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Hypersafety properties of arity 𝑛 are program properties that relate 𝑛 traces of a program (or, more generally,
traces of 𝑛 programs). Classic examples include determinism, idempotence, and associativity. A number of
relational program logics have been introduced to target this class of properties. Their aim is to construct
simpler proofs by capitalizing on structural similarities between the 𝑛 related programs. We propose unex-
plored, complementary proof principles that establish hyper-triples (i.e. hypersafety judgments) as a unifying
compositional building block for proofs, and we use them to develop a Logic for Hyper-triple Composition (LHC),
which supports forms of proof compositionality that were not achievable in previous relational logics. We
prove LHC sound and apply it to a number of challenging examples.
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1 INTRODUCTION

Many properties of interest about programs are properties not of individual program traces but
rather of multiple program traces. For example, stipulating a bound on mean response time over
all executions of a program cannot be specified as a property of individual traces, because the
acceptability of delays in a trace depends on the magnitude of delays in all other traces. Clarkson
and Schneider [2008] formally studied this class of properties, coining the term hyperproperties. In
this paper, we focus on the verification problem of a class of generalized hyperproperties, which we
will refer to as 𝑛-safety properties: these are safety hyperproperties (i.e. only concerned with partial
correctness) that govern𝑛 executions of potentially different programs. More formally, these𝑛-safety
properties have the form ∀(𝑠1, 𝑠

′
1) ∈ J𝑡1K . . .∀(𝑠𝑛, 𝑠

′
𝑛) ∈ J𝑡𝑛K. 𝜑 (𝑠1, 𝑠

′
1, . . . , 𝑠𝑛, 𝑠

′
𝑛), where J𝑡K denotes

the set of input/output states of the traces of 𝑡 . Examples of such properties are1 commutativity
(𝑛 = 2), associativity (𝑛 = 4), determinism (𝑛 = 2), noninterference (𝑛 = 2) and transitivity (𝑛 = 3).
Input-output equivalences between two programs can also be proved as 2-safety properties (e.g. a
compiler optimization preserves I/O behaviour).
One approach to proving 𝑛-safety properties is to obtain from 𝑡 a precise mathematical char-

acterization 𝑅 of its functionality J𝑡KÐi.e. 𝑡 ’s strongest postconditionÐand then prove using this

1Intuitively, for instance, associativity f(𝑎, f(𝑏, 𝑐 ) ) = f(f(𝑎,𝑏 ), 𝑐 ) compares 4 runs of f.
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mathematical characterization that the desired 𝑛-safety property 𝜑 is satisfied. This approach has a
major drawback, however: functional correctness is in general a much strongerÐthus more difficult
to proveÐproperty of 𝑡 than what proving 𝜑 requires.
Thus, the trend in research on this problem has been instead towards reasoning directly about

𝑛-safety, through a number of so-called relational program logics, e.g. [Barthe et al. 2016; Benton
2004; Sousa and Dillig 2016; Yang 2007]. These logics move away from the traditional Hoare-
triple judgment and introduce 𝑛-ary relational Hoare-style judgments, which we will refer to as
hyper-triples. In our syntax, a hyper-triple (of arity 𝑛) is a judgment of the form

⊢
{
𝑃
}
[1: 𝑡1, . . . , 𝑛: 𝑡𝑛]

{
𝑄
}

which means ∀(𝑠1, 𝑠′1) ∈ J𝑡1K . . .∀(𝑠𝑛, 𝑠
′
𝑛) ∈ J𝑡𝑛K. 𝑃 (𝑠1, . . . , 𝑠𝑛) ⇒ 𝑄 (𝑠′1, . . . , 𝑠

′
𝑛). For example, deter-

minism of 𝑡 can be expressed as ⊢
{
vars1 = vars2

}
[1: 𝑡, 2: 𝑡]

{
vars1 = vars2

}
, which asserts that

if 𝑡 is run from two states which agree on the values of some relevant variables vars, then, if the
two runs terminate, the output states will agree on the values of vars as well.
The key idea underlying relational program logics is that, by exploiting the similarity in the

program structure of 𝑡1, . . . , 𝑡𝑛 , they avoid the need to specify and prove functional specifications for
these programs, thus reducing the complexity of the work needed to prove the 𝑛-safety property. In
particular, a recurring motif of these logics is the idea of łlockstepž proof rules, which decompose
all the programs in the hyper-triple at the same time in the same way according to a common
structure. For example, a binary lockstep rule for sequential composition might look as follows:

LockStepSeq

⊢
{
𝑃
}
[1: 𝑡1, 2: 𝑡2]

{
𝑃 ′
}

⊢
{
𝑃 ′
}
[1: 𝑡 ′1, 2: 𝑡

′
2]

{
𝑄
}

⊢
{
𝑃
}
[1: (𝑡1;𝑡

′
1), 2: (𝑡2;𝑡

′
2)]

{
𝑄
}

This lockstep rule is advantageous when the effects of 𝑡1 and 𝑡2 (and of 𝑡 ′1 and 𝑡
′
2 respectively) are

correlated, so that the intermediate assertion 𝑃 ′ does not need to reveal their individual effect, but
only the relation between their effects. In this fortunate case, the rule logically aligns the two traces
and propagates simple relational assertions, like vars1 = vars2, through the aligned pair of traces.
For instance, it allows one to prove determinism of (𝑡;𝑡 ′) by proving determinism of 𝑡 and of 𝑡 ′.
On their own, however, lockstep rules are too rigid: in general, such a perfect alignment might

not be attainable. They are also too fragile: small syntactic differences between the two programs
may make them inapplicable. Much of the effort in previous work has thus focused on overcoming
this rigidity of lockstep rules. In particular, the state-of-the-art solution to the problem is to extend
the logic with rules that replace terms with other, semantically equivalent, terms in a hyper-triple
(see e.g., [Barthe et al. 2011, 2017; Sousa and Dillig 2016]). The replacement can bring back the
syntactic similarity needed to resume a lockstep proof. The resulting proof strategy, which we call
enhanced lockstep, is to first rewrite the terms so that their structure reflects the desired alignment,
and then proceed with a lockstep derivation.

Despite its simplicity, enhanced lockstep reasoning has produced relational program logics that
have already been deployed successfully in a variety of applications. For example [Barthe et al.
2016, 2017] use them for translation validation tasks and even verification of cryptographic algo-
rithms. Sousa and Dillig [2016] demonstrate how higher-arity hypersafety can encode correctness
requirements of comparators for user-defined data structures.
Here, however, we would like to call attention to an orthogonal, unexplored, and very limiting

dimension of rigidity in lockstep-based relational proofs. Consider for instance a MapReduce library.
We ought to be able to prove that this library ensures the high-level guarantee of determinism
for its operations, provided that the user-supplied parameters to the libraryÐi.e., the lower-level
operations on which it dependsÐare deterministic, associative and commutative. Seeing as the latter
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properties are all hyper-safety properties, it would be desirable to be able to take the heterogeneous
collection of hyper-triples (of different arities!) representing the assumptions on the user-supplied
parameters, and produce from them a determinism hyper-triple for the MapReduce implementation.
Unfortunately, existing relational logics do not support hyper-triple composition in this way.

It is easy to observe this at a shallow level: these logics do not provide any rules for mixing and
matching properties of different arities (i.e. using hyper-triples of one arity to prove hyper-triples
of another arity). Even in CHL [Sousa and Dillig 2016], which is parametrized over the arity 𝑛 of
its hyper-triples, a fixed 𝑛 must be used throughout an entire hyper-triple derivation. In order to
compose hypersafety proofs as a library like MapReduce would require, we need more expressive
ways of composing hyper-triples than what lockstep-style rules provide. To see the issue concretely,
consider the following example.

Example 1.1. Imagine a library provides a binary operation op(𝑎, 𝑏) that has been proven deter-
ministic and commutative, in the form of two hyper-triples:2

⊢
{
True

}
[1: r1≔ op(𝑎, 𝑏), 2: r2≔ op(𝑎, 𝑏)]

{
r1 (1) = r2 (2)

}
(Detop)

⊢
{
True

}
[1: r1≔ op(𝑎, 𝑏), 2: r2≔ op(𝑏, 𝑎)]

{
r1 (1) = r2 (2)

}
(Commop)

In assertions, we write x(𝑖) to refer to the value of the program variable x in the store at index 𝑖 .
Assuming op does not modify x and y, we ought to be able to use the hyper-triples above in a

proof of the following:

⊢

{
True

} [
1: x≔ op(𝑎,𝑏);z≔ op(x,x)
2: x≔ op(𝑎,𝑏);y≔ op(𝑏,𝑎);z≔ op(x,y)

] {
z(1) = z(2)

}
(Goalop)

The unfortunate surprise is that there is no alignment of the commands of the two components,
that can transform the goal into a lockstep proof that reuses (Detop) and (Commop). No matter
which pairs of calls of op we align across the two components, there will always be one call in
component 2 that remains unmatched; the abstract specification of op is relational and we have no
hyper-triple that specifies the effect of a single call. Yet, the hyper-triple follows semantically from
the assumptions.

We argue that enhanced lockstep reasoning is fundamentally incomplete, and does not allow
compositions of proofs that are needed for modular reasoning. In this specific example, even though
the arities of the hyper-triples match, we lack an appropriate way to compose them. Intuitively,
one should be able to prove that the assignment to x in 1 is equivalent to the first assignment in 2,
and to the second assignment in 2, and put together these two facts to conclude x(2) = y(3).
In this paper, we ask more generally: what can and should composition of hypersafety proofs

look like? We provide an answer to this question in the form of a new program logic, Logic for
Hyper-triple Composition (LHC). LHC enables the reasoning about a given hypersafety property,
formally encoded as a hyper-triple, to be composed from subproofs of hyper-triples of potentially
different arities, and with richer and more structurally complex means of composition than are
afforded by traditional lockstep reasoning.

The key observation behind the design of LHC is that traditional relational rules are of two main
varieties: they either hold generically w.r.t. the hyper-terms involved (like the classic Hoare-logic
consequence rule), or they decompose the goal by matching on the structure of the related programs,
(like the lockstep sequence rule). As we illustrate in Section 2, LHC identifies a third missing set
of rules which decompose the goal by matching on the structure of the hyper-term itself. That is,
by viewing hyper-terms as maps from indices to terms, LHC’s new rules allow splitting, joining,

2Note that op can have non-deterministic side-effects on the state (determinism is restricted to the return value).
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and re-indexing of these maps. In so doing, they provide a new dimension of compositionality in
hypersafety reasoning, making it possible for the first time to verify a range of interesting examples
(such as Example 1.1) that were beyond the reach of prior relational logics.

The remainder of the paper is structured as follows:

• In Section 2, we illustrate the main new reasoning principles of LHC, by means of a series of
examples that cannot be handled with previous relational logics.

• In Sections 3 and 4, we formalize the model and formulate the rules in full generality.
• In Section 5, we include a discussion of various features of LHC and contrast it against the
previous state of the art.

• In Section 6, we give a high-level survey of the literature in the problem space of hypersafety
verification, and in Section 7, we discuss exciting future directions for this problem space.

Additional case studies, omitted details and the soundness proofs can be found in the extended
version of this paper [D’Osualdo et al. 2022].

2 OVERVIEW OF LHC

In this section, we introduce the core new reasoning principles of LHC, illustrating them through a
series of simple examples. None of these examples can be handled with existing relational logics.
More extensive case studies can be found in [D’Osualdo et al. 2022].

2.1 A Weakest-Precondition-Based Calculus

Using LHC, we can overcome the limitations of pure lockstep reasoningÐwithout relying on
functional specifications for subprograms, nor meta-level reasoningÐby embracing hyper-triples
as building blocks for proving other hyper-triples. The first step to achieve this is to move from a
calculus based on triples precondition/hyper-term/postcondition, to a calculus based on a weakest-
precondition (WP) predicate over hyper-terms. This allows for a minimal and flexible logic.
More formally,3 our judgments are of the form 𝑅 ⊢ 𝑃 where both 𝑅 and 𝑃 are assertions over

hyper-stores, i.e., maps from indices to variable stores. The judgment asserts that 𝑅 ⇒ 𝑃 holds on
every hyper-store. To state properties of hyper-terms, we introduce the WP assertion wp 𝒕 {𝑄}
that holds on a hyper-store 𝒔 if running 𝒕 from 𝒔 results in a hyper-store 𝒔′ which satisfies the
assertion 𝑄 .4 A hyper-term is łrunž from a hyper-store by running each of its components on the
store at the corresponding index. On the indices where the hyper-term is undefined, the store is
simply preserved. Hyper-triples

{
𝑃
}
𝒕
{
𝑄
}
are notation for 𝑃 ⇒ wp 𝒕 {𝑄}.

