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Abstract—Trace theory (formulated by Mazurkiewicz in 1987)
is a framework for formalizing equivalence relations for con-
current program runs based on a commutativity relation over
the set of atomic steps taken by individual program threads. It
has been implicitly or explicitly used in a broad set of program
analysis techniques, such as predictive testing for atomicity or
data race violations, static and dynamic partial order reduction
in model checking (particularly stateless model checking), and
reasoning about distributed programs. In this paper, we introduce
a different line of work that uses traces for the purpose of
proof simplification for a broad set of automated verification
goals. The long term thesis of this line of work has been
that by taking advantage of commutativity, one can discover
a substantially simpler verification task to replace the original
one, and succeed at it despite the inevitability of the failure of
the original one. The idea is to verify a different program in
place of the original one and use commutativity as a way of
soundly carrying the verification results over to the original one.
We discuss hypersafety verification of sequential and concurrent
programs, and safety and liveness verification of concurrent
and distributed programs. We show how commutativity can be
incorporated into a new verification algorithm which enumerates
infinitely many possibilities for alternative programs to be verified
instead of the original one. We conclude with an overview of some
open research questions in this area.

Index Terms—Concurrency, Distributed Programs, Automata,
Commutativity

I. INTRODUCTION

In 2017, we started looking into the problem of verification
of hypersafety properties [1]. Intuitively speaking, these are
properties whose violations are witnessed by one or more finite
program runs: Classic safety properties are 1-safety properties
and a k-safety property is one whose violation is witnessed
by precisely k program runs. The most common way of
encoding and proving hypersafety properties is through self-
composition: A program P is composed with an additional
k− 1 copies of itself and the k-safety property of P is stated
and proven as an equivalent 1-safety property of the resulting
program P k = P || . . . ||P .

There is, however, an accepted wisdom amongst researchers
[2] that the secret to success at this task lies in not proving
P k correct, but rather a subset of its behaviours. The reason
for this is straightforward. In P k, all k copies of P are
distinct. Therefore, P || . . . ||P is equivalent to P ; . . . ;P for the
purposes of the verification task; that is, the former satisfies the
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1-safety property if and only if the latter does. A Floyd-Hoare
style proof of P ; . . . ;P may require exponentially (on k) fewer
assertions than that of P k, since the latter has exponentially
many more program locations. Therefore, in some sense of
the word, the proof of P ; . . . ;P is a simpler program proof.
But, assertion quantity is not the only thing that dictates
the complexity of a Floyd-Hoare proof. The complexity of
individual assertions, in terms of the assertion language, is
somewhat more important if one has any hope of automation
in this process. For example, reasoning about linear arithmetic
is easier than reasoning about nonlinear arithmetic, and this
is confirmed by the decidability status of the relevant decision
procedures for them. This is precisely why, one does not
simply abandon P || . . . ||P for P ; . . . ;P as a straightforward
way of simplifying proofs; a proof for the latter requires a
subset of the assertions of a proof for the former, but one has
no control over which subset. Instead, one can opt for another
program P ′, which is equivalent to P k in the same sense, but
its proof requires the simpler assertions from the proof of P k.

Observe that since all the k copies of P in P k are distinct,
any two behaviours of P k that are interleavings of the same lo-
cal (per copy) behaviours are equivalent. P ′ is a sound choice
if it includes one or more members from each such equivalence
class. In the literature of hyperproperty verification and more
generally relational program proofs, the choice of P ′ is called
an alignment (of P k).

In this paper, we call it a reduction of P k, since our
ultimate goal is to step out of this specific context and into
a broader one that uses the same general reasoning principle.
The equivalence classes induced by a commutativity relation
are defined as Mazurkiewicz Traces [3]. For any program A,
we call a program B to be a reduction of A if and only
if B includes at least one representative from each (trace)
equivalence class of behaviours in A. For example, P ; . . . ;P
is a reduction of P k.

In the case of hypersafety, we just happen to have full
commutativity, since all copies are distinct. For a concur-
rent/distributed program, we typically have some (but not full)
commutativity, but we can still follow the same principle that
verifying a reduction of the program can be a substantially
easier task than verifying the program itself. More specific
versions of this observation had already been made in the
literature of concurrent and distributed program verification. In
particular, it is exploited in the context of verification of dis-
tributed programs by favouring the verification of synchronous979-8-3503-3587-3/23/$31.00 ©2023 IEEE



(or almost synchronous) programs in place of asynchronous
programs with the rationale that the synchronous program
admits a simpler proof [4], [5]. In the context of verification
of concurrent programs, the same observation is exploited
through the inference of large atomic blocks that would
permit the prover to do much of the reasoning in a thread-
local manner, and only reason about concurrency over a few
interference points [6], [7].

