
The Beauty of Predicate Automata

Azadeh Farzan1 and Zachary Kincaid2

1 University of Toronto
2 Princeton University

Abstract. In [6], we introduced a class data automata, called Predi-
cate Automata, which recognize languages over an alphabet Σ×N where
Σ is a finite alphabet. These automata were designed to capture the
behaviour of parametrized programs, i.e. programs with an unbounded
number of threads, and their correctness proofs. Since the focus of [6]
was on the verification problem, the paper does not investigate the prop-
erties of these automata beyond the minimum which is necessary for the
verification problem. In this paper, we study some of their key properties
and relate them to other classes of data automata.

1 Introduction

For verification of concurrent and distributed programs, which consist of com-
ponents executing simultaneously, the axiomatic approach to program reasoning
was extended by Owicki/Gries [15] and Jones [10] to one that aims to con-
struct a proof of correctness for the whole program out of proofs for individual
components (a thread or a process) and some small glue that connects them
together. This reasoning is based on the principle of non-interference: other
threads/processes do not interfere with the functionality of the current one,
and therefore do not have much impact on its proof of correctness.

Not all concurrent programs are designed with this principle in mind. For
cooperative concurrency, in which processes work together to achieve some com-
mon goal, the notion of non-interference is not natural. Axiomatic proof systems
have clever workarounds (e.g., ghost state) for these cases, but cleverness is an
obstacle to automation: human verifiers are clever, but automated verifiers are
not. In contrast, informal operational arguments, accommodate arbitrary global
facts into proofs more naturally. Operational reasoning is very common among
programmers as an informal way of reasoning about correctness of programs. One
can think of it as a way of grouping similar program behaviours into a handful
of scenarios, and arguing that the program behaves correctly in each scenario.
One can think of doing operational reasoning using the following general proof
rule:

P ⊆ Π, Π is correct by construction

P is correct
(OR)

where P stands for the set of behaviours of the program, and Π is a set of
behaviours that are known to be correct by construction. The subsumption test

2 Azadeh Farzan and Zachary Kincaid

P ⊆ Π certifies P as correct.
In [6, 7], we proposed algorithmic tools to implement the above proof rule

as a sound and (in some sense) complete verification algorithm for parameter-
ized programs. The thesis of our work is that operational arguments can be
formalized using axiomatic proofs of a programs runs, which are sequences of
instructions that are executed in order (without conditional branching, looping,
etc). The basic object of interest in such a proof system is a valid Hoare triple,
{P} ρ {Q}, which consists of two assertions P and Q (called the pre-condition
and post-condition of the triple, respectively), and a run ρ. Validity of the triple
means that if ρ begins in a state that satisfies the pre-condition, it must end in a
state that satisfies the post-condition. Hoare triples form the foundation of most
axiomatic proof systems; the distinguishing feature of our notion of operational
reasoning is that the program must be straight-line. This divergence reflects a
difference of perspective: in, say, Hoare’s proof system, we think of a program as
a syntax tree, which is constructed from other syntax trees by certain formation
rules (sequential composition, while loops, if-then-else statements, etc). In an op-
erational argument, we think of a program as a set of behaviours, corresponding
to the possible paths of execution the program may take.

Any algorithmic implementation of Rule OR requires (1) an effective repre-
sentation for Π and P , and (2) a way of constructing Π, and (3) a decidable
subsumption test for P ⊆ Π. First, we briefly recall how we addressed (1) and
(3) in [6] using a new model of infinite state automata, called Predicate Automata
(PA). These two points inspired the design of this class of automata, whereas
(2) is orthogonal to the investigation of this paper.

1.1 Proof Spaces

We proposed to construct a formal operational proof, like Π in Rule OR, around
a finite set of valid Hoare triples H which can be associated with an infinite set
of Hoare triples S(H), comprised of Hoare triples that be obtained from H using
the following three rules of inference:

– Sequencing: if {P1} ρ1 {P2} and {P2} ρ2 {P3} are valid triples, then so is
{P1} ρ1; ρ2 {P3}3

– Conjunction: if {P1} ρ {Q1} and {P2} ρ {Q2} are valid, then so is {P1 ∧
P2} ρ {Q1 ∧Q2}

– Symmetry: if {P} ρ {Q} is a valid, then any triple {P ′} ρ′ {Q′} that can be
obtained by consistently renaming thread identifiers in all three components
of the Hoare triple is also valid

We call the set of Hoare triples S(H) a proof space, and H a basis for S(H).
We say that a proof space proves that a set of runs R is correct with respect to
a specification Pre/Post if for each run ρ in R, the Hoare triple {Pre} ρ {Post}
belongs to the proof space S(H) generated by H; that is, there is a derivation

3 The sequencing rule in [6] also incorporates a weak form of the rule of consequence,
which we omit here for brevity.

The Beauty of Predicate Automata 3

of {Pre} ρ {Post} using the sequencing, conjunction, and symmetry rules, using
the Hoare triples in H as axioms.

1.2 A Suitable Class of Automata

Let us now turn our attention to the subsumption test in the premise of Rule
OR. A proof space is a proof for the program if and only if for every possible run
of the program, there exists a valid Hoare triple proving its correctness in the
proof space. If the proof space is represented by a finite basis, then this means
that the Hoare triple for the run can be derived by the repeated application of
the three rules (sequencing, conjunction, and symmetry).

We reduce the problem of deciding whether such a derivation exists for a
given run to checking acceptance of the run (represented as a word) by a Predi-
cate Automaton (PA). It is easy to see that the sequencing rule corresponds to
the sequencing of transitions of an automaton. In this view, program statements
are associated with letters of the alphabet of the automaton, and proof asser-
tions with the states of the automaton. Predicate automata use the notion of
alternation from Alternating Finite Automata (AFA) [3] to additionally accom-
modate the conjunction rule; this allows us to account for concurrent programs
with a fixed number of threads. Finally, to accommodate also the symmetry rule
(and account for concurrent programs with an unbounded number of threads),
predicate automata make a shift from finite alphabets to alphabets indexed on
natural numbers, in the spirit of data words [1].

1.3 Properties of Predicate Automata

In [6], we introduced predicate automata and briefly (i.e. within the confined
limits of conference paper page limits) stated its core properties as relevant to
the task of verification of parametrized systems. In this paper, we would like to
take the opportunity to expand on our exposition of this simple yet powerful
data automata model and its properties in connection to both verification and
other automata models.

Specifically, in this paper:

– We establish that predicate automata are equivalent in expressive power to
a variant of Alternating Register Automata (ARA) [1].

– We investigate properties of languages recognized by predicate automata,
and in particular, we prove that they are not closed under reversal.

– We investigate the properties of the images of these languages under a ho-
momorphism that forgets the data part of the alphabet, and in particular
show that these languages are not necessarily context free.