Standard unary laws for weakest preconditions hold for our WP as well; for example, the usual
(unary) rule for sequencewp [1: 𝑡]

{
wp [1: 𝑡 ′] {𝑄}

}
⊣⊢ wp [1: (𝑡;𝑡 ′)] {𝑄} is valid in LHC. It is easy

to provide WP-based versions of lockstep rules. For example, LockStepSeq can be captured by:

wp-seq2

wp [1: 𝑡1, 2: 𝑡2]
{
wp [1: 𝑡 ′1, 2: 𝑡

′
2] {𝑄}

}
⊣⊢ wp

[
1: (𝑡1;𝑡

′
1), 2: (𝑡2;𝑡

′
2)
]
{𝑄}

The wp-seq2 rule helps us start a proof5 of the goal (Goalop) of Example 1.1, by aligning the
components at the assignments to z, as in Fig. 1. The right-hand premise is an instance of (Detop).
To derive the left-hand premise, however, we need genuinely new reasoning principles.

3The notation used in this section will be made fully precise in Sections 3 and 4.
4In general𝑄 may also predicate over the return values of 𝒕 , but we ignore this for simplicity in this section.
5Here and in following derivations, we omit applications of the rule of consequence.
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⊢ wp

[
1: x≔ op(𝑎,𝑏)

2: x≔ op(𝑎,𝑏);y≔ op(𝑏,𝑎)

] {
x(1) = x(2)

y(2) = x(1)

}
x(1) = x(2)

y(2) = x(1)
⊢ wp

[
1: z≔ op(x,x)

2: z≔ op(x,y)

] {
z(1) = z(2)

}

⊢ wp

[
1: x≔ op(𝑎,𝑏);z≔ op(x,x)

2: x≔ op(𝑎,𝑏);y≔ op(𝑏,𝑎);z≔ op(x,y)

] {
z(1) = z(2)

} (1)

Fig. 1. A first step in the proof of Example 1.1, aligning the programs at the assignment to z. The right-hand

premise is an instance of the determinism assumption (Detop).

2.2 Conjunction and Nesting

What characterises lockstep rules is that theymatch on the structure of the program terms inmultiple
components simultaneously. The new rules introduced by LHC focus instead on the structure
of the hyper-term as a map from indices to terms. The question we ask is: which combinations
of WPs are induced by operations on hyper-terms as maps? We start with the ones we need to
finish the proof of Example 1.1: two rules induced by the union operation. The union 𝒕1 + 𝒕2 of two
hyper-terms 𝒕1 and 𝒕2 is a hyper-term if 𝒕1 and 𝒕2 coincide, on the indices they have in common.
For example [1: 𝑡1, 2: 𝑡2] + [2: 𝑡 ′2, 3: 𝑡3] is well-defined if 𝑡2 = 𝑡 ′2. When the two hyper-terms do not
have indices in common, the result is disjoint union, which we write 𝒕1 · 𝒕2.

Nowwe can ask, how can we combine twoWPs to obtain aWP on the union of their hyper-terms?
LHC’s answer is the wp-conj0 rule:

wp-conj0

idx(𝑄1) ⊆ supp(𝒕1) idx(𝑄2) ⊆ supp(𝒕2)

wp 𝒕1 {𝑄1} ∧wp 𝒕2 {𝑄2} ⊢ wp (𝒕1 + 𝒕2) {𝑄1 ∧𝑄2}

Read from right to left, the rule states that, to prove that we are in a hyper-state from which 𝒕1 + 𝒕2

takes us to 𝑄1 ∧𝑄2, it is sufficient to prove separately that 𝒕1 takes us to 𝑄1 and 𝒕2 to 𝑄2. This is
sound as long as the postconditions only predicate over indices pertaining to their corresponding
hyper-term, as mandated by the two premises.

LHC proposes a second way of decomposing a WP by seeing its hyper-term as a disjoint union,
with the wp-nest0 rule:

wp-nest0

wp 𝒕1 {wp 𝒕2 {𝑄}} ⊣⊢ wp (𝒕1 · 𝒕2) {𝑄}

The rule establishes an equivalence between two nested WP on disjoint hyper-terms, and a single
one on their union. The idea is that since the semantics of WP preserves the stores at indices not
belonging to the WP’s hyper-term, the inner WP on the left receives as input on the indices of 𝒕2
the initial stores, just like on the right; and it preserves the outputs of 𝒕1. The postcondition 𝑄 is
free to predicate on the indices of both hyper-terms, and applies to the same hyper-stores on both
sides of the equivalence.
This rule unlocks a very useful proof pattern. It is very common to have a goal with many

components, but wanting to temporarily focus the proof on a subset of the components. The
wp-nest0 rule, applied from right to left, would correspond to łshelvingž the components in 𝒕2,
allowing the proof to operate on 𝒕1, e.g., in lockstep. When 𝒕2 becomes relevant again, applying the
rule from left to right would łunshelvež the components for the rest of the proof.
The seemingly simple wp-nest0 and wp-conj0, are powerful enough to close the proof of

Example 1.1, if combined with the standard principles of consequence and frame. Figure 2 shows
the LHC proof of the left-hand premise of step (1) in Fig. 1. The derivation starts with an application
of wp-nest0 which allows us to apply the (unary) sequence rule wp-seq1 only on 2. Another
application of wp-nest0 obtains the overall effect of shelving the assignment to y in 2 for later,
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⊢
w
p [

1:
x
≔

o
p
(𝑎
,𝑏
)
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≔

o
p
(𝑎
,𝑏
) ]{

x
(1)

=
x
(2) }

⊢
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≔

o
p
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)
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aligning the two assignments to x. Then, the application of the rule of frame (see wp-frame in
Fig. 6), borrowed from Hoare logic, is justified by the assumption that op does not modify x. This
means that if we prove x(1) = x(2) in the postcondition of the outer WP, it would hold after
running [2: y≔ op(𝑏,𝑎)] too.
Since the postcondition is now a conjunction, we can apply the wp-conj0. Note that the two

hyper-terms in the premises overlap in all the components. The first premise coincides with our
determinism assumption (Detop). For the second premise, we use wp-nest0 twice: once to push
component 1 in the postcondition, and another time to fuse it with the nested 2. We obtain a
top-level WP with a postcondition that coincides with our commutativity assumption (Commop).
The final application of consequence (wp-cons) amounts to say that if the WP in the premise holds
on every state, then it should hold on the state resulting from running [2:x≔ op(𝑎,𝑏)].

The combination of wp-conj0 and wp-nest0 allowed us to carry out the intuitive proof strategy,
which relates both assignments of x and y in 2 with the single assignment to x in 1.

2.3 Projection

The rules in the previous section were induced by union of hyper-terms. We next present a rule
that is induced by the operation of removing components from a hyper-term. To motivate the rule,
we present another simple example that lockstep reasoning cannot handle.

Imagine we are given some deterministic terminating6 𝑡1 and 𝑡2 satisfying the specification

⊢
{
®x(1) = ®x(2)

}
[1: 𝑡1;𝑡2, 2: 𝑡2;𝑡1]

{
®x(1) = ®x(2)

}
(Swap𝑡1,𝑡2 )

Given a vector of pairwise distinct program variables ®x = x1 . . . x𝑛 we write ®x(𝑖) for the vector
x1 (𝑖) . . . x𝑛 (𝑖); the assertion ®x(1) = ®x(2) states pointwise equality between the two vectors. The
specification above then states that, relative to some relevant variables ®x, sequencing the two
commands 𝑡1 and 𝑡2 in one order or the other generates the same result. It should be possible to
derive, within the logic, that

⊢

{
®x(1) = ®x(2)

} [
1: 𝑡1;𝑡2;𝑡2
2: 𝑡2;𝑡2;𝑡1

] {
®x(1) = ®x(2)

}

It is however not possible to prove this by aligning the two programs. The only alignment that
generates a match with the assumption (Swap𝑡1,𝑡2 ) would leave an unmatched 𝑡2 at the start of 2
and one at the end of 1.
The natural proof strategy here is to introduce an auxiliary term 𝑡2;𝑡1;𝑡2, and show that both

components 1 and 2 above are equivalent to it. In derivation form, the desired proof looks as follows:

⊢

{
®x(1) = ®x(3)

} [
1: 𝑡1;𝑡2;𝑡2
3: 𝑡2;𝑡1;𝑡2

] {
®x(1) = ®x(3)

}
⊢

{
®x(2) = ®x(3)

} [
3: 𝑡2;𝑡1;𝑡2
2: 𝑡2;𝑡2;𝑡1

] {
®x(2) = ®x(3)

}

⊢



®x(1) = ®x(3) = ®x(2)




1: 𝑡1;𝑡2;𝑡2
3: 𝑡2;𝑡1;𝑡2
2: 𝑡2;𝑡2;𝑡1




®x(1) = ®x(3) = ®x(2)




wp-conj0

⊢

{
®x(1) = ®x(2)

} [
1: 𝑡1;𝑡2;𝑡2
2: 𝑡2;𝑡2;𝑡1

] {
®x(1) = ®x(2)

} wp-proj𝑖

Read from top to bottom, the two premises express the equivalence between the original components
and the auxiliary component 3. They are easily proved by the obvious lockstep proof, using
(Swap𝑡1,𝑡2 ) and the assumptions of determinism (as hyper-triples).

The crucial last step removes component 3 from the hyper-triple, an operation that we call
łprojecting outž. Note that this step is not just a by-product of the principle of consequence:

6We will elaborate on the assumption of termination later.
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the precondition of the goal does not imply the precondition of the premise, which additionally
constrains the store at 3. To justify such a step, LHC provides the following projection rule:

wp-proj𝑖

𝑃 ⊢ wp (𝒕 ′ · [𝑖: 𝑡]) {𝑄}

Π𝑖 . 𝑃 ⊢ wp 𝒕 ′ {Π𝑖 . 𝑄}
proj(𝑡)

The rule introduces a novelty in the assertion language, the projection modality Π𝑖 . 𝑃 . A hyper-
store 𝒔 satisfies Π𝑖 . 𝑃 if there is some store 𝑠′ that can be placed at 𝑖 so that the resulting hyper-
store 𝒔 [𝑖: 𝑠′] satisfies 𝑃 . Intuitively, Π𝑖 . 𝑃 removes the constraints imposed by 𝑃 on the store at
index 𝑖 , while keeping the explicit and implied constraints imposed on the other components. For
example, Π2. (x(1) < x(2) < x(3)) is logically equivalent to x(1) + 1 < x(3): if an hyper-store
satisfies x(1) + 1 < x(3) we can replace the store at 2 with one satisfying x(2) = x(1) + 1 and obtain
a hyper-store satisfying x(1) < x(2) < x(3).

Since the hyper-term in the conclusion of the rule has had its 𝑖-th component removed, both the
precondition and postcondition of the conclusion are subject to the Π𝑖 projection. The rule has
an important side condition, however: proj(𝑡), which requires 𝑡 to have terminating traces from
any input store (in Section 4 we relax this condition). In our example this is discharged by the
assumption that 𝑡1 and 𝑡2 are terminating. Perhaps surprisingly, the rule without side conditions is
unsound: since the semantics of WP only constrains the terminating runs, if 𝑡 does not terminate,
𝑄 can be False in the premise, which would result in an invalid triple in the conclusion.

The combination of projection and conjunction that we used in the example corresponds roughly
to using transitivity in a refinement-based proof. It is striking that previous relational logics for
hypersafety do not admit this principle. A notable exception is RHL [Benton 2004] which has a
łtransitivityž rule for 2-properties that could handle our example. The soundness of the rule relies
however on a semantics of triples that goes beyond hypersafety and constrains the non-terminating
behaviour too, in a way that is incompatible with some of LHC’s rules (e.g., wp-nest0). We discuss
the trade-off involved in Section 5.5.

2.4 Reindexing and Indirect-Style Hyper-triples

A third way in which lockstep reasoning is unable to reuse hyper-triples, is the case of what we
call łindirect-stylež specifications. Consider the case of idempotence, that is, that 𝑡 and 𝑡;𝑡 achieve
the same effect. A naive encoding of idempotence of 𝑡 with respect to some relevant variables ®x, is:

⊢
{
®x(1) = ®x(2)

}
[1: 𝑡, 2: (𝑡;𝑡)]

{
®x(1) = ®x(2)

}
(IdemSeq𝑡 )

In [Sousa and Dillig 2016], however, idempotence is specified instead as follows:

⊢
{
®x(2) = ®𝑣

}
[1: 𝑡, 2: 𝑡]

{
®x(1) = ®𝑣 ⇒ ®x(2) = ®𝑣

}
(Idem𝑡 )

The input of 1 is unconstrained; the input of 2 is assumed to be ®𝑣 ; after a run of 𝑡 in each component,
the postcondition asserts that, if the input of 2 happened to coincide with the output of 1, then
the output of 2 is the same as the output of 1. The specification uses a slightly unintuitive pattern,
which we call łindirect-stylež: the output of 1 is fed as input to 2 indirectly, through an implication
in the postcondition.

