
and the set of input variables is denoted by IVar. The se-
quence that is being read by the loop is considered an input
variable, since it is only read and not modified. Note that
SVar ∩ IVar = ∅.

Model of a Loop Body
We introduce a formal model for the body of a loop which
has no other loops nested inside it. The loop body, therefore,
consists of assignment and conditional statements only.

Let SVar = {s1, . . . , sn}. The body is modelled by a
system of (ordered) recurrence equations E = ⟨E1, . . . En⟩,
where each equationEi is of the form si = expi(SVar, IVar).

Remark 3.5. Every non-nested loop in the program model
in Figure 3 can be modelled by a system of recurrence
equations (as defined above).

This can be achieved through a translation of the loop body
from the imperative form to the functional form. In [15], we
include a description of how this can be done, but also re-
fer the interested reader to [3, 26] for a more complete ex-
planation. The essence of this translation, which is through
transformation of conditional statements into conditional ex-
pressions, is illustrated in the example below.

m = MAX_INT;
m2 = MAX_INT;
for (i = 0; i < |s|; i++) {

if m > s[i] then
if m2 > m then m2 = m;

else
if m2 > s[i] then m2 = s[i];

if m > s[i] then m = s[i];
}

Example 3.6. Consider
the long version of the
second smallest example
from Section 2 on the
right, where the auxiliary
functions min and max

are replaced with their definitions as conditional statements
and where the code complies with the syntax in Figure 3.

m2 = if m2 < (if m > s[i] then m else s[i])
then m2
else (if m > s[i] then m else s[i]);

m = if m < s[i] then m else s[i];

The loop body
is then mod-
elled by re-
currence equa-
tions on the right, through the transformation of the condi-
tional statements above into the assignment statements that
use conditional expressions (if be then e else e′).

4. Synthesis of Join
The premise of this section is that the sequential loop under
consideration is parallelizable, in the sense that a join op-
eration for divide-and-conquer parallelism exists. We use a
system of recurrence equations E in the style of Section 3.3
to model the body of a loop for all formal and algorithmic
developments in this paper, and therefore, we use the term
loop body to refer to E whenever appropriate.

4.1 Parallelizable Loops
We start by formally defining when a loop is paralleliz-
able. This is intuitively related to when the computation per-
formed by the loop body is a homomorphic function. First,
we define a function fE that models E (the body of the
loop). The reader who is not interested in the details can fast-
forward to Definition 4.1 with an intuitive understanding of
function fE .

Let the system of recurrence equations E = ⟨s1 =

exp1(SVar, IVar), . . . , sn = expn(SVar, IVar)⟩ represent
the body of a loop. Let IVar = {σ, ι, i1, . . . , ik} where σ
is the sequence variable, and ι is the current index (which
we assume to be an integer for simplicity) in the sequence,
and i⃗ = ⟨i1, . . . , ik⟩ captures the rest of the input variables
in the loop body. Let I be the set of all such k-ary vectors.

For a loop body E, define function fE = f1 � f2 �
. . . � fn, where each fi ∶ S× int ×I → type(si) is a func-
tion such that fi(σ, ι, i⃗) returns the value of si at iteration ι
with input values σ and i⃗. It is, by definition, straightforward
to see that ⟨f1(σ, ι, i⃗), . . . , fn(σ, ι, i⃗)⟩ represents the state of
the loop at iteration ι.

Definition 4.1. A loop, with body E, is parallelizable iff fE
is ⊙-homomorphic for some ⊙.

Definition 4.1 basically takes the encoding of the loop as
a tupled function, and declares the loop parallelizable if this
tupled function is homomorphic. It is important to note that
parallelizable here is not used in the broadest sense of the
term. It is limited to the particular scheme of divide-and-
conquer parallelism where the divide operator is the inverse
of concatenation.

4.2 Syntax-Guided Synthesis of Join
We use syntax-guided synthesis (SyGuS)[2] to synthesize
the join operator for parallelizable loops. The goal of pro-
gram synthesis is to automatically synthesize a correct pro-
gram based on a given specification. SyGuS is an emerg-
ing field with several existing solvers. The task of the user
of these solvers is to define (1) a correctness specification
for the program to be synthesized, and (2) provide syntactic
constraints that define the state space of possible programs
(mainly for tractability). In this section, we describe what
the correctness specification and syntactic constrains that we
use. Beyond that, the specific design of these two elements,
this work does not make any new contributions to SyGuS.

Note that we focus on synthesizing binary join operators
in this paper. The restriction is superficial, in the sense that
any other statically fixed number would work. And, it is not
hard to imagine an easy generalization to a parametric join.

Correctness Specification
The homomorphism definition 3.4 provides us with the cor-
rectness specification to synthesize a join operator ⊙ for a
loop body E (or rather fE to be precise). In case of the
specific SyGuS solver used in this paper (and many others



similar to it), a bounded set of possible inputs are required,
and therefore, the correctness specification is formulated on
symbolic inputs of bounded length K. A join⊙ is a solution
of the synthesis problem if for all sequences x, y of length
less than K, we have fE(x • y) = fE(x)⊙ fE(y).

There is a tension between having a small enough K for
the solver to scale, and having a large enough K for the
answer to be correct for inputs that are larger than K. We
use small enough values for the solver to scale, and take care
of general correctness by automatically generating proofs of
correctness (see Section 7).

Syntactic Restrictions
The syntactic restrictions are defined through a pair of a
sketch and a grammar for expressions. A sketch is a partial
program containing holes (i.e. unknown values) to be com-
pleted by expressions in the state space defined by the gram-
mar. The sketch is an ordered set of equations E = ⟨s1 =
exp1(SVar, IVar), . . . , sn = expn(SVar, IVar)⟩. Intuitively,
it is produced from the loop body by replacing occurrences
of variables and constants by holes. Note that the inputs to
a join are the results produced from two worker threads, to
which, we refer as left and right threads. To contain the state
space of solutions described by this sketch, we distinguish
two different types of holes.

Left holes ??LR are holes that can be completed by an
expression over variables from both the left and the right
threads. Right holes ??R will be filled with expressions over
variables from the right thread only.
We define a compilation function C as

C (c) = ??R

C (x) = { ??R if x ∈ IVar
??LR if x ∈ SVar

C (x[e]) = ??R
C (op(e1, .., en)) = op (C(e1), ..., C(en))

where e is an expression, op is an operator from the input
language, x is a variable, and c is a constant. The sketch for
the join code will then be
C(E) = ⟨s1 = C(exp1(SVar, IVar)), . . . , sn = C(expn(SVar, IVar))⟩

where each hole in C(expi) (1 ≤ i ≤ n) can be completed
by expressions in a predefined grammar that is suitable for
a given class of programs. For the experiments in this paper,
the grammar in Figure 4 is used, where the expression depth
d is gradually increased until a solution is found.

m2 = min(??LR, max(??LR, ??R));
m = min(??LR, ??R);

Example 4.2.
Consider the
second smallest
example from Section 2. The sketch (for the code in Figure
2) is illustrated on the right. It is clear that the join presented
in Section 2 can be simply discovered using this Sketch
when the unknowns are filled by instances of state variables.

