
Compositional Recurrence Analysis
Azadeh Farzan

University of Toronto
azadeh@cs.toronto.edu

Zachary Kincaid
University of Toronto

zkincaid@cs.toronto.edu

Abstract—This paper presents a new method for automati-
cally generating numerical invariants for imperative programs.
The procedure computes a transition formula which over-
approximates the behaviour of a given input program. It is
compositional in the sense that it operates by decomposing
the program into parts, computing a transition formula for
each part, and then composing them. Transition formulas for
loops are computed by extracting recurrence relations from a
transition formula for the loop body and then computing their
closed forms. Experimentation demonstrates that this method
is competitive with leading verification techniques based on
abstraction refinement.

I. INTRODUCTION

Compositional program analyses operate by decomposing
a program into parts, computing an abstract meaning of
each part, and then composing the meanings. Compositional
analyses have a number of desirable properties, including
scalability, parallelizability, and applicability to incomplete
programs. However, compositionality comes at a price: since
each program fragment is analyzed independently of its con-
text, the analysis cannot benefit from contextual information.
This paper presents a compositional analysis which, despite
loss of contextual information, is capable of generating precise
numerical invariants.

while(*):
x := x + 1
y := y - 2

Compositional recurrence analysis,
the technique proposed in this paper,
aims to compute a transition formula
that over-approximates the behaviour
of a given program. As with any invariant generation tech-
nique, the crucial question is how to approximate the be-
haviour of loops. The basic idea can be illustrated with the
example loop to the right, which loops for a non-deterministic
number of iterations, adding 1 to x and subtracting 2 from y
at each iteration. The body of this loop can be described by a
system of recurrence equations:

x(k) = x(k−1) + 1

y(k) = y(k−1) − 2

(where x(k) represents the value of x on the kth iteration of the
loop). A transition formula for the loop can be computed by
taking the closed form of this system. Using x and y to denote
the values of those variables before executing the loop and x’
and y’ to their values after the loop, a transition formula that
precisely describes this loop is:

∃k ∈ N.x’ = x+ k ∧ y’ = y− 2k

The idea of using recurrences to abstract loops is classical,
and there exist powerful techniques for solving very general
classes of recurrence equations. However, two barriers stand
in the way of applying recurrence analysis to real programs.
First, loop bodies may have arbitrary control flow. Extracting
recurrence equations from a straight-line loop body like the
one above is straightforward, but what if the loop body
contains branching, or nested loops, or even unstructured
control flow? Second, the behaviour of a loop may not be
describable as a system of recurrence equations (for example,
consider a loop where x is non-deterministically incremented
by either 1 or 2). How can recurrence analysis be used to
over-approximate loops whose behaviour is not determined by
system of recurrence equations?

Our approach exploits compositionality to overcome these
barriers. The assumption of compositionality demands that a
transition formula for a loop is computed from a transition
formula for its body. This makes the control flow of the loop
body irrelevant: whether it is a sequence of assignments or
contains branching or nested loops – its transition formula
is just a formula. While this circumvents the first barrier to
practical recurrence analysis, it also presents a new challenge:
how can we extract a system of recurrence equations from
a formula representing a loop body? Our solution is to
use a Satisfiablity Modulo Theories (SMT) solver to extract
recurrence equations which are semantically implied by a
loop body formula. In fact, our method goes beyond systems
of recurrence equations over program variables: it extracts
a system of recurrence inequations over linear terms. This
allows compositional recurrence analysis to compute accurate
over-approximations of loops which cannot be described as
a system of recurrence equations, thereby overcoming the
second barrier to practical recurrence analysis.

The rest of the paper is organized as follows. In the next
section, we give a high-level overview of our algorithm. In
Section III, we describe our strategy for over-approximating
the behaviour of loop whose body is expressed as a linear
arithmetic formula; Section IV describes a method for over-
approximating a non-linear arithmetic formula by a linear
arithmetic formula, so that our loop approximation proce-
dure may be applied to any arithmetic formula. In Sec-
tion V, we demonstrate experimentally that compositional
recurrence analysis compares favourably with leading (non-
compositional) verification techniques. Section VI compares
with related work, and Section VII concludes.



II. OVERVIEW

We will adopt a simple intra-procedural program model in
which a program is represented by a control flow automa-
ton (CFA) where edges are labeled by program statements.
Figure 1(b) depicts such a CFA for a program that computes
the quotient and remainder of division of a variable x by a
variable y. Naturally, compositional recurrence analysis can
be extended to a program model with procedures by using
the analysis to compute procedure summaries [31], but for the
sake of simplicity we will not discuss this extension formally.

Compositional recurrence analysis (CRA) is presented in the
algebraic abstract interpretation framework described in [10].
In [10], a program analysis is defined by an interpretation,
which consists of a semantic algebra and a semantic function.
A semantic algebra consists of a universe which defines the
space of possible program meanings, along with sequencing
(�), choice (⊕), and iteration (⍟) operators, which define
how to compose program meanings. A semantic function is a
mapping from control flow edges to elements of the universe
which defines the meaning of each control flow edge.

Path expression algorithms [7], [29], [32] form the algorith-
mic foundation of the algebraic framework. A path expression
is a regular expression over an alphabet of control flow edges
which recognizes the set of paths through a control flow
automaton. Intuitively, path expression algorithms operate by
computing a path expression to a control point of interest and
then interpreting that path expression in the semantic algebra
defining the analysis. The exponential blow-up of computing
a regular expression from a control flow automaton is avoided
by sharing sub-expressions and evaluating the path expression
bottom-up. Path expression algorithms can share work over
multiple queries to avoid duplicate work if there are multiple
points of interest (e.g., if there is more than one assertion to
be verified).