Let us compare the two specifications. The hyper-triple (IdemSeq𝑡 ) is certainly easier to interpret;
it also is in a form that seems readily applicable: one would expect to use idempotence precisely to
relate the two components of the hyper-triple. In contrast, the hyper-triple (Idem𝑡 ) is not directly
applicable in lockstep proofs that need to relate 𝑡 and 𝑡;𝑡 . It has the advantage, however, of making
the two components syntactically coincide, which can be exploited by a tool to produce a simple
lockstep idempotency proof, if one exists. On the other hand, attacking directly a proof of (IdemSeq𝑡 )
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might require one to characterize very precisely the effect of the first run of 𝑡 so that the second
one can be shown equivalent to a skip.
A difference which might not be immediate is that (IdemSeq𝑡 ) holds in fact for strictly fewer

programs than (Idem𝑡 ). For an example, consider if x= 0 then (if ∗ then x≔ 1 else x≔ 2):
the result of a run from a store with x = 0 would output a store with a random value x ∈ {1, 2};
executing the same program again would preserve the store, therefore the program satisfies (Idem𝑡 ).
It does not however satisfy (IdemSeq𝑡 ), as the programs at 1 and 2 may store different values in x.
The two encodings of idempotence are, however, equivalent for deterministic programs. Given

the tension between the twoÐone is easier to prove but harder to use and vice versaÐwe would
like to be able to derive one from the other, within the logic. In CHL it is impossible to use (Idem𝑡 )
and the hyper-triple encoding determinism of 𝑡 to prove (IdemSeq𝑡 ). This is, again, because the
logical alignment proof strategy is fundamentally limited.

In order to support these derivations within the logic, LHC provides one final way of manipulating
the hyper-term structure: reindexing, i.e., the ability to substitute indices for indices in hyper-triples.

To illustrate the idea, let us derive (IdemSeq𝑡 ) from (Idem𝑡 ) plus determinism in LHC. There are
two main obstacles to overcome: the first is that (IdemSeq𝑡 ) has three occurrences of 𝑡 but (Idem𝑡 )
has only two; the second, and more relevant, is that the two runs of 𝑡 in (IdemSeq𝑡 ) that correspond
to the two runs in (Idem𝑡 ) are sequenced in the same component 2.

The first step of the proof can be dealt with using the rules we have already introduced. We want
to appeal to determinism to establish that, in [1: 𝑡, 2: (𝑡;𝑡)], whatever we can say about the output
of the first run of 𝑡 in 2, will hold for the output at 1 too, and reduce the goal to proving a triple
only involving component 2. This can be achieved with the help of wp-conj0:

®x(1) = ®x(2) ⊢ wp [1: 𝑡, 2: 𝑡] {®x(1) = ®x(2)} ⊢ wp [2: 𝑡] {∃®𝑣 . ®x(2) = ®𝑣 ∧wp [2: 𝑡] {®x(2) = ®𝑣}}

®x(1) = ®x(2) ⊢ wp [1: 𝑡, 2: 𝑡]
{
®x(1) = ®x(2) ∧ ∃®𝑣 . (®x(2) = ®𝑣 ∧wp [2: 𝑡] {®x(2) = ®𝑣})

} wp-conj0

®x(1) = ®x(2) ⊢ wp [1: 𝑡, 2: 𝑡] {wp [2: 𝑡] {®x(1) = ®x(2)}}
(3)

®x(1) = ®x(2) ⊢ wp [1: 𝑡, 2: (𝑡;𝑡)] {®x(1) = ®x(2)}
(2)

The derivation starts just like Fig. 2: component 2 is decomposed at the sequential composition,
with the help of wp-nest0 and wp-seq1. Then, again similarly to Fig. 2, consequence and frame are
used to decouple the assertions on 1 and 2 in the postcondition: we can prove (by determinism)
that x(1) = x(2) holds already after the first runs of 𝑡 in 1 and 2; and separately we can prove the
second run in 2 will preserve whatever value is stored in x(2). The wp-conj0 rule allows us to
discharge the first conjunct of the postcondition by appealing to the assumption of determinism
of 𝑡 .
We are now left with our goal being the right-hand premise, which has only two occurrences

of 𝑡 , although they are both at 2. This identifies the crux of the problem: our new goal involves two
sequenced runs of the same term 𝑡 , but the indirect-style hyper-triple we take as our assumption
(i.e., (Idem𝑡 )) relates two runs in separate indices of a hyper-triple.

To close the proof we need two new rules of LHC that deal precisely with re-assigning indices to
components in a WP. LHC uses the reindexing notation 𝑃L𝑖/ 𝑗 M to denote the assertion that is true
on a hyper-store 𝒔 if 𝑃 is true on the hyper-store 𝒔 [ 𝑗 : 𝒔 (𝑖)]. For a more syntactic intuition, 𝑃L𝑖/ 𝑗 M is
the assertion 𝑃 where the occurrences of the index 𝑗 are replaced with 𝑖 . LHC proposes two main
rules (simplified here slightly for clarity) explaining the interaction between reindexing and WP:

wp-idx-post0

⊢ wp 𝒕 {𝑄}

⊢ wp 𝒕 {𝑄L𝑖/ 𝑗 M}
𝑗 ∉ supp(𝒕 )

wp-idx-swap0(
wp [ 𝑗 : 𝑡] {𝑄}

)
L𝑖/ 𝑗 M ⊢ wp [𝑖: 𝑡] {𝑄L𝑖/ 𝑗 M}

𝑖 ∉ idx(𝑄 )
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Rulewp-idx-post0 states that it is possible to substitute 𝑗 for 𝑖 in the postcondition of a WP if 𝒕 does
not have a component at index 𝑗 . Rule wp-idx-swap0 shows the effect of applying the substitution
to a WP that does contain a component at 𝑗 . (We explain the need for the side conditions on these
rules in Section 4.)

With these two rules we can now complete the derivation:

®x(3) = ®𝑣 ⊢ wp [2: 𝑡, 3: 𝑡] {®x(2) = ®𝑣 ⇒ ®x(3) = ®𝑣}

⊢ wp [2: 𝑡] {∀®𝑣 . (®x(2) = ®𝑣 ∧ ®x(3) = ®𝑣) ⇒ wp [3: 𝑡] {®x(3) = ®𝑣}}
(7)

⊢ wp [2: 𝑡]
{(
∀®𝑣 . (®x(2) = ®𝑣 ∧ ®x(3) = ®𝑣) ⇒ wp [3: 𝑡] {®x(3) = ®𝑣}

)
L2/3M

} wp-idx-post0

⊢ wp [2: 𝑡]
{
∀®𝑣 . ®x(2) = ®𝑣 ⇒

(
wp [3: 𝑡] {®x(3) = ®𝑣}

)
L2/3M

} (6)

⊢ wp [2: 𝑡]
{
∃®𝑣 . ®x(2) = ®𝑣 ∧

(
wp [3: 𝑡] {®x(3) = ®𝑣}

)
L2/3M

} (5)

⊢ wp [2: 𝑡]
{
∃®𝑣 . ®x(2) = ®𝑣 ∧wp [2: 𝑡] {(®x(3) = ®𝑣)L2/3M}

} wp-idx-swap0

⊢ wp [2: 𝑡]
{
∃®𝑣 . ®x(2) = ®𝑣 ∧wp [2: 𝑡] {®x(2) = ®𝑣}

} (4)

We start at the top with (Idem𝑡 ); we renamed 1 to 2 and 2 to 3, which is possible as LHC’s speci-
fications are closed under unambiguous renaming of indices.7 Step (7) uses wp-nest0 and some
simple logical manipulations (mainly commutation laws between implication and WP) to put the
postcondition in a suitable form. An application of wp-idx-post0 applies the L2/3M substitution to
the postcondition, which is propagated using consequence in step (6), until it reaches the inner WP.
Step (5) uses consequence and the tautology ∃®𝑣 . ®x(2) = ®𝑣 to apply the universal quantification in
the postcondition. We then use wp-idx-swap0 to propagate the reindexing to the postcondition of
the inner WP. Step (4) finally applies the reindexing to the postcondition of the inner WP obtaining
the desired judgment.

2.5 Loop Invariants

The treatment of loops is a thorny issue in relational logics. Loops are where all the shortcomings
of the alignment proof strategy get amplified. Consider the following simple consequence of
idempotence and determinism of 𝑡 (picking i to be a fresh variable):

⊢
{
®x(1) = ®x(2)

}
[1: 𝑡, 2: (𝑡;while i>0 do (𝑡;i--))]

{
®x(1) = ®x(2)

}
(IdemLoop𝑡 )

The idea of lockstep proofs underlies all the relational rules for loops in the literature: they work
well when all the components in a hyper-triple are loops which can be aligned at the boundaries of
their bodies. Since the relational specifications of idempotence and determinism of 𝑡 do not give us
direct information about single runs of 𝑡 (only of pairs of runs) this strategy immediately falls apart
when attempting a proof of (IdemLoop𝑡 ). We only have one component with a loop, containing
runs of 𝑡 which we fail to align to any other runs of 𝑡 in the other component.
Let us inspect the issue more closely, by sketching a derivation:

⊢
{
®x(1) = ®x(2)

}
[1: 𝑡, 2: 𝑡]

{
𝑃
} ⊢

{
𝑃
}
[2: (𝑡;i--)]

{
𝑃
}

⊢
{
𝑃
}
[2: (while i>0 do (𝑡;i--))]

{
𝑃
}

⊢
{
®x(1) = ®x(2)

}
[1: 𝑡, 2: (𝑡;while i>0 do (𝑡;i--))]

{
®x(1) = ®x(2)

}
We start by considering the first runs of 𝑡 in 1 and 2 in lockstep, and separately the loop, from
the resulting state. As in a standard proof, proving the loop boils down to finding a suitable loop
invariant. In all the previous relational logics the most precise information we can obtain for the

7Formally this is handled by rules idx and wp-idx, presented in Section 4.
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left-hand premise, reusing the specifications of 𝑡 , is 𝑃 =
(
®x(1) = ®x(2)

)
. Unfortunately, the right-

hand premise cannot be proven with this 𝑃 , since 𝑡 does not in general preserve it: the assertion is
too weak in that it does not record the fact that a run of 𝑡 already happened before the loop starts.
Short of this information, the verification of the loop needs to consider the case where the body
executes 𝑡 for the first time ever, which in general would not preserve the equivalence (as there is
no corresponding run of 𝑡 in 1).
This is where the extended expressivity of LHC is crucial to obtain a modular and relational

proof. In LHC we can set 𝑃 = ∃®𝑣 .
(
®x(1) = ®x(2) = ®𝑣 ∧wp [2: 𝑡] {®x(2) = ®𝑣}

)
which correctly records

the fact that 𝑡 has run already, by asserting that a further run of 𝑡 at 2 would not modify ®x. The
left-hand premise can be established with this 𝑃 by reusing the derivation of the previous sectionÐit
is a direct consequence of the premise of step (3). The verification of the body of the loop can now
use the WP in 𝑃 to justify why 𝑡 has no effect on ®x. The full derivation, shown for a variant of this
example in [D’Osualdo et al. 2022], crucially relies on LHC’s ability to handle nested WPs.
Through this series of examples we introduced the main novel reasoning principles of LHC,

and showed how they enable compositional, modular proofs, embracing hyper-triples as the
fundamental building block of hypersafety proofs.

3 PRELIMINARIES

In this section we fix notation, and define assertions over hyper-stores and their basic laws.

Definition 3.1 (Finite maps). Given a type 𝐴, we define the type 𝐴⊥ ≜ 𝐴 ⊎ {⊥}. Given a function
𝑓 : 𝐴 → 𝐵⊥ we define supp(𝑓 ) ≜ {𝑎 : 𝐴 | 𝑓 (𝑎) ≠ ⊥}. We say 𝑓 is a finite map from 𝐴 to 𝐵, written
𝑓 : 𝐴 ⇀ 𝐵, if 𝑓 : 𝐴 → 𝐵⊥ and supp(𝑓 ) is finite.
We write [𝑎1:𝑏1, . . . , 𝑎𝑛 :𝑏𝑛] for the finite map associating each 𝑎𝑖 to 𝑏𝑖 (and everything else to ⊥).