– We give an alternative proof of decidability of verification of parameterized
boolean programs, by giving a construction for a most general proof Πbool,
as a monadic predicate automaton, that subsumes all correct parametrized
boolean programs over a fixed set of commands. This, combined by the
results already presented in [6] that parametrized programs can also be

4 Azadeh Farzan and Zachary Kincaid

modelled using monadic predicate automata and the subsumption test is
decidable for monadic predicate automata, amounts to the new argument.

2 Predicate Automata

Predicate automata [6] are a class of infinite-state automata which recognize
languages over an infinite alphabet of the form Σ × N.4 We use the notation
a : i or ⟨a : i⟩ (with a ∈ Σ and i ∈ N) to denote an element of this alphabet. A
predicate automaton (PA) is equipped with a vocabulary ⟨Q, ar⟩ (in the usual
sense of first-order logic) consisting of a finite set of predicate symbols Q and a
function ar : Q→ N which maps each predicate symbol to its arity.

A state of a PA is a proposition q(i1, ..., iar(q)) with q ∈ Q and i1, ..., in ∈ N.
The transition function maps such states to formulas in the vocabulary of the PA;
disjunction corresponds to nondeterministic (existential) choice, and conjunction
corresponds to universal choice. It is important to note that the symbols q ∈ Q
are “uninterpreted”: they have no special semantics, and any subset of Nar(q) is
a valid interpretation of q.

For readers familiar with alternating finite automata (AFA) [3, 4], a helpful
analogy might be that predicate automata are to first-order logic what AFA are
to propositional logic.

Given a vocabulary ⟨Q, ar⟩, let the set of positive formulas F(Q, ar) be the
negation-free formulas over ⟨Q, ar⟩ where each atom is either (1) a proposition
of the form q(i1, ..., in) (where i1, ..., in are natural number-typed variables), or
(2) an equation i = j (where i, j are variable symbols), or (3) a disequation i ̸= j
(where i, j are variable symbols). A ground formula is defined similarly, except
that natural numbers take the place of natural number-typed variables; the set
of ground formulae over ⟨Q, ar⟩ is denoted F(Q, ar). We adopt the convention
that i, j, k range over natural number-typed variables, while i, j, k range over
natural numbers. Predicate automata are defined as follows:

Definition 1 (Predicate automata [6]). A predicate automaton (PA) is a
6-tuple A = ⟨Q, ar,Σ, δ, φstart, F ⟩ where

– ⟨Q, ar⟩ is a vocabulary
– Σ is a finite alphabet
– φstart ∈ F(Q, ar) is an initial formula with no free variables.
– F ⊆ Q is a set of accepting predicate symbols
– δ : Q × Σ → F(Q, ar) is a transition function which satisfies the property

that for any q ∈ Q and σ ∈ Σ, the free variables of δ(q, σ) are members of
the set {i0, ..., iar(q)}. ⊓⊔

We can think of δ(q, σ) as a rewrite rule which instantiates the (implicit)
formal parameters i1, ..., iar(q) of q to the actual parameters i1, ..., in and instan-
tiates i0 to k (the index of the letter being read). In light of this interpretation,

4 Such languages are commonly called data languages [14].

The Beauty of Predicate Automata 5

we will often write δ in a form that makes the formal parameters explicit: for
example, instead of

δ(q, σ) =(i0 ̸= i1 ∧ (q(i0, i1) ∨ q(i1, i2))) ∨ (i0 = i1 ∧ q(i1, i2) ∧ q(i2, i1))

we typically write

δ(q(i, j), ⟨σ : k⟩) =(k ̸= i ∧ (q(k, i) ∨ q(i, j))) ∨ (k = i ∧ q(i, j) ∧ q(j, i))

or more succinctly:

q(i, j)
σ:k−−→(k ̸= i ∧ (q(k, i) ∨ q(i, j))) ∨ (k = i ∧ q(i, j) ∧ q(j, i)) .

The arity of a PA is the a maximum arity among all of its predicate symbols.
We call a PA monadic if this maximum arity is at most one.

In the following, we define the language accepted by a predicate automaton
in two different (but equivalent) ways. The first is via an extended transition
relation, which treats a PA as an deterministic automaton whose states are
formulas, where each state is a ground positive formula over the vocabulary
of the PA. This semantics is convenient (for instance) for relating predicate
automata with Boolean programs (Section 5). The second definition treats a PA
as an nondeterministic automaton whose states are conjunctive formulas. This
is the semantics presented in [6], and is the basis of the decision procedure for
checking of a monadic PA.

Deterministic semantics Let A = ⟨Q, ar,Σ, δ, φstart, F ⟩ be a predicate automa-
ton. We may extend the transition relation δ to a function δ∗ : F(Q, ar)× (Σ ×
N)∗ → F(Q, ar) as follows:

δ∗(F ∧G,w) ≜ δ∗(F,w) ∧ δ∗(G,w)

δ∗(F ∨G,w) ≜ δ∗(F,w) ∨ δ∗(G,w)

δ∗(i = j, w) ≜ i = j

δ∗(i ̸= j, w) ≜ i ̸= j

δ∗(F, ϵ) ≜ F

δ∗(q(j1, . . . , jn), w⟨a : j⟩) ≜ δ∗(δ(q, a)[i0 7→ j, i1 7→ j1, . . . , in 7→ jn], w)

Note that the automaton reads the input word backwards (right-to-left).
The accepting formulas of A are defined as follows:

– q(i1, . . . , in) is accepting iff q ∈ F
– i = i is accepting
– i ̸= j (with i and j distinct) is accepting
– If F is accepting, then F ∨G and G ∨ F are accepting for any G
– If F and G are accepting, so is F ∧G

Finally, we say that a word w is accepted by a PA A if the formula δ∗(φstart, w)
is accepting, and define L(A) to be the set of all words accepted by A.

While checking emptiness of L(A) for a PA A is undecidable in general, it is
decidable for monadic predicate automata [6]. The decision procedure is based
on a nondeterministic semantics, which we describe in the following.

6 Azadeh Farzan and Zachary Kincaid

Nondeterministic semantics The high-level idea is that, rather than viewing
a “state” of the automaton as a ground formula, we view it as a conjunctive
formula which we call a configuration. For any configuration C and any indexed
letter ⟨a : i⟩, C may nondeterministically transition to any of C1, . . . , Cn, where
C1 ∨ · · · ∨ Cn is the disjunctive normal form of δ∗(C, a : i). Formally,

Definition 2 (Configuration). Let A = ⟨Q, ar,Σ, δ, φstart, F ⟩ be a PA. A con-
figuration C of A is finite set of ground propositions of the form q(i1, ..., iar(q)),
where q ∈ Q and i1, ..., iar(q) ∈ N. We may a configuration C with the conjunc-
tive formula

∧
q(i1,...,iar(q))∈C q(i1, ..., iar(q)).

A PA A = ⟨Q, ar,Σ, δ, φstart, F ⟩ induces a transition relation on configura-

tions as follows: C σ:k−−→ C′ if C′ is a clause in the DNF of the ground formula∧
q(i1,...,iar(q))∈C

δ(q, σ)[i0 7→ k, i1 7→ i1, ..., iar(q) 7→ iar(q)]

Note also that the formula above may contain equalities and disequalities,
but since they are ground (have no free variables), they are equivalent to either
true or false, and thus can be simplified.