The common thread in all three contexts of reasoning is
that choosing the right reduction is the key to success in
the verification task. Yet, in all cases, the right reduction
is either fixed in advance, by choosing a specific domain
of programs that share the choice of the right reduction, or
the user is involved in specifying it somehow; for example
through explicit yield points in the code [6], [7]. In some
cases, this methodology may be reasonable. In general, two
complications may arise: (1) It may not be an easy task for
a user to envision an arbitrary reduction with a simple proof,
and (2) even if the user has a high level understanding of what
this reduction should look like, it is not always straightforward
to communicate it to a tool; for example, yield points are easy
to use for the users, but they cannot encode every reduction.

Since a verification algorithm is fundamentally a search for
proof, we wondered if it can be turned into a search for both
a reduction and a proof of its correctness. This paper briefly
surveys some of the ideas that resulted from an attempt to
actualize this goal.

II. A SUITABLE ALGORITHMIC VERIFICATION PARADIGM

The most common approach to reasoning about program
correctness, among programmers, is based on operational
reasoning, which consists of an informal analysis in terms of
the executions of the given program. The classic approach to
program correctness, among the experts in this field, is based
on axiomatic reasoning. Such a proof will proceed in a syntax-
directed manner by recursion on the structure of the program.

For concurrent and distributed programs, which consist
of components executing simultaneously, Hoare’s axiomatic
approach was extended by Owicki/Gries [8] and Jones [9] to
one that aims to construct a proof of correctness for the whole
program out of proofs for individual components (threads or
processes) and a modicum of glue that connects them together.
This reasoning is based on the principle of non-interference:
other threads/processes do not interfere with the functionality
of the current one, and therefore do not have much impact
on its proof of correctness. Not all concurrent programs are
designed with this principle in mind. For cooperative con-
currency, in which processes work together to achieve some
common goal, the notion of non-interference is not natural.
Axiomatic proof systems have clever workarounds (e.g., ghost
state [10]) for these cases, but cleverness is an obstacle to
automation: humans are clever, but automated verifiers are
not. In contrast, informal operational arguments accommodate
arbitrary global facts into proofs more naturally.

In a series of papers [11]–[15], we illustrated how a high
level operational argument can be made rigorous like a classi-

cal axiomatic proof. The thesis of our work is that operational
arguments can be formalized using axiomatic proofs of a
program’s behaviours, which are sequences of instructions that
are executed in order (without conditional branching, looping,
etc). The basic object of interest in this system remains a
Hoare triple {P} ρ {Q}, which consists of two assertions
P and Q (called the pre-condition and post-condition of the
triple, respectively), and a program behaviour ρ. Hoare triples
form the foundation of most axiomatic proof systems. In an
operational argument, we think of a program as a set of its
behaviours, corresponding to the possible paths of execution
the program may take. We view an operational proof for a
program as mechanism that, for any program behaviour ρ, can
derive validity of the Hoare triple {Pre} ρ {Post}. The key is
an implicit finite representation of a proof for a potentially
infinite set of such behaviours. This raises two questions:

• What is the mechanism for deriving valid Hoare triples
for program behaviours and representing the resulting
argument as a coherent formal proof?

• How can we be assured that a correctness proof can be
derived for every program behaviour?

In the context of algorithmic verification, this operational
view can be implemented by a refinement loop illustrated in
Figure 1. Roughly speaking, boxes (a) and (b) correspond to
the first question, and boxes (c) and (d) correspond to the
second question.
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Does ⇧ subsume
all behaviours of P?

yes

no

no

yes
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P is correct.
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P is not correct.

(a)

(b)

(c)
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(d)
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and

Fig. 1. A Refinement loop For operational-style reasoning about correctness
of a program P .

