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Abstract. This paper explores how using commutativity can improve
the efficiency and efficacy of algorithmic termination checking for con-
current programs. If a program run is terminating, one can conclude that
all other runs equivalent to it up-to-commutativity are also terminating.
Since reasoning about termination involves reasoning about infinite be-
haviours of the program, the equivalence class for a program run may
include infinite words with lengths strictly larger than ω that capture
the intuitive notion that some actions may soundly be postponed indefi-
nitely. We propose a sound proof rule which exploits these as well as clas-
sic bounded commutativity in reasoning about termination, and devise
a way of algorithmically implementing this sound proof rule. We present
experimental results that demonstrate the effectiveness of this method
in improving automated termination checking for concurrent programs.

1 Introduction

Checking termination of concurrent programs is an important practical problem
and has received a lot of attention [36,34,29,3]. A variety of interesting tech-
niques, including thread-modular reasoning [33,10,36,34], causality-based rea-
soning [29], and well-founded proof spaces [15], among others, have been used to
advance the state of the art in reasoning about concurrent program termination.
Independently, it has been established that leveraging commutativity in prov-
ing safety properties can be a powerful tool in improving automated checkers
[18,19,16,17]. There are many instances of applications of Lipton’s reductions
[31] in program reasoning [14,28]. Commutativity has been used to simultane-
ously search for a program with a simple proof and its safety proof [18,19] and to
improve the efficiency and efficacy of assertion checking for concurrent programs
[16]. Recently [17], abstract commutativity relations are formalized and combined
to increase the power of commutativity in algorithmic verification.

This paper investigates how using commutativity can improve the efficiency
and efficacy of proving the termination of concurrent programs as an enhance-
ment to existing techniques. The core idea is simple: if we know that a program
run ρabρ′ is terminating, and we know that a and b commute, then we can con-
clude that ρbaρ′ is also terminating. Let us use an example to make this idea
concrete for termination proofs of concurrent programs. Consider the two thread
templates in Figure 1: one for a producer thread and one for a consumer thread,
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<latexit sha1_base64="hya+sxs8sP+GISnxZk8yN/rH1Wo="></latexit>

assume(barrier >= producer_num);
while (j < consumer_limit){

j--;
C--; // consume content

}

<latexit sha1_base64="jcSTfANuuF9xZf57fJFZQYM+xtk="></latexit>

while (i < producer_limit){
C++; // produce content
i++

}
barrier++;

<latexit sha1_base64="JlfysIzSlCxrWO2am2s29jjdWoc=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRbBVZkpouKq6MZlhb6gHUomk7ahmWRIMoUy9E/cuFDErX/izr8xbWehrQcCh3Pu4d6cMOFMG8/7dgobm1vbO8Xd0t7+weGRe3zS0jJVhDaJ5FJ1QqwpZ4I2DTOcdhJFcRxy2g7HD3O/PaFKMykaZprQIMZDwQaMYGOlvuvWlYxSQhVqjGwuuuu7Za/iLYDWiZ+TMuSo992vXiRJGlNhCMdad30vMUGGlWGE01mpl2qaYDLGQ9q1VOCY6iBbXD5DF1aJ0EAq+4RBC/V3IsOx1tM4tJMxNiO96s3F/7xuaga3QcZEkhoqyHLRIOXISDSvAUVMUWL41BJMFLO3IjLCChNjyyrZEvzVL6+TVrXiX1eunqrl2n1eRxHO4BwuwYcbqMEj1KEJBCbwDK/w5mTOi/PufCxHC06eOYU/cD5/AAxzk0g=</latexit>