4.3 Efficacy of Join Synthesis
Syntactic limitations imposed for scalability in SyGuS run
the risk of leaving a correct candidate out of the search space.

ne0 ∶∶= x ∣ c x ∈ nV ars, c a numeric constant
ned>0 ∶∶= ned−1 ⊕ ned−1 ∣ − ned−1

∣ if (bed−1) ned−1 else ned−1

be0 ∶∶= b ∣ true ∣ false b ∈ bV ars
bed>0 ∶∶= bed−1 ∧◯ bed−1 ∣ ¬bed−1

∣ ned−1 < ned−1
∣ if (bed−1) bed−1 else bed−1

⊕ ∶= +,−,min,max,×,÷ binary numeric
< ∶= >,>=,<,<=,= comparisons
∧◯ ∶= ∧,∨ binary boolean

Figure 4: Grammar of expressions used for ??LR and ??R holes.
ned and bed correspond to expressions of depth up to and equal to
d. nVars and bVars stand for numeric and booleans variables.

To characterize the scope of expressivity of our compilation
function C, we provide formal conditions under which the
synthesis approach of Section 4.2 is successful in discover-
ing a correct join. This also facilitates a comparison of our
join synthesis with the parallelization approach of [34].

Definition 4.3. Function g is a weak right inverse of func-
tion f iff f ◦ g ◦ f = f .

Each function may have many weak right inverses. Intu-
itively, g produces a sequence s′ (out of a result r = f(s))
such that f(s′) = r = f(s). Therefore, s′ (if much shorter
than s) can be viewed as a summary of s with respect to the
computation of f on s. In [34], this very notion of a weak
right inverse is used to produce parallel implementations of
functions. It is required that g’s output is bounded or equally
that s′ is always a constant length sequence (i.e. independent
of ∣s∣). Our join synthesis is also guaranteed to succeed un-
der the same assumption. Note that, however, in contrast to
[34], we do not require both left and right implementations
of the function as input, and either one alone suffices.

Proposition 4.4. If the loop body E is parallelizable and
the weak right inverse of fE is constant time computable
(that guarantees that it returns a list of bounded length), then
there is a ⊙ in the space described by the sketch of E such
that fE is ⊙-homomorphic.

Proposition 4.4 (see [15] for a proof sketch) provides us
with the guarantee that under the conditions given, the state
space defined for the join, through the sketch compilation
function C does not miss an existing solution. Note that the
compilation function C maintains the structure of the ex-
pressions when it compiles a sketch (Remember Example
4.2). When the weak inverse is constant-time computable,
the third homomorphism theorem [19] guarantees that a so-
lution faithful to this structure exists. The computation of
the weak inverse itself is done through the plugged expres-
sions for the unknowns ??L and ??LR where a fully generic
grammars as illustrated in Figure 4 is used, that includes all
possible constant-time computations at an appropriate depth.

Proposition 4.4 characterizes only a subset of functions,
for which join synthesis succeeds. There are many (simple)



functions whose weak right inverse is not bounded, where
a join is successfully synthesized. For example, function
length is a simple example, where the weak right inverse
always has to be a list of the same length as the original list
(which would lead to an inefficient parallel implementation).
If join synthesis fails, our tool un-constrains the compiled
sketch to include more expressions gradually until a join
is found. In practice, this was not necessary for any of our
benchmarks. In Section 6.3, we comment on how some
feedback from the algorithm presented in Section 6.1 helps
with constructing an effective sketch when generalization
beyond the sketch compilation function C may be required.

5. Parallelizability
The mts (maximum tail sum) example from Section 2
demonstrates that a loop is not always parallelizable. Here
(and later in Section 6), we discuss how a loop can be lifted
to become parallelizable.

5.1 Homomorphisms and Parallelism
A strong connection between homomorphisms and paral-
lelism is well-known [18, 20, 34], specifically that, homo-
morphic functions admit efficient parallel implementations.

Theorem 5.1 (First Homomorphism Lemma [9]). A func-
tion h ∶ S → Sc is a homomorphism if and only if h can be
written as a composition of a map and a reduce operation.

The if part of Theorem 5.1 basically states that a ho-
momorphism has an efficient parallel implementation, since
efficient parallel implementations for maps and reductions
are known. The only if part is equally important, because
it indicates that a large class of simple and easy to formu-
late parallel implementations of functions ought to be homo-
morphisms. Theorem 5.1 gives rise to an important research
question: If a function is not a homomorphism, can the se-
quential code be modified (lifted) so that it corresponds to
a homomorphic function to facilitate easy parallelization? In
Section 6, we answer the question in the affirmative. But first
in this section, we argue why this lifting should be done care-
fully to maintain performance advantages of parallelization.

Non-homomorphic Functions. There is a simple observa-
tion, which was made in [21] (and probably also in earlier
work), that every non-homomorphic function can be made
homomorphic by a rather trivial lifting:

Proposition 5.1. Given a function f ∶ S → Sc, the function
f � ι is ⟐-homomorphic where

ι(x) = x ∧ (a, x)⟐ (b, y) = f(x • y)

Operation� denotes tupling of the two functions in the stan-
dard sense f � g (x) = (f(x), g(x)). Basically, the ι com-
ponent of the tuple remembers a copy of the string that is be-
ing processed and the partial computation results f(x) and
f(y) are discarded by ⟐, which then computes f(x • y)

from scratch. It is clear that a parallel implementation based
on this idea is less efficient than the sequential implementa-
tion of f . Therefore, just making the function homomorphic
will not result in a good solution for parallelism. Next, we
identify a subset of homomorphic liftings that are computa-
tionally efficient.

5.2 Computationally Efficient Homomorphisms
Let us assume that f ∶ S → D is a single-pass linear time
computable (see Definition 3.3) function and elements of D
are tuples of scalars. The assumption that the function is
linear time comes from the fact that we target loops without
any loops nested inside, which (by definition) are linear-time
computable (on the size of their input sequence).

Consider the (rightwards) sequential computation of f
that is defined using the binary operator ⊗ as follows:

f(y • a) = f(y)⊗ a

where a ∈ Sc, f ∶ S → D, and ⊗ ∶ D × Sc → D. The
fact that f is single-pass linear time computable implies that
the time complexity of computing f at every step (of the
recursion above) is constant-time. Let f ′ be a lifting of f
that is ⊙-homomorphic (for some ⊙).

Proposition 5.2. The (balanced) divide-and-conquer imple-
mentation based on f ′ has the same asymptotic complexity
as f (i.e. linear time) iff the asymptotic complexity of ⊙ is
sub-linear (i.e o(n)).

The simplest case is when ⊙ is constant time. We call
these constant homomorphisms for short. Note that the syn-
thesis routine presented in Section 4 synthesizes constant
time join operators exclusively. In the next section, we
present an algorithm that lifts a non-homomorphic function
to a constant homomorphism if one exists.

Let us briefly consider the super-constant yet sub-linear
case for joins, to justify why this paper only focuses on
the constant-time joins and ignores the super-constant joins.
Based on the definition of homomorphism, we know:

f
′([x1, . . . xn]) = f ′([x1, . . . xk])⊙ f

′([xk+1, . . . xn])

For⊙ to be super-constant in n, f ′([x1, . . . xk]) (respec-
tively, f ′([xk+1, . . . xn])) has to produce a super-constant
size output. Constant size inputs (to ⊙) cannot yield super-
constant time executions. Since the output of f is assumed to
be constant size (scalars and tuples of them are by definition
constant size), the output to f ′ is super-constant only due to
the additional auxiliary computation that makes f ′ a homo-
morphism, but is not part of the sequential computation of
f . We believe the automatic discovery of auxiliary informa-
tion of this nature can be a fundamentally hard problem. The
sub-linear (super-constant) auxiliary information is often the
result of a clever algorithmic trick that improves over the
trivial linear auxiliary (i.e. remembering the entire sequence
as was discussed in Proposition 5.1). The field of efficient



data streaming algorithms [1, 4] includes a few examples of
such clever algorithms. Join synthesis can be adapted to han-
dle such cases if the auxiliary information is available. How-
ever, since discovery of super-constant auxiliary information
is a necessary step for automation, and extremely difficult to
do automatically, we only target constant homomorphisms
in this paper.