The focus of this paper is not on this type of operational
reasoning. Therefore, we refer the interested reader to [16],
[17] for a few different ways in which the pair of questions can
be consistently and effectively answered for different program
models. This style of operational reasoning, however, has been
essential in the success of incorporating commutativity into the
verification algorithm. Think of it this way: if we do not know
what reduction (which is a program in its own right) we will
end up proving correct a priori, we do not have access to the
syntax of this reduction (program). It is hard to imagine how
a proof in the syntax-based axiomatic style might be gradually
constructed without access to this syntax.

It suffices to have a high level understanding of how the
refinement loop in Figure 1 works to read the rest of this paper.
A program is always represented using an appropriate notion



of automaton, which simply captures its (syntactic) behaviours.
The property of interest is already encoded in the program. For
example, in place of having pre/post-conditions, we can let the
program assume the precondition at the beginning, and state
the violation of the postcondition at the end. Correctness of
the original program would then become infeasibility of all
(syntactic) behaviours of the new program.

The proof conjecture Π itself is represented by a compatible
automaton, and always accepts a set of behaviours that are
correct by construction. The check in box (c) becomes a
straightforward language subsumption test. As long as it is
decidable for the particular class of automata used, one has an
algorithm for box (c). A counterexample, that is a witness to
the violation of the subsumption check, will then be a program
behaviour that is not covered by the proof. It can be viewed as
a simple program; for example, in the context of safety, it is a
finite run which can be viewed as a sequential program without
any branching or looping structure. One can use one of the
many existing verification technique (e.g., Craig interpolation)
to verify it, and if it is correct produce a Hoare/Floyd style
proof for it. Then, this proof can be generalized and combined
(not necessarily in that order) with an existing proof conjecture
Π. Therefore, Π may start from being the empty language in
this refinement loop, and then iteratively grow larger based on
counterexamples until the program is subsumed.

III. DUAL SEARCH FOR REDUCTIONS AND THEIR PROOFS

We start with a simple notion of commutativity: a and b
(as atomic program steps) commute if and only if a; b and
b; a have the same semantics (i.e. input-output relation). This
leads to a simple observation that if a program run ρabρ′

satisfies some specification (e.g. pre/post-condition) and a and
b commute, then ρbaρ′ also satisfies the same specification. It
is then convenient to call these and only these program runs
equivalent under a commutativity relation I that includes the
pair (a, b). The equivalence relation ≡I induced by I is the
reflexive and transitive closure of the relation ∼I defined as:

σ ∼I σ′ ⇐⇒ σ = ρabρ′ ∧ σ′ = ρbaρ′ ∧ (a, b) ∈ I.

In other words, two program behaviours are equivalent if
one can be acquired from the other through an arbitrary num-
ber of swaps of adjacent commutative actions. The equivalence
classes defined by ≡I are Mazurkiewicz traces [3].

In the refinement loop of Figure 1, this suggests a straight-
forward way of exploiting commutativity: for every behaviour
σ in Π, include all other behaviours σ′ ≡I σ also in Π. This
amounts to computing the commutativity closure of Π up to
I and proposes the following proof rule for verification:

Π |= φ P ⊆ [Π]I

P |= φ
(CLOSURE)

In a sense, we get more milage out of our efforts to
construct proofs for individual counterexamples by using the
commutativity closure. This proof rule is practically useless,
however, since checking the premise P ⊂ [Π]I is undecidable

[18] even for regular languages which are the simplest class
of languages that can be used in our operational reasoning
scheme. Therefore, we need a compromise. Consider the
following rule:

Π |= φ ∃P̂ ∈ Red(P ). P̂ ⊆ Π

P |= φ
(REDUCTION)

where Red(P ) is a set of programs that satisfies the following

P̂ ∈ Red(P ) ⇐⇒ ∀ρ ∈ P ∃ρ′ ∈ P̂ ρ ≡I ρ′

Note that if we let Red(P ) be the largest set of programs that
are all subsets of behaviours of P and satisfy the above con-
dition, then Rules CLOSURE and REDUCTION are equivalent,
since for this Red(P ), we have:

(∃P̂ ∈ Red(P ). P̂ ⊆ Π) ⇐⇒ P ⊆ [Π]I

and therefore this new premise is as undecidable as the old
one. However, it presents us with a new opportunity: settle
for a subset of the reductions in Red(P ) so that the premise
becomes algorithmically checkable.