Producer Thread:
<latexit sha1_base64="NS0wAHfciu7IqLobuQmoJ+NxG7Y=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjNFVFwVu3FZoS9oh5LJpG1oJhmSTKEM/RM3LhRx65+4829M21lo64HA4Zx7kpsTJpxp43nfzsbm1vbObmGvuH9weHTsnpy2tEwVoU0iuVSdEGvKmaBNwwynnURRHIectsNxbe63J1RpJkXDTBMaxHgo2IARbKzUd92aFDqNqUKNkc1F93235JW9BdA68XNSghz1vvvViySxVwhDONa663uJCTKsDCOczoq9VNMEkzEe0q6lAsdUB9li8xm6tEqEBlLZIwxaqL8TGY61nsahnYyxGelVby7+53VTM7gLMiaS1FBBlg8NUo6MRPMaUMQUJYZPLcFEMbsrIiOsMDG2rKItwV/98jppVcr+Tfn6qVKqPuR1FOAcLuAKfLiFKjxCHZpAYALP8ApvTua8OO/Ox3J0w8kzZ/AHzucPGLGTUA==</latexit>

Consumer Thread:

Fig. 1: Producer/Consumer Template

where i and j are local variables. The assumption is that barrier and the local
counters i and j are initialized to 0. The producer generates content (modelled
by incrementing of a global counter C++) up to a limit and then, using barrier,
signals the consumer to start consuming. Independent of the number of produc-
ers and consumers, this synchronization mechanism ensures that the consumers
wait for all producers to finish before they start consuming. Note that the pro-
ducer threads fully commute — each statement in a producer commutes with
each statement in another. A producer and consumer only partially commute.

In a program with only two producers, a human would argue at the high level
that the independence of producer loops implies that their parallel composition
is equivalent, up to commutativity, to their sequential composition. Therefore, it
suffices to prove that the sequential program terminates. In other words, it should
suffice to prove that each producer terminates. Let us see how this high level
argument can be formalized using commutativity reasoning. Let λ1 and λ2 stand
for the loop bodies of the two producers. Among others, consider the (syntactic)
concurrent program run (λ1λ2)

ω; this run may or may not be feasible. Since λ1

and λ2 commute, we can transform this run, by making infinitely many swaps,
to the run λω

1 λ
ω
2 . The model checking expert would consider this transformation

rather misguided: it appears that we are indefinitely postponing λ2 in favour of
λ1. Moreover, a word with a length strictly larger than ω, called a transfinite
word, does not have an appropriate representation in language theory because
it does not belong to Σω. Yet, the observation that (λ1λ2)

ω ≡ λω
1 λ

ω
2 is the

key to a powerful proof rule for termination of concurrent programs: If λω
1 is

terminating and λ1 commutes against λ2, then we can conclude that (λ1λ2)
ω is

terminating. In other words, the termination proof for the first producer loop
implies that all interleaved executions of two producers terminate, without the
need for a new proof. Note that the converse is not true; termination of λω

1 λ
ω
2

does not necessarily imply the termination of λω
2 . So, even if we were to replace

the second producer with a forever loop, our observation would stand as is.
Hence, for the termination of the entire program (and not just the run (λ1λ2)

ω),
one needs to argue about the termination of both λω

1 and λω
2 , matching the

high level argument. In Section 3, we formally state and prove this proof rule,
called the omega-prefix proof rule, and show how it can be incorporated into an
algorithmic verification framework. Using this proof rule, the program consisting
of N producers can be proved terminating by proving precisely N single-thread
loops terminating.

Now, consider adding a consumer thread to our two producer threads. The
consumer loop is independent of the producer threads but the consumer thread,
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as a whole, is not. In fact, part of the work of a termination prover is to prove that
any interleaved execution of a consumer loop with either producer is infeasible
due to the barrier synchronization and therefore terminating. Again, a human
would argue that two such cases need to be considered: the consumer crosses
the barrier with 0 or 1 producers having terminated. Each case involves several
interleavings, but one should not have to prove them correct individually. Ideally,
we want a mechanism that can take advantage of commutativity for both cases.

Before we explore this further, let us recall an algorithmic verification tem-
plate which has proven useful in incorporating commutativity into safety reason-
ing [18,19,16,17] and in proving termination of sequential [25] and parameterized
concurrent programs [15]. The work flow is illustrated in Figure 2. The program
and the proof are represented using (Büchi) automata, and module (d) (and
consequently module (a)) are implemented as inclusion checks between the lan-
guages of these automata. The iteratively refined proof — a language of infeasible
syntactic program runs — can be annotated Floyd-Hoare style and generalized
using interpolation as in [25] (as discussed in Appendix E.1). For module (b),
any known technique for reasoning about the termination of simple sequential
programs can be used on lassos.