A configuration is initial if it is a cube of the DNF of φstart. A configuration is
accepting if for all q(i1, ..., iar(q)) ∈ C, we have q ∈ F ; otherwise, it is rejecting.
Finally, a word w = ⟨σ1 : i1⟩· · · ⟨σn : in⟩ is accepted by A if there is a sequence
of configurations Cn+1, ..., C0 such that:

1. Cn+1 is initial

2. for each r < n, Cr+1
σr:ir−−−→ Cr

3. C0 is accepting

It is straightforward to see that the deterministic and nondeterministic semantics
of a predicate automaton define the same language.

The key observation of regarding the nondeterministic semantics is that we
can define a covering relation ⪯ on configurations such that the transition rela-
tion is downwards-compatible with ⪯: if a configuration C′ has a w-labeled path
to an accepting configuration and C ⪯ C′, then C must have a w′-labeled path
to an accepting configuration for some relabeling w′ of w. Formally,

Definition 3 (Covering). Given a PA A = ⟨Q, ar,Σ, δ, φinit, F ⟩, we define the
covering pre-order on the configurations of A as follows: if C and C′ are configura-
tions of A, then C ⪯ C′ (“C covers C′”) if there is a permutation π : N→ N such
that for all q ∈ Q and all q(i1, . . . , iar(q)) ∈ C, we have q(π(i1), . . . , π(iar(q))).

Lemma 1 (Downwards compatibility [6]). Let A = ⟨Q, ar,Σ, δ, φstart, F ⟩ be
a PA, and let C, C′ be configurations of A such that C ⪯ C′. Then we have the
following:

1. If C′ is accepting, then C is accepting.

The Beauty of Predicate Automata 7

2. For any ⟨σ : j⟩ ∈ Σ × N, if we have

C′ σ:j−−→ C′

then there exists a configuration C and an index k ∈ N such that

C σ:k−−→ C

and C ⪯ C′. ⊓⊔

If we imagine an emptiness checking algorithm as searching the reachable
states of a PA for an accepting configuration, then the significance of downwards
compatibility is that we may prune from the search space any configuration that
is covered by another. Thus pruning is sufficient to make the search space finite
for monadic predicate automata, for which ⪯ is a well-quasi order (i.e., for
any infinite sequence of configurations C1, C2, . . . , there is some i < j such that
Ci ⪯ Cj) [6].5

Theorem 1 ([6]). Checking emptiness of monadic PAs is decidable.

2.1 Predicate Automata with ϵ-transitions

In many classes of automata, for example nondeterministic finite automata
(NFA) or nondeterministic pushdown automata, the addition of epsilon tran-
sitions does not change the expressive power of the model. This is also true for
predicate automata.

Definition 4 (ϵ-Predicate Automata). An ϵ-Predicate Automaton (ϵ-PA) is
a 7-tuple A = ⟨Q, ar,Σ, δ, φstart, F, ϵ⟩ where ⟨Q, ar,Σ, δ, φstart, F ⟩ is a predicate
automaton and ϵ : Q → F(Q, ar) is a ϵ-transition function which satisfies the
property that for any q ∈ Q, the free variables of δ(q, σ) are members of the set
{i1, ..., iar(q)}.

The nondeterministic semantics of PA can be extended to ϵ-PA as follows.
Define a labeled transition relation→∗ on configurations to be the least relation
such that

– If C′ is cube of the DNF of ϵ(q)[i1 7→ i1, . . . , iar(q) 7→ iar(q)], then

C ∧ q(i1, . . . , iar(q))
ϵ−→∗ C ∧ C′

– If C′ is cube of the DNF of δ∗(C, ⟨a : i⟩), then C ⟨a:i⟩−−−→∗ C′
– If C u−→ C′ and C′ v−→ C′′, then C uv−→∗ C′′

Finally, define L(A) to be the set of words w such that there exists an initial

configuration C and an accepting configuration C′ such that C wR

−−→∗ C′.
5 That is, monadic predicate automata are well-structured transition systems [9].

8 Azadeh Farzan and Zachary Kincaid

Lemma 2 (ϵ-elimination). Let A be an ϵ-PA. Then we can construct a pred-
icate automaton B from A such that L(A) = L(B).

Proof. Let A = ⟨Q, ar,Σ, δ, φstart, F, ϵ⟩ be an ϵ-PA. We show that we can con-
struct a function ϵ such that B = ⟨Q, ar,Σ, ϵ ◦ δ, ϵ(φstart), F ⟩ accepts the same
language as A. Define a sequence of functions ϵ0, ϵ1, . . . mapping F(Q, ar) to
F(Q, ar) as follows.

ϵ0 is the identity function

ϵi+1(F) = ϵi(F) ∨ ϵ̂(ϵi(F))

where ϵ̂ is defined as

ϵ̂(q(i1, . . . , iar(q))) ≜ ϵ(q)[i1 7→ i1, . . . , iar(q) 7→ iar(q)]

ϵ̂(F ∧G) ≜ (ϵ̂(F) ∧G) ∨ (F ∧ ϵ̂(G))

ϵ̂(F ∨G) ≜ (ϵ̂(F) ∨ ϵ̂(G))

Due to the free variable restriction of ϵ, all free variables of ϵi(F) are also free
in F . Since there are only finitely many formulas in F(Q, ar) with a fixed set of
free variables (up to logical equivalence), the ascending chain ϵ0(F) |= ϵ1(F) |=
ϵ2(F) . . . must stabilize: there is some k such that ϵk(F) ≡ ϵk+1(F) ≡ Define
ϵ(F) to this stabilization point ϵk(F).

Observe that for any configuration C, we have C ϵ−→∗ C′ if and only if C′ is a
cube of the DNF of ϵ(C). One may thus show (by induction on length) that for
any word w, have a w-labelled path from C to C′ in A iff there is a w-labelled
path from C to C′ in B, and thus the language accepted by B is exactly that of
A. ⊓⊔

3 Languages of Predicate Automata

This section studies the class of languages that can be accepted by a PA.

Example 1 (from [6]). Let us illustrate how the language of runs in a parame-
terized program P can be defined as a predicate automaton. A parameterized
program is one in which any number of threads may execute the same thread
template in parallel. A thread template T = ⟨Loc, E, ℓinit, ℓerr, src, tgt⟩ is a 6-tuple
in which Loc is a finite set of control locations, E is a finite set of edges, ℓinit ∈ Loc
is an initial location ℓerr ∈ Loc is an error location, and src, tgt : E → Loc map
each edges to their source and target. The idea is that a thread template is
equipped with a distinguished error location ℓerr (for example, marking an asser-
tion violation) and we want to capture the language of all (syntactic) runs of the
program that reach it. To use this model in verification, it suffices to show that
all these runs are infeasible and as such establish that the program admits no
feasible erroneous execution. In fact, the automaton will recognize the reversal
of all these runs, namely, the runs that start at an error location and follow the
control flow of the program back to a start state.