In [11], we introduce one such expressive set of reductions
inspired by lexicographical normal forms of Mazurkiewicz
traces. The lexicographical normal form (LEX) of an equiv-
alence class is simply lexicographically least member of the
class, based on an order assumed on the alphabet of actions.
Let Σ be an alphabet of program atomic actions. We define a
new context-sensitive alphabet order ≺: Σ∗ → lin(Σ) where
lin(Σ) is the set of all possible total orders on Σ. Intuitively,
≺ defines an ordering of actions sensitive to the context in
which the letters appear in a program run.

Fix a choice of ≺ and define a reduction P̂≺ parametric on
this choice as one satisfying the following condition for all
ρ ∈ P :

¬(ρ = σ1bσ2aσ3 ∧ a ≺σ1 b ∧ (a, bσ2) ∈ I) =⇒ ρ ∈ P̂≺

The left hand side of the implication determines that the run ρ
is the lexicographically least member of its equivalence class
up to ≺. Therefore, it does belong to the reduction P̂ , which
only collects these normal forms. Let Red lex be the set of
all such reductions for all possible choices of ≺. Note that
despite there being only finitely many total orders on Σ, there
are infinitely many choices for ≺, and therefore, infinitely
many reductions can be enumerated as long as the program has
infinitely many runs. Moreover, each such reduction is optimal
in the sense that it includes precisely one member of each
equivalence class of program behaviours. Therefore, the proof
does not need to cover any redundant program behaviours.

The technical breakthrough in [11] is that for a regular
program language P , the set of reductions Red lex (P ) can
be effectively represented using a Looping Tree Automaton
(LTA). Therefore, in the diagram in Figure 1, all instances
of P can be replaced with Red lex (P ). On the other hand,
the set of all subsets of a regular language Π can also be
represented by an LTA, which can then replace all instances
of Π. Then, the premise check ∃p ∈ Red lex (P ) p ⊆ Π



reduces to checking if the intersection of the two LTAs is
nonempty. This is decidable in linear time. Remarkably, even
though individual reductions represented by the LTA do not
have to be all regular and the same is true for subsets of Π,
whenever the intersection is nonempty, it always includes a
regular language in it. Therefore, the algorithm can produce
the regular reduction as a checkable certificate.

Moreover, we prove in [11] that whenever the intersection
is empty, that is while the refinement loop is not yet done, a
finite set of counterexamples witness the insufficiency of the
proof. That is, there are finitely many counterexample program
behaviour that, if proven correct in the next round and added
to proof Π, guarantee us progress across all infinitely many
reductions. Therefore, the instantiation of refinement loop in
Figure 1 based on Rule REDUCTION with Red lex (P ) as the
set of reductions enjoys the same progress properties as the
one that simply works with a single regular program and its
proof. This is a highly nontrivial observation and the key to
a proper dual algorithmic search for a reduction and a proof:
one does not get stuck by committing to a bad reduction when
it comes to the expansion of the proof.

In [11], we demonstrate that an implementation of this idea
is successful in discovering different reductions that are re-
quired to verify different benchmarks from different contexts.
This includes discovering the right alignments for hypersafety
verification of sequential and concurrent programs, correct
sequentialization for the verification of concurrent programs,
and the right type of synchronization for the verification of
distributed programs. The key focus of the empirical study of
[11] is on problems where the invariants are beyond the reach
of standard automated verification techniques, mainly because
the language of assertions for a full program proof involves
assertions that are nonlinear, use quantification over arrays,
or reason about buffers with unlimited bounds, or are simply
hard to guess by automated techniques (e.g. interpolation). In
each case, there exist a reduction with a proof using simple
assertions and the tool, WEAVER, is able to discover both.

IV. SEMI- AND CONTEXTUAL COMMUTATIVITY

The reader who is partially familiar with the literature
on commutativity in concurrent program verification most
likely knows about Lipton’s reductions [19], where individual
program actions can be left, right, both, or non movers. The
technical ideas described in Section III can be extended,
with a bit of effort, to work with a non-symmetric notion
of commutativity, namely semi-commutativity, as discussed
in [12]. This is important for taking advantage of the exist-
ing semi-commutativity between program actions where full
commutativity does not exist. For example, a send and a
receive operation on the same channel in a distributed
program, where a receive operation can be commuted to
the right of any send operation but not to its left. We discuss
in [12] how Lipton’s reductions and such semi-reductions are
incomparable notions.