The straightforward way to account for commutativity in this refinement
loop would involve module (c): add to Π all program runs equivalent to the
existing ones up to commutativity without having a proof for them. In the safety
context, it is well-known that checking whether a program is subsumed by the
commutativity closure of a proof is undecidable. We show (in Section 3) that the
same hurdle exists when doing inclusion checks for program termination.

In the context of safety [18,19,16,17], program reductions were proposed as
an antidote to this undecidability problem: rather than enlarging the proof, one
reduces the program and verifies a new program with a subset of the original
program runs while maintaining (at least) one representative for each commu-
tativity equivalence class. These representatives are the lexicographically least
members of their equivalence classes, and are algorithmically computed based
on the idea of the sleep set algorithm [22] to construct the automaton for the
reduced program. However, using this technique is not possible in termination
reasoning where lassos, and not finite program runs, are the basic objects.

To overcome this problem, we propose a different class of reductions, called
finite-word reduction. Inspired by the classical result that an ω-regular language
can be faithfully captured as a finite-word language for the purposes of certain
checks such as inclusion checks [4], we propose a novel way of translating both the

<latexit sha1_base64="wFAcX6MfbyVQqvOo7NJ0oa1Ckb0=">AAAB/3icbVDLSsNAFJ34rPUVFdy4GWwEVyUpouKq4sZlBfuANpTJZNIOncyEmYlQYhf+ihsXirj1N9z5N07aLLT1wIXDOfdy7z1BwqjSrvttLS2vrK6tlzbKm1vbO7v23n5LiVRi0sSCCdkJkCKMctLUVDPSSSRBccBIOxjd5H77gUhFBb/X44T4MRpwGlGMtJH69uF1GEKHOVALmEghIuj0GtTp2xW36k4BF4lXkAoo0OjbX71Q4DQmXGOGlOp6bqL9DElNMSOTci9VJEF4hAakayhHMVF+Nr1/Ak+MEsJISFNcw6n6eyJDsVLjODCdMdJDNe/l4n9eN9XRpZ9RnqSacDxbFKUsfzYPA4ZUEqzZ2BCEJTW3QjxEEmFtIiubELz5lxdJq1b1zqtnd7VK/aqIowSOwDE4BR64AHVwCxqgCTB4BM/gFbxZT9aL9W59zFqXrGLmAPyB9fkDBeCUKQ==</latexit>

Add l to proof ⇧
<latexit sha1_base64="L/B0ZoN6+m2few2+sVc+OhPB2To=">AAACA3icbVDLSgMxFM3UV62vUXe6CbaCqzJTRMVVwYUuK9gHdIaSSe+0oZnMkGSEOhTc+CtuXCji1p9w59+YPhbaeiBwOOfem3tPkHCmtON8W7ml5ZXVtfx6YWNza3vH3t1rqDiVFOo05rFsBUQBZwLqmmkOrUQCiQIOzWBwNfab9yAVi8WdHibgR6QnWMgo0Ubq2AeeiJnogtD4GgRIwtkD4JJXY6WOXXTKzgR4kbgzUkQz1Dr2l9eNaRqZYZQTpdquk2g/I1IzymFU8FIFCaED0oO2oYJEoPxscsMIHxuli8NYmmeWmai/OzISKTWMAlMZEd1X895Y/M9rpzq88DMmklSDoNOPwpRjHeNxILjLJFDNh4YQKpnZFdM+kYRqE1vBhODOn7xIGpWye1Y+va0Uq5ezOPLoEB2hE+Sic1RFN6iG6oiiR/SMXtGb9WS9WO/Wx7Q0Z8169tEfWJ8/9kGXDA==</latexit>