6. Synthesizing Parallelizable Code
Let us assume that the synthesis of the join operator from
Section 4.2 fails. The reason could be that either (1) the
function is not a homomorphism, or (2) the function is a ho-
momorphism, but syntactic restrictions for synthesis exclude
the correct join operator. We deal with case (1) by proposing
an algorithm that lifts the function to a homomorphism by
adding new computation to the loop body, and briefly com-
ment on case (2) in Section 6.3.

6.1 The Algorithm

bal = true;
ofs = 0;
for (i = 0; i < |s|; i++) {

if s[i] == ’(’ then
ofs = ofs + 1;

else
ofs = ofs - 1;

bal = bal && (ofs >= 0);
}

In Section 2, we used the
mts example to show how
inspecting unfoldings of
the computation could re-
sult in the discovery of dis-
covery of the auxiliary ac-
cumulator sum . There, the
intuitive idea was to inspect expressions computing mts val-
ues to find an equivalent expression where the unknown ap-
peared at a lower depth. Here, we use a new example, to in-
troduce our algorithm, and provide insight for why the algo-
rithm goes beyond just lowering the depth of the unknowns.
The code above corresponds to a sequential loop that checks
if an input string is a balanced sequence of parentheses. The
integer variable ofs (for offset) keeps track of the differ-
ence in the number of open and closed parentheses seen so
far, and the boolean variable bal maintains the status of bal-
ancedness of prefix read so far. At the end of the loop, the
string is balanced if ofs = 0 ∧ bal = true .

If the loop only consisted of ofs, then it would corre-
spond to a homomorphism. It is easy to see that ofs(x•y) =
ofs(x) + ofs(y). The same is not true for bal. If x is bal-
anced and y is not, then x • y could be balanced (or not).
To determine this, information beyond the boolean values of
bal and the integer values of ofs for x and y is required.

Let us see how our algorithm discovers the required auxil-
iary information. Consider breaking the sequential computa-
tion of the above code into two threads as illustrated in Fig-
ure 5. The value of ⟨ofs, bal⟩(s[0..k]) (illustrated in red),
that is the result of the computation on the left, will not be
known to the computation on the right when it is needed
at the very beginning. This dependency is the killer of par-
allelism. The idea behind Algorithm 1 is to see if we can
rearrange the computation on the right so that it can be per-
formed with a constant known initial value, instead of the

···

hofs, bali(s[0])

hofs, bali(s[0..k]) hofs, bali(s[0..|s| � 1])

hofs, bali([])

hofs, bali(s[0..k � 1]) hofs, bali(s[0..|s| � 2])

···
s[0]

s[k] s[|s| � 1]

hofs, bali([0..k])

s[k + 1]

hofs, bali(s[0..k + 1])

Figure 5: Sequential computation broken into two threads.

unknown ⟨ofs, bal⟩(s[0..k]). Then at the end, when the val-
ues become known (through the left thread), the join opera-
tor would adjust the result based on this known value.

Algorithm 1 illustrates our main algorithm. The algo-
rithm (in function Lift()) inspects each state variable sep-
arately to see if its divide-and-conquer computation re-
quires introduction of new auxiliary accumulators (by call-
ing Solve()). In our example, the algorithm discovers that
ofs requires no new auxiliary accumulators, but bal does.

In function Solve(), it starts simulating the loop from an
arbitrary state ⟨s00, . . . , s0n⟩, mirroring the arbitrary break in
Figure 5 where the red value is swapped with this arbitrary
initial state. The while loop then iteratively unfolds the ex-
pression in the style of Equations 1 and 2 in Section 2 for
the mts example. ‘unfold’ (in Algorithm 1) computes the k-
th unfolding, for a given k. Let us focus on bal, which is the
problematic part of the loop state, and consider the first few
unfoldings of the computation of the right hand side thread.
The first step is as follows:

bal(s[0..k + 1]) = bal(s[0..k]) ∧ (ofs(s[0..k + 1]) ≥ 0)
= bal(s[0..k]) ∧
ofs(s[0..k]) + ofs([s[k + 1]]) ≥ 0

using the equality ofs(x • y) = ofs(x) + ofs(y). The
final expression above has both its unknown (red) values
at the optimal depth in the expression tree, and does not
seem to require any auxiliary information to compute it once
the unknowns become knowns3. Let us look at the next
unfolding (using the result of the first step above):

bal(s[0..k + 2]) = bal(s[0..k + 1]) ∧ (ofs(s[0..k + 2]) ≥ 0)
= [bal(s[0..k]) ∧

(ofs(s[0..k]) + ofs([s[k + 1]])) ≥ 0] ∧
[ofs(s[0..k]) + ofs(s[k + 1..k + 2]) ≥ 0]

Now, an alarming pattern seems to emerge. The number
of occurrences of the unknown ofs(s[0..k]) has doubled,
and to compute the expression once it is known, one needs to
store the intermediate result for ofs([s[k + 1]]) to use. Intu-
itively, it is clear that with 3 or more unfoldings, the pattern
continues: the number of unknowns are arbitrary replicated,

3 To be fully accurate, the algorithm guesses an auxiliary accumulator here
which will later be declared to be redundant since it is effectively ofs.



Algorithm 1: Homomorphic Lifting Computation
Data: A set of recurrence equations E
Result: A set of recurrence equations E ′

Function Lift(E)
E
′
← ∅;

for each si = expi in E (in order) do
if Solve(“si = exp

′′
i) = null then

report failure
else

E
′
← E

′∪Solve(“si = exp
′′
i);

return E ′;
Function Solve(s = Exp(SVar, IVar))

Initially k = 1, Aux = ∅, σ0 = ⟨s00, . . . , s0n⟩
while Aux /= OldAux do

OldAux← Aux ;
τ ← unfold(σ0, s, E, k);
`← Normalize(τ, E);
if ` = empty then

return empty ;
E ← collect(`,SVar);
for each e in E do

if e already covered by something in Aux
then

Add the accumulator and continue
else

Create a new variable in Aux, with
expression e.

k ← k + 1;
Aux← remove-redundancies(Aux);
return Aux;

Function Normalize(τ, E)
Output: A set of expressions {e1, . . . , ek, e} such

that τ = f(e1, . . . , ek, e), each ei has
exactly one occurrence of a state variable
at depth 1.

and all intermediate values of ofs([s[k + 1..k +m]])) need
to be stored (for all 1 ≤ m ≤ n − k − 1 ), to retain the
ability to compute the total bal at the end. This leads us to
the second principle that we use in rearranging these expres-
sions, namely reducing the number of occurrences of the un-
knowns. Using the last algebraic rule in Figure 6, the above
expression can be rewritten as:

bal(s[0..k + 2]) = bal(s[0..k]) ∧
[ofs(s[0..k]) ≥ max(−ofs([s[k + 1]])),−ofs(s[k + 1..k + 2])]

This solves the problem. Instead of having to remember
all intermediate values of ofs([s[k + 1..k +m]])), the loop
can just remember the maximum value of their negations.
This can be added as an auxiliary accumulator to the sequen-
tial loop to lift it to a homomorphism. Algorithm 1 finds the
equivalent expression above through the call to ‘normalize’,
which is the most important step of the algorithm. The de-
tails of normalization are explained in the next section.