More concretely, suppose that we wish to prove that the
assertion on the edge from v8 to vexit always succeeds using
CRA. First, we compute a path expression for vertex v8 (Fig-
ure 1(c)). This regular expression recognizes the set of paths
from ventry to v8. Second, we evaluate this path expression
in the semantic algebra of CRA by recursing on the regular
expression, interpreting each edge using the semantic function
and each regular expression operator by its counterpart in the
semantic algebra that defines CRA. The result is a transition
formula which approximates the executions which end at
v8. Third, we ask an SMT solver whether the transition
formula implies that the assertion holds in the post-state. If
the implication holds, then we may conclude that the assertion
is safe. If not, then the verification is inconclusive: either the
assertion fails in some execution, or the assertion is safe but the
transition formula computed by CRA is not strong enough to
prove it (the analysis cannot distinguish between these cases).

Keeping this framework in mind, we proceed to describe the
interpretation which defines compositional recurrence analysis.
CRA Universe. The semantic universe of CRA (i.e., the
space of program meanings) is the set of arithmetic transition

formulas. Letting Var denote the set of program variables
and Var′ the set of “primed” copies of program variables, a
transition formula is an arithmetic formula with free variables
in Var ∪ Var′.

Transition formulas may contain existential quantifiers and
non-linear arithmetic. For readability, we will often simplify
formulas by eliminating quantifiers in the remainder of the
paper. However, CRA does not require quantifier elimination
(and indeed, there is no quantifier elimination procedure for
the class of formulas we consider, since we allow non-linear
integer arithmetic).
CRA Semantic Function. The semantic function J·K maps
each edge of a control flow automaton to its interpretation as a
transition formula. For example (again considering Figure 1),
we have

J〈ventry, v1〉K , r′ = x ∧ id({q, t, x, y})

J〈v2, v3〉K , r ≥ y ∧ id({q, r, t, x, y})

where for X ⊆ Var, we define id(X) ,
∧

x∈X x′ = x ; we
use id to factor out equalities from the formulas and make
them more legible. Boxes around formulas have no meaning,
and are used to make it easier to distinguish between equalities
in formulas and the meta-language.
CRA Operators. The sequencing and choice operators of CRA
are defined as follows:

ϕ� ψ , ∃x′′.ϕ[x′′/x′] ∧ ψ[x′′/x] Sequencing

ϕ⊕ ψ , ϕ ∨ ψ Choice

(where ϕ[x′′/x′] denotes the formula obtained from ϕ by
replacing each primed variable x′ by its double-primed coun-
terpart x′′, and ψ[x′′/x] similarly replaces unprimed variables
in ψ with double-primed variables).

The semantic function, sequencing, and choice operators
are sufficient to analyze loop-free code. For example, CRA
computes a transition formula for the body of the inner loop
of Figure 1 as follows:
J〈v4, v5〉 · 〈v5, v6〉K = J〈v4, v5〉K� J〈v5, v6〉K

≡ t 6= 0 ∧ r′ = r − 1 ∧ id({q, t, x, y})
J〈v4, v5〉 · 〈v5, v6〉 · 〈v6, v4〉K = J〈v4, v5〉·〈v5, v6〉K� J〈v6, v4〉K

≡ t 6= 0 ∧ r′ = r − 1 ∧ t′ = t− 1 ∧ id({q, x, y})
Having defined the semantic function, semantic universe,

and sequencing and choice operators for CRA, it remains only
to define its iteration operator. The formal definition of the
iteration operator appears in the next section; in this section,
we will illustrate the iteration operator on the running example.

Let ϕinner , J〈v4, v5〉 · 〈v5, v6〉 · 〈v6, v4〉K be the formula
above, which represents the body of the inner loop. The
meaning of the inner loop is computed by applying the
iteration operator to ϕinner.

Recurrence Closed form
r′ = r − 1 r(k) = r(0) − k
t′ = t− 1 t(k) = t(0) − k

CRA’s iteration opera-
tor begins by extracting
the recurrence equations
shown to the right (note



r := x // remainder
q := 0 // quotient
while(r >= y):

// subtract y from r
t := y
while(t != 0)

r := r - 1
t := t - 1

q := q + 1

assert(x = q*y + r)

(a) Program text

ventry v1 v2

v3 v4

v5 v6

v7

v8 vexit
r := x q := 0

[r >= y]

t := y [t = 0]

[t != 0]

r := r - 1

t := t - 1

q := q + 1

[r < y] assert(x = q*y+r)

(b) Control Flow Automaton for (a)

〈ventry, v1〉·〈v1, v2〉·
(
〈v2, v3〉·〈v3, v4〉·

Inner loop︷ ︸︸ ︷
(〈v4, v5〉·〈v5, v6〉·〈v6, v4〉)∗·〈v4, v7〉·〈v7, v2〉

)∗︸ ︷︷ ︸
Outer loop

·〈v2, v8〉

(c) Path expression to v8

Fig. 1. An integer division program, computing a quotient and remainder. A statement [ψ] denotes an assumption which blocks if ψ does not hold.

that this table omits “uninteresting” recurrences, such as
q′ = q + 0, which indicate that a variable does not change in
a loop). It then computes closed forms for these recurrences,
also shown to the right (where x(k) denotes the value that the
variable x takes on the kth iteration of the loop). These closed
forms are used to abstract the loop as follows:

ϕ⍟inner = ∃k.k ≥ 0 ∧ r′ = r − k ∧ t′ = t− k ∧ id({q, x, y})

≡ r′ = r + t′ − t ∧ t′ ≤ t ∧ id({q, x, y})
The path expression algorithm uses the formula ϕ⍟inner for

the inner loop to compute a transition formula representing
the body of the outer loop as follows:
ϕouter = J〈v2, v3〉K�J〈v3, v4〉K�ϕ⍟inner�J〈v4, v7〉K�J〈v7, v2〉K

≡ q′ = q+1 ∧ r′ = r+t′−y ∧ t′ = 0 ∧ r ≥ y ∧ id({x, y})

Recurrence Closed form
q′ = q + 1 q(k) = q(0) + k
r′ = r − y r(k) = r(0) − y(0)k

We then apply the
iteration operator to
ϕouter to compute a
transition formula for
the outer loop. The recurrences found for the outer loop and
their closed forms are shown to the right (again, omitting
“uninteresting” recurrences). Note that our algorithm extracts
these recurrences from ϕouter using only semantic operations:
the fact that ϕouter is an abstraction of a looping computation
is completely transparent to the analysis. Using the closed
forms of the recurrences to the right, we compute the following
transition formula for the outer loop:

ϕ⍟outer = ∃k.k ≥ 0 ∧ q′ = q + k ∧ r′ = r − ky ∧ id({x, y})

≡ q′ ≥ q ∧ r′ = r − (q′ − q)y ∧ id({x, y})
Finally, we compute a transition formula that approximates

all executions which end at v8 as follows:
ϕP = J〈ventry, v1〉 · 〈v1, v2〉K� ϕ⍟outer � J〈v2, v8〉K

≡ q′ ≥ 0 ∧ r′ = x− q′y ∧ r ≤ y ∧ id({x, y})

This formula is strong enough to imply that x′ = q′y′+ r′.
Thus CRA verifies that the assertion holds at v8.

III. CRA ITERATION OPERATOR

In this section, we describe the iteration operator of compo-
sitional recurrence analysis. Suppose that we have a formula
ϕbody which approximates the behaviour of the body of a
loop. The goal of the iteration operator is to compute a
formula ϕ⍟body which represents the effect of zero or more
executions of the loop body. CRA’s iteration operator works
by extracting recurrence relations from the formula ϕbody
and then computing closed forms for these relations. We
present the iteration operator in three stages, based on the
types of recurrence relations being considered: simple recur-
rence equations, stratified recurrence equations, and linear
recurrence (in)equations. Simple and stratified recurrences
are classical types of recurrence equations. Linear recurrence
(in)equations generalize classical recurrence equations by con-
sidering inequalities over linear terms (rather than equalities
over variables).

In the remainder of this section, fix a formula ϕbody repre-
senting the body of a loop. We assume that ϕbody is expressed
in linear (rational and integer) arithmetic (our strategy for
linearizing non-linear arithmetic is described in Section IV).
Additionally, we will assume that ϕbody is satisfiable; if ϕbody

is unsatisfiable, then we may take ϕ⍟body to be
∧

x∈Var x
′ = x ,

which represents zero iterations of the loop.

A. Simple recurrence equations

We start by defining simple recurrences and induction
variables.
Definition 1. A simple recurrence for a formula ϕbody is an
equation of the form x′ = x + c (for a constant c) such that
ϕbody |= x′ = x+ c. If x′ = x+ c is a simple recurrence for
ϕbody, we say that x satisfies the recurrence x′ = x+c, and if
there is some c such that x satisfies the recurrence x′ = x+c,



we say that x is an induction variable.
The set of all simple recurrences which are satisfied by

a transition formula ϕbody can be detected as follows. First,
query an SMT solver for a model m of ϕbody. Then, for each
variable x, ask an SMT solver if ϕbody implies the equation
x′ = x+Jx′−xKm (where Jx′−xKm denotes the interpretation
of the term x′−x in the model m). This implication holds iff
x is an induction variable.

If x is an induction variable that satisfies the recurrence
x′ = x + c, then the closed form for x is x(k) = x(0) + kc
(writing x(k) for the value that x obtains on the kth iteration
of the loop).

B. Stratified recurrences equations

while(x ≤ 10):
x := x + 1
y := y + x
z := 2 * x

Consider the loop shown to the
right. One can see that x satisfies a
simple recurrence equation x′ = x+1,
and that y satisfies a (non-simple) re-
currence equation y′ = y + x + 1. A
closed form for y’s recurrence is y(k) = y(0)+

∑k−1
i=0 (x

(i)+1).
Since x is an induction variable, we have a closed form for x
(x(i) = x(0)+i), which we may use to simplify y’s recurrence:

y(k) = y(0) +

k−1∑
i=0

(x(0) + i+ 1)

= y(0) + kx(0) + k +

k−1∑
i=0

i

= y(0) + kx(0) +
k(k + 1)

2
.

Stratified recurrence equations generalize this idea: start-
ing from simple recurrence equations, solve more and more
complex recurrences using the closed forms for simpler ones.
Stratified recurrence equations are formalized as follows:
Definition 2. The stratified recurrence equations (and strat-
ified induction variables) of a formula ϕbody are defined
recursively as:
• A simple recurrence equation which is satisfied by ϕbody

is a stratified recurrence equation of ϕbody (and a simple
induction variable is a stratified induction variable) at
stratum 0.