We define AP = ⟨Q, ar,Σ, δ, φstart, F ⟩, where

The Beauty of Predicate Automata 9

– Q = {loc, err} ∪ Loc, where err is a distinguished symbol which intuitively
represents “some thread is at the error location”, and loc is a distinguished
symbol which intuitively represents “every thread is at some location.”

– ar(loc) = ar(err) = 0 and for all ℓ ∈ Loc, ar(ℓ) = 1
– For σ ∈ Σ, and ℓ ∈ Loc, we define

δ(ℓ(i), ⟨σ : j⟩) ≜

{
(i = j ∧ ℓ′(i)) ∨ (i ̸= j ∧ ℓ(i)) if tgt(σ) = ℓ

i ̸= j ∧ ℓ(i) otherwise

where ℓ′ denotes src(σ). The transition rule for loc is given by

δ(loc, ⟨σ : i⟩) = loc ∧ ℓ′(i)

where σ ∈ Σ and ℓ′ denotes src(σ). The transition rule for err is given by

δ(err, ⟨σ : i⟩) =

{
ℓ′(i) if tgt(σ) = ℓerr

err otherwise

where ℓ′ denotes src(σ).
– φstart = loc ∧ err
– F = {ℓinit, loc} ⊓⊔

The structure of AP fairly closely mirrors the (reversed) control structure of T .
The predicate loc deserves further discussion: loc ensures that for every reachable

configuration C, every σ ∈ Σ and every i ∈ N, we have that if C σ:i−−→ C′, then
ℓ′(i) ∈ C′, where ℓ′ = src(σ).

Note that it is essential to recognize this language in the reverse order: we
begin in state where some thread is at the error location, and work backwards to
a state where all threads are in their initial location. The acceptance condition of
predicate automata (all predicates in a configuration are accepting) can be used
to encode the initial state of the program. To capture the initial condition of the
program in the initial condition of the PA (rather than its accepting condition)
would require universal quantification, which PA do not have (though note that
such an extension was introduced in [7]).

In [6], we proved the following closure properties of the class of languages
recognized by predicate automata, which are essential to their use in algorithmic
verification:

Proposition 1 ([6]). Predicate automata languages, denoted by PAL, are closed
under intersection and complement.

Remark 1. All constructions that prove the closure properties in Proposition 1
preserve the arity of the PA. Hence, languages recognized by monadic PAs are
closed under all boolean operations (union, intersection, and complementation).

In this section, we explore more properties of this class of languages (PAL) an
also the class of languages which are images of these languages under a homomor-
phism that forgets the natural number part of the alphabet symbols, and hence
are just languages over Σ∗ (PAFL, for predicate automata finite languages).

10 Azadeh Farzan and Zachary Kincaid

3.1 Data Languages of Predicate Automata

For any π : N→ N and any w ∈ (Σ × N)∗ define:

π(w) ≜

{
ϵ if w = ϵ
⟨a : π(k)⟩π(u) if w = ⟨a : k⟩u

Proposition 2 (Symmetry). Every language recognized by a PA A is sym-
metric, in the sense that for all w ∈ L(A), and any bijection π : N→ N, we have
π(w) ∈ L(A).

Proposition 2 provides a light tool to formally argue why certain languages,
i.e. non-symmetric ones, are not recognized by any PA. In the spirit of a pumping
lemma, the following proposition, provides another such tool.

Lemma 3 (Characterization). Let L ⊆ (Σ × N)∗ be a language recognized
by a monadic PA. Let u1, u2, . . . and v1, v2, . . . be infinite sequences of words
in (Σ × N)∗ such that for each i, uivi ∈ L. Then there exists i < j and some
permutation π : N→ N such that π(uj)vi ∈ L.

Proof. Let ⟨Q, ar,Σ, δ, φstart, F ⟩ be a PA that recognizes L. By assumption, A
recognizes uivi for each i. It follows that there are configurations Ci,0, Ci,1, and
Ci,2 such that

1. Ci,0 |= φinit

2. Ci,0
vR
i−−→ Ci,1

uR
i−−→ Ci,2

3. Ci,2 is accepting.

Accordingly, consider the infinite sequence of (blue) configurations induced by
the original sequences of the words from the assumption:

C1,0 C2,0 · · · Ci,0 · · · Cj,0 · · ·

C1,1 C2,1 · · · Ci,1 · · · Cj,1 · · ·

C1,2 C2,2 · · · Ci,2 · · · Cj,2 · · ·

vR1

uR
1

vR2

uR
2

vRi

uR
i

vRj

uR
j

Since ⪯ is a well-quasi order on configurations, there exists i < j such that
Ci,1 ⪯ Cj,1. By downwards compatibility (Lemma 1), there exists a configuration

C′i,2 and a permutation π : N→ N such that Ci,1
π(uR

j)
−−−−→ C′i,2 and C′i,2 ⪯ Cj,2, and

furthermore (since Cj,2 is accepting by assumption), C′i,2 is accepting. It follows

that A has an accepting path Ci,0
vR
i−−→ Ci,1

π(uR
j)

−−−−→ C′i,2 and thus accepts π(uj)vi.

The Beauty of Predicate Automata 11

Example 2. Let L be the language consisting of all data words w that can be
obtained by shuffling n words w1, . . . , wn where each wi is either ⟨a : ji⟩⟨b : ji⟩
or ⟨b : ji⟩ for some j, and each ji is distinct. Using Lemma 3, we can observe
that L cannot be recognized by a PA. Consider the sequences u1, u2, . . . and
v1, v2, . . . where

ui ≜ ⟨a : 1⟩⟨a : 2⟩ . . . ⟨a : i⟩
vi ≜ ⟨b : 1⟩⟨b : 2⟩ . . . ⟨b : i⟩

Then for each i we have uivi ∈ L. For a contradiction, suppose that L is recog-
nized by PA. By Lemma 3, there is some i < j and some permutation π : N→ N
such that π(uj)vi ∈ L. However, π(uj)vi contains strictly more occurrences of a
than b, which is not possible for a word in L.

Lemma 3 leads to the observation that PAL is not closed under reversal
(justifying the necessity of the reversed order in Example 1):

Proposition 3. Languages recognized by monadic predicate automata are not
closed under reversal.

Proof. Let L be the language from Example 2, which is not recognizable by a
PA. We show that its reversal is accepted by a PA.