‘normalize’ takes the unfolded expression and returns an
equivalent expression of the form exp(e1, . . . , em, e) where
e only refers to the input variables and each ei is an expres-
sion of the form illustrated in the inset, where v is a state
variable. The intuition is that other than the occurrences of

input
variables

v

⌦the state variables (which is the
unknown), the remainder of ei
needs to captured by an aux-
iliary accumulator and made
available to the join operator.
In our example, we would have m = 2, e = true ,
e1 = bal(s[0..k]), and e2 = ofs(s[0..k]) ≥

max(−ofs([s[k + 1]])),−ofs(s[k + 1..k + 2]). This
leads to max(−ofs([s[k + 1]])),−ofs(s[k + 1..k + 2])
being conjectured as an auxiliary accumulator from e2, and
nothing to be conjectured from e1. Finally, ‘collect’ gathers
these ei’s in E . For each ei, we check if it can be assembled
using existing auxiliary accumulators in Aux. If it can, the
algorithm moves on. If no, a new auxiliary variable and
accumulator is added. The while loop continues until no
new auxiliaries are discovered.

Normalization
The most complex step of Algorithm 1 is the task performed
by ‘normalize’. The description of ‘normalize’ in Algorithm
is intentionally left as a functional specification only, without
an implementation. This abstract version of normalize is
assumed to always succeeds when the appropriate auxiliary
accumulator exist. This is based on the simple idea that if the
algebraic rules needed for simplification/manipulation of the
expression are given, and effective strategy exists to explore
the state space of expressions defined by these rules, then
an existing expression in the space will always be found. We
assume this idealized version of normalize to propose a crisp
completeness theorem in Section 6.2.

The existence of an effective and efficient implementation
(to replace this idealized version) depends on the given ex-
pression, operators that appear in it, and the algebraic equal-
ities that hold for those operators. There has been a lot of
research in the area of rewrite systems [29, 30, 35] that can
inspire several heuristics for normalization. The problem can
also be formulated using standard syntax-guided synthesis,
although we suspect that this solution will not scale well
since (in addition to standard scalability problems in SyGuS)
non-linearity can easily be introduced, even in simple cases.

The main complication in a search for an equivalent ex-
pression (of a given form) is that the state space for this
search can be infinite, with no particular structure to guide a
finitary search. We propose a heuristic normalization proce-
dure that utilizes a cost function to enforce a finitary search.
The heuristic is simple and yet seems to work well (effi-
ciently and effectively) for the benchmarks in this paper. Be-
low, depe(v) is the depth of the deepest occurrence of v and
occe(v) is the number of occurrences of v in expression e.



Cost-directed rewrite rules (apply the rule only if it reduces
the cost of the expression):
a⊙ b → b⊙ a
(a⊙ b)⊙ c → a⊙ (b⊙ c)
(a⊙ b)⊗ c → (a⊗ c)⊙ (b⊗ c)
(c ? x ∶ y)⊙ z → c ? (x⊙ z) ∶ (y ⊙ z)
c1 ? (c2 ? x ∶ y) ∶ z → c1 ∧ c2 ? x ∶ (¬c2 ? y ∶ z)
¬(a ∧ b) → (¬a) ∨ (¬b)
−(a + b) → (−a) − b
a > c ∨ b > c → max(a, b) > c
c > a ∧ c > b → c > max(a, b)

Figure 6: ⊙ and ⊗ stand in for the appropriate arithmetic
ones. For brevity, we only include one rule from each alge-
braic equality omitting the symmetric versions from the list.
Definition 6.1. The cost function CostV ∶ exp → Int ×
Int assigns to any expression e, a pair (d, n) where d is
Max v∈V depe(v), and n is ∑v∈V occe(v).

The process of normalization can be formalized by a set
of rewrite rules R that are derived from a set of standard
algebraic equalities that hold for the operators appearing in
the program text. Each algebraic equality gives rise to two
rewrite rules (one for each direction of the equality). Figure
6 includes instances of the rules that we use in our imple-
mentation. Given a set of algebraic rules R, we define the
cost minimizing normalization procedure as the successive
application of rewrite rules in R in order to reduce an ex-
pression to an equivalent expression with minimal cost. The
algorithm is a standard cost-driven search algorithm. Evalua-
tion of this algorithm (with the set of rules provided in Figure
6) in Section 8 demonstrates that despite its simplicity, it is
fast and effective in finding the fruitful normal forms. It fails
to infer only 1 auxiliary accumulator (among 15), and the
reason for that is the shortcoming of the set of rewrite rules
in dealing with conditional statements. The algebraic rules
regarding conditionals in Figure 6 can only normalize light
instances of conditionals. Devising a sophisticated heuristic
normalization is a topic of interest for future work.

Soundness of Algorithm 1
The following Proposition formally states the correctness
of Algorithm 1. Note that in all formal statements about
Algorithm 1, we assume the idealized version of ‘normalize’
as illustrated in Algorithm 1.

Proposition 6.2. If Algorithm 1 terminates successfully and
reports no new auxiliary variables, then the loop body cor-
responds to a ⊙-homomorphic function (for some ⊙). If it
terminates successfully and discovers new auxiliary accu-
mulators, then the lifted loop body augmented with them cor-
responds to a ⊙-homomorphic function (for some ⊙).

6.2 Completeness
Here, we formally discuss when Algorithm 1 can be ex-
pected to terminate and successfully generate a divide and
conquer parallelization of the sequential loop.

Existence of Constant Homomorphic Liftings
First, independently of any algorithm, we deliberate on the
question of existence of an efficient solution. A constant ho-
momorphic lifting includes constantly many constant size
auxiliary variables (see Section 5.2). Remember that lifting
the loop to a homomorphism with a single linear-size auxil-
iary variable (Proposition 5.1) is always possible.

Theorem 6.1. If f is leftwards and rightwards linear time,
then there exists a binary operator⊙ and a⊙-homomorphic
lifting of f that is a constant homomorphism.

Theorem 6.1 reduces the existence of a constant homo-
morphic lifting to the fact that function f can be computed
in single-pass linear-time both leftwards and rightwards on
a sequence. Note that this condition is strictly stronger than
a function being leftwards and rightwards computable. A
function could be sing-pass linear-time computable in one
direction, and yet more expensive to compute in the opposite
direction on the sequence. In [38], the problem of language
recognition of a string that is divided between two agents
is discussed, and a complexity argument is provided that a
restriction to a single-pass (in a certain direction) could in-
crease the time complexity exponentially. Here, we provide
a simple example to pass the intuition on to the reader.

Remark 6.3. Let hn ∶ {0, 1}∗ → bool be defined as
hn(w) = true iff w[n] = 1 (i.e. the n-th letter). h is right-
wards but not leftwards linear time computable in n.

For a function like h, there does not exist a constant homo-
morphic lifting.

Proposition 6.4. If a function h is not leftwards (rightwards)
linear-time computable, then there exists no homomorphic
lifting of h that is linear-time computable.

This is a simple consequence of the Third Homomor-
phism Theorem [19]. A homomorphism naturally induces a
leftwards and a rightwards function. Existence of a constant
homomorphic lifting would imply that the function should
be single-pass linear-time computable leftwards and right-
wards which is a contradiction.

Corollary 6.5. There exists a linear time loop for which
there does not exist a linear time homomorphic lifting.

This corollary is significant, because it implies that not
every simple sequential loop (i.e. one that models a single-
pass linear-time computable function) necessarily has a con-
stant homomorphic lifting.