Similarly to set comprehensions, we use the notation [𝑎:𝑏 | 𝜑 (𝑎, 𝑏)], e.g. [𝑖: 𝑗 | 𝑖 ∈ N, 𝑖 = 2 𝑗 ≤ 4] =
[0: 0, 2: 1, 4: 2]. Given 𝑓 , 𝑔 : 𝐴 ⇀ 𝐵 such that ∀𝑥 ∈ supp(𝑓 ) ∩ supp(𝑔). 𝑓 (𝑥) = 𝑔(𝑥), the union of 𝑓
and 𝑔, written 𝑓 + 𝑔 : 𝐴 ⇀ 𝐵 is defined as:

(𝑓 + 𝑔) (𝑥) =



𝑓 (𝑥) if 𝑥 ∈ supp(𝑓 ) \ supp(𝑔)

𝑔(𝑥) if 𝑥 ∈ supp(𝑔)

⊥ otherwise

We leave 𝑓 + 𝑔 undefined if 𝑓 (𝑥) ≠ 𝑔(𝑥) for some 𝑥 ∈ supp(𝑓 ) ∩ supp(𝑔). The disjoint union of 𝑓
and 𝑔, written 𝑓 ·𝑔 : 𝐴 ⇀ 𝐵, is defined as 𝑓 ·𝑔 ≜ 𝑓 +𝑔 if supp(𝑓 ) ∩ supp(𝑔) = ∅, undefined otherwise.
For any function 𝑓 : 𝐴 → 𝐵, we define 𝑓 [𝑎:𝑏] ≜ λ𝑥 . if 𝑥 = 𝑎 then 𝑏 else 𝑓 (𝑥).

Both operations (+) and (·) on maps are commutative and associative (where defined) and have
the empty map [] as neutral element. Indices are natural numbers 𝑖 ∈ I ≜ N. We make extensive
use of finite maps from I: if 𝐴 is the type of things then I→ 𝐴⊥ is the type of hyper-things. As a
notational convention, if a meta-variable 𝑎 ranges over 𝐴 we use 𝒂 to range over I→ 𝐴⊥. For a set
of indices 𝐼 ⊆ I and some 𝑥 ∈ 𝐴, we write 𝑥 𝐼 for [𝑖:𝑥 | 𝑖 ∈ 𝐼 ]. Given 𝐼 ⊆ I, we lift a relation ∼ on𝐴 to
the relation ∼𝐼 on I⇀ 𝐴 as follows; for 𝒂1, 𝒂2 : I⇀ 𝐴, 𝒂1 ∼𝐼 𝒂2 holds when 𝐼 ⊆ supp(𝒂1), supp(𝒂2)
and ∀𝑖 ∈ I. 𝒂1 (𝑖) ∼ 𝒂2 (𝑖). When 𝑎0 ∈ 𝐴, we write 𝒂 ∼𝐼 𝑎0 to mean ∀𝑖 ∈ I. 𝒂(𝑖) ∼ 𝑎0.

Definition 3.2 (Reindexing). A function 𝜋 : I→ I is called a reindexing. Given 𝒂 : I→ 𝐴, we write
𝒂L𝜋M to apply the reindexing 𝜋 to the map: 𝒂L𝜋M ≜ [𝑖: 𝒂(𝜋 (𝑖)) | 𝑖 ∈ I]. We write 𝒂L 𝑗1/𝑖1, . . . , 𝑗𝑛/𝑖𝑛 M
to denote 𝒂L𝜋M where 𝜋 (𝑖𝑘 ) = 𝑗𝑘 and 𝜋 (𝑖) = 𝑖 if 𝑖 ∈ I \ {𝑖1, . . . , 𝑖𝑛}.
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3.1 Hyper-programs

Syntax. We use a minimal untyped imperative language to formalize our ideas. We will assume
an enumerable set of program variables x ∈ X. The set of values 𝑣 ∈ V ≜ Z is the set of integers, for
simplicity. Booleans are represented using 0 for false, and any other integer for true.

T ∋ 𝑡, 𝑔, 𝑒 F 𝑣 | x | ∗ | 𝑒 + 𝑒 | 𝑒 - 𝑒 | 𝑒 ≤ 𝑒 | . . .

| skip | x≔ 𝑒 | 𝑡;𝑡 | if 𝑔 then 𝑡 else 𝑡 | while 𝑔 do 𝑡

Every term evaluates to some value and mutates a first-order store. We use the meta-variables 𝑔 for
terms that are meant to evaluate to a boolean (i.e. guards), and 𝑒 for terms that are meant to evaluate
to an integer (i.e. expressions). The ∗ expression chooses some integer non-deterministically, and
returns it. Commands like skip and while have an irrelevant (and thus arbitrary) return value. A
simplifying (but inessential) assumption is that evaluation never faults. If needed, one can model
expressions like 𝑛/0 as returning a special NaN value.
To keep the development as simple as possible, we also don’t model scoping and function calls.

Including them can be handled using standard techniques. Function calls in our examples should
be understood as simply naming code blocks.
The functions pvar(𝑡) and mods(𝑡) return the set of program variables occurring in 𝑡 and

modified by 𝑡 respectively. Their definition is standard. We extend them to hyper-terms by setting
pvar(𝒕) = {(x, 𝑖) | 𝑖 ∈ supp(𝒕), x ∈ pvar(𝒕 (𝑖))} (and similarly for mods).

Semantics. A store is an element of S ≜ X→ V. For simplicity, we adopt a big-step semantics
for our language. The judgment ⟨𝑡, 𝑠⟩ ⇓ ⟨𝑣, 𝑠′⟩ indicates that the term 𝑡 starting from input store 𝑠
may terminate with the return value 𝑣 ∈ V and output store 𝑠′. The definition of ⟨𝑡, 𝑠⟩ ⇓ ⟨𝑣, 𝑠′⟩ is in
[D’Osualdo et al. 2022]. We define ⟨𝑡, 𝑠⟩⇓ ≜ ∃𝑣, 𝑠′ . ⟨𝑡, 𝑠⟩ ⇓ ⟨𝑣, 𝑠′⟩. Note that ⟨𝑡, 𝑠⟩⇓ is equivalent to
termination only if 𝑡 does not have non-deterministic steps. For example, ⟨while ∗ do skip, 𝑠⟩⇓
holds even though, in a standard small-step semantics, the program has a diverging execution.

Definition 3.3. A hyper-term is a finite partial function 𝒕 : I ⇀ T. A hyper-store is a function
𝒔 : I → S. A hyper-return-value is a finite partial function 𝒓 : I ⇀ V. The big-step semantics
judgment is lifted to hyper-terms as follows:

⟨𝒕, 𝒔⟩ ⇓ ⟨𝒓 , 𝒔′⟩ ≜ ∀𝑖 ∈ I.

{
⟨𝒕 (𝑖), 𝒔 (𝑖)⟩ ⇓ ⟨𝒓 (𝑖), 𝒔′ (𝑖)⟩ if 𝑖 ∈ supp(𝒕)

𝒔 (𝑖) = 𝒔
′ (𝑖) ∧ 𝒓 (𝑖) = ⊥ otherwise

Note that on all indices where 𝒕 is undefined, the store is preserved untouched.

3.2 Hyper-assertions

Definition 3.4 (Hyper-assertion). Assertions are of type 𝐴 ∈ Assrt ≜ S→ Prop. A hyper-assertion

is a function of type 𝑃 ∈ HAssrt ≜ (I → S) → Prop. A post hyper-assertion has the type
𝑄 : (I ⇀ V) → HAssrt. They are used in postconditions, where the hyper-value argument is
bound to the return value of the hyper-term in the triple. We require post hyper-assertions to be
upward-closed on the hyper-return-value: if 𝑄 (𝒗) (𝒔) and ∀𝑖 ∈ supp(𝒗). 𝒗 (𝑖) = 𝒗

′ (𝑖) then 𝑄 (𝒗′) (𝒔).

The set of indices that are relevant for 𝑃 is the set idx(𝑃) defined below. For example, we have
idx

(
(x(1) = y(2)) ∨ z(3) = 0

)
= {1, 2, 3}.

Definition 3.5 ( idx). The indices of a (post) hyper-assertion 𝑃 (resp. 𝑄) are the set:

idx(𝑃) ≜ I \ {𝑖 ∈ I | ∀𝒔, 𝑠′ . 𝑃 (𝒔) ⇔ 𝑃 (𝒔 [𝑖: 𝑠′])}

idx(𝑄) ≜ I \ {𝑖 ∈ I | ∀𝒓, 𝒔, 𝑠′ . 𝑄 (𝒓) (𝒔) ⇔ 𝑄 (𝒓 [𝑖:⊥])(𝒔 [𝑖: 𝑠′])}
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(x(𝑖) = 𝑣) ≜ λ𝒔 . 𝒔 (𝑖) (x) = 𝑣 𝑃1 ⇒ 𝑃2 ≜ λ𝒔 . 𝑃1 (𝒔) ⇒ 𝑃2 (𝒔)

𝑃1 ∧ 𝑃2 ≜ λ𝒔 . 𝑃1 (𝒔) ∧ 𝑃2 (𝒔) 𝑃1 ∨ 𝑃2 ≜ λ𝒔 . 𝑃1 (𝒔) ∨ 𝑃2 (𝒔)

∃𝑥 . 𝑃 (𝑥) ≜ λ𝒔 . ∃𝑥 . 𝑃 (𝑥) (𝒔) ∀𝑥 . 𝑃 (𝑥) ≜ λ𝒔 .∀𝑥 . 𝑃 (𝑥) (𝒔)

𝑃L𝜋M ≜ λ𝒔 . 𝑃 (𝒔L𝜋M) 𝑄L𝜋M ≜ λ𝒓 . 𝑄 (𝒓L𝜋M)L𝜋M

Π𝐼 . 𝑃 ≜ λ𝒔 . ∃𝒔′. 𝑃 (𝒔 [𝑖: 𝒔′(𝑖) | 𝑖 ∈ 𝐼 ]) Π̂𝐼 . 𝑄 ≜ λ𝒓 . ∃𝒗 .Π𝐼 . 𝑄 (𝒓 [𝑖: 𝒗 (𝑖) | 𝑖 ∈ 𝐼 ])

𝐴@𝐼 ≜ λ𝒔 .
∧

𝑖∈𝐼 𝐴(𝒔 (𝑖)) 𝑄1 ∧𝑄2 ≜ λ𝒓 . 𝑄1 (𝒓) ∧𝑄2 (𝒓)

Fig. 3. Hyper-assertions

Similarly, we define pvar(𝑃) as the set of (indexed) program variables of an hyper-assertion such
that (x, 𝑖) ∈ pvar(𝑃) if arbitrarily changing the value of x at 𝑖 may affect whether 𝑃 holds.

Definition 3.6 (pvar). The program variables of a (post) hyper-assertion 𝑃 (resp. 𝑄) are the set:

pvar(𝑃) ≜ (X × I) \
{
(x, 𝑖)

�� ∀𝒔, 𝑣 . 𝑃 (𝒔) ⇔ 𝑃
(
𝒔 [𝑖: 𝒔 (𝑖) [x: 𝑣]]

)}
pvar(𝑄) ≜

⋃
𝒓 : I⇀V pvar(𝑄 (𝒓))

Even though we defined idx and pvar semantically, any over-approximation would suffice to
preserve the soundness of the side conditions of our rules.
We will be using a number of hyper-assertions, summarized in Fig. 3. Pure meta-level propo-

sitions 𝜑 lift to pure hyper-assertions λ_. 𝜑 , which hold independently of the state. An assertion
𝐴 :Assrt, which predicates over single stores, can be lifted to a hyper-assertion, which predicates
over hyper-stores, by 𝐴@𝐼 which specifies on which indices 𝐼 , 𝐴 is required to hold. In addition to
the usual logical connectives, we introduce some notation to deal with hyper-stores. To refer to the
value of a program variable x at index 𝑖 in a hyper-store, we write x(𝑖).

The hyper-assertion 𝑃L𝜋M uses the reindexing 𝜋 to change the indices of the hyper-store before
checking 𝑃 holds on it. The notation is extended to post hyper-assertions by reindexing the
hyper-return-value too. Note that while reindexing an assertion is intuitively akin to applying a
substitution to indices, we are giving it here a semantic definition. On simple assertions, reindexing
does propagate just like a substitution of indices. For example

(
5 ≤ x(1) ∧ x(2) ≤ x(3)

)
L2/1M is

logically equivalent to
(
5 ≤ x(2) ≤ x(3)

)
. We will however see in Section 4.4 that its interaction

with WPs is not trivial.
The projection modality Π𝐼 projects out the information on the components in 𝐼 of the hyper-

store under consideration. Π𝐼 . 𝑃 holds on a hyper-store 𝒔 if 𝑃 holds on some hyper-store that
coincides with 𝒔 on every index except for the ones in 𝐼 . Notice that idx(Π𝐼 . 𝑃) ∩ 𝐼 = ∅. For brevity,
when 𝐼 = {𝑖} is a singleton, we omit the braces and write Π𝑖 . 𝑃 . Projection of a post hyper-assertion
Π̂𝐼 . 𝑄 , projects out the components at 𝐼 of the hyper-return-value too.