Define a PA A = ⟨{q0, qa, qb} , ar,Σ, δ, q0, {q0, qb}⟩ as follows. The vocabulary
consists of one nullary predicate q0 along with two unary predicates qa and qb.
The intuition is that qa(i) indicates that thread i has read a (and is obligated to
read b), while qb(i) indicates that thread i may not read any more letters. The
predicates q0 and qb are accepting, while qa is not. The transition relation is

q0
a:i−−→ qa(i) q0

b:i−→ qb(i)

qa(i)
a:j−−→ i ̸= j ∧ qa(i) qa(i)

b:j−−→ (i = j ∧ qb(i)) ∨ (i ̸= j ∧ qa(i))

qb(i)
a:j−−→ i ̸= j ∧ qb(i) qb(i)

b:j−−→ i ̸= j ∧ qb(i)

3.2 Finite Alphabets Languages of Predicate Automata

This section compares predicate automata with classical automata that operate
on finite alphabets.

One mechanism for understanding PA languages over a finite alphabet is
to restrict the alphabet Σ × N to a finite number of threads [n] = {1, . . . , n}.
Any language over a finite alphabet like this recognized by a PA is regular. This
can be argued easily once one observes that the PA in this case is syntactically
nearly identical to an alternating finite automaton. One simply renames every
ground instance of a predicate q(i1, . . . , ik) from the set of states of A as a fresh
proposition q(i1,...,ik) and the rest follows by definition.

Remark 2. For any language L ⊆ (Σ×N)∗ recognized by a predicate automaton,
L ∩ (Σ × [n])∗ is regular.

12 Azadeh Farzan and Zachary Kincaid

Besides restriction, another way to finitize the alphabet of a predicate au-
tomaton is by considering the image of PA language under a homomorphism
mapping (Σ × N)∗ to Σ∗. We define two such homomorphisms (by their action
on the generators (Σ × N), extending to words and languages in the natural
way):

– πΣ forgets the natural number component of each letter: πΣ(a : i) ≜ a

– πi forgets all letters except those of i: πi(a : j) ≜

{
a if i = j

ϵ otherwise

An immediate question jumping to mind is where PAFL fits in the Chomsky-
Schützenberger hierarchy.

Proposition 4 (Inverse Images of Regular Languages). Let L ⊆ Σ∗ be a
regular language. Then the language {w ∈ (Σ × N)∗ : πΣ(w) ∈ L} is recognizable
by a nullary predicate automaton.

Proof. Since L is regular, its reversal is recognizable by an NFAA = ⟨Q,Σ,∆, s, F ⟩.
Construct the PA as follows. The set of predicates is exactly Q, the accepting
predicates are F , and the arity of each is zero. For each q ∈ Q and a ∈ Σ, we
define δ(q, a : i) ≜

∨
⟨q,a,q′⟩∈∆ q′(). Finally, the initial formula is s().

Proposition 4 implies that PAFL includes all regular languages. The proposition
below then indicates that PAFL can include strictly context-sensitive languages.

Proposition 5. There is language L, recognized by a monadic PA, such that
πΣ(L) =

{
aibjck : i ≥ j ≥ k

}
Proof. Define a PA A = ⟨Q, ar,Σ, δ, sc, F ⟩ as follows. The vocabulary consists of
three nullary predicates sc, sb, sa along with three unary predicates qb, qa, and
qϵ; the alphabet Σ is ⟨a, b, c⟩; the final predicates are sa, sc, and qϵ. Intuitively,
sc, sb, and sa track whether the automaton is currently reading a sequence of c’s,
b’s, or a’s; qb(i) indicates an obligation to read b : i, qa(i) indicates an obligation
to read a : i, and qϵ(i) indicates an obligation to read no more letters with index
i. The transition relation is defined as follows:

sc
c:i−→ (sc ∨ sb) ∧ qb(i)

sc
b:i−→ false

sc
a:i−→ false

sb
c:i−→ false

sb
b:i−→ (sb ∨ sa) ∧ qa(i)

sb
a:i−→ false

sa
c:i−→ false

sa
b:i−→ false

sa
a:i−→ sa ∧ qϵ(i)

qb(i)
c:j−→ false

qb(i)
b:j−→ i = j ∨ (i ̸= j ∧ qb(i))

qb(i)
a:j−→ false

qa(i)
c:j−→ false

qa(i)
b:j−→ false

qa(i)
a:j−→ i = j ∨ (i ̸= j ∧ qa(i)

qϵ
c:j−→ false

qϵ
b:j−→ false

qϵ
c:j−→ i ̸= j

Observe that

L(A) = {w ∈ (Σ × N)∗ : πΣ(w) ∈ a∗b∗c∗ ∧ ∀i ∈ N.πi(w) = {ϵ, a, ab, abc}}

and so πΣ(L(A)) =
{
aibjck : i ≥ j ≥ k

}
.

The Beauty of Predicate Automata 13

Finally, let us turn our attention to the images of PA languages under πi
homomorphisms. It is tempting to believe that restricted to a single index, the
language of a PA would turn into a regular language. The following proposition
refutes that notion.

Proposition 6. There exists a language L recognized by a monadic PA such
that π1(L) is not context-free.

Proof. For a contradiction, suppose that for any language L recognized by a
monadic PA, π1(L) is regular. Clearly, the language L1 ≜

⋃
i∈N(d : i)∗(e : i)∗(f :

i)∗ is recognizable by a monadic PA. By Proposition 5, there is a PA-recognizable
language L2 such that πΣ(L2) =

{
aibjck : i ≥ j ≥ k

}
. Then we have that L1×L2

is PA-recognizable by Lemma 4 (below). By Proposition 4, the set of all words
w such that πΣ(w) ∈ (da)∗(eb)∗(fc)∗ is recognizable by a monadic PA, and
so L3 ≜ {w ∈ L1 × L2 : πΣ(w) ∈ (da)∗(eb)∗(fc)∗} is recognizable by a monadic
PA. By assumption, π1(L3) is context-free. Let h : {a, b, c, d, e, f}∗ → {d, e, f}∗
be the homomorphism mapping a, b, and c to ϵ and which is the identity on d,
e, and f . Since context-free languages are closed under homomorphism,

h(π1(L3)) =
{
diejck : i ≥ j ≥ k

}
is context-free, a contradiction.

The proof relies on the following lemma:

Lemma 4. Let L and L′ be PA-recognizable languages. The language

L1 × L2 ≜ {(a1 : i1)(a
′
1 : i′1) . . . (an : in)(a

′
n : i′n) :

(a1 : i1) . . . (an : in) ∈ L, (a′1 : i′1) . . . (a
′
n : i′n) ∈ L′}

is PA-recognizable.

Proof. Let A = ⟨Q, ar,Σ, δ, φstart, F ⟩ and A′ = ⟨Q′, ar′, Σ, δ′, φ′
start, F

′⟩ be PA
that recognize L and L′ respectively. Without loss of generality, suppose Q and
Q′ are disjoint. Construct a PA as follows:

– For each q ∈ Q ∪Q′ there are two predicates q0 and q1, with the same arity
as q. For any formula F ∈ F(Q, ar), we use F |0 to denote the result of
replacing each q ∈ Q with q0, and F |1 to denote the result of replacing each
q ∈ Q with q1; similarly for formulas in F(Q′, ar). Intuitively, we construct
an automaton that simulates A on the odd positions and A′ on the even
positions of an input word.