Generalize ⇧

<latexit sha1_base64="pXMgj85yiVi/hyyQjlHe9uvoVM4=">AAAB/HicbVBNS8NAEJ34WetXtEcvi63gqSRFVLxY8KK3CvYD2lA22027dLMJuxshhPpXvHhQxKs/xJv/xm2bg7Y+GHi8N8PMPD/mTGnH+bZWVtfWNzYLW8Xtnd29ffvgsKWiRBLaJBGPZMfHinImaFMzzWknlhSHPqdtf3wz9duPVCoWiQedxtQL8VCwgBGsjdS3S3cKVXgFaSpDJowohtd9u+xUnRnQMnFzUoYcjb791RtEJAmp0IRjpbquE2svw1Izwumk2EsUjTEZ4yHtGipwSJWXzY6foBOjDFAQSVNCo5n6eyLDoVJp6JvOEOuRWvSm4n9eN9HBpZcxESeaCjJfFCQc6QhNk0ADJinRPDUEE8nMrYiMsMTEZKGKJgR38eVl0qpV3fPq2X2tXL/K4yjAERzDKbhwAXW4hQY0gUAKz/AKb9aT9WK9Wx/z1hUrnynBH1ifP2xMk/k=</latexit>

Is l terminating?
<latexit sha1_base64="MkVq51+homq+ch6Voc6fIIAxnUs=">AAACAXicbVDLSgMxFM3UV62vUTeCm2AruCozRVRcFdy4rGAf0A4lk2ba0DyGJCOUoW78FTcuFHHrX7jzb8y0s9DWAxcO59yb3HvCmFFtPO/bKaysrq1vFDdLW9s7u3vu/kFLy0Rh0sSSSdUJkSaMCtI01DDSiRVBPGSkHY5vMr/9QJSmUtybSUwCjoaCRhQjY6W+e9SgeAwRjJUcKsQhQ1pLWGGVvlv2qt4McJn4OSmDHI2++9UbSJxwIgzOXun6XmyCFClDMSPTUi/RJEZ4jIaka6lAnOggnV0whadWGcBIKlvCwJn6eyJFXOsJD20nR2akF71M/M/rJia6ClIq4sQQgecfRQmDRsIsDjigimDDJpYgrKjdFeIRUggbG1rJhuAvnrxMWrWqf1E9v6uV69d5HEVwDE7AGfDBJaiDW9AATYDBI3gGr+DNeXJenHfnY95acPKZQ/AHzucPz/SV0A==</latexit>

Pick a program lasso l

<latexit sha1_base64="Sd17JytlNSySSnYn5FjJgaT6dhI=">AAACHHicbVDLSgMxFM3UV62vqks3wVZwVWaqqLixoAuXFewDOkPJpLdtaCYZkoxQSj/Ejb/ixoUiblwI/o1pOwttPRA4nHPvzb0njDnTxnW/nczS8srqWnY9t7G5tb2T392ra5koCjUquVTNkGjgTEDNMMOhGSsgUcihEQ6uJ37jAZRmUtybYQxBRHqCdRklxkrt/IkvJBMdEAbfSNC46FdZEesk1EkE2Pcx4RzHSvYUiTAnWkt91c4X3JI7BV4kXkoKKEW1nf/0O5LagcLQyYyW58YmGBFlGOUwzvmJhpjQAelBy1JBItDBaHrcGB9ZpYO7Utlnt5yqvztGJNJ6GIW2MiKmr+e9ifif10pM9yIYMREnBgSdfdRNODYST5LCHaaAGj60hFDF7K6Y9oki1Ng8czYEb/7kRVIvl7yz0ulduVC5TOPIogN0iI6Rh85RBd2iKqohih7RM3pFb86T8+K8Ox+z0oyT9uyjP3C+fgBgCqDs</latexit>

Does ⇧ subsume
all program lassos?