Definition 3.7. An assertion 𝐴 is valid, written ⊢ 𝐴, just if ∀𝑠 . 𝐴(𝑠). Similarly, we define validity,
entailment, and logical equivalence of hyper-assertions:

⊢ 𝑃 ≜ ∀𝒔 . 𝑃 (𝒔) Γ ⊢ 𝑃 ≜ (⊢
∧

Γ ⇒ 𝑃) 𝑃 ⊣⊢ 𝑃 ′
≜ (𝑃 ⊢ 𝑃 ′) ∧ (𝑃 ′ ⊢ 𝑃)

where Γ is a list of hyper-assertions. When Γ is empty,
∧

Γ = True. Since Γ is always interpreted as
the conjunction of its items we will not make a distinction between Γ and

∧
Γ.

In Fig. 4 we show a selection of laws on entailments of basic hyper-assertions. These laws are
standard and mirror the laws for standard connectives. In Fig. 5 we show the core laws that apply
to the two constructs that are special to hyper-assertions: reindexing and projection.
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Γ, 𝑃 ⊢ 𝑃
Γ ⊢ 𝑃 ′ Γ, 𝑃 ′ ⊢ 𝑃

Γ ⊢ 𝑃

Γ, 𝑃 ⊢ 𝑅

Γ ⊢ 𝑃 ⇒ 𝑅
================

∀𝑥 . (Γ, 𝑃 (𝑥) ⊢ 𝑅)

Γ, ∃𝑥 . 𝑃 (𝑥) ⊢ 𝑅

Γ ⊢ 𝑃1 Γ ⊢ 𝑃2

Γ ⊢ 𝑃1 ∧ 𝑃2

Fig. 4. Basic hyper-assertion laws (selection).

idx

Γ ⊢ 𝑃

ΓL𝜋M ⊢ 𝑃L𝜋M

idx-pvar

(x(𝑖) = 𝑣)L𝜋M ⊣⊢ x(𝜋 (𝑖)) = 𝑣

idx-ex

(∃𝑥 . 𝑃 (𝑥))L𝜋M ⊣⊢ ∃𝑥 . (𝑃 (𝑥)L𝜋M)

idx-conj

(𝑃1 ∧ 𝑃2)L𝜋M ⊣⊢ (𝑃1L𝜋M ∧ 𝑃2L𝜋M)

idx-impl

(𝑃1 ⇒ 𝑃2)L𝜋M ⊣⊢ (𝑃1L𝜋M ⇒ 𝑃2L𝜋M)

idx-irrel

∀𝑖 ∈ idx(𝑃) . 𝜋 (𝑖) = 𝑖

𝑃L𝜋M ⊣⊢ 𝑃

proj

Γ ⊢ 𝑃

Π𝐼 . Γ ⊢ Π𝐼 . 𝑃

proj-intro

𝑃 ⊢ Π𝐼 . 𝑃

proj-merge

Π𝐼1 .Π𝐼2 . 𝑃 ⊣⊢ Π𝐼1∪𝐼2 . 𝑃

proj-irrel

idx(𝑃) ∩ 𝐼 = ∅

Π𝐼 . 𝑃 ⊢ 𝑃

proj-store

𝑖 ∉ idx(𝑃) |®𝑣 | = |®x|

∃®𝑣 . 𝑃 (®𝑣) ⊢ Π𝑖 . ∃®𝑣 . (𝑃 (®𝑣) ∧ ®x(𝑖) = ®𝑣)

Fig. 5. Hyper-assertion laws for reindexing and projection.

Rule idx allows the application of arbitrary reindexing on both sides of the turnstile. Rules idx-
pvar to idx-impl show how reindexing distributes over the other connectives. To eliminate a
reindexing one can use these rules to push the reindexing down the structure of the assertion until
either idx-pvar applies or the reindexing does not affect the indices of the assertion and idx-irrel

allows to remove it.
Rule proj allows projection to be introduced on both sides of the turnstile. Notice that the rule

is not an instance of consequence: the assumption Π𝐼 . Γ in the conclusion does not imply the
assumption Γ in the premise.
Rule proj-intro is the most obvious way to introduce a projection, but it is not the most

useful; typically when introducing an assertion Π𝑖 . 𝑃 we want to assert in 𝑃 facts that are not true
for the current store at index 𝑖 , but would be true if we reassigned the store at 𝑖 appropriately.
Rule proj-store supports this common scenario: for instance, we can use it to prove (x(1) = x(2)) ⊢

∃𝑣 . x(1) = x(2) = 𝑣 ⊢ Π3.
(
∃𝑣 . x(1) = x(2) = 𝑣 ∧ x(3) = 𝑣

)
⊢ Π3 . (x(1) = x(2) = x(3)) .

Rule proj-irrel is the main mean to eliminate projection: starting from an assertion 𝑃0 with
idx(𝑃0) ∩ 𝐼 ≠ ∅ one first proves 𝑃0 ⊢ 𝑃 for some suitably strong 𝑃 with idx(𝑃0) ∩ 𝐼 = ∅; then an
application of proj and proj-irrel give us Π𝐼 . 𝑃0 ⊢ 𝑃 .

4 THE PROGRAM LOGIC

To make our logic capable of asserting properties of programs, we introduce a weakest precondi-
tion (WP) modality wp 𝒕 {𝑄}, where 𝒕 : I ⇀ T is a hyper-term, and 𝑄 : (I ⇀ V) → HAssrt is the
postcondition.8 It intuitively holds on the hyper-states from which 𝒕 runs yielding an hyper-return-
value 𝒗 and an hyper-state 𝒔′ satisfying the postcondition 𝑄 . The arity of wp 𝒕 {𝑄} is |supp(𝒕) |.

8We omit the binder in the postcondition when the return values are simply ignored, i.e. wp 𝒕 {𝑃 } ≜ wp 𝒕 {λ_. 𝑃 }.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 135. Publication date: October 2022.



Proving Hypersafety Compositionally 135:15

wp-triv

⊢ wp 𝒕 {True}

wp-cons

∀𝒗 . 𝑄 (𝒗) ⊢ 𝑄 ′ (𝒗)

wp 𝒕 {𝑄} ⊢ wp 𝒕 {𝑄 ′}

wp-all

∀𝑥 .wp 𝒕 {𝑄 (𝑥)} ⊣⊢ wp 𝒕 {∀𝑥 .𝑄 (𝑥)}

wp-frame

pvar(𝑃) ∩mods(𝒕) = ∅

𝑃 ∧wp 𝒕 {𝑄} ⊢ wp 𝒕 {𝑃 ∧𝑄}

wp-impl-r

pvar(𝑃) ∩mods(𝒕) = ∅

𝑃 ⇒ wp 𝒕 {𝑄} ⊣⊢ wp 𝒕 {λ𝒓 . 𝑃 ⇒ 𝑄 (𝒓)}

wp-subst

x ∉ mods(𝑡)

x(𝑖) = 𝑣 ∧wp
( [
𝑖: 𝑡 [𝑣/x]

]
· 𝒕 ′

)
{𝑄} ⊢ wp ( [𝑖: 𝑡] · 𝒕 ′) {𝑄}

wp-idx

𝜋 bijective

(wp 𝒕 {𝑄})L𝜋M ⊢ wp 𝒕L𝜋M {𝑄L𝜋M}

Fig. 6. Weakest precondition laws: structural rules.

Definition 4.1 (Weakest precondition). wp 𝒕 {𝑄} ≜ λ𝒔 .
(
∀𝒔′, 𝒗 . ⟨𝒕, 𝒔⟩ ⇓ ⟨𝒗, 𝒔′⟩ ⇒ 𝑄 (𝒗) (𝒔′)

)
.

Hyper-triples are defined in terms of weakest-preconditions:
{
𝑃
}
𝒕
{
𝑄
}
≜ 𝑃 ⇒ wp 𝒕 {𝑄}. This

definition is consistent with the one adopted by [Barthe et al. 2011; Sousa and Dillig 2016]. Other
relational program logics, notably [Benton 2004; Yang 2007], insist that the hyper-terms either all
diverge or all terminate. We elaborate on the trade-offs implied by this choice in Section 5.5.
One possible variation is to require safety of the terms, i.e., that the terms do not fault (as in

e.g. [Yang 2007]) which is a common choice in Hoare/Separation logic. For simplicity we do not
model faults in our language. The most flexible extension would model faults as a special return
value  . This way, the postcondition can decide what should happen when each component faults.
For some applications, requiring safety (λ𝒓 .∀𝑖 . 𝒓 (𝑖) ≠  ) may be appropriate, for others it may be suf-
ficient to show that if one component faults then the others do too (λ𝒓 .∀𝑖, 𝑗 . 𝒓 (𝑖) =  ⇔ 𝒓 ( 𝑗) =  ).

Another important point of departure from the literature is that we consider a non-deterministic
programming language (in contrast with e.g. [Barthe et al. 2011; Benton 2004; Yang 2007]). An
hyper-triple of shape ⊢

{
®x(1) = ®x(2)

}
[1: 𝑡1, 2: 𝑡2]

{
®x(1) = ®x(2)

}
, for example, encodes semantic

equivalence of 𝑡1 and 𝑡2 in a deterministic language. But in general it represents a stronger property,
which implies determinism of 𝑡1 and 𝑡2 (assuming they terminate). The flexibility of our logic allows
us to consider non-deterministic programs, and obtain the stronger proofs that the hypothesis of
determinism enables by simply involving in the derivations the hyper-triple encoding of determinism.

Overview of the proof rules. We take a semantic approach in formalizing WP, therefore proof
rules are just lemmas involving WP. We divide LHC’s rules in four groups. The structural rules
(in Fig. 6) apply regardless of the hyper-terms in the WP, and are mostly adaptations of standard
Hoare Logic rules. Then we have the lockstep rules (in Fig. 7), which match on the structure of the
program terms of all components at the same time. These are minor adaptations of rules that are
virtually present (most often in the special case of arity 2) in all the relational program logics in
the literature. The hyper-structure rules (in Fig. 8) provide the basic reasoning principles needed
to compose hyper-triples of varying arity. Finally, the reindexing rules (in Fig. 9) allow the sound
merging of components, which underpins the manipulations needed to handle indirect-style triples.

All rules apply only if all the components are defined. This implies some implicit side conditions.
For example, whenever a rule involves an expression 𝒕1 · 𝒕2, it only applies if supp(𝒕1)∩supp(𝒕2) = ∅.
Similarly, an expression 𝒕1 + 𝒕2 implies the constraint that ∀𝑖 ∈ supp(𝒕1) ∩ supp(𝒕2). 𝒕1 (𝑖) = 𝒕2 (𝑖).
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wp-seq𝐼

wp [𝑖: 𝑡𝑖 | 𝑖 ∈ 𝐼 ]
{
wp [𝑖: 𝑡 ′𝑖 | 𝑖 ∈ 𝐼 ] {𝑄}

}
⊣⊢ wp [𝑖: (𝑡𝑖; 𝑡

′
𝑖 ) | 𝑖 ∈ 𝐼 ] {𝑄}

wp-assign𝐼

∀𝑖 ∈ 𝐼 . (x𝑖 , 𝑖) ∉ pvar(𝑄)

wp [𝑖: 𝑒𝑖 | 𝑖 ∈ 𝐼 ] {𝑄} ⊢ wp [𝑖: x𝑖 ≔ 𝑒𝑖 | 𝑖 ∈ 𝐼 ] {λ𝒓 . 𝑄 (𝒓) ∧
∧

𝑖∈𝐼 𝒓 (𝑖) = x𝑖 (𝑖)}

wp-if𝐼

wp [𝑖:𝑔𝑖 | 𝑖 ∈ 𝐼 ]

{
λ𝒃 .wp

(
[𝑖: 𝑡𝑖 | 𝑖 ∈ 𝐼 , 𝒃 (𝑖) ≠ 0]·

[𝑖: 𝑡 ′𝑖 | 𝑖 ∈ 𝐼 , 𝒃 (𝑖) = 0]

) {
𝑄
}}

⊣⊢ wp [𝑖: if 𝑔𝑖 then 𝑡𝑖 else 𝑡
′
𝑖 | 𝑖 ∈ 𝐼 ] {𝑄}

wp-while𝐼

𝑃 ⊢ wp [𝑖:𝑔𝑖 | 𝑖 ∈ 𝐼 ]
{
λ𝒃 . (𝒃 =𝐼 0 ∧ 𝑅) ∨ (𝒃 ≠𝐼 0 ∧wp [𝑖: 𝑡𝑖 | 𝑖 ∈ 𝐼 ] {𝑃})

}
𝑃 ⊢ wp [𝑖:while 𝑔𝑖 do 𝑡𝑖 | 𝑖 ∈ 𝐼 ] {𝑅}

wp-refine

(𝑡1 ⪯ 𝑡2)@𝑖,wp ( [𝑖: 𝑡2] · 𝒕) {𝑄} ⊢ wp ( [𝑖: 𝑡1] · 𝒕) {𝑄}

Fig. 7. Weakest precondition laws: lockstep rules.