In [12], another notion of commutativity, namely contex-
tual commutativity is also investigated. In message-passing

programs, a receive can be commuted to the left of a
send operation that is not its matching send, which is
determined by the context. The most significant contribution
of [12] is a proposed class of reductions, called contextual
reductions, which take advantage of such contextual commu-
tativity. Two statements may commute in one context and
not in another. Standard commutativity would declare them
always non-commutative. Contextual commutativity lets the
two statements commute wherever they do soundly.

Inspired by a language-theoretic notion of context from
generalized Mazurkiewicz traces [20], we define contextual
reductions that are recognized by LTAs. The elegance of
this definition is in that it does not commit to a particular
contextual commutativity relation in advance. Similarly to the
definition of ≺ in Section III, we can define a contextual
commutativity relation I : Σ∗ → Σ × Σ which can encode
an arbitrary commutativity relation at any given context. Note
that not all such relations are sound, that is, not all pairs of
actions may soundly commute in the corresponding contexts
as specified. A key technical development in [12] is that we
can defer the decision of the soundness of a particular choice
to the proof checking step. That is, a proof candidate decides
if a choice of contextual commutativity relation is provably
sound.

An LTA then models (infinitely many) reductions of a
program based on infinitely many choices of contextual com-
mutativity relations and infinitely many choices of contextual
orders ≺, in the same style as Red lex from Section III. Another
LTA captures all subsets of Π. Proof checking passes if we
find a reduction that is subsumed by Π and the contextual
commutativity choices that are made in the construction of it
are proven sound by Π. When we use counterexamples to grow
Π, we trick the refinement loop to also infer assertions that
substantiate the soundness of a larger and larger contextual
commutativity relation through refinement.

In some sense, there are three searches that happen simul-
taneously: a search for a provably sound contextual commu-
tativity relation, a search for a reduction induced by some
provably sound commutativity relation, and a search for a
proof of the correctness of the reduction and the soundness
of the contextual commutativity relation used in defining it.

In the context of hypersafety verification, since one always
has access to a full (symmetric) commutativity relation, neither
semi-commutativity nor contextual commutativity is of any
use. But, in the context of verification of concurrent and dis-
tributed programs, as is demonstrated in [12], a tool equipped
with the additional power, SIEVER, can manage to prove many
more programs correct than does WEAVER which can only do
non-contextual symmetric commutativity reasoning.

V. ABSTRACT COMMUTATIVITY

Contextual commutativity allows us to declare more pro-
gram behaviour equivalent. There is another simple obser-
vation that can produce more commutativity in program
reasoning. Two program actions may not commute if one
considers their concrete semantics, but in the context of a



specific program and a specific property of that program, the
concrete semantics may be more detailed than necessary. If
one considers an abstraction of the program actions which
still maintains the property of interest for the program, the
two actions may commute under this abstract semantics. In
[14], we explore how this can be formalized and effectively
used in a verification algorithm.

The idea of abstract commutativity has been used in the
literature [6], [7]. Our shared view is that abstraction can help
increase commutativity. However, the increased commutativity
there is chiefly used for the construction of larger atomic
blocks to exploit local reasoning. Our thesis is different. We
believe that abstract commutativity can play a significant role
in proving properties of concurrent programs that concern
only a comparatively small slice of the program. Examples
of these are properties local to a thread, or safety of memory
accesses, or lightweight properties like race detection. The idea
is that one can infer near total commutativity of actions outside
the program slice and as a result get substantially smaller
representation for a sound reduction of the program based on
the abstract commutativity relation.

A contribution of [14] is a framework in which we define
general soundness conditions for abstract commutativity rela-
tions to ensure the correctness of the verification is preserved.
We base definitions of abstract commutativity (as well as the
notion of its soundness) on a given proof candidate (Π in
the diagram in Figure 1). The proof relies on the reduction
defined by the abstract commutativity relation, and in turn
the proof guarantees soundness of the abstract commutativity
relation. This circular dependency is vaguely reminiscent
of rely-guarantee reasoning. We define several sound and
generic abstract commutativity relations and show empirically
that even coarse abstractions have significant benefit for the
verification algorithm, specially for lightweight properties of
concurrent programs.