yes

no

no

yes

<latexit sha1_base64="e1vw8lEUAudSEqbMO8YuUQ5VDEQ=">AAACCnicbVC7SgNBFJ2Nrxhfq5Y2o0GwCrtBVKwCNpYRzAOSJczOzm6GzGOZmRXCktrGX7GxUMTWL7Dzb5wkW2jigYHDuefeufeEKaPaeN63U1pZXVvfKG9WtrZ3dvfc/YO2lpnCpIUlk6obIk0YFaRlqGGkmyqCeMhIJxzdTOudB6I0leLejFMScJQIGlOMjJUG7nFfSCoiIgxsKpkoxCHV0BDFqbAWkdQGbtWreTPAZeIXpAoKNAfuVz+SOON2JmZI657vpSbIkTIUMzKp9DNNUoRHKCE9SwXiRAf57JQJPLVKBGOp7LM7zdTfHTniWo95aJ0cmaFerE3F/2q9zMRXQU5Fmhki8PyjOGPQSDjNBUZUEWzY2BKEFbW7QjxECmGbha7YEPzFk5dJu17zL2rnd/Vq47qIowyOwAk4Az64BA1wC5qgBTB4BM/gFbw5T86L8+58zK0lp+g5BH/gfP4AOMWakw==</latexit>

Program is terminating.
<latexit sha1_base64="eSZp4ev51u9Kh+a1dzXCkNpofYA=">AAACD3icbVC7SgNBFJ31bXxFLW0Gg2K17IqoWAk2lhFMImRDuDu5GwfnsczMCiHkD2z8FRsLRWxt7fwbJ49CowcGDufce+fek+aCWxdFX8HM7Nz8wuLScmlldW19o7y5Vbe6MAxrTAttblKwKLjCmuNO4E1uEGQqsJHeXQz9xj0ay7W6dr0cWxK6imecgfNSu7yfKM1VB5WjVaO7BiSV0EsSqrSjDo3kChyG7XIlCqMR6F8ST0iFTFBtlz+TjmaF9IOZAGubcZS7Vh+M40zgoJQUFnNgd9DFpqcKJNpWf3TPgO55pUMzbfzzi43Unx19kNb2ZOorJbhbO+0Nxf+8ZuGy01afq7xwqNj4o6wQ1Gk6DId2uEHmRM8TYIb7XSm7BQPMJ2FLPoR4+uS/pH4Yxsfh0dVh5fxsEscS2SG75IDE5ISck0tSJTXCyAN5Ii/kNXgMnoO34H1cOhNMerbJLwQf39PGnIA=</latexit>

Program may
not terminate.

(a) (b)

(c)(d)

Fig. 2: Refinement Loop For Proving Termination.
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program and the proof into finite-word languages. The classical result is based on
an exponentially sized construction and does not scale. We propose a polynomial
construction that has the same properties for the purpose of our refinement loop.
This contribution can be viewed as an efficient translation of termination analysis
to safety analysis and is useful independent of the commutativity context. For the
resulting finite-word languages, we propose a novel variation of the persistent set
algorithm to reduce the finite-word program language. This reduction technique
is aware of the lasso structure in finite words.

Used together, finite-word reductions and omega-prefix generalization pro-
vide an approximation of the undecidable commutativity-closure idea discussed
above. They combine the idea of closures, from proof generalization schemes
like [15] and reductions from safety [16], into one uniform proof rule that both
reduces the program and generalizes the proof up to commutativity to take as
much advantage as possible. Neither the reductions nor the generalizations are
ideal, which is a necessity to maintain algorithmic computability. Yet, together,
they can perform in a near optimal way in practice: for example, with 2 produc-
ers and one consumer, the program is proved terminating by sampling precisely
3 terminating lassos (1 for each thread) and 2 infeasible lassos (one for each
barrier failure scenario).

Finally, mostly out of theoretical interest, we explore a class of infinite word
reductions that have the same theoretical properties as safety reductions, that is,
they are optimal and their regularity (in this case, ω-regularity) is guaranteed.
We demonstrate that if one opts for the Foata Normal Form (FNF) instead
of lexicographical normal form, one can construct optimal program reductions
in the style of [18,19,16] for termination checking. To achieve this, we use the
notion of the FNF of infinite words from (infinite) trace theory [13], and prove
the ω-regular analogue of the classical result for regular languages: a reduction
consisting of only program runs in FNF is ω-regular, optimal, and can be soundly
proved terminating in place of the original program (Section 3).