• Let y denote a vector of the stratified induction variables
of strata ≤ N . A recurrence of the form x′ = x+cy+d
(where c is a rational vector and d is a rational) is a
stratified recurrence at stratum N + 1 (and if x satisfies
such a recurrence, it is a stratified induction variable at
stratum N + 1).

We now present a method of generating all stratified in-
duction variables from loop body formula. In order to re-
duce the number of SMT queries made, our method begins
by constructing an intermediate object from the loop body
formula, from which recurrence equations may be easily
extracted. This intermediate object is the affine hull aff(ϕbody)
of ϕbody. The affine hull aff(ϕbody) of a formula ϕbody is
the smallest affine set which contains ϕbody, represented as
(the set of solutions to) a system of equations Ax = b,

Algorithm 1: Affine hull.
Input : Satisfiable formula ϕbody
Output: Affine hull of ϕbody
H ← ⊥; ψ ← ϕbody;
while there exists a model m of ψ do

H ′ ←
∧
{x = JxKm : x ∈ Var ∪ Var′};

H ← H t= H ′ ; /*Affine equality join*/
ψ ← ψ ∧ ¬H;

end
return H

where x =
[
x1, · · · , xn, x′1, · · · , x′n

]
is a vector of

all variables in Var ∪ Var′. Logically, aff(ϕbody) is a system
of equations such that (1) ϕbody |= aff(ϕbody), and (2) every
affine equation over Var ∪ Var′ which is implied by ϕbody is
also implied by aff(ϕbody). The affine hull of a formula may be
computed using Algorithm 1 (a specialization of the algorithm
α̂ in [26] to the abstract domain of affine equalities). For
example, one representation of the affine hull of the example
loop given at the beginning of this section is:

−1 0 0 1 0 0
1 1 0 0 −1 0
0 0 0 2 0 −1



x
y
z
x’
y’
z’

 =

 1
−1
0



Our strategy for generating stratified recurrence equations
from aff(ϕbody) is based on the following lemma. Combined
with property (2) of aff(ϕbody) above, this lemma implies that
any affine equation implied by ϕbody can be expressed as a
linear combination of the equations in aff(ϕbody). Thus, after
computing the affine hull of ϕbody, determining whether a
given variable satisfies a stratified recurrence is simply a matter
of solving a system of linear equations (e.g., using Gaussian
elimination).
Lemma 3 ([30], Corollary 3.1d). Let A be a matrix, b be a
column vector, c be a row vector, and d be a constant. Assume
that the system Ax = b has a solution. Then Ax = b implies
cx = d iff there is a row vector λ such that λA = c and
λb = d.

An algorithm for finding all stratified induction variables of
ϕbody is as follows. Let us write aff(ϕbody) as Ax = b. The
algorithm operates by induction on strata. In the base case,
we compute all simple induction variables using the method
of the previous section. For the induction step, we suppose
that we have detected all induction variables of strata < N .
Then for each variable xi which is not an induction variable
of stratum < N , we ask if there exists λ, c, and d such that:
• λA = c and λb = d (i.e, cx = d is implied by aff(ϕbody)

and thus by ϕbody).
• ci = 1 and ci+n = −1 (the coefficients of xi and x′i are

1 and -1, respectively).
• For all j such that j 6= i + n and n ≤ j ≤ 2n, we have
cj = 0 (except for x′i, all coefficients of primed variables
are 0).

• For all j 6= i such that xj is not an induction variable
of stratum < N , we have cj = 0 (except for xi and



induction variables of strata < N , all coefficients for
unprimed variables are 0).

This system of linear equations has a solution if and only
if xi is an induction variable of stratum N . The algorithm
terminates when it has computed a recurrence equation for
every variable, or when it fails to detect any induction variables
at some stratum.

Next, we give a procedure computing closed forms of
stratified induction variables. Again, this procedure operates
by induction on strata. For the base case, we compute closed
forms for simple induction variables, as in the previous section.
For the induction step, we make use of the induction hypoth-
esis that the closed form for a stratified induction variable of
stratum N is of the form

x(k) = p0(k) + p1(k)y
(0)
1 +· · ·+ pn(k)y

(0)
n

where each yi is a stratified induction variable of stratum < N
and each pi(k) ∈ Q[k] is a polynomial of one variable with
rational coefficients.

Suppose that we have a recurrence equation at stratum N :
x′ = x + c1y1 + · · · + cnyn + b (all y1, ..., yn are of strata
< N ). Then we may write

x(k) = x(0) +

k−1∑
i=0

(
c1y

(i)
1 +· · ·+ cny

(i)
n + b

)
.

By our induction hypothesis, each y
(i)
j can be written as a

linear term with coefficients from Q[k]. It follows that there
exists p0, ..., pn ∈ Q[k] so that

c1y
(i)
1 +· · ·+ cny

(i)
n + b = p0(i) + p1(i)y

(0)
1 +· · ·+ pn(i)y

(0)
n

Thus we have

x(k) = x(0) +

k−1∑
i=0

p0(i) + p1(i)y
(0)
1 +· · ·+ pn(i)y

(0)
n

= x(0) +

k−1∑
i=0

p0(i) + y
(0)
1

k−1∑
i=0

p1(i) +· · ·+ y(0)n

k−1∑
i=0

pn(i)

The closed form of a summation of a polynomial of degree
m is a polynomial of degree m+ 1. Polynomial curve fitting
is an elementary algorithm which can be used to compute the
closed form for the summation: compute the first m+1 terms
of the summation and then solve the corresponding linear
system of equations for the coefficients of the polynomial.