Completeness of the Algorithm
Since not every single-pass linearly computable function can
be lifted into a constant homomorphism, we can conclude
that there exists no algorithm that is complete for the entire
class of these function. It remains to determine how ‘com-
plete’ Algorithm 1 is, for those that can be lifted to constant



homomorphisms (see Theorem 6.1). First, we characterize
what such a constant homomorphic lifting looks like.

Theorem 6.2. For a function f , if there exists a constant
⊙-homomorphic lifting f � g, then there exists a ⊛-
homomorphic lifting where

(f(x), g(x))⊛ (f(y), g(y)) =
(exp(f(x), f(y), g(y)), exp ′(f(x), g(x), f(y), g(y)))

that is, the value of f(x • y) component of the join does not
depend on g(x).

Theorem 6.2 is very significant. It is the key in the com-
pleteness argument for Algorithm 1. The way the algorithm
operates is that it tries to discover exp(f(x), f(y), g(y))
through the unfoldings of f(x•y), and does not have access
to g(x). To make any claims about completeness of Algo-
rithm 1, one has to argue that it is sufficient to look at f(x),
f(y), and g(y) and not g(x).

Theorem 6.3 (Completeness). If there exists a constant ho-
momorphic lifting of the loop body E, then there is a finite
set of algebraic rules R, and a run of Algorithm 1 where the
algorithm succeeds in discovering this lifting.

Note that completeness is contingent on the availability of a
sufficient set of algebraic rules and an effective search strat-
egy that would lead to the correct candidate. Theorem 6.3
guarantees the existence of the rules and the reachability of
the candidate through them. However, any efficient heuristic
for this search may incur incompleteness by foregoing part
of the search space in the interest of (fast) convergence, since
the problem is known to be undecidable [12] under certain
conditions for the set of algebraic rules.

6.3 Feedback to Join Synthesis
There is an important observation that Algorithm 1 includes
information that can be helpful to join synthesis. When Al-
gorithm 1 terminates successfully and discovers no new aux-
iliary accumulators, it certifies the loop as a homomorphic
function (Proposition 6.2). If join synthesis has previously
failed to synthesize a join for this loop, the conclusion is that
syntactic restrictions for join must have been too strict. In
this instance, the normalized expression used for the discov-
ery of the accumulators contains hints about the shape of the
join operator, and these hints can be used for re-instantiating
join synthesis. These hints are structure information (i.e. a
template for the expression tree) that can be extracted from
exp(e1, . . . , em, e), the result of ‘normalize’. This expres-
sion provides a recipe for how partial results (for bounded
unfoldings) can be combined at join time, and therefore, can
be used as a cheat sheet for devising a join sketch. In our
benchmarks, join synthesis succeeded on all instances and
this trick was never used.

7. Correctness of the Synthesized Programs
We use a SyGus solver that relies on bounded checks to
synthesize join operators, and therefore, correctness of the
synthesized join is not guaranteed for all input sequences. In
this section, we discuss a heuristic scheme to generate proofs
of correctness for the general case automatically. Automatic
verification of code is known to be a hard problem. Full
automation often comes at the cost of incompleteness. The
method presented here is no exception to this rule. The claim
is that based on a few key observations, the boundaries of
automation can be extended to include many of the typical
benchmarks that are in scope for this work.

We use an example to introduce our automated proof
construction scheme. Let us assume that we want to verify
the correctness of the join operator synthesized to parallelize
the mts example. We use Dafny [28] program verifier to
encode and check the proof of correctness.

A full functional correctness proof of the parallel program is
not necessary, rather, it suffices to show that the join forms
a homomorphism together with the (lifted) sequential code.

The sequential code together with Definition 3.4 consti-
tute the specification of correctness for the join operator.
Note that, by piggybacking on the assumption that origi-
nal sequential code is correct, only this one type of property
(e.g. formation of a homomorphism) has to ever be proved
for any given program. This conveniently limits the scope
of automated verification. As mentioned in Section 3.3, we
construct a functional variant of the loop body, which is used
at every stage of our approach as its representation. This is
very helpful for proof construction.

Proofs are constructed for program fragments in our inter-
mediate functional form, and therefore, there is no need to
handle loops or synthesize loop invariants.

We use this intermediate functional form to model the
loop body as a collection of functions in Dafny. The general
rule is that every state variable in the loop body is modelled
by a unique Dafny function. Figures 7(a) and 7(b) illustrate
the Dafny functions corresponding to state variables sum and
mts respectively. Proofs are constructed for these recursively
defined functions, where more often than not, the correctness
specifications for functions, specially for simpler ones, are
inductive. This means that no further (human provided anno-
tations) are required for the proof, which is in harsh contrast
to imperative looped programs where loop invariants have
to be provided even for the simplest of loops. It is impor-
tant to note that instances do exist that a strengthening of the
specification (in form of injection of known invariants) is re-
quired to make the specification inductive. However, we did
not encounter any such example among our benchmarks.

The next step is to model the synthesized join. Each
state variable has a distinct join function. In this example,
we introduce a Dafny function to model the join for Sum

as illustrated in Figure 7(d), and another one for Mts as



function Sum(s: seq<int>): int
{ if s == [] then 0 else

Sum(s[..|s|-1]) + s[|s|-1] }

(a)
function Max(x: int, y: int): int
{ if x < y then y else x }

(b)function Mts(s: seq<int>): int
{ if s == [] then 0 else

Max(Mts(s[..|s|-1]) + s[|s|-1], 0)}

(c)

function SumJoin(sum_l: int, sum_r: int): int
{ sum_l + sum_r } (d)

lemma HomorphismMts(s: seq<int>, t: seq<int>)
ensures Mts(s + t) == MtsJoin(Mts(s), Sum(s), Mts(t), Sum(t))

{
if t == [] { assert(s + [] == s); }
else {

calc { Mts(s + t);
== {HomomorphismSum(s,t[..|t|-1]);

assert (s + t[..|t|-1]) + [t[|t|-1]] == s + t;}
MtsJoin(Mts(s), Sum(s), Mts(t), Sum(t)); }

}
} (g)

function MtsJoin(mts_l: int, sum_l: int, mts_r: int, sum_r: int): int
{ Max(mts_r, mts_l + sum_r) } (e)

lemma HomomorphismSum(s: seq<int>, t: seq<int>)
ensures Sum(s + t) == SumJoin(Sum(s), Sum(t))

{
if t == [] { assert(s + t == s); }
else {

calc {
Sum(s + t);
== {assert (s + t[..|t|-1]) + [t[|t|-1]] == s + t;}
SumJoin(Sum(s), Sum(t)); }

}
} (f)

Figure 7: The encodings of sum (a) mts (b), max (c). The encoding of join in two parts for sum (d) and mts (e). The proofs that the joins form a
homomorphism in two parts for sum (f) and mts (g). s + t denotes the concatenation of sequences s and t in Dafny, [] is the empty sequence while |s|
stands for the length of the sequence s. The lemmas are proved by induction through the separation of the base case t == [] and the induction step. The
calc environment provides the hints necessary for the induction step proof.

illustrated in 7(e). Each function corresponds to an update
(a line of code) synthesized for the (overall) join operator
(as presented in Section 2).

The proof is modularly constructed for each state variable.

There exists a natural decomposition for homomorphism
proofs of tupled functions, that is, each component of the
tuple can be shown to be a homomorphism independently.
Therefore, the proof argument can then be modularly con-
structed for each state variable of the loop. The overall proof,
therefore, consists of simpler (to construct) proofs of the join
operator producing the correct result for each state variable.
In our example, we use two Dafny lemmas accordingly. The
lemma in Figure 7(f) states correctness of join for Sum, and
the one in Figure 7(g) states the correctness of join for Mts.