To summarize, this paper proposes a way of improving termination checking
for concurrent programs by exploiting commutativity to boost existing algorith-
mic verification techniques. We have implemented our proposed solution in a
prototype termination checker for concurrent programs called TerMute, and
present experimental results supporting the efficacy of the method in Section 6

2 Preliminaries

2.1 Concurrent Programs

In this paper, programs are languages over an alphabet of program statements
Σ. The control flow graph for a sequential program with a set of locations
Loc, and distinct entry and exit locations, naturally defines a finite automaton
(Loc, Σ, δ, entry, {exit}). Without loss of generality, we assume that this automa-
ton is deterministic and has a single exit location. This automaton recognizes
a language of finite-length words. This is the set of all syntactic program runs
that may or may not correspond to an actual program execution.
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For the purpose of termination analysis, we are also interested in infinite-
length program runs. Given a deterministic finite automatonAL = (Q,Σ, δ, q0, F )
with no dead states, where L(AL) = L ⊆ Σ∗ is a regular language of finite-length
syntactic program runs, we define Büchi(AL) = (Q,Σ, δ, q0, Q), a Büchi au-
tomaton recognizing the language Lω = {u ∈ Σω : ∀v ∈ pref(u).v ∈ pref(L)},
where pref(u) denotes {w ∈ Σ∗ : ∃w′ ∈ Σ∗ ∪ Σω.w · w′ = u} and pref(L) =⋃

v∈L pref(v). These are all syntactic infinite program runs that may or may
not correspond to an actual program execution.

We represent concurrency via interleaving semantics. A concurrent program
is a parallel composition of a fixed number of threads, where each thread is
a sequential program. Each thread Pi is recognized by an automaton Ai

P =
(Loci, Σi, δi, entryi, {exiti}). We assume the Σi’s are disjoint. The DFA recogniz-
ing P = P1|| . . . ||Pn is constructed using the standard product construction for a
DFA AP recognizing the shuffle of the languages of the individual thread DFA’s.

The language of infinite runs of this concurrent program, denoted Pω, is the
language recognized by Büchi(AP). Note that a word in the language Pω may
not necessarily be the shuffle of infinite runs of its individual threads.

Pω = {u ∈ Σω| ∃i : u|Σi
∈ Pω

i ∧ ∀j : u|Σj
∈ pref(Pj) ∪ Pω

j }
In the rest of the paper, we will simply write P when we mean Pω for brevity.
Note that Pω includes unfair program runs, for example those in which individual
threads can be indefinitely starved. As argued in [15], this can be easily fixed by
intersecting Pω with the set of all fair runs.

2.2 Termination

Let X the domain of the program state, Σ a set of statements, and denote
J.K : Σ∗ → P(X × X) a function which maps a sequence of statements to a
relation over the program state, satisfying Js1KJs2K = Js1 · s2K for all s1, s2 ∈ Σ∗.
Define sequential composition of relations in the usual fashion: r1r2 = {(x, y) :
∃z.(x, z) ∈ r1 ∧ (z, y) ∈ r2}. We write s(x) to denote {y : (x, y) ∈ JsK} ⊆ X.

We say that an infinite sequence of statements τ ∈ Σω is infeasible if and
only if ∀x ∈ X ∃k ∈ N s1 . . . sk(x) = ∅, where si is the ith statement in the run
τ . A program — an ω-regular language P ⊆ Σω — is terminating if all of its
infinite runs are infeasible.

∀τ ∈ P, τ is infeasible

P is terminating
(Term)

Lassos. It is not possible to effectively represent all infinite program runs, but
we can opt for a slightly more strict rule by restricting our attention to ultimately
periodic runs UP ⊆ Σω. That is, runs that are of the form uvω for some finite
words u, v ∈ Σ∗. These are also typically called lassos.

It is unsound to replace all runs with all ultimately periodic runs in rule
Term. P may be non-terminating while all its ultimately periodic runs are ter-
minating (see Appendix A.2 for a concrete example). Assume that our program
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P is an ω-regular language and there is a universe T of known terminating pro-
grams that are all omega-regular languages. Then, we get the following sound
rule instead:

∃Π ∈ T .P ⊆ Π

P is terminating
(TermUP)

If the inclusion P ⊆ Π does not hold, then it is witnessed by an ultimately
periodic run [4]. In a refinement loop in the style of Figure 2, one can iteratively
expand Π based on this ultimately periodic witness (a.k.a. a lasso), and hence
have a termination proof construction scheme in which ultimately periodic runs
(lassos) are the only objects of interest. Note that if P includes unfair runs of a
concurrent program, rather than fixing it, one can instead initialize Π with all
the unfair runs of the concurrent program, which is an ω-regular language. This
way, the rule becomes a fair termination rule.