C. Linear recurrence (in)equations

while(x ≥ 0 ∧ y ≥ 0):
if(*): x := x - 1
else: y := y - 1

Recurrence equations
(such as the simple and
stratified varieties) yield
precise descriptions of
the dynamics of some variables, but what about variables
which do not satisfy any recurrence equation? For example,
consider that neither x nor y satisfy a recurrence equation
in the loop to the right. However, they do satisfy recurrence
inequations: x − 1 ≤ x′, x′ ≤ x, y − 1 ≤ y′, and y′ ≤ y.
These inequations can be closed to yield x(0) − k ≤ x(k)

and x(k) ≤ x(0), y(0) − k ≤ y(k), and y(k) ≤ y(0). We
will now describe a method for extracting and solving linear

recurrence (in)equations, which allows CRA to compute
accurate approximations for loops that cannot be completely
described by a system of recurrence equations.

Definition 4. A linear recurrence (in)equation of a formula ϕ
is an (in)equation which is implied by ϕ and which is of the
form

cx′ ./ cx+ by + d

where ./ ∈ {<,≤,=}, x is any vector of variables, y is
a vector of stratified induction variables in ϕbody, c, b are
constant vectors, and d is a constant.

Linear recurrence (in)equations generalize recurrence equa-
tions in two ways: first, they allow for inequalities rather
than equalities. Second, they allow recurrences for linear
terms, rather than just variables. For example, the linear
recurrence equation (x′ + y′) = (x + y) + 1 is satisfied by
the body of the loop above, which can be closed to yield
(x(k) + y(k)) = (x(0) + y(0)) + k.

We now describe a method for detecting and solving linear
recurrence (in)equations. Let Var] denote the set of variables
which are not stratified induction variables of ϕbody. Introduce
a set of difference variables δx, one for each variable x
in Var] (stratified induction variables are precisely described
by recurrence equations, so they need not be approximated).
Construct the strongest formula δ(ϕbody) which is implied
by ϕbody (conjoined with definitional equalities for each dif-
ference variable) and which the only free variables are the
difference variables and the stratified induction variables of
ϕbody as:

δ(ϕbody) , ∃Var′ ∪ Var].ϕbody ∧
∧
{δx = x′ − x : x ∈ Var]}

Next, use Algorithm 2 to compute the convex hull of
δ(ϕbody). Geometrically, the convex hull hull(ψ) of a formula
ψ is the smallest convex polyhedron which contains ψ. Logi-
cally, it is a set of (in)equations such that (1) every (in)equation
in hull(ψ) is implied by ψ, and (2) any affine (in)equation
(over the free variables of ψ) which is implied by ψ is also
implied by hull(ψ). For example, hull(δ(ϕbody)) for the loop
above is:

0 ≤ δx ∧ δx ≤ 1 ∧ 0 ≤ δy ∧ δy ≤ 1 ∧ δx + δy = 1

Algorithm 2: Convex hull.
Input : Formula of the form ∃X.ψ, where ψ is satisfiable and

quantifier-free
Output: Convex hull of ∃X.ψ
P ← ⊥;
while there exists a model m of ψ do

Let Q be a cube of the DNF of ψ s.t. m |= Q;
Q← project(Q,X); /*Polyhedral projection*/
P ← P tQ; /*Polyhedral join*/
ψ ← ψ ∧ ¬P ;

end
return P

Note that the only variables which appear in the
(in)equations in hull(δ(ϕbody)) are (stratified) induction vari-
ables and difference variables. Thus, any (in)equation in
hull(δ(ϕbody)) may be written as cδ ./ by + d (where δ is



the vector of difference variables, y is the vector of stratified
induction variables, c and b are constant vectors, and d is a
constant). Recalling the definition of the difference variables,
such an inequation may be rewritten as c(x′ − x) ./ by + d
and thus as cx′ ./ cx+ by+ d, which matches the definition
of linear recurrence (in)equations given in Definition 4. The
closed form of this recurrence inequation is

cx(k) ./ cx(0) +

k−1∑
i=0

by(i) + d

where the closed form of the summation
∑k−1

i=0 by
(i) + d is

computed as in Section III-B.

D. Loop guards

Typically, there is crucial information about the execution
of a loop that cannot be captured by recurrence relations. For
example, consider the loop in Section III-B. Supposing that
the loop executes n times, it must be the case that x(k) ≤ 10
for each k < n. Further, consider that the variable z is a
function of the simple induction variable x, and so z(k) can
be described precisely in terms of the pre-state variables (even
though it does not itself satisfy any recurrence):

z(k) =

{
z(0) if k = 0

2(x(0) + k + 1) otherwise.
The question is: how can this type of information be recovered
from a loop body formula?

We define the guard of a transition formula ϕbody as follows:

guard(ϕbody) , (∃Var.ϕbody) ∧ (∃Var′.ϕbody)

If ϕbody is a loop body formula, then guard(ϕbody) is a
formula which over-approximates the effect of executing at
least one execution of the loop. Intuitively, (∃Var′.ϕbody) is a
precondition that must hold before every iteration of the loop
and (∃Var.ϕbody) is a post-condition of the loop that must
hold after each iteration.

Consider again the example loop in Section III-B. The loop
body formula is as follows:

ϕbody = x ≤ 10 ∧ x′ = x+ 1 ∧ y′ = y+ x′ ∧ z′ = 2x′

Following the definition of guard, we have:

guard(ϕbody) , (∃x,y,z.ϕbody) ∧ (∃x’,y’,z’.ϕbody)

≡ (x’ ≤ 11 ∧ z’ = 2x’) ∧ (x ≤ 10) .