– The initial formula is φinit|0 ∧ φ′
init|0.

– For each q ∈ Q, the transition function δ̂ is defined

δ̂(q0(i1, . . . , in), a : j) ≜ δ(q(i1, . . . , in), a : j)|1
δ̂(q1(i1, . . . , in), a : j) ≜ q0(i1, . . . , in)

14 Azadeh Farzan and Zachary Kincaid

– For each q′ ∈ Q′, the transition function δ̂ is defined

δ̂(q′0(i1, . . . , in), a : j) ≜ q′1(i1, . . . , in)

δ̂(q′1(i1, . . . , in), a : j) ≜ δ′(q′(i1, . . . , in), a : j)|0

– Finally, the final predicates are {q1 : q ∈ F} ∪ {q′1 : q′ ∈ F ′}.

4 Comparison with Register automata

Register automata are a class of automata that, like predicate automata, rec-
ognize languages of data words. A register automaton is equipped with finitely
many registers, each of which may store data values (which for our purposes
are natural numbers). The transition relation of a register automaton may test
equality between values stored in registers and the data component of the input
letter and may assign new data to registers. There is an apparent gap in the
operational descriptions of predicate automata and register automata; predicate
automata are declarative whereas register automata are imperative. Nonetheless,
predicate automata have the same expressive power as a variant of register au-
tomata with ϵ transitions and alternation. Intuitively, one can think of a ground
predicate p(i1, . . . , in) of a predicate automaton to be analogous to a configu-
ration of a register automaton with n registers holding data values i1, . . . , in.
The fact that the only operations on registers are equality tests and assignment
corresponds to the fact that PA treat thread identifiers symmetrically. For in-

stance, a transition q
a:k−−→ q′ of a two-register automaton that stores the value k

to the second register on the condition that both registers store the same value

corresponds to the PA transition q(i, j)
a:k−−→ i = j ∧ q′(i, k).

There are several different definitions of (alternating) register automata in the
literature [1, 5, 8, 12]. The model of [12] is strictly more expressive than predicate
automata, because it permits starting from an initial sate that does not have to
be symmetric. The one in [8] is a variation that restricts this choice symmetric
states and therefore is similar to predicate automata, but is only defined for a
single register.

We choose the model of [1] to illustrate the equality of the two models and
extend it with ϵ-transitions (which appear in some other models in the form of
“non-moving” transitions [5, 8]). This model is closer to predicate automata in
that it eschews imperative register operations in favor of an abstract transition
relation satisfying a semantic equivariance condition that enforces data symme-
try (in the same way threads are treated symmetrically by predicate automata).

Definition 5 (Alternating register automaton). An alternating register
automaton (ARA) is an 8-tuple A = ⟨Q∀, Q∃, R,Σ,∆,∆ϵ, q0, F ⟩ where Σ is a
finite alphabet and

– Q ≜ Q∀ ∪ Q∃ is set of states, partitioned into a set of universal (Q∀) and
existential (Q∃) states; q0 ∈ Q is an initial state and F ⊆ Q is a set of final
states.

The Beauty of Predicate Automata 15

– R is a finite set of register names.
– ∆ ⊆ Q× (N∪{⊥})R×Σ×N×Q× (N∪{⊥})R is a transition relation. ∆ is

required to be equivariant in the sense that for any permutation π : N→ N
and any transition ⟨q, v, a, i, q′, v′⟩ ∈ ∆, we have (q, π⊥◦v, a, π(i), q′, π⊥◦v′) ∈
∆, where π⊥ : N ∪ {⊥} → N ∪ {⊥} is the extension of π that maps ⊥ 7→ ⊥.

– ∆ϵ ⊆ Q × (N ∪ {⊥})R × Q × (N ∪ {⊥})R is an ϵ-transition relation. ∆ϵ is
similarly required to be equivariant.

A is non-guessing if (1) for each transition (q, v, a, i, q′, v′) ∈ ∆, for each
register r, v′(r) is either i or in the range of v, and (2) for each transition
(q, v, q′, v′) ∈ ∆ϵ, for each register r, v′(r) is in the range of v.

A configuration of an alternating register automaton is a set of states,
where each state belongs to Q × (N ∪ {⊥})R. We say that a configuration C
is accepting if for all ⟨q, v⟩ ∈ C, we have q ∈ F . The initial configuration
is

{
⟨q0,⊥R⟩

}
. For configurations C,C ′, a letter a ∈ Σ, and a thread identifier

i ∈ N, write C
a:i−−→ C ′ iff

– For each ⟨q, v⟩ ∈ C such that q ∈ Q∃, there is some (q′, v′) ∈ C ′ such that
(q, v, aj , ij , q

′, v′) ∈ ∆
– For each ⟨q, v⟩ ∈ C such that q ∈ Q∀, for all q′ ∈ Q and v′ ∈ (N ∪ {⊥})R

such that there is some ⟨q, v, aj , ij , q′, v′⟩ ∈ ∆, we have ⟨q′, v′⟩ ∈ C ′.

For configurations C and C ′, we write C
ϵ−→ C ′ if there is some ⟨q, v⟩ ∈ C such

that

– q ∈ Q∃ and there is some (q, v, q′, v′) ∈ ∆ϵ such that C ′ = (C \ {(q, v)}) ∪
{(q′, v′)}

– q ∈ Q∀ and C ′ \ (C \ {(q, v)}) = {(q′, v′) : (q, v, q′, v′) ∈ ∆ϵ}.

We say that an alternating register automaton accepts a word w if there is a
sequence C0

w1−−→ C1
w2−−→ . . .

wn−−→ Cn such that w = w1 . . . wn, C0 is initial, and
Cn is accepting.

Proposition 7. For any language L recognized by a k-register ϵ-ARA, LR, the
language of the words of L in reverse, is recognized by a PA with arity k.

Proof. We prove the case with one register. Let A = ⟨Q∀, Q∃, R,Σ,∆,∆ϵ, q0, F ⟩
be an non-guessing 1-register ϵ-ARA. Define an ϵ-PA Â = ⟨Q̂, ar,Σ, δ, φstart, F̂ , ϵ⟩
that recognizes the reverse of the language recognized by A as follows.