Instantiating this framework with several abstract commu-
tativity relations leads to a very important insight: Commu-
tativity does not increase monotonically with an increase in
the level of abstraction. For example, two x++ statements
commute under concrete semantics, but switching to an ab-
stract semantics that loosely says that x can be any value
after the statement, they would no longer commute. This lack
of monotonicity brought us to the following question: Can we
leverage the power of multiple commutativity relations, that
are not consistent with each other, to construct a simple proof
in an automated verification algorithm?

VI. STRATIFICATION OF COMMUTATIVITY RELATIONS

Unlike the interactive setting (for example [6]), a verifi-
cation algorithm cannot rely on the user to intervene and
decide where to apply which abstraction to obtain an ideal
abstract commutativity relation. Straightforward approaches to
combining different commutativity relations, such as taking
their union, turn out to be either unsound or unsuitable for
verification algorithms.

In [14], we propose a general way of combining two or
more commutativity relations in strata. To establish that one
program behaviour is equivalent to another one, we perform an
arbitrary number of commutations according to one relation,
and then switch to the next one, and then the next one. More
precisely if we have two commutativity relations I and I ′, in
Rule CLOSURE, the inclusion check P ⊆ [Π]I can be soundly
replaced by

P ⊆
[
[Π]I

]I′

under the restriction that I is based on semantics that is strictly
more abstract than that of I ′. To have an algorithmic solution,
however, we need the corresponding version of this for Rule
REDUCTION. Switching gears from closures to reductions, we
want the following check instead:

∀σ ∈ P ∃σ′ ∈ Π, σ′′ ∈ Σ∗ σ ≡I′ σ′′ ≡I σ′

This is generally equivalent to, and as undecidable as, the
variation of test with stratified closures. In the spirit of
reductions inspired by lexicographical normal forms, we can
switch to the following decidable strengthening of the check:

∀σ ∈ P ∃σ′ ∈ Π, σ′′ ∈ Σ∗ σ ≡I′ σ′′ ≡I σ′ ∧ σ′ ≺ σ′′ ≺ σ

This gives rise to the concept of stratified reductions. The
above test is algorithmically implemented in the refinement
loop of Figure 1 as the following inclusion check:

redI
≺
(
redI′

≺(P ) ∪Π
)
⊆ Π (SR)

which is provably equisatisfiable [14]. This can be extended
from two to any number of commutativity relations.

The algorithmic implementation of the SR check is nontriv-
ial. There is an inherent nondeterminism engrained in the idea
of stratified commutativity which is related to the decision
of when to switch from swapping according to one relation
to the next. We present an effective algorithm which resolves
this nondeterminism in a provably optimal way, and therefore,
precisely implements the SR check.

VII. BEYOND SAFETY

So far, our focus has been on safety properties of con-
current/distributed programs. In the automata-theoretic frame-
work, it is fairly straightforward [17] to reduce the check
for an arbitrary liveness property to a termination check for
a transformed program. Therefore, we turn to the problem
of checking termination of concurrent/distributed programs
as the foundation of reasoning about liveness. The question
arises naturally whether the ideas developed for verification
of safety properties could work, with little adjustment, for this
verification task as well. The answer turns out to be NO.

Recall the refinement loop in Figure 1. Without consid-
erations for commutativity, the same refinement loop can
be used for checking termination of concurrent programs.
The program and the proof are represented using (Büchi)
automata, and module (c) is implemented as inclusion checks
between the languages of these automata. Counterexamples are
program lassos which correspond to ultimately periodic words.



For module (b), any known technique to reason about the
termination of a lasso, which is a simple sequential program,
can be used.

The same notion of commutativity equivalence, which we
discussed for finite program behaviours, also exists for infinite
program behaviours, whether they are ultimately periodic or
not. In the same manner, it turns out that accounting for
commutativity by computing the closure of the proof Π (in the
stye of Rule CLOSURE) immediately leads to an undecidable
proof rule [15].

However, unlike all previous sections in this paper, a notion
of program reduction based on lexicographical normal forms
does not provide us with a sound and decidable proof rule.
This is due to the simple fact that equivalence classes of ω-
words may include words that are themselves not ω-words,
and consequently, the lexicographically least member of an
equivalence class does not necessarily have to be a word in
Σω .