4.1 Structural Rules

The rules in Fig. 6 represent basic inferences that are typically available in Hoare-style program
logics. They hold generically on the hyper-term of the relevant WP: they apply independently
of which components and which terms the hyper-term contains. The rules can be understood as
axiomatic accounts of how the basic connectives commute with WP. Rulewp-triv states that a WP
łcommutesž with True: the WP with trivial postcondition is trivially true. This rule is sound for our
model of WP that does not insist on safety of 𝒕 . Rule wp-cons states that WP preserves entailment.
This encodes the usual rule of consequence: if one can prove the WP with postcondition 𝑄 , the
same WP with a weaker 𝑄 ′ is also provable. Rule wp-all states that WP commutes with ∀.
Rule wp-frame generalises Hoare’s frame rule, also known as constancy. It shows that WP

commutes with (𝑃∧) when 𝑃 does not depend on the variables modified by 𝒕 . Note that 𝑃 does not
depend on the return values. Rule wp-impl-r is the analog of wp-frame for (𝑃 ⇒). Rule wp-subst

allows the sound subsitution of values for program variables.
Rule wp-idx explains how a bijective reindexing propagates through a WP, by applying the

reindexing both to the term and to the postcondition. Combined with idx, this effectively closes
the proofs under all renamings, revealing an underlying symmetry of the entailment judgments
(i.e., no index is treated specially). We typically use the rule in concert with idx and wp-cons to
uniformly rename the components across a judgment.

4.2 The Lockstep Rules

The rules in Fig. 7 are all straightforward extensions of the corresponding Hoare logic rules, to 𝑘-ary
hyper-triples. Variations of these rules appear in virtually all other relational logics. In fact, one
can recover Hoare logic by instantiating our rules to the 1-ary hyper-triple case. This embedding
is more awkward to obtain in other relational logics that insist on a fixed arity greater than 1 for
relational triples, e.g. [Benton 2004].
The rule wp-while𝐼 rule follows the same pattern. The rule applies if all the components are

while loops, and verifies their guards and their bodies as if they executed in lockstep. Exactly like
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wp-nest

wp 𝒕1 {λ𝒗 .wp 𝒕2 {λ𝒘 . 𝑄 (𝒗 ·𝒘)}} ⊣⊢ wp (𝒕1 · 𝒕2) {𝑄}

wp-conj

idx(𝑄1) ∩ supp(𝒕2) ⊆ supp(𝒕1) idx(𝑄2) ∩ supp(𝒕1) ⊆ supp(𝒕2)

wp 𝒕1 {𝑄1} ∧wp 𝒕2 {𝑄2} ⊢ wp (𝒕1 + 𝒕2) {𝑄1 ∧𝑄2}

wp-proj

Π𝐼 .
(
proj(𝒕2) ⇒ proj(𝒕1) ∧wp (𝒕1 · 𝒕2) {𝑄}

)
⊢ wp 𝒕2 {Π̂𝐼 . 𝑄}

𝐼 = supp(𝒕1)

Fig. 8. Weakest precondition laws: hyper-structure rules.

its Hoare logic counterpart, the rule is based on loop invariants: here 𝑃 is the (relational) loop
invariant. The premise asks to prove, assuming the loop invariant holds initially, that after the
evaluation of all the guards, we only have two cases. The first case is where all the guards evaluated
to false (𝒃 =𝐼 0) and the overall postcondition 𝑅 holds. The second case is where all the guards
evaluated to true (𝒃 ≠𝐼 0). In that case we also have to prove that running all the loop bodies once
results in re-establishing the loop invariant 𝑃 . Note that the disjunction does not allow for the
guards to go łout of syncž: the loops execute exactly the same number of times.

The lockstep principle is very advantageous when it applies, but its applicability is very restricted:
most often the control paths taken in two components will differ to a point where this strategy
cannot be used or becomes counterproductive. Overcoming the rigidity of the basic lockstep proof
strategy has been a goal of many proposals in the literature. For example, [Barthe et al. 2011, 2017]
include a number of semantic-preserving transformations, like loop unrolling and loop splitting,
that can be applied to terms so that they are brought to a shape amenable to application of lockstep
rules. Similarly, [Sousa and Dillig 2016] provide a set of rules, dubbed łCartesian Loop Logicž,
that perform a limited set of such transformations to terms. In [Barthe et al. 2017] a generalized
while rule allows stuttering in the alignment of the (two) loops considered, without having to
syntactically rewrite the terms. To express these non-trivial alignments, we include in our logic the
wp-refine rule, which allows to replace a term 𝑡1 in a WP, with another term 𝑡2 if every behaviour
of 𝑡1 is also a behaviour of 𝑡2.

Definition 4.2 (Refinement). The refinement 𝑡1 ⪯ 𝑡2 holds when 𝑡2 has all the behaviours of 𝑡1:

𝑡1 ⪯ 𝑡2 ≜ λ𝑠 .
(
∀𝑠′, 𝑣 . ⟨𝑡1, 𝑠⟩ ⇓ ⟨𝑣, 𝑠′⟩ ⇒ ⟨𝑡2, 𝑠⟩ ⇓ ⟨𝑣, 𝑠′⟩

)
Semantic equivalence is defined as (𝑡1 ≃ 𝑡2) ≜ (𝑡1 ⪯ 𝑡2 ∧ 𝑡2 ⪯ 𝑡1).

Proving 𝑡1 ⪯ 𝑡2 generally requires meta-level reasoning about the semantics of the terms.
The rule should therefore be considered as a last resort, and be used by instantiating the side
condition with known generic refinements. Thanks to the flexibility of LHC, many challenging
examples that in other logics would require ad-hoc refinements can still be handled within the
logic, by only including the special case of the wp-refine rule instantiated with loop unfolding:
while 𝑔 do 𝑡 ≃ if 𝑔 then (𝑡;while 𝑔 do 𝑡). We show an example of this pattern in Section 5.2.

4.3 The Hyper-structure Rules

The rules in Fig. 8 are the key new rules of LHC. We call them hyper-structure rules because they
decompose the goal by breaking up the components of a hyper-term. They represent three key
reasoning principles available for WP on hyper-terms: how nested WPs can be merged into one
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(wp-nest), how a conjunction of WPs can be merged into one (wp-conj), and how to soundly
remove components from a WP (wp-proj). They naturally arise from studying how WP commutes
with other constructs, specifically, with another WP, with conjunction and with projection.

Thewp-nest rule states that aWP on a hyper-term that can be split into two disjoint hyper-terms
𝒕1 and 𝒕2, can be equivalently expressed as the nesting of a WP for 𝒕2 in the postcondition of the WP
for 𝒕1. As we saw in Section 2.2, this rule increases the flexibility of the logic. As seen in Section 2.5,
the nested WP pattern becomes essential when using the wp-while𝐼 rule with a loop invariant
that needs łside-computationž to be stated.
The wp-conj rule states that the conjunction of two WPs entails a single WP where the two

postconditions are conjoined, and the hyper-terms are unioned. On an index 𝑖 ∉ supp(𝒕1)∩supp(𝒕2),
the postcondition of the WP on 𝒕1 and 𝒕2 would observe different stores. The side conditions make
sure 𝑄1 and 𝑄2 ignore the problematic indices.
In practice, wp-conj allows us to break down the current goal as a conjunction of two smaller

hyper-triples. It is not mandatory for the hyper-terms 𝒕1 and 𝒕2 to have components in common,
but the application of the rule is more powerful when they do. As a simple example, when 𝒕1 = 𝒕2,
the rule allows the combination of multiple WPs on the same hyper-term. We have seen instances
of this pattern in Section 2.

The embedding of Hoare logic together withwp-conj immediately entails a relative completeness
result for our logic: given an oracle for derivations of Hoare triples, we can prove any hyper-triple by
usingwp-conj to compose the derivations for the strongest unary Hoare triple for each component,
and then wp-cons to imply the original goal (see [D’Osualdo et al. 2022] for details). This proof
strategy, however, is the one that removes all opportunities for relational proofs, negating the
benefits of working in a relational logic.

The last hyper-structure rule iswp-proj, that can be seen as a commutation rule betweenWP and
projection. By using rules wp-proj and proj one can derive wp-proj𝑖 (shown in Section 2.3), which
explains how to soundly remove some components from a WP. As illustrated in Section 2.3, and
further discussed in Sections 5.2 and 5.3, wp-proj𝑖 is typically used in combination with wp-conj

to introduce an auxiliary hyper-term 𝒕 , so that a goal that relates some 𝒕1 · 𝒕2 can be broken into a
goal that relates 𝒕1 · 𝒕 , and one that relates 𝒕2 · 𝒕 .

If we ignored the conjunct regarding the proj( · ) assertion, the wp-proj rule would be unsound.
The reason is that when even a single component of a WP diverges, the WP definition does not
require the output stores of the other (terminating) components to satisfy the postcondition. For
example, ⊢ wp [1: skip, 2:while 1 do skip] {False} holds. Projecting out component 2 blindly,
however, would produce the invalid triple ⊢ wp [1: skip] {False}. To ensure soundness, wp-proj

uses the projectability assertion.

Definition 4.3 (Projectable). The assertion proj(𝑡) holds on states where 𝑡 is projectable, i.e., can
yield a result: proj(𝑡) ≜ λ𝑠 . ⟨𝑡, 𝑠⟩⇓. We also define an analogous hyper-assertion parameterized
over hyper-terms: proj(𝒕) ≜ λ𝒔 . ⟨𝒕, 𝒔⟩⇓.

To be able to apply wp-proj, one needs to establish that, if all the terms in 𝒕2 can terminate so
can all the terms in 𝒕1 which we are projecting out. This would rule out our counterexample, and
in fact is sufficient to prove soundness.

The projectability condition is strictly weaker than requiring termination of 𝑡 ′, in two ways. First,
it corresponds to łmayž termination: it would hold if 𝑡 ′ has both a diverging and a terminating
trace from some initial store. For example, while ∗ do skip is projectable: from every initial store
it has both diverging and terminating traces. Second, it is conditional on termination of the terms
in 𝒕2. This can be useful when 𝒕1 (𝑖) is a sub-term of some other component 𝒕2 ( 𝑗), causing 𝒕1 (𝑖)
and 𝒕2 ( 𝑗) to terminate under the same conditions.
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wp-idx-post

Γ ⊢ wp 𝒕 {𝑄} 𝑗 ∉ supp(𝒕) ∪ idx(Γ)

Γ ⊢ wp 𝒕 {𝑄L𝑖/ 𝑗 M}

wp-idx-swap

𝑖 ∉ idx(𝑄)(
wp ( [ 𝑗 : 𝑡] · 𝒕 ′) {𝑄}

)
L𝑖/ 𝑗 M ⊢ wp ( [𝑖: 𝑡] · 𝒕 ′) {𝑄L𝑖/ 𝑗 M}

wp-idx-pass

𝑖, 𝑗 ∉ supp(𝒕)

(wp 𝒕 {𝑄})L𝑖/ 𝑗 M ⊢ wp 𝒕 {𝑄L𝑖/ 𝑗 M}

wp-idx-merge(
wp ( [𝑖: 𝑡, 𝑗 : 𝑡] · 𝒕 ′) {𝑄}

)
L𝑖/ 𝑗 M ⊢ wp ( [𝑖: 𝑡] · 𝒕 ′) {𝑄L𝑖/ 𝑗 M}

Fig. 9. Weakest precondition laws: reindexing rules.