2.3 Commutativity and Traces

An independence (or commutativity) relation I ⊆ Σ × Σ is a symmetric, anti-
reflexive relation that captures the commutativity of a program’s statements:
(s1, s2) ∈ I =⇒ Js1s2K = Js2s1K. In what follows, assume such an I is fixed.

Finite Traces. Two finite words w1 and w2 are equivalent whenever we can
apply a finite sequences of swaps of adjacent independent program statements to
transform w1 into w2. Formally, an independence relation I on statements gives
rise to an equivalence relation ≡I on words by defining ≡I to be the reflexive
and transitive closure of the the relation ∼I , defined as us1s2v ∼I us2s1v ⇐⇒
(s1, s2) ∈ I. A Mazurkiewicz trace [u]I = {v ∈ Σ∗ : v ≡I u} is the corresponding
equivalence class; we use “trace” exclusively to denote Mazurkiewicz traces.

Infinite Traces. Traces may also be defined in terms of dependence graphs (or
partial orders). Given a word τ = s1s2..., the dependence graph corresponding
to τ is a labelled, directed, acyclic graph G = (V,E) with labelling function

a

b

c

a

b

(i)

a

b

c

a

b

a

b

a

b

(ii)

Fig. 3: Hasse diagrams.

L : V → Σ and vertices V = {1, 2, . . . }, where
L(i) = si, and (i, i′) ∈ E whenever i < i′ and
(L(i), L(i′)) ̸∈ I. Then, [τ ]∞I , the equivalence
class of the infinite word τ , is precisely the set
of linear extensions of G. Therefore, τ ′ ≡I τ
iff τ ′ is a linear extension of G.

For example, Figure 3(i) illustrates the
Hasse diagram of the finite trace [abcba]I , and
Figure 3(ii), the Hasse diagram of the infinite
trace [abc(ab)ω]∞I , where I = {(a, b), (b, a)}.

For an infinite word τ , the infinite trace
[τ ]∞I may contain linear extensions that do not
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correspond to any word in Σω. For example, if I = {(a, b), (b, a)}, then the trace
[(ab)ω]∞I includes a member (infinite word) in which all as appear before all bs.
We use aωbω to denote this word and call such words transfinite. This means
that [τ ]∞I ̸⊆ Σω, even for an ultimately periodic τ .

Normal Forms. A trace, as an equivalence class, may be represented unam-
biguously by one of its member words. Lexicographical normal forms [13] are the
most commonly used normal forms, and the basis for the commonly known sleep
set algorithm in partial order reduction [22]. Foata Normal Forms (FNF) are
less well-known and are used in the technical development of this paper:

Definition 1 (Foata Normal Form of a finite trace [13]). For a finite
trace t, define FNF(t) as a sequence of sets S1S2...Sk (for some k ∈ N) where
t = Πk

i Si and for all i:

∀a, b ∈ Si a ̸= b =⇒ (a, b) ∈ I (no dependencies in Si)

∀b ∈ Si+1 ∃a ∈ Si (a, b) ̸∈ I (Si dependent on Si+1)

Given a trace’s dependence graphs, the FNF can be constructed by repeat-
edly removing sets of minimal elements, that is, sets with no incoming edges.
Although we have defined a trace’s FNF as a sequence of sets, we will generally
refer to a trace’s FNF as a word in which the elements in each set are assumed
to be ordered lexicographically. For example, FNF([abcba]I) = ab · c · ab, where
I = {(a, b), (b, a)}. We overload this notation by writing FNF([u]I) as FNF(u),
and, for a language L, FNF(L) = {FNF(u) : u ∈ L}.

Theorem 1 ([13]). L is a regular language iff the set of its Foata (respectively
Lexicographical) normal forms is a regular language.