Let us focus on HomomorphismSum lemma in Figure 7(f).
This lemma states that Sum is SumJoin-homomorphic (as
defined in Definition 3.4). Dafny cannot prove this lemma
automatically, if the body of the lemma is left empty. It can
prove the lemma, however, if it is given guidance about how
to formulate the argument, in other words, if the body of the
lemma (as illustrated in Figure 7(f)) is provided.

Each homomorphism proof is an induction argument over
the length of the input sequence(s).

This fact is true independent of the specific function un-
der consideration and enables us to devise a generic (induc-
tion) proof template that can be instantiated for each function
and its corresponding join operator. Let us inspect this guid-
ance (i.e. the body of the lemma in Figure 7(f)) more closely.
The body basically tells Dafny that the proof is an induction
argument on the length of t (the second sequence argument),
with the base case of an empty sequence (reflected in the if
condition). In the base case, Dafny should be aware of the
fact that an empty t simplifies the reasoning about s + t to
reasoning about s. In the induction step (i.e. the else part),

Dafny is guided to peel off the last element of t to get a
smaller instance for induction.

This guidance is generic, i.e. not dependent on the nature
of the function Sum, and is applicable to any other function.
Consider the proof for the correctness of MtsJoin (Figure
7(g)). This proof is identical to that of HomomorphismSum
lemma, with the minor difference of recalling of (the al-
ready proved) MtsSum lemma (bright pink text). Note that
Mts calls Sum in its definition, and therefore the proof of
correctness of the join operator for Mts has to assume
the correctness of the join for Sum (which is exactly the
HomomorphismSum lemma). This rule, namely, if value of u
depends on value of v then recall the homomorphism lemma
for v in the proof of homomorphism for u, is generically ap-
plied in all constructed proofs.

Our tool follows the simple rules illustrated by this ex-
ample, and generates proofs like the one illustrate in Figure
7 automatically once the synthesis task is finished. It is im-
portant to note that if the proof checks, then correctness is
guaranteed. If it fails, then it can mean that either problem-
specific invariants were required, or the bounded synthesizer
has synthesized a wrong solution. We did not have any in-
stances of failure in our benchmarks. Our proposed solution
in case of failure is to do a more extensive bounded check to
discover counterexamples or acquire more coverage for test-
ing. A backup plan like this is required due to the boundaries
of applicability of automated proof generation techniques.

8. Experiments
Our parallelization technique is implemented in a prototype
tool called PARSYNT, for which we report experimental
results in this section.

8.1 Implementation
We use CIL [36] to parse C programs, do basic program
analysis, and locate inner loops. The loop bodies are then
converted into functional form, from which a sketch and
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Aux required? no no no no no no no yes yes yes yes yes no yes yes yes yes yes yes yes yes yes
Join Synt time? 1.6 2.0 1.7 22.9 1.5 1.6 6.1 3.1 3.9 29.4 82.2 77.1 115.2 7.0 84.4 3.7 19.8 1.4 3.0 6.6 7.6 7.5
#Aux required – – – – – – – – 1 2 1 – – 1 1 1 1 2 1 1 1 1

∗

Table 1: Experimental results for performance of PARSYNTover all benchmarks. Times are in seconds. “–” indicates that no relevant data
can be reported in this case. *: tool succeeds in finding 1 out 2 necessary auxiliaries. Auxiliary synthesis and proof generation/checking times
negligible in all cases.Hardware: laptop with 8G RAM and Intel dual core m3-6Y30.

the correctness specification is generated. ROSETTE [47]
is used as our backend solver, with a custom grammar for
synthesizable expressions. In addition to the narrowing of
the search space by using left and RIGHT holes (unknowns)
as discussed in Section 4, we use type information to reduce
the state space of the search for the solver. We also bound the
size of the synthesizable expressions, especially when the
loop body contains non-linear operators, which are difficult
for solvers to handle. To sidestep this problem, we produce
a more constrained join sketch with a smaller search space
for when non-linear operators are involved.

8.2 Evaluation
Benchmarks. We collected a diverse set of benchmarks to
evaluate the effectiveness of our approach. Table 1 includes
a complete list. The benchmarks are all in C:

• min, max, length, sum, is-sorted and average are
standard functions over lists. 2nd-min is the second
smallest example discussed in Section 2.

• mps (maximum prefix sum), mts (maximum tail sum),
and mss (maximum segment sum) are programming
pearls from [34, 43]. mps-p and mts-p are the variations
( from [43]) where in addition to the value of the corre-
sponding sum, the position that defines it is also returned.

• poly computes the value of a polynomial at a given point
when the coefficients are given in a list. atoi is the
standard (string to integer) function from C.

• balanced-() checks if a string of brackets is balanced.
count-1’s counts the number of blocks (i.e. contigu-
ous sequences) of 1’s in a sequence of 0’s and 1’s.
max-block-1 returns the length of the maximum block
of (contiguous) 1’s. 0after1 is a language recognizer
that accepts strings in which a 0 has been seen after a 1.
0
∗
1
∗ is a regular expression filter. hamming computes the

hamming distance between two strings.
• dropwhile (from Haskell) is a filter that removes from

the beginning of a sequence all the elements that do
not satisfy a given predicate. line-sight (from [34]),
determines if a building is visible from a source in a line
of other buildings of various heights.

Performance of PARSYNT Table 1 lists the times spent
in join synthesis, which dominate the total time. The times
for auxiliary accumulator synthesis are negligible (about 1-

2ms on average). Note that if a benchmark is parallelizable
(in original form), then no attempt to discover auxiliaries is
made (indicated by “–” in the table). When auxiliary vari-
ables were required, Table 1 reports how many were discov-
ered. With one exception (i.e. max-block-1), the auxiliary
synthesis always succeeds. In this case, 1 of the 2 auxil-
iaries required is discovered, but the tool fails to discover
the second one. Manual inspection of the failed procedure
convinced us that the discovery of the second one would be
possible if the rules in Figure 6 were enriched with more
sophisticated rules involving conditional statements. Finally,
the time to generate and check proofs is negligible compared
to the join synthesis times, with most cases taking about or
under 1s and the most expensive case (mss) taking about 7s.

Quality of the Synthesized Code We manually inspected
all synthesized programs, and as programmers, we cannot
produce a better version for any of them other than 0

∗
1
∗.

For this one, only one of the two auxiliary accumulators dis-
covered was strictly necessary, and the other was redundant.
There is, however, a negligible performance difference be-
tween this version and the optimized one. Here, we evaluate
the performance of the synthesized programs. The quality
of a parallel implementation, depends on many parameters
beyond the algorithmic design (our target). We use Intel’s
Thread Building Blocks (TBB) [39] as the library to imple-
ment the divide-and-conquer parallel solutions that we syn-
thesize. TBB is a popular runtime C++ library, that offers im-
proved performance scalability by dynamically redistribut-
ing parallel tasks across available processors, and accom-
modates portability across different platforms. It supports
divide-and-conquer parallelism, so transforming our solu-
tions (from ROSETTE) into a TBB-based implementation be-
came a simple mechanical task. Evaluation of the quality of
the generated parallel code was done on a Proliant DL980
G7 with 8 eight-core Intel X6550 processors (64 cores total)
and 256G of RAM running 64-bit Ubuntu.