4.4 The Reindexing Rules

Reindexing is a useful tool in relational proofs. One way of introducing a reindexing is by using
rule idx. While propagating the effects of a reindexing is straightforward for assertions with basic
connectives (through the rules of Fig. 5), its interaction with WPs is much more interesting.
Rule wp-idx already handles bijective reindexing. The rules in Fig. 9 represent the sound inter-

actions between non-bijective reindexing and WPs. These reindexings boil down to compositions
of reindexings of the form L𝑖/ 𝑗 M where 𝑖 ≠ 𝑗 . The objective is to understand how a WP and a
reindexing łcommutež: given wp 𝒕 {𝑄}L𝑖/ 𝑗 M, how does the reindexing propagate to 𝒕 and 𝑄? There
are four cases to consider, depending on whether 𝑖 and 𝑗 are indices of 𝒕 or not.
Rule wp-idx-pass deals with the simple case where 𝑖, 𝑗 ∉ supp(𝒕), in which the reindexing has

no effect on the hyper-term, and can be simply propagated to the postcondition.
Rule wp-idx-swap handles the case where 𝑗 ∈ supp(𝒕) but 𝑖 ∉ supp(𝒕). In this case 𝒕 = [ 𝑗 : 𝑡] · 𝒕 ′

for some 𝑡 and 𝒕
′, with 𝑖 ∉ 𝒕

′ (the latter constraint is implied by well-formedness of the judgment
in the rule). The rule then states that the reindexing is applied to the hyper-term by exchanging
index 𝑗 for index 𝑖 and the reindexing is propagated to the postcondition. To be sound, the rule
requires 𝑄 not to predicate on the index 𝑖: indeed in the starting WP, references to index 𝑖 would
refer to the initial store at 𝑖 (since the hyper-term does not affect it), while in the resulting WP the
store at 𝑖 is modified by the hyper-term.
Rule wp-idx-merge deals with the case where both 𝑖, 𝑗 ∈ supp(𝒕). In this case the effect on the

hyper-term should be of łmergingž the two components, which is only meaningful if they are
mapped to the same term. Therefore the rule matches on 𝒕 = [𝑖: 𝑡, 𝑗 : 𝑡] · 𝒕 ′. The reindexing is then
propagated to the postcondition. The intuition is that we have proved that 𝑄 holds on the results
of any two runs of 𝑡 , so it will hold when both runs are the same run (at a single index 𝑖).
The only missing case is when 𝑖 ∈ supp(𝒕) and 𝑗 ∉ supp(𝒕). Since the reindexing does not

affect the indices of 𝒕 , one might be tempted to write a rule like wp-idx-pass: (wp 𝒕 {𝑄})L𝑖/ 𝑗 M ⊢
wp 𝒕 {𝑄L𝑖/ 𝑗 M}. Such rule would however be unsound. For example, we could start with the valid
x(2) = 0 ⊢ wp [1:x≔ 1] {x(1) = 1 ∧ x(2) = 0}, apply idx with L𝜋M = L1/2M to obtain the valid
x(1) = 0 ⊢

(
wp [1:x≔ 1] {x(1) = 1 ∧ x(2) = 0}

)
L1/2M. An application of our tentative rule would

yield x(1) = 0 ⊢ wp [1:x≔ 1] {x(1) = 1 ∧ x(1) = 0} which has an unsatisfiable postcondition
(and is thus invalid). One simple side condition that would make the rule sound is 𝑗 ∉ idx(𝑄); this
situation is however already handled by the idx-irrel rule.
Rule wp-idx-post represents a more useful way of dealing with the reindexing L𝑖/ 𝑗 M when 𝑖 ∈

supp(𝒕) and 𝑗 ∉ supp(𝒕). The rule states that in such case it is possible to introduce the reindexing
in the postcondition, provided the assumptions Γ do not constrain the store at 𝑗 .
The soundness argument of wp-idx-post goes as follows. Let 𝒔 be an input hyper-store sat-

isfying Γ, and let 𝒔′ [𝑖: 𝑠] be the hyper-store resulting from running 𝒕 on 𝒔. To establish 𝑄L𝑖/ 𝑗 M
on 𝒔

′ [𝑖: 𝑠], we need to prove 𝑄 holds on 𝒔
′ [𝑖: 𝑠, 𝑗 : 𝑠]. Since Γ does not constrain the store at 𝑗 , we
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know it holds on 𝒔 [ 𝑗 : 𝑠]. Moreover, since 𝑗 ∉ supp(𝒕), the hyper-term run from 𝒔 [ 𝑗 : 𝑠] will output
𝒔
′ [𝑖: 𝑠, 𝑗 : 𝑠]. The premise therefore implies 𝑄 holds on the output hyper-store. The crucial step in
the proof is the act of feeding the output store at 𝑖 in the conclusion, as the input store at 𝑗 in the
premise. This precisely captures the conversion from indirect-style triples to direct triples.

5 DISCUSSION

Here, we highlight some key features of LHC through some examples and a discussion of how
certain design choices make this logic stand out. In the interest of space, the examples are presented
in broad strokes. The extended version [D’Osualdo et al. 2022] contains their full proofs and
additional case studies.

5.1 Modularity

f(x, y) ≜

while (i < x) do

r≔ op(r, y);

i≔ i + 1

Fig. 10. A program that is

parametric on op.

One of the main goals of LHC is allowing the construction of truly
modular proofs. Consider for example the code in Fig. 10: the code
uses a library-provided function op; f accumulates its output in r

(assumed initially 0). Suppose we want to prove that f distributes
over op in the second argument: f(𝑎, op(𝑏, 𝑐)) = op(f(𝑎, 𝑏), f(𝑎, 𝑐)).
This property holds if op is: (i) not modifying variables of f, (ii) a
total function (i.e., projectable and deterministic) with op(0, 0) = 0

(1-safety), (iii) associative (4-safety), and (iv) commutative (2-safety). Seeing as both the goal
and these assumptions are hyper-safety properties, we would want to build a modular proof of
distributivity of f: one that does not rely on the specific implementation of op, but only on the
properties listed above expressed as hyper-triples.
In this example, the intuitive proof strategy is a vanilla lockstep alignment: if we consider the

hyper-term [1: f(𝑎, op(𝑏, 𝑐)), 2: f(𝑎, 𝑏), 3: f(𝑎, 𝑐)] all the components execute 𝑎 iterations of their
loops; intuitively, we should be able to prove the relational loop invariant r(1) = op(r(2), r(3))
with a lockstep proof. However, even though the high-level proof strategy of this example is a
lockstep alignment, the lockstep-based logics are unable to provide a modular proof. There are
two main obstacles. First, the loop invariant sketched above applies op and thus cannot be readily
represented as an assertion. Second, the properties of op we want to rely on have mixed arities,
and we would need to apply them to runs of op in the bodies of the loops, the initial call to op(𝑏, 𝑐)
and the one in the loop invariant, simultaneously.

By contrast, the ability of manipulating nested and mixed arity WPs of LHC provides a modular
proof of this example. The goal can be expressed as:

©­«
wp [4: op(𝑏,𝑐)] {λ𝒓 . 𝒓 (4) = 𝑑}

r(1) = r(2) = r(3) = 0

i(1) = i(2) = i(3)

ª®¬
⊢ wp


1: f(𝑎,𝑑)
2: f(𝑎,𝑏)
3: f(𝑎,𝑐)





∃𝑣1, 𝑣2, 𝑣3.(
r(1) = 𝑣1 ∧ r(2) = 𝑣2 ∧ r(3) = 𝑣3
wp [5: op(𝑣2, 𝑣3)] {λ𝒓 . 𝒓 (5) = 𝑣1}

) 


Note the use of nested WPs to invoke op on 𝑏 and 𝑐 , and on the results of components 2 and 3.
Using the same style, we can represent (and prove!) the desired loop invariant:(

i(1) = i(2) = i(3)
wp [4: op(𝑏,𝑐)] {λ𝒓 . 𝒓 (4) = 𝑑}

)
∧ ∃𝑣1, 𝑣2, 𝑣3 .

(
r(1) = 𝑣1 ∧ r(2) = 𝑣2 ∧ r(3) = 𝑣3
wp [5: op(𝑣2, 𝑣3)] {λ𝒓 . 𝒓 (5) = 𝑣1}

)

5.2 Parsimonious Use of Refinement

Relational logics in the literature try to overcome some of the limitations of lockstep reasoning
by using refinement to allow richer alignments between programs. Our observation is that the
required refinements can be recast in many cases as hypersafety proofs. LHC is flexible enough to
prove these refinements within the logic, and to apply them using the hyper-structure rules.
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Consider again the program of Fig. 10 specialized with op(𝑥,𝑦) ≜ 𝑥 + 𝑦. We can prove that the
program enjoys distributivity on the first argument as well. In the form of a hyper-triple:

⊢
{∧

𝑗∈{1,2,3} r( 𝑗) = i( 𝑗) = 0
}
[1: f(𝑎 + 𝑏, 𝑐), 2: f(𝑎, 𝑐), 3: f(𝑏, 𝑐)]

{
r(1) = r(2) + r(3)

}
(8)

All three components in the judgment are while loops, but they do not iterate the same number
of times. We therefore cannot apply the lockstep while rule. Intuitively, we want to argue that
the first 𝑎 iterations of component 1 are matched exactly by component 2, and the remaining 𝑏
iterations by component 3. To formally implement the above strategy, we replace component 1
with an equivalent program (here at index 4) that splits the while loop into two loops:

⊢
{∧

𝑗∈{1,2,4} r( 𝑗) = i( 𝑗) = 0
}
[4: f(𝑎, 𝑐);f(𝑎+𝑏, 𝑐), 2: f(𝑎, 𝑐), 3: f(𝑏, 𝑐)]

{
r(4) = r(2) + r(3)

}
(9)

The term at 4 may look like a typo, but it is not: f does not initialize its variables, so the second call
will find in i the value left by the previous call. It is easy to discharge this version of the hyper-triple
with a lockstep derivation.

To close the gap between (8) and (9) we need to prove the equivalence between component 1
and 4, which can be encoded by the auxiliary hyper-triple:

⊢

{
r(1) = r(4)
i(1) = i(4)

} [
1: f(𝑎 + 𝑏,𝑐)
4: f(𝑎,𝑐);f(𝑎 + 𝑏,𝑐)

] {
r(1) = r(4)
i(1) = i(4)

}
(10)

Then we would be able to apply wp-proj and wp-cons to replace component 4 for component 1
in our original goal:

(9) ⊢
{
. . .

}
[4: f(𝑎, 𝑐);f(𝑎+𝑏, 𝑐), 2: f(𝑎, 𝑐), 3: f(𝑏, 𝑐)]

{
. . .

}
(10) ⊢

{
. . .

}
[1: f(𝑎+𝑏, 𝑐), 4: f(𝑎, 𝑐);f(𝑎+𝑏, 𝑐)]

{
. . .

}
⊢
{
. . .

}
[1: f(𝑎+𝑏, 𝑐), 2: f(𝑎, 𝑐), 3: f(𝑏, 𝑐), 4: f(𝑎, 𝑐);f(𝑎+𝑏, 𝑐)]

{
. . .

} wp-conj

(8) ⊢
{
. . .

}
[1: f(𝑎+𝑏, 𝑐), 2: f(𝑎, 𝑐), 3: f(𝑏, 𝑐)]

{
. . .

} wp-proj

We have thus reduced the original goal to proving (10). The derivation, shown in [D’Osualdo
et al. 2022], uses the wp-refine rule only once using the most basic refinement for while loops,
loop unfolding: while 𝑔 do 𝑡 ≃ if 𝑔 then (𝑡;while 𝑔 do 𝑡).

As we noted in Section 4, the hyper-triple encoding of equivalence for non-deterministic programs
is stronger than semantic equivalence. This means that for some programs the above proof pattern
might not allow replacing some 𝑡1 for some 𝑡2, even when 𝑡1 ⪯ 𝑡2 holds. A precise characterization
of the limits of this proof pattern is an interesting direction of future research. For instance, one
could ask which proofs are possible in our logic if the wp-refine rule is replaced by the special
case of unfolding one iteration of a loop.

5.3 Divide and Conquer

The hyper-structure rules of LHC are a useful tool to decompose proofs into more tractable sub-
goals. The advantages of this are two-fold. First, in some cases, they permit the proof engineer to
perform the formal decomposition following the same line of a natural informal argument. Second,
smaller/simpler subgoals are more likely provable using off-the-shelf automatic provers.
Take again the example in Fig. 10, fixing op(𝑥,𝑦) ≜ 𝑥 + 𝑦. We have shown how to prove the

two distributivity properties, which we can informally summarize as f(𝑎, 𝑏 + 𝑐) = f(𝑎, 𝑏) + f(𝑎, 𝑐)
and f(𝑎 + 𝑏, 𝑐) = f(𝑎, 𝑐) + f(𝑏, 𝑐). These two properties imply distributivity on both arguments:
f(𝑎 + 𝑏, 𝑐 + 𝑑) = f(𝑎, 𝑐) + f(𝑏, 𝑐) + f(𝑎, 𝑑) + f(𝑏, 𝑑). The intuitive argument breaks the property
as the conjunction of f(𝑎 + 𝑏, 𝑐 + 𝑑) = f(𝑎 + 𝑏, 𝑐) + f(𝑎 + 𝑏, 𝑑), f(𝑎 + 𝑏, 𝑐) = f(𝑎, 𝑐) + f(𝑏, 𝑐), and
f(𝑎 + 𝑏, 𝑑) = f(𝑎, 𝑑) + f(𝑏, 𝑑), which are instances of the distributivity properties we already
established. LHC can replicate the same simple argument, on the hyper-triple encodings of these
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informal equations. The conjunction of the three equations above can be handled using wp-conj.
Rulewp-proj can remove the auxiliary components running the terms f(𝑎+𝑏, 𝑐) and f(𝑎+𝑏, 𝑑) (see
[D’Osualdo et al. 2022]). This illustrates how our logic allows the top-level goal to be decomposed
into simpler goals within the logic, before the programs in the hyper-triples are even considered.