Thus, guard(ϕbody) recovers the desired information about x
and z.

Since loop body formulas may be large, in practice it may be
advantageous to simplify the guard formula by eliminating the
quantifiers (as we did above). A second option, which is more
efficient but less precise, is to over-approximate quantifier
elimination. Two possibilities are to use Algorithm 2 to com-
pute the convex hull of guard(ϕbody), or to use optimization
modulo theories [18] to compute intervals for each pre- and
post-state variable in ϕbody.

E. Bringing it all together
We close this section by describing how the pieces defined

in this section fit into the iteration operator of compositional
recurrence analysis. Let CR(ϕbody) denote the set of closed lin-
ear recurrence (in)equations (including simple and stratified re-
currence equations) satisfied by ϕbody. Each such (in)equation
is of the form cx(k) ./ t, where the free variables of t are
drawn from {x(0) : x ∈ Var} and a distinguished variable
k /∈ Var indicating the loop iteration. Letting t[x(0) 7→ x]
denote the term t with every variable of the form x(0) is
replaced by the corresponding variable x, we define ϕ+

body to
be the following formula:

∃k.k ≥ 1 ∧
∧
{cx′ ./ t[x(0) 7→ x] : cx(k) ./ t ∈ CR(ϕbody)} .

Finally, the iteration operator of CRA is defined as:

ϕ⍟body , (ϕ+
body ∧ guard(ϕbody)) ∨

∧
x∈Var x

′ = x .

IV. LINEARIZATION

The iteration operator presented in the previous section
operates under the assumption that loop body formulas are ex-
pressed in linear arithmetic. However, a program may contain
non-linear instructions, and even if it does not, CRA’s iteration
operator may introduce non-linearity (consider Example 1,
where the transition formula for the outer loop ϕ⍟outer contains
the non-linear proposition r′ = x − q′y). A solution to this
problem is to linearize non-linear formulas before passing
them to the iteration operator.

Linearization is an operation that, given an (arbitrary)
arithmetic formula ϕ, computes a formula lin(ϕ) which over-
approximates ϕ (i.e., ϕ |= lin(ϕ)), but which is expressed in
linear arithmetic. There is generally no best approximation of
a non-linear formula as a linear formula, so our method is
(necessarily) heuristic.

We explain our linearization algorithm informally using an
example. Consider the following non-linear formula (where
w, x, y, z are integers):

ψ , 1 ≤ w = x < y < 5 ∧ wy ≤ z ≤ xy
Our algorithm begins by normalizing ψ, separating it into
a linear part and a set of non-linear equations (introducing
Skolem constants as necessary). For example, the result of
normalizing ψ is:(
1 ≤ w = x < y < 5∧ γ0 ≤ z ≤ γ1

)
∧
(
γ0 = wy ∧ γ1 = xy

)
The left conjunct is a linear over-approximation of ψ, but

it is very imprecise: semantically equal (but syntactically
distinct) non-linear terms become semantically unequal in the
over-approximation, and all information about the magnitude
of non-linear terms is lost. To increase precision of this
approximation, we use two strengthening steps.

1) Replace the non-linear operations with uninterpreted
function symbols and compute the affine hull of the re-
sulting formula to infer affine equalities between Skolem
constants (representing non-linear terms). For our exam-
ple ψ, this step discovers the equality γ0 = γ1.

2) Compute concrete and symbolic intervals for non-linear
terms. Consider γ1 = xy from our example ψ. First



compute concrete (x ∈ [1, 3] and y ∈ [2, 4]) and symbolic
(x ∈ [x, x] and y ∈ [y, y]) intervals for the operands
x and y, using symbolic optimization [18] to compute
the concrete intervals. Obtain a concrete interval for xy
(xy ∈ [2, 12]) by multiplying the concrete intervals of its
operands. Obtain symbolic intervals for xy (xy ∈ [y, 3y]
and xy ∈ [2x, 4x]) by multiplying the concrete interval
for x by the symbolic interval for y and vice-versa. As
a result of interval computation, we discover: 2 ≤ γ1 ≤
12 ∧ y ≤ γ1 ≤ 3y ∧ 2x ≤ γ1 ≤ 4x.

We take lin(ψ) to be the initial coarse linear approximation of
ψ conjoined with the facts discovered by the two strengthening
steps.

We expect linearization to have applications outside of the
context in which we presented it, particularly in program
analysis, where over-approximation can be tolerated but non-
linear terms cannot. Finding improved linearization heuristics
is an interesting direction of future work.

V. EXPERIMENTS

In this section, we present an experimental evaluation of
CRA. We aim to support our hypothesis that, despite the fact
that CRA may not take advantage of contextual information,
it is competitive with leading verification techniques based on
abstraction refinement.

We implemented CRA in a tool that analyzes C code
(using the CIL [24] front-end). We use Z3 [9] to resolve
SMT queries that result from applying the iteration operator
and checking assertion violations. Polyhedra operations are
passed to the New Polka library implemented in Apron [4].
The quantifier elimination algorithm from [22] is used to
compute loop guards. The tool and benchmarks are available
at http://www.cs.toronto.edu/∼zkincaid/cra.

We tested two different configurations of CRA: one which
is fully compositional (CRA) and does not take advantage
of contextual information, and one (CRA+OCT) which uses
an intra-procedural octagon analysis [19] to gain some con-
textual information, but which is otherwise compositional.
We compare CRA’s performance against the state-of-the-
art invariant generation and verification tools CPACHECKER
(overall winner of the 2015 Software Verification Competition)
and SEAHORN (winner of the loops category among tools
which are sound for verification).