The set of predicates Q̂ contains one unary predicate q and one nullary
predicate q⊥ for each q ∈ Q; intuitively, the predicate q⊥() corresponds the ARA
state ⟨q,⊥⟩, and the predicate q(i) corresponds to the ARA state ⟨q, i⟩. Define the

initial formula to be q0,⊥, and the accepting predicates F̂ to be F ∪{q⊥ : q ∈ F}.
Finally, we define the transition relation. Observe that since ∆ is equivariant, it
is a finite union of transition orbits [1], of the form

{(q, π⊥ ◦ v, a, π(i), q′, π⊥ ◦ v′) : π is a permutation N→ N}

16 Azadeh Farzan and Zachary Kincaid

for some ⟨q, v, a, i, q′, v′⟩. Since A is non-guessing, each orbit can be classified
as one of the following seven types O1 − O7, each of which can be associated
with an F(Q̂, ar)-formula F1 − F7:

Transition orbit Corresponding formula

O1(q, a, q
′) ≜ {(q, i, a, j, q′, j) : i ̸= j ∈ N} F1(q

′) ≜ i0 ̸= i1 ∧ q′(i1)

O2(q, a, q
′) ≜ {(q, i, a, j, q′, i) : i ̸= j ∈ N} F2(q

′) ≜ i0 ̸= i1 ∧ q′(i0)

O3(q, a, q
′) ≜ {(q, i, a, i, q′, i) : i ∈ N} F3(q

′) ≜ i0 = i1 ∧ q′(i1)

O4(q, a, q
′) ≜ {(q, i, a, j, q′,⊥) : i ̸= j ∈ N} F4(q

′) ≜ i0 ̸= i1 ∧ q′⊥()

O5(q, a, q
′) ≜ {(q, i, a, i, q′,⊥) : i ∈ N} F5(q

′) ≜ i0 = i1 ∧ q′⊥()

O6(q, a, q
′) ≜ {(q,⊥, a, i, q′,⊥) : i ∈ N} F6(q

′) ≜ q′⊥()

O7(q, a, q
′) ≜ {(q,⊥, a, i, q′, i) : i ∈ N} F7(q

′) ≜ q′(i)

For any q ∈ Q and a ∈ Σ, define the transition relation as follows:

δ(q, a) ≜

{∨
{Fk(q

′) : q′ ∈ Q, 1 ≤ k ≤ 5,Ok(q, a, q
′) ⊆ ∆} q ∈ Q∃∧

{Fk(q
′) : q′ ∈ Q, 1 ≤ k ≤ 5,Ok(q, a, q

′) ⊆ ∆} q ∈ Q∀

δ(q⊥, a) ≜

{∨
{Fk(q

′) : q′ ∈ Q, k ∈ {6, 7} ,Ok(q, a, q
′) ⊆ ∆} q ∈ Q∃∧

{Fk(q
′) : q′ ∈ Q, k ∈ {6, 7} ,Ok(q, a, q

′) ⊆ ∆} q ∈ Q∀

The construction of the ϵ transition function from ∆ϵ is similar. Finally, we may
find a PA equivalent to the ϵ-PA A via the ϵ-elimination lemma (Lemma 2).

The construction for k registers is similar.

Proposition 8. For any language L recognized by a PA with arity k, LR is
recognized by a (k + 1)-register non-guessing ϵ-ARA.

Proof. The essential obstacle in translating PA to ARA is that PA transitions
involve arbitrary combinations of conjunctions and disjunctions, whereas each
state in an ARA may have only conjunctive (universal) or disjunctive (existen-
tial) transitions.

Without loss of generality, suppose that for each state predicate q ∈ Q and

each letter a ∈ Σ, δ(q, a) =
∨Nq,a

i=1 Cq,a,i, where Cq,a,i is a conjunctive formula.
Construct an alternating register automaton with one existential state pq for
each q ∈ Q, one universal state pq,a,i for each q ∈ Q, a ∈ Σ, and 1 ≤ i ≤
Nq,a, one rejecting existential state sink, and registers r0, . . . , rk (where k is the
maximum arity of any predicate in Q). The transition relation stores the read
thread index i of the input into the register r0 and transitions to some state
pq,a,j (corresponding a cube of the formula δ(q, a)):

∆ ≜
{
⟨pq, v, a, i, pq,a,j , v[r0 ← i]⟩ : q ∈ Q, a ∈ Σ, v ∈ (N ∪ {⊥})R

}
The ϵ-transitions are responsible for transitioning from states of the form pq,a,j
to all states described by Cq,a,i.

∆ϵ ≜ {(pq,a,i, v, p′, v′) : (p′, v′) ∈ At(Cq,a,i, v)}

The Beauty of Predicate Automata 17

where

At(ij = ik, v) =

{
∅ if v(rj) = v(rk)

(sink, v) otherwise

At(ij ̸= ik, v) =

{
∅ if v(rj) ̸= v(rk)

(sink, v) otherwise

At(q′(ij1 , . . . , ijn), v) = {(pq′ , (⊥, v(ij1), . . . , v(ijn),⊥, . . . ,⊥))}
At(F ∧G, v) = At(F, v) ∪At(G, v)

5 Verification of Parameterized Boolean Programs

Here, we discuss how one can use predicate automata as a decision procedure
for verification of parameterized boolean programs. We give a construction for
a universal language of all infeasible runs, made of commands from a finite
predetermined set Σ (that of some program). Then this serves as a proof ΠB

for any Boolean program P whose commands belong to Σ. Since we limit the
set of commands, without loss of generality, to assume statements and assign
statements, the set Σ is determined by the set of local and global variables of
the program.

A boolean program is defined by a set of variables X = XL⊎XG, partitioned
into a set of local boolean variablesXL and global boolean variablesXG, a thread
template T = ⟨Loc, E, ℓinit, ℓerr, src, tgt⟩, and a function C : E → Cmd that maps
each edge to a command in the language defined below

x, y, z ∈ X

F,G ∈ Formula ::=x | ¬x | F ∧G | F ∨G

c ∈ Cmd ::=assume(F)

| x := F

v0 is a designated entry location, and verr is designated error location. Note that
formulas are in negation normal form. For a formula F , we use ¬F to denote
the negation-normal formula obtained from the negation of F by application of
De Morgan’s laws.

A formula in the above syntax can be thought of as a thread state predicate,
in the sense that it can be interpreted from the perspective of any one thread. To
express predicates over many threads, we extend formulas to indexed formulas
as follows

F,G ∈ IndexedFormula ::=x(i) | ¬x(i) x ∈ XL, i ∈ N
| y | ¬y y ∈ XG

| F ∧G | F ∨G

For instance (x(0)∧¬x(1))∨(¬x(0)∧x(1)) expresses that exactly one of threads
0 and 1 have their local variable x set to true. For any formula F and any natural

18 Azadeh Farzan and Zachary Kincaid

number i, we use F (i) to denote the result of replacing each local variable x
appearing in F with x(i). We can define a weakest precondition operator on
indexed formulas and indexed commands as usual:

wp(x := F : j, G) ≜ G[x(j) 7→ F (j)]

wp(assume(F) : j, G) ≜ G ∨ ¬F (j)

wp(wc,G) ≜ wp(w,wp(c,G))

Let Σ denote a finite subset of Cmd. We construct an automaton ΠB that
recognizes exactly the set of infeasible paths over Σ (assuming each variable is
initialized to false) as follows. The vocabulary Q consists of

– One nullary predicate contra, indicating a contradiction.
– Two nullary predicates qz and qz for each z ∈ XG.
– Two unary predicates qx and qx for each x ∈ XL.