Figure 8 illustrates the speedups of our parallel solutions
over the input sequential programs. The size of the input
arrays is about 2bn elements and the grain size is set at 50k.
Note that for those benchmarks that auxiliary computation
was required for parallelization, the parallel version is more
expensive per iteration than the original sequential input. It
is clear that the speedups are linear on the number of cores



Figure 8: Speedups relative to the sequential implementation

up to around 32 cores. A study [14] of TBB’s performance
has shown that not scaling well above 32 cores is a known
problem with TBB. It is due to TBB’s scheduling overhead
and not due to a design problem in our produced parallel
programs. We separately measured the overhead of TBB,
by limiting the number of cores to 1. The slowdown (over
sequential) is on average negligible; the average slowdown
is close to 1, with a standard deviation of 0.04.

9. Related Work
Homomorphisms and Parallelism Most closely related
our work are the approaches that use homomorphisms for
parallelization. There has been previous attempts in using
the derivation of list homomorphisms for parallelization,
such as methods based on the third homomorphism theorem
[18, 20], those based on function composition [17], their less
expressive/more practical variant based on matrix multipli-
cation [43], methods based on the quantifier elimination [32]
as well as those based on recurrence equations [8]. We will
discuss the most closely related one here.

In [34], the third homomorphism theorem and the con-
struction of the weak right inverse are used to derive paral-
lel programs. The approach in [34] requires much more in-
formation from the programmer compared to our approach.
The programmer needs to provide the leftwards and right-
wards sequential implementations of a function to get the
parallel one. This is often unreasonable, specially when the
parallel version has a twist, since coming up with the left-
wards implementation of a function could be as complex
(and time consuming) as parallelizing it in the first place.
Intuitively, by providing the reverse computation, the pro-
grammer is providing the information that we compute au-
tomatically here in Section 6. By contrast, we only need one

(reference) sequential implementation as input. In Section
4.3, we make a more technical comparison against [34].

Later, the theoretical ideas of [34] were extended to trees
in [33], and generalized for lists in [31]. But these papers
do not provide a practical way of producing parallel code.
In [13], a study of how functions may be extended to homo-
morphisms is presented, but no algorithm is provided.

Loop Parallelization
More recently in [42], symbolic execution is used to iden-
tify and break dependences in loops that are hard to paral-
lelize. Since we produce correct parallel implementations,
we do not have to incur the extra cost of symbolic execution
at runtime. That said, the scope of applicability of [42] and
our approach are not comparable. In the related area of dis-
tributed computation, there has been research on producing
MapReduce programs automatically, for example through
using specific rewrite rules [41] or synthesis [44]. The most
relevant and recent work is GraSSP [16] which uses synthe-
sis to parallelize a reference sequential implementation by
analyzing data dependencies. To the best of our knowledge,
since the (constant size) prefix information used in [16] is
only a special case of our auxiliary accumulators, our ap-
proach subsumes theirs.

Synthesis and Concurrency Synthesis techniques have
been leveraged for the parallel programs before. Instances
include synthesis of distributed map/reduce programs from
input/output examples [44], optimization and parallelization
of stencils [24, 45], concurrent data structures synthesis [46],
concurrency bug repair [49]. Other than use of synthesis,
these problem areas and the solutions have very little in com-
mon with this paper.

Parallelizing Compilers and Runtime Environments
Automatic parallelization in compilers is a prolific field of
research, with source-to-source compilers using highly so-
phisticated methods to parallelize generic code [50, 11, 5,
37] or more specialized nested loops with polyhedral opti-
mization [6, 7, 48]. There is a body of work specific to reduc-
tions and parallel-prefix computations [10, 22, 27] that deal
with dependencies that cannot be broken. Breaking static de-
pendencies at runtime, Galois [40] being a good example
of this category, is another type of approaching the auto-
parallelization problem. Handling irregular reductions, when
the operations in the loop body are not immediately associa-
tive, has been explored through employing techniques such
as data replication or synchronization [23]. Unfortunately,
there is not enough space to do the mountain of research
on parallelizing compilers justice here. In contrast to correct
source-to-source transformation achieved through provably
correct program transformation rules, the aim of this paper
is to use search (in the style of synthesis) in a space that in-
cludes many incorrect programs. This facilitates discovery
of equivalent parallel implementations that are not reachable
through generally correct program transformations.
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[49] ČERNÝ, P., HENZINGER, T. A., RADHAKRISHNA, A.,
RYZHYK, L., AND TARRACH, T. Regression-free synthe-
sis for concurrency. In Proceedings of the 16th International
Conference on Computer Aided Verification - Volume 8559
(2014), pp. 568–584.

[50] WILSON, R., FRENCH, R., WILSON, C., AMARASINGHE,
S., ANDERSON, J., TJIANG, S., LIAO, S., TSENG, C.,
HALL, M., LAM, M., AND HENNESSY, J. The suif com-
piler system: A parallelizing and optimizing research com-
piler. Tech. rep., Stanford, CA, USA, 1994.

[51] ZUCK, L. D., PNUELI, A., FANG, Y., GOLDBERG, B., AND

HU, Y. Translation and run-time validation of optimized
code. Electr. Notes Theor. Comput. Sci. 70, 4 (2002), 179–
200.



A. Conversion to a system of equations
We show that we can use a simple procedure to convert a
loop body given in the input langauge described in 3 with-
out loops into a system of equation. We proceed statement
by statement, updating expressions on the right-hand side
of an equation system and merging branches of condition-
nals (ϕ functions in static single assignments). First, let
us remark that we can convert all if-then statements to
if-then-else statements by adding an empty else state-
ment.

We start with a system where each varaible in SVar is
assigned to itself : E = ⟨s0 = s0, . . . , sn = sn⟩, and update
it by visiting each statement following the control flow graph
edges (we do not have loops). We transform E into the new
system E

′, depending on what statement we see:

• an assignment si = Exp(SVar, IVar). The expression of
si in E is updated by Exp(SVar, IVar)[sj ← expj ∈ E],
E
′ is E with si = Exp once all the variables appearing in

Exp have been replaced by their expression in E.
• a conditional on expression c : we apply the procedure

recursively, each branch is converted to a system of equa-
tions Eif and Eelse. The systems are merged into :

Emerged = ⟨. . . si = (c ? expifi ∶ exp
else
i ), . . . ⟩

where expifi is the expression of si in Eif and expelsei is
the expression of si in Eelse.
We update E to be:

E
′
= ⟨. . . expmerged

i [sj ← expj ∈ E] . . . ⟩
with the susbtitution of variables in the expressions of the
merged system by their expression in E.

And then we proceed to the next statement.
This procedure would yield systems with expressions of

non optimal size, but this supports our claim that we can
convert any input loop body into a system of equations.

B. Proof Sketch of Proposition 4.4
If the theorem of parallelization with the weak right inverse
in [34] holds and the weak-right inverse returns a list of
constant length, then there is a solution to the synthesis
problem. The theorem states that the join⊙ for the loop body
function fE can be built using the following construct :

a⊙ b = fE(f0E a • f
0
E b)

where f
0
E is the weak-right inverse of function fE . The

recursive application of fE on the two concatenated lists
f
0
Ea and f0Ebwill then yield a vector of expressions, in which

all the occurences of the state variables in the expresssions
Expi will contain an expression containing variables from
inputs a and b, whereas the last input read contains only
variables from the right input b. The solution given by this
procedure is therefore a completion of the sketch for the
problem. (AZADEH SAYS: needs to be corrected)⟶

C. Proof of Proposition 5.2
Consider the figure below that illustrates the parallel com-
putation of a ⊙-homomorphic function f ′ over the list x =
[x1, . . . , xn]:

f(x1) f(x2) f(x3) f(x4) f(xn�1) f(xn)

� � �

· · ·

· · ·

�

· · ·
�

· · ·
· · ·

f([x1, x2, . . . , xn])

One can use the recurrence

J(n) = 2J(n/2) + tj(n)
to compute the time complexity of performing the join op-
erations, where n corresponds to the size of input handled
by join, and ctj(n) captures the cost of performing one join
of size n. The entire cost of computing f ′(x) in parallel (as
illustrated in the diagram above) will then be obtained by
adding to J(n) the cost of computing f ′(xi) for each xi,
which is constant for each f ′(xi) and therefore linear over-
all. Therefore the cost of computing f ′ in parallel is in total:

Tp(n) = J(n) + cn
To have an efficient parallel implementation (with constantly
many processors4 ), we need to our parallel asymptotic time
complexity for f ′ not to be larger than our asymptotic se-
quential time complexity for f , that is Tp(n) ∈ O(n).