To evaluate the precision of CRA we used it to verify
the correctness of a suite of 119 small loop benchmarks of
varying difficulty. Our benchmark suite was drawn from the
loops category of the 2015 Software Verification Competition
(SVComp-15), as well as a set of non-linear benchmarks
(Non-linear), such as the one in Figure 1. The results for the 81
safe, integer-only benchmarks from these suites are shown in
Table I. The suite also contains 38 unsafe benchmarks: CRA
and CRA+OCT have no false negatives on these benchmarks;
CPACHECKER has 3 and SEAHORN has 2.

CRA can prove safety for 27 more programs than
CPACHECKER and 3 fewer than SEAHORN, thus demon-
strating that CRA is capable of generating competitively

Test Suite #Tests CRA+OCT CRA CPACHECKER SEAHORN

SVComp-15 74 65 60 37 65
Non-linear 7 6 5 1 3
Total 81 71 (88%) 65 (80%) 38 (47%) 68 (85%)

Running time across all test suites
Mean 1.9s 1.8s 42.4s 37.7s
Median 0.6s 0.6s 1.6s 0.2s

TABLE I
EXPERIMENTAL RESULTS.

precise invariants. This holds despite the fact that CRA is
a compositional analysis which does not use contextual in-
formation or employ abstraction refinement. The performance
of CRA+OCT (compared to CRA) indicates that CRA can
be combined with other invariant generation techniques to
increase precision.

VI. RELATED WORK

In this section, we compare compositional recurrence anal-
ysis to a sampling of related work on recurrence analysis and
compositional invariant generation.
Recurrence analysis. The idea of using closed forms of
recurrence relations to approximate loops has appeared in
a number of other papers. Generally speaking, CRA differs
from previous work in two essential ways: first, CRA uses
an SMT solver to extract semantic recurrences, rather than
syntactic recurrences. Second, CRA goes beyond exact recur-
rences (equations over variables) to approximate recurrences
(inequations over linear terms).

Ammarguellat and Harrison give a method for detecting
induction variables which is compositional in the sense that
it uses closed forms for inner loops in order to recognize
nested recurrences [1]. Maps from variables to symbolic terms
(effectively a symbolic constant propagation domain) are used
as an abstract domain (in contrast to CRA’s use of arbitrary
arithmetic formulas). Rodrı́guez-Carbonell and Kapur [27] and
Kovács [14] developed techniques for discovering invariant
polynomial equations based on solving recurrence relations.
The classes of simple and stratified recurrence equations are
subsumed by the ones considered in [27], [14], but admit a
simpler algorithm for computing closed forms. Kroening et al.
[15] present a technique for computing under-approximations
of loops which uses polynomial curve-fitting to directly
compute closed forms for recurrences rather than extracting
recurrences and then solving them in a separate step.

Ancourt et al. give a technique for computing recurrence
inequations for while loops with affine bodies [2]. As with the
method for computing linear recurrence inequations presented
in Section III-C, their method is based on difference variables
and polyhedral projection. CRA generalizes this work by (1)
extending it to arbitrary control flow and non-linear arithmetic,
(2) integrating recurrence inequations with stratified induction
variables, thereby allowing enabling the computation of invari-
ant polynomial inequations. Ancourt et al. discuss a method
for computing invariant polynomial inequations which is based
on higher-order differences rather than stratified recurrence
inequations.

http://www.cs.toronto.edu/~zkincaid/cra


Acceleration. Acceleration is a technique closely related to
recurrence analysis that was pioneered in infinite-state model
checking [6], [11], [3], and which has recently found use in
program analysis [12], [17], [13]. Given a set of reachable
states and an affine transformation describing the body of
a loop, acceleration computes an exact post-image which
describes the set of reachable states after executing any number
of iterations of the loop (although there is recent work on
abstract acceleration that computes over-approximate post-
images [12], [13]). In contrast, CRA is approximate rather
than exact, and computes transition formulas rather than post-
images. A result of these two features is that CRA can be
applied to arbitrary loops, while acceleration is classically
limited to simple loops where the body consists of a sequence
of assignment statements.
Compositional program analysis. Compositional program
analysis has a long history. Particular examples are inter-
procedural analyses based on summarization [31] and
elimination-style dataflow analyses (a good overview of which
can be found in [28]). The following surveys recent work on
compositional analysis for numerical invariants.

Kroening et al. [16] and Biallas et al. [5] present compo-
sitional analysis techniques based on predicate abstraction. In
addition to predicate abstraction, there are a few papers which
use numerical abstract domains for compositional analysis.
These include an algorithm for detecting affine equalities
between program variables [23], an algorithm for detecting
polynomial equalities between program variables [8], a dis-
junctive polyhedra analysis which uses widening to compute
loop summaries [25], and a method for automatically synthe-
sizing transfer functions for template abstract domains using
quantifier elimination [21]. Our abstract domain is the set of
arbitrary arithmetic formula, which is more expressive than
these domains, but which (as usual) incurs a potential price in
performance. It would be interesting to apply abstractions to
our formulas to improve the performance of our analysis.
Linearization. The linearization algorithm in Section IV was
inspired by Miné’s procedure for approximating non-linear
abstract transformers [20]. Miné’s procedure abstracts non-
linear terms by linear terms with interval coefficients using the
abstract value in the pre-state to derive intervals for variables.
Our algorithm abstracts non-linear terms by sets of symbolic
and concrete intervals, and applies to the more general setting
of approximating arbitrary formulas.