For any variable symbol i, define a function hi : Formula→ F(Q, ar) by

hi(F ∧G) = hi(F) ∧ hi(G)

hi(F ∨G) = hi(F) ∨ hi(G)

hi(x) =

{
qx(i) if x ∈ XL

qx() otherwise

hi(¬x) =

{
qx(i) if x ∈ XL

qx() otherwise

The transition relation of the automaton mimics the weakest precondition oper-
ator:

δ(contra(), assume(F) : j) = hj(¬F) ∨ contra()

δ(contra(), x := F : j) = contra()

δ(qx(i), x := F : j) = (i ̸= j ∧ qx(i)) ∨ (i = j ∧ hi(F))

δ(qx(i), x := F : j) = (i ̸= j ∧ qx(i)) ∨ (i = j ∧ h(¬F))

δ(qz(), z := F : j) = hj(F)

δ(qz(), z := F : j) = hj(¬F)

δ(qx(i), y := F : j) = qx(i) x ̸= y

δ(qx(i), y := F : j) = qx(i) x ̸= y

δ(qz(), y := F : j) = qz() y ̸= z

δ(qz(), y := F : j) = qz() y ̸= z

δ(qx(i), assume(F) : j) = qx(i)

δ(qx(i), assume(F) : j) = qx(i)

The accepting predicates for ΠB are {qx : x ∈ X}, and the initial formula is
contra().

The Beauty of Predicate Automata 19

Theorem 2. Let Σ be a finite alphabet of commands, and let ΠB be the predi-
cate automaton as constructed above. For any sequence w ∈ (Σ × N)∗, we have
w ∈ L(ΠB) iff w is infeasible starting from a state where all variables are false.

Proof. For any formula F ∈ F(Q, ar), let F denote the indexed formula obtained
by replacing each qx(i) with x(i), each qx(i) with ¬x(i), each qy() with y, each
qy() with ¬y, and contra() with false.

One may show (by induction on length) that for any word w we have that
wp(w, false) ≡ δ∗(contra(), w), by induction on w. Finally, observe that a formula
F ∈ F(Q, ar) is accepting exactly when F is satisfied by the state where all
variables are false.

The construction of ΠB , as a monadic predicate automaton, yields a decision
procedure for reachability of parameterized boolean programs. Example 1 gives a
construction, as a monadic predicate automaton, of the language of error runs of
the program. Theorem 1 and Proposition 1 imply that checking the subsumption
of the set of program error runs by L(ΠB) is decidable.

6 Related work

Automata on infinite alphabets The automata theory community has developed
generalizations of automata to infinite alphabets; the most relevant to our work
is (alternating) register automata (ARA).

Register automata were first introduced in [12]. Universality for register au-
tomata was shown to be undecidable in [14], which implies alternating register
automata emptiness is undecidable in the general case. However, the emptiness
problem for alternating register automata with 1 register (cf. monadic predicate
automata) was proved to be decidable in [5] by reduction to reachability for
lossy counter machines; and a direct proof based on well-structured transition
systems was later presented in [8].

It is noteworthy that the models of register automata used in the aforemen-
tioned papers are all different, and they are different from the one from [1] that
we use in Section 4. In particular, the models from [5, 1] recognize symmetric
languages, like predicate automata, however, the one from [12] recognizes non-
symmetric languages. The model from [5] is closed under union, intersection, and
complementation, while the one from [12] is not closed under complementation.

The model from [8] is an extension of the one from [5], which is also not closed
under complementation. In both models, most transitions are non-moving; that
is, the transition does not proceed forward when it reads an input symbol, similar
to a classic ϵ-transition. There is a specific type of transition that moves the head
to the next position to the right.

Predicate automata have alternation built-in. To relate them to alternating
register automata, we opted for the definition in [1], except we added ϵ-transitions
to the model. The similarity between the notion of equivariance in the definition
of alternating register automata in [1] and the notion of symmetry in predi-
cate automata is extremely helpful in producing elegant reductions between the

20 Azadeh Farzan and Zachary Kincaid

two models. We added ϵ-transitions to the model in [1] to make the model as
expressive as the one in [5] and proved equivalence of the model to predicate
automata.

In [1] relations between weaker models of register automata (namely, nonde-
terministic and deterministic ones) and Data Automata and Nominal Automata
is discussed. At the high level, it is understood that data automata are a slight
generalization of nondeterministic register automata, and alternation strictly
adds expressive power.

Parameterized Boolean Programs There has been a great deal of work in the
area of automated verification and analysis of concurrent programs where the
number of threads is unbounded but the threads are finite-state [2, 16, 13, 11].
This paper provides an alternative proof for the known result that verification
of parameterized boolean programs is decidable.

References

1. Bojanczyk, M.: Slightly infinite sets, https://www.mimuw.edu.pl/ bojan/upload/main-
10.pdf

2. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:
CAV. pp. 403–418 (2000)

3. Brzozowski, J., Leiss, E.: On equations for regular languages, finite automata, and
sequential networks. Theoretical Computer Science 10(1), 19 – 35 (1980)

4. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–
133 (Jan 1981)

5. Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Logic 10(3), 16:1–16:30 (Apr 2009)

6. Farzan, A., Kincaid, Z., Podelski, A.: Proof spaces for unbounded paral-
lelism. In: Rajamani, S.K., Walker, D. (eds.) Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2015, Mumbai, India, January 15-17, 2015.
pp. 407–420. ACM (2015). https://doi.org/10.1145/2676726.2677012,
https://doi.org/10.1145/2676726.2677012

7. Farzan, A., Kincaid, Z., Podelski, A.: Proving liveness of parameter-
ized programs. In: Grohe, M., Koskinen, E., Shankar, N. (eds.) Pro-
ceedings of the 31st Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016.
pp. 185–196. ACM (2016). https://doi.org/10.1145/2933575.2935310,
https://doi.org/10.1145/2933575.2935310

8. Figueira, D.: Alternating register automata on finite words and trees. Logical Meth-
ods in Computer Science (1) (2012)

9. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theo-
retical Computer Science 256(1), 63–92 (2001)

10. Jones, C.B.: Tentative steps toward a development method for interfer-
ing programs. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983).
https://doi.org/10.1145/69575.69577, https://doi.org/10.1145/69575.69577

11. Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized
concurrent programs. In: CAV. pp. 645–659 (2010)

The Beauty of Predicate Automata 21

12. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2),
329–363 (Nov 1994)

13. Namjoshi, K.S.: Symmetry and completeness in the analysis of parameterized sys-
tems. pp. 299–313. VMCAI (2007)

14. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Logic 5(3), 403–435 (Jul 2004)

15. Owicki, S.S., Gries, D.: An axiomatic proof technique for parallel programs
I. Acta Informatica 6, 319–340 (1976). https://doi.org/10.1007/BF00268134,
https://doi.org/10.1007/BF00268134

16. Pnueli, A., Ruah, S., Zuck, L.D.: Automatic deductive verification with invisible
invariants. In: TACAS. pp. 82–97 (2001)