The Master theorem then suggests that for Tp(n) ∈ O(n)
to hold, we have to have tj(n) ∈ o(n). That is, the cost of
join should be sub-linear.

D. Proof of Theorem 6.1
A more detailed version of the theorem statement is:

If f ∶ S → Sc is both leftwards and rightwards linear
time, then there exists a tuple of functions ⟨g1, . . . , gk⟩ for a
constant k, where gi ∶ S → Sc (1 ≤ i ≤ k), and an operator
⊙ such that f � g1 � . . . � gk is ⊙-homomorphic.

By the third homomorphism theorem, we know that f is
⊙-homomorphic for some⊙. All that remains to show is that
there exists a constant-time ⊙.

If f is rightwards linear time then

f(y • a) = f(y)⊗ a

such that ⊗ is constant time computable. Similarly, if f is
leftwards linear time then

f(a • y) = a⊕ f(y)
4 This is just to clarify that the discussion is avoiding common scenarios in
the PRAM model that the number of processors available can be a function
of the input size, such as log(n).



such that ⊕ is constant time computable.
We prove the claim by double induction on the sizes of

the split sequences. Consider the base case y = []: if f([])
exists, then since f(x) ⊙ f([]) = f(x), it is obviously
constant time computable (there is nothing to be done if
f(x) is available). If f([]) does not exist, the y = a is
the base case and f(x) ⊙ f([a]) = f(x) ⊗ a, and by the
assumption above, it is constant-time computable.

The symmetric left argument proves the base cases x = []
and x = a for x.

Let us assume f(x)⊙ f(y) is constant-time computable
for ∣x∣, ∣y∣ < n.

f(x • (y • a)) = f(x)⊙ f(y • a)
= f(x • y)⊗ a

= (f(x)⊙ f(y))⊗ a

The last term is constant time computable by induction hy-
pothesis and the assumptions. Therefore, f(x) ⊙ f(y • a)
is constant time computable. So, we have just proven the in-
duction step for y. Similarly:

f((a • x) • y) = f(a • x)⊙ f(y)
= a⊕ f(x • y)
= a⊕ (f(x)⊙ f(y))

The last term is constant time computable by induction hy-
pothesis and the assumptions. Therefore, f(a • x) ⊙ f(y)
is constant time computable. And, now we have proven the
induction step for x as well.

E. Proof of Theorem 6.2
Lemma E.1 (from [19]). A function h ∶ S → Sc is a
homomorphism iff for all sequences x,y, v, and w, we have

h(x) == h(v) ∧ h(y) = h(w) ⟹ h(x • y) = h(v •w)

Assume a rightwards f ∶ S → Sc is not homomorphic,
and is extended by a function g into a ⊙-homomorphic
function f � g.

According to the third homomorphism theorem [19], if
a function is homomorphic, then it is both leftwards and
rightwards. We will use the fact that f is rightwards, and that
h = f � g is both leftwards and rightwards in the argument
below.

Assume that for four arbitrary sequences x, y, v and w,
we have

f(x) = f(v) ∧ h(y) = h(w)

the latter being logically equivalent to f(y) = f(w) ∧
g(y) = g(w). Then, we have:

(f(x • y), g(x • y))
= h(x • y) by definition

= h(x • w) by Lemma E.1

= (f(x • w), g(x • w)) by definition

= (f(v • w), g(x • w)) by f being rightwards

We have just argued for a variation of Lemma E.1:

f(x) = f(v) ∧ f(y) = f(w) ∧ g(y) = g(w)
⟹ f(x • y) = f(v • w)

which effectively says that the value of f(x•y) only depends
on values of f(x), f(y), and g(y); and, specifically not
g(x). Now, let us consider the join operator ⊙ for f � g.
Since the return values of f and g are considered to be
scalars, we have:

(f(x), g(x))⊙ (f(y), g(y)) =
(exp(f(x), g(x), f(y), g(y)), exp ′(f(x), g(x), f(y), g(y)))

The argument above indicates that the dependency of exp on
g(x) must be non-existent or superficial. In other words, the
join can be restructured in the following form:

(f(x), g(x))⊛ (f(y), g(y)) =
(exp(f(x), f(y), g(y)), exp ′(f(x), g(x), f(y), g(y)))

which brings us to the proof of Theorem 6.2.

F. Proof of Theorem 6.3
Let f be a rightwards function (which can be a tuple of many
functions) that is sequentially defined as

f(y • a) = f(y)⊗ a

Let us assume that there is a function g (which can be a
tuple of many functions) such that f � g is⊙-homomorphic
(constant) for some ⊙. By Theorem 6.2, then we know that
there exist ⊛, exp, and exp

′ such that:

f � g(x • y) = f � g(x)⊛ f � g(y) =
(exp(f(x), f(y), g(y)), exp′(f(x), g(x), f(y), g(y)))

The assumptions of the theorem about the existence of the
algebraic rules implies that there is a sequence of rules that
if applied step by step, they would transform the lefthand
side of the above equation to the righthand side. Therefore,
we can assume that the exist a run of normalize that does
exactly that, and returns the righthand side.

Since f � g is a homomorphism, by the third homomor-
phism theorem, it is rightwards. Therefore, there exists ⊕
such that:

f � g(y • a) = f � g(y)⊕ a



this means that g can be computed sequentially along f .
Note that without this argument, it would not be the case
that g corresponds to an accumulator. Once we know it
does, it is straightforward to see that if normalize returns
the righthand side to the solve, then solve will discover the
correct accumulator.

G. Proof of Remark 6.3
The rightwards function corresponds to the regular language
L1 = {w∣w[n] = 1}. It is clear that a DFA for this language
should just be able to count up to n using n states, and then
check one letter.

The leftwards function corresponds to the regular lan-
guage L2 = {w∣ n-th bit from the end is 1}. This language
cannot be as efficiently as L1. The DFA for L2 needs to
record all the last n bits in its state, so that with every new in-
put letter, it can update the window of size n, being prepared

for the unknown end of the string to come at any time. Once
the string is finished, then it has to look at the first letter in
the n-letter window that it has memorized to see if it is a 0
or a 1.

To prove that one cannot do better than the above, a
simple distinguishability argument will do. Let u denote the
string consisting of the last n letters of the input string w.
Consider now that the input string is extended by a sequence
of strings v0, v2, . . . vn−1 where each vi has length i. For
each vi, for the DFA to correctly accept/reject wvi, it has to
be able to distinguish the cases u[i] = 0 and u[i] = 1. So,
if the DFA is in state q after reading letter u[i − 1], it has
to go to two different states for the two different values of
u[i]. Therefore, the DFA needs at least 2n different states to
distinguish all cases that potentially would lead to different
acceptance/rejection results depending on the extensions of
the string.
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