VII. CONCLUSION

This paper describes compositional recurrence analysis, a
fully compositional algorithm for generating numerical invari-
ants of imperative programs. There are two main points to take
away. The first is that it is possible to design a fully composi-
tional analysis (which makes no use of contextual information)
that is competitive with state-of-the-art verification techniques
based on abstraction refinement. Second, recurrence-based
program analysis may be extended to programs with arbitrary
control flow by exploiting compositionality and SMT solving.

REFERENCES
[1] Z. Ammarguellat and W. L. Harrison, III. Automatic recognition of

induction variables and recurrence relations by abstract interpretation.
In PLDI, pages 283–295, 1990.

[2] C. Ancourt, F. Coelho, and F. Irigoin. A modular static analysis approach
to affine loop invariants detection. Electron. Notes Theor. Comput. Sci.,
267(1):3–16, Oct. 2010.

[3] S. Bardin, A. Finkel, J. Leroux, and P. Schnoebelen. Flat acceleration
in symbolic model checking. In ATVA, pages 474–488. 2005.

[4] J. Bertrand and A. Miné. Apron: A library of numerical abstract domains
for static analysis. In CAV, pages 661–667, 2009.

[5] S. Biallas, J. Brauer, A. King, and S. Kowalewski. Loop leaping with
closures. In SAS, pages 214–230, 2012.

[6] B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In
CAV, pages 55–67. 1994.

[7] K. Chatterjee, R. Ibsen-Jensen, A. Pavlogiannis, and P. Goyal. Faster
algorithms for algebraic path properties in recursive state machines with
constant treewidth. In POPL, pages 97–109, 2015.

[8] M. A. Colón. Approximating the algebraic relational semantics of
imperative programs. In SAS, pages 296–311. 2004.

[9] L. De Moura and N. Bjørner. Z3: an efficient SMT solver. In TACAS,
pages 337–340, 2008.

[10] A. Farzan and Z. Kincaid. An algebraic framework for compositional
program analysis. CoRR, abs/1310.3481, 2013.

[11] A. Finkel and J. Leroux. How to compose Presburger-accelerations:
Applications to broadcast protocols. In FST TCS, pages 145–156, 2002.

[12] L. Gonnord and N. Halbwachs. Combining widening and acceleration
in linear relation analysis. In SAS, pages 144–160. 2006.

[13] B. Jeannet, P. Schrammel, and S. Sankaranarayanan. Abstract accelera-
tion of general linear loops. In POPL, pages 529–540, 2014.

[14] L. Kovács. Reasoning algebraically about P-solvable loops. In TACAS,
pages 249–264. 2008.

[15] D. Kroening, M. Lewis, and G. Weissenbacher. Under-approximating
loops in C programs for fast counterexample detection. In CAV, pages
381–396. 2013.

[16] D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich, and C. Winter-
steiger. Loop summarization using abstract transformers. In ATVA,
pages 111–125. 2008.

[17] J. Leroux and G. Sutre. Accelerated data-flow analysis. In SAS, pages
184–199, 2007.

[18] Y. Li, A. Albarghouthi, Z. Kincaid, A. Gurfinkel, and M. Chechik.
Symbolic optimization with SMT solvers. In POPL, pages 607–618,
2014.

[19] A. Miné. The octagon abstract domain. Higher-Order and Symbolic
Computation, 19(1):31–100, 2006.

[20] A. Miné. Symbolic methods to enhance the precision of numerical
abstract domains. In VMCAI, pages 348–363, 2006.

[21] D. Monniaux. Automatic modular abstractions for linear constraints. In
POPL, pages 140–151, 2009.

[22] D. Monniaux. Quantifier elimination by lazy model enumeration. In
CAV, pages 585–599, 2010.

[23] M. Müller-Olm and H. Seidl. Precise interprocedural analysis through
linear algebra. In POPL, pages 330–341, 2004.

[24] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate
language and tools for analysis and transformation of C programs. In
CC, pages 213–228, 2002.

[25] C. Popeea and W.-N. Chin. Inferring disjunctive postconditions. In
ASIAN, pages 331–345, 2007.

[26] T. W. Reps, S. Sagiv, and G. Yorsh. Symbolic implementation of the
best transformer. In VMCAI, pages 252–266, 2004.

[27] E. Rodrı́guez-Carbonell and D. Kapur. Automatic generation of polyno-
mial loop invariants: Algebraic foundations. In ISSAC, pages 266–273,
2004.

[28] B. G. Ryder and M. C. Paull. Elimination algorithms for data flow
analysis. ACM Comput. Surv., 18(3):277–316, Sept. 1986.

[29] B. Scholz and J. Blieberger. A new elimination-based data flow analysis
framework using annotated decomposition trees. In CC, pages 202–217,
2007.

[30] A. Schrijver. Theory of Linear and Integer Programming. John Wiley
& Sons, Inc., New York, NY, USA, 1986.

[31] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow
analysis, chapter 7, pages 189–234. Prentice-Hall, 1981.

[32] R. E. Tarjan. Fast algorithms for solving path problems. J. ACM,
28(3):594–614, July 1981.


	Introduction
	Overview
	CRA Iteration Operator
	Simple recurrence equations
	Stratified recurrences equations
	Linear recurrence (in)equations
	Loop guards
	Bringing it all together

	Linearization
	Experiments
	Related work
	Conclusion
	References