Let λ1 and λ2 stand for the loop bodies of the two loops
in two different threads that fully commute. Let the alphabet
ordering rank every letter of λ1 before every letter of λ2.
The interleaved run λω

1 λ
ω
2 becomes the lexicographically least

member of the equivalence class of (λ1λ2)
ω . Since λ1 and

λ2 commute, we can make infinitely many swaps to transform
(λ1λ2)

ω to λω
1 λ

ω
2 . Note that the former is an ω-word, but the

latter is not and is called a transfinite word.
First, It appears that we are indefinitely postponing λ2 in

favour of λ1. Second, a word with a length strictly larger than
ω does not have an appropriate representation in language
theory because it does not belong to Σω . Both are viewed
as unholy things in the context of software model checking.

Yet, the observation that (λ1λ2)
ω ≡ λω

1 λ
ω
2 is the key to a

powerful proof rule for termination of concurrent programs: If
λω
1 is terminating and λ1 commutes against λ2, then we can

conclude that (λ1λ2)
ω is terminating. Note that the converse

is not true; termination of λω
1 λ

ω
2 does not necessarily imply

the termination of λω
2 . Hence, for the termination of the

entire program (and not just the run (λ1λ2)
ω), one needs

to argue about the termination of both λω
1 and λω

2 . This is
perfectly aligned with a high level argument a human would
do: If two loops fully commute, it should suffice to prove
each terminating to have a proof for the termination of their
concurrent composition. In [15], we formally state and prove
this proof rule, called the omega-prefix proof rule, and show
how it can be incorporated into an algorithmic verification
framework. In contrast to all previous cases, the natural way
to incorporate this rule is as a generalization of the proof Π
rather than a reduction of the program P .

This proof rule is powerful in reasoning about independent
loops. But, when some actions in λ1 and λ2 commute and
some do not, it does not get us far in simplifying the termi-
nation proof of the parallel composition of the two loops. To
also take advantage of such scenarios, we propose a way of
soundly and efficiently finitizing the ω-regular languages of
program and the proof lassos in [15] so that reductions for
finite-word languages can be used instead. These reductions

can be seamlessly combined with any proof generalization
scheme used for Π, in particular, one that implements the
omega-prefix proof rule. As a result, a coherent algorithmic
solution emerges which performs substantially better than the
baseline in checking termination of concurrent programs.

VIII. FUTURE DIRECTIONS

We believe that we have seen strong evidence that the
use of commutativity can simplify proofs of concurrent and
distributed programs, for safety, liveness, and hypersafety
properties. There are however many open questions left in this
domain.

First, we have a methodology for adding contexts to con-
crete commutativity relations. We do not yet know how to do
the same thing for a generic abstract commutativity relation.
To add to this mystery, there seems to be a loose connection
between contextual and abstract commutativity. In our work
so far, whenever we talk about context, we refer to a left
context only. Whereas, abstractions, in some sense, provide
the power to account for a full (both left and right) context to
consider the relative order of two program actions. It will be
very interesting to explore and formalize this relation further.

Second, our focus so far has been on programs with a fixed
number of threads (or processes). All constructions rely on the
finite alphabet of actions. For parameterized programs or dis-
tributed protocols, which contain unboundedly many threads,
one needs an infinite alphabet of actions to model the program
behaviour faithfully. It will be interesting to investigate if
and how the verification of parametrized programs can be
simplified using the concepts of commutativity mentioned in
this article. In particular, it will be interesting to formulate
what reductions of parameterized programs may look like and
how they can be finitely represented and analyzed.

Lastly, and perhaps most importantly, the theory behind
every work referenced in this article relies on classic results
proven about Mazurkiewicz traces. They characterize a clean
and elegant notion of commutativity that simplifies and stream-
lines reasoning about the equivalence classes. The same is true
about much of the literature on the usage of commutativity in
other areas, such as dynamic program analysis for predictive
testing for atomicity [21], [22] and race freedom [23], [24],
and dynamic partial order reduction [25] in stateless model
checking [26], [27]. However, to anyone with some experience
in concurrent and distributed programming, it is evident that
commutativity at the level of atomic actions is somewhat
constrained. For example, an atomic increment followed by an
atomic decrement amounts to a skip action that commutes
against any environment action, while the individual increment
and decrement may not. It would be very interesting to
explore coarser notions of equivalence for concurrent program
runs that would share the key properties of Mazurkiewicz
traces which have proven to be broadly useful in many areas
of computer science like programming languages, software
engineering, and distributed computing since 1987.
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