5.4 Hyper-triples as Goals and as Assumptions

Existing work on relational logics in the literature does not discuss the general problem of how
to encode an arbitrary verification goal as a hyper-triple. Conceptually, the high-level goal can
often be formulated as some semi-formal assertion involving łcallsž to code (e.g. f(𝑥) ≤ g(𝑥)); then
a formalization in terms of hyper-triples can be obtained by introducing a component for each
łcallž (e.g. ⊢ wp [1: f(𝑥), 1: g(𝑥)] {λ𝒓 . 𝒓 (1) ≤ 𝒓 (2)}). While this procedure seems obvious enough in
simple instances, it can be surprisingly ambiguous in general. Consider the case of idempotence,
which we already partially addressed in Section 2.4. Informally, the goal looks like 𝑡 ∼ (𝑡;𝑡), which
can plausibly be formalized in (at least) three different ways:

⊢
{
®x(1) = ®x(2)

}
[1: 𝑡, 2: (𝑡;𝑡)]

{
®x(1) = ®x(2)

}
(IdemSeq𝑡 )

⊢
{
®x(1) = ®x(2) ∧ ®x(3) = ®𝑣

}
[1: 𝑡, 2: 𝑡, 3: 𝑡]

{
®x(2) = ®𝑣 ⇒ ®x(1) = ®x(3)

}
(Idem3

𝑡 )

⊢
{
®x(2) = ®𝑣

}
[1: 𝑡, 2: 𝑡]

{
®x(1) = ®𝑣 ⇒ ®x(2) = ®𝑣

}
(Idem𝑡 )

The most verbatim translation of the informal goal is (IdemSeq𝑡 ). The hyper-triple (Idem3
𝑡 ) uses

indirect-style to feed the output of 2 as the input of 3, and considers each occurrence of 𝑡 in the
informal equation 𝑡 ∼ (𝑡;𝑡) as a separate component. Sousa and Dillig [2016] propose (Idem𝑡 ) which
also uses indirect-style, but conflates components 1 and 2 of (Idem3

𝑡 ) into the single component 1.
A natural question arises about the differences between these formulations. Thanks to the

generality of LHC rules, this question can be investigated within the logic. For example, we
can prove: (i) (Idem3

𝑡 ) ⇒ (Idem𝑡 ) (ii) (Idem3
𝑡 ) ⇒ (IdemSeq𝑡 ) (iii)

(
(Idem𝑡 ) ∧ (Det𝑡 )

)
⇒ (Idem3

𝑡 )
(iv)

(
(Idem3

𝑡 ) ∧ proj(𝑡)
)
⇒ (Det𝑡 ) where (Det𝑡 ) is the hyper-triple asserting determinism of 𝑡 on ®x.

All the implications in the other directions do not hold. All the details are in [D’Osualdo et al. 2022].
As we explained in Section 2.4, even in the cases where the specifications are equivalent, there

is a tension between which hyper-triples are easier to prove, i.e., they are better as goals, and the
ones which are easier to use, i.e., they are better as assumptions. There is no silver bullet: different
proofs may need idempotence to be expressed as relating occurrences of 𝑡 in the same component,
or two or three components. If the logic cannot perform the inter-derivations we just examined,
choosing one specification over the other may make it impossible to prove some valid goals. LHC
is unique among relational logics in supporting the derivation of one specification from the other.

5.5 Hyper-triple Semantics and Termination

Some relational logics, notably [Benton 2004; Yang 2007], propose an łequi-terminationž semantics:
given a hyper-store satisfying the precondition, a component can diverge only if all the others
do. In a language with non-determinism, the more appropriate semantics would be łmay equi-
terminationž: if a component may terminate, then all the others may terminate as well. Notice that
the (may) equi-termination semantics encodes a property that goes beyond 𝑘-safety: it quantifies
over traces existentially.
The equi-termination semantics has some useful consequences for the rules. For example, the

wp-proj rule would not need the projectability side condition. The wp-conj rule, on the other
hand, would only be sound if 𝒕1 and 𝒕2 overlap on at least one component. In fact the [R-Tr] rule of
[Benton 2004] can be seen as a binary special case of a combination of wp-proj and overlapping
wp-conj which is only sound in the equi-termination semantics.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 135. Publication date: October 2022.



Proving Hypersafety Compositionally 135:23

The equi-termination semantics nicely supports the soundness of the lockstep wp-while𝐼 rule:
if the guards are always either all true or all false, the while loops are equi-terminating; note that
this is weaker than proving termination of the loops (no variant-based reasoning is needed).

The equi-termination semantics, however, does not validate some important rules like the left to
right direction of wp-nest, and the wp-idx-post rule.

A more powerful extension of our logic with support for equi-termination WPs would annotate
hyper-triples with an equivalence relation ≈ on its indexes. An assertion wp≈ 𝒕 {𝑄} wouldÐin
addition to the constraints of the current definitionÐrequire that, for every hyper-store 𝒔 satisfying 𝑃 ,
if ⟨𝒕 (𝑖), 𝒔 (𝑖)⟩⇓ and 𝑖 ≈ 𝑗 , then ⟨𝒕 ( 𝑗), 𝒔 ( 𝑗)⟩⇓. This would make it feasible to derive the most precise
equi-termination guarantees each rule can provide, given the equivalence relations that hold in the
premises. Inwp-proj, the projectability side condition could be then replaced by ∀𝑖 ∈ 𝐼 . ∃ 𝑗 ∉ 𝐼 .𝑖 ≈ 𝑗 .
More ambitiously, as we speculate in Section 7, termination-related properties could become
first-class citizens in a logic for hyperliveness.

6 RELATED WORK

There is a large body of work on relational verification. Here, we survey and compare against the
most closely related work.

Relational Hoare Logic and product programs. The seminal Relational Hoare Logic (RHL) of [Ben-
ton 2004] is a program logic with judgments on pairs of programs supporting variations of lockstep
proofs. RHL and its extension to Separation Logic [Yang 2007] have been used to prove a wide
range of relational properties of first-order imperative programs, from correctness of optimisa-
tions to information-flow. Barthe et al. [2004] introduced self-composition as a relatively complete
method to reason about properties like non-interference and information flow, an approach further
developed in Beringer [2011]; Beringer and Hofmann [2007]; Darvas et al. [2005]; Terauchi and
Aiken [2005]. Building on this idea, Barthe et al. [2011] proposed product programs as a way to
reduce relational verification of 2-properties to standard Hoare logic reasoning on a single program,
without losing the relational flavour of the proofs. The technique has been incorporated in program
logics and extended to handle probabilistic properties [Barthe et al. 2017, 2013] like differential
privacy or security of cryptographic code. Kovács et al. [2013] incorporates this approach in ab-
stract interpretation. Cartesian Hoare Logic (CHL) [Sousa and Dillig 2016] is an extension of RHL
to handle 𝑘-safety properties, for fixed 𝑘 . The utility of going beyond 2-properties is shown by
providing hyper-triple-like specifications for common correctness checks that arise in application
domains like comparators of user-defined types, e.g., transitivity, associativity, and commutativity.
The problem of alignment of while loops is addressed through a limited set of rules that implicitly
construct product programs through derivation sequences. Godlin and Strichman [2013] proposed
regression verification for proving equivalence between two similar programs using automatically
inferred alignments.
We build on these logics by introducing patterns of reasoning that involve hyper-triples of

mixed aritiesÐi.e. transforming a hyper-triple goal of arity 𝑘 into hyper-triple subgoals with arities
potentially different from 𝑘 . No prior relational logics support such reasoning. See Section 4 and
Section 5.5 for a more technical distinction between LHC’s design decisions and other logics.
We briefly commented on relative completeness of LHC in Section 4.3. Nagasamudram and

Naumann [2021] studies completeness of various combinations of enhanced lockstep binary rules
in terms of the classes of product programs (called alignments) they can represent. Characterising,
in the same spirit, the new classes of alignments expressible through LHC, is interesting future
work.
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Logics for proving refinement. Another set of program logics commonly labelled as łrelationalž are
the ones which aim to prove refinement between two programs, often with a focus on concurrency,
e.g. [Frumin et al. 2018; Liang et al. 2012]. Refinement is a property that quantifies both universally
and existentially over traces, and is thus not a hypersafety property (since the latter quantifies
universally over all traces). Moreover, all refinement judgments are between exactly two programs.
However, since proving refinement often retains the łrelationalž flavour of proofs that we seek in
proving hypersafety, exploring a single logic encompassing both kinds of relational reasoning is an
interesting path for future researchÐsee Section 7.

Higher-order logics. Relational proofs can also be conducted in a higher-order logic framework.
Approaches like Relational Higher-Order Logic (RHOL) [Aguirre et al. 2019] propose rules that can
derive relational proofs of 2-safety properties of pure higher-order functional programs. Notably,
RHOL can embed various quantitative/probabilistic extensions as special cases of the general
framework. This approach tends to work well for programs that can be expressed directly as pure
expressions in the host meta-logic (e.g. Coq). LHC obtains compositional relational reasoning in
a first-order program logic that supports direct treatment of non-deterministic impure code. We
establish WPs on hyper-terms as the right building block to embed such programs in assertions.

Automation. While we do not consider automation in this paper, part of the motivation for
considering relational proofs is that they are more feasible for automation, whereas functional-
specification-based proofs of the same properties would be completely out of reach of current
algorithms. Consider, as an example, the relational proof of distributivity of multiplication (e.g. our
running example f when op is addition). The proof can be done by exclusively using conjunctions
of equalities and additions, which is within the power of Presburger arithmetic, a decidable theory.
A functional-specification-based proof of the same property would require the use of mathematical
multiplication in assertions, which requires the use of undecidable Peano arithmetic.
This observation has been exploited in various works that use product programs [Barthe et al.

2011; Eilers et al. 2020]. In [Farzan and Vandikas 2019] this idea is taken even further by showing that
it is possible to automate the search of appropriate product programs itself, even in the more general
case of 𝑘-safety. Shemer et al. [2019] and Unno et al. [2021] push the boundaries of automatically
inferrable enhanced lockstep proofs, with the latter supporting hyper-liveness too.
All these works are based on whole-program enhanced lockstep proofs, leading to searches

that are global and do not scale well beyond small programs. Our logic outlines how a monolithic
task like this can be effectively decomposed. It would be possible to integrate these tools in our
logic with the goal of discharging as many sub-hypertriples involved in a proof as possible. The
compositionality achieved by our proof system can make these tools applicable to smaller, more
tractable instances, increasing the scalability of the overall method.

Model checking. HyperLTL and HyperCTL∗ [Clarkson et al. 2014] are temporal logics which
have been proposed as specification formalisms for hyperproperties (with 𝑘-safety as a special
case). MultiLTL [Goudsmid et al. 2021] extends the idea to the case where a hyperproperty property
involves 𝑘 different finite-state models. They target finite-state systems, and therefore substantially
differ in scope compared to this work. Temporal logics specify hyperproperties as global properties
of sets of traces, which does not lead naturally to the kind of decomposition of proofs that we
seek to obtain with LHC. The hope is that compositional program logics like ours can inspire
interesting decomposition heuristics for these monolithic verification tasks in the same style that
compositional concurrent program logics inspired algorithms for model checking of concurrent
systems [Flanagan et al. 2002; Gupta et al. 2011; McMillan 1999].
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7 CONCLUSION AND FUTURE WORK

We introduced LHC, proved it sound, and showed how a handful of new rules can unlock important
compositional proof principles for hypersafety.

LHC is just a first step in exploring the change of perspective of embracing hyper-triples as proof
building blocks. A first interesting line for future work is to investigate how the compositionality
and locality dimension added to proofs by Separation Logic [Yang 2007] interacts with the hyper-
triple compositions of LHC. In addition to supporting proofs of heap-manipulating programs, such
an extension could pave the way to support for parallel composition.

Hypersafety properties such as determinism, non-interference, and correctness of parallelizing
optimizations are examples of important applications of an extension of LHC supporting con-
currency. The key challenge would be to blend rely/guarantee-style reasoning together with the
relational flavour of hypersafety verification. In particular, obtaining rely/guarantee proofs that
avoid the use of strong functional specifications looks like a very intriguing research problem.

An important next step is exploring automation. The rules of LHC generate a search space that
is different from those of previous automated work (e.g., [Farzan and Vandikas 2019; Unno et al.
2021]) in two key senses: (1) As a consequence of expressivity of LHC, the search space is larger;
and (2) as a counter effect to (1), its structure offers enticing opportunities for proof reuse and
compositional arity-changing proof patterns. None of the heuristics used in previous relational
logics handle this dimension of the search.
An even more ambitious direction for future research is the extension of LHC to reason about

hyperproperties beyond hypersafety, such as hyperliveness [Clarkson and Schneider 2008]. For
example, it would be interesting to extend hyper-triples from hypersafety statements of the form
∀𝑛 to hyperliveness statements of the form ∀𝑛∃𝑚 . As an enticing by-product, such a logic would
embed both 𝑛-safety triples and refinement (which is a ∀∃ hyperproperty) in a single generalized
judgment. Understanding the proof principles available for such a judgment would be a way to
unify hypersafety-based and refinement-based relational reasoning.
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