3 Closures and Reductions

Commutativity defines an equivalence relation ≡I which preserves the termina-
tion of a program run.

Proposition 1. For τ, τ ′ ∈ Σω and τ ′ ≡I τ , τ is terminating iff τ ′ is terminat-
ing.

In the context of a refinement loop in the style of Figure 2, Proposition 1
suggests one can take advantage of commutativity by including all runs that are
equivalent to the ones in Π (which are already proved terminating) in module
(c). We formally discuss this strategy next.

Given a language L and an independence relation I, define [L]∞I = ∪τ∈L[τ ]
∞
I .

Recall from Section 2 that, in general, [τ ]∞I ̸⊆ Σω. Since programs are repre-
sented by ω-regular languages in our formalism, it is safe for us to exclude
transfinite words from [τ ]∞I from commutativity closures computation. Define:

[L]ωI = ∪τ∈L[τ ]
∞
I ∩Σω (ω-closure)



8 Danya Lette and Azadeh Farzan

The following sound proof rule is a straightforward adaptation of Rule TermUP
that takes advantage of commutativity-based proof generalization:

∃Π ⊆ T .P ⊆ [Π]ωI
P is terminating

(TermClosure)

Recall the example from Section 1 with two producers. The transfinite pro-
gram run λω

1 λ
ω
2 that is the sequential compositions of the two producers looping

forever back to back does not belong to the ω-closure of any ω-regular language.
We generalize the notion of ω-closure to incorporate the idea of such runs in a
new proof rule.

Let τ a transfinite word (like aωbω). Let τ ′ a prefix of τ . If |τ ′| = ω, we
say that τ ′ is an ω-prefix of τ , or τ ′ ∈ pref ω(τ). A direct definition for when a
transfinite word τ is terminating would be rather contrived, since a word such as
aωbω does not correspond to a program execution in the usual sense. However,
a very useful property arises when considering the ω-words of pref ω(τ): If an
ω-prefix τ ′ of a transfinite word τ is terminating, then all words in [τ ]ωI are
terminating.

Theorem 2 (Omega Prefix Proof Rule). Let τ ′′, τ ′ ∈ Σω, τ a transfinite
word, if τ ≡I τ ′′ and τ ′ ∈ pref ω(τ), τ

′ terminates ⇒ τ ′′ terminates.

Remark that [τ ]ωI ⊆ Σω, so the former theorem uses the usual definition of
termination, i.e. termination of ω-words; however; this theorem implicitly defines
a notion of termination for some transfinite words.

Define [τ ]pωI , the omega-prefix closure of τ as

[τ ]pωI = [τ ]ωI ∪
⋃

τ ′.τ∈pref ω(τ ′)

[τ ′]ωI .

Theorem 2 guarantees that, if τ terminates, then all of [τ ]pωI terminates. The
converse, however, does not necessarily hold: [τ ]pωI is not an equivalence class.

Example 1. Continuing the example in Figure 1, recall that λ1 and λ2 are in-
dependent. Let us assume we have a proof that λω

1 is terminating. The class
[λω

1 ]
ω
I = {λω

1 } does not include any other members and therefore we cannot con-
clude the termination status of any other program runs based on it. On the other
hand, since λω

1 ∈ pref ω(λ
ω
1 λ

ω
2 ) and [(λ1λ2)

ω]ωI = [λω
1 λ

ω
2 ]

ω
I , (λ1λ2)

ω ∈ [λω
1 ]

pω
I .

Therefore, we can conclude that (λ1λ2)
ω is also terminating. Note that λ2 can

be non-terminating and the argument still stands.

One can replace the closure in RuleTermClosure with omega-prefix closure
and produce a new, more powerful, sound proof rule. There is, however, a major
obstacle in the way of an algorithmic implementation of Rule TermClosure
with either closure scheme: the inclusion check in the premise is not decidable.

Proposition 2. [L]ωI and [L]pωI for an ω-regular language L may not be ω-
regular. Moreover, it is undecidable to check the inclusions L1 ⊂ [L2]

ω
I and

L1 ⊂ [L2]
pω
I for ω-regular languages L1 and L2.
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3.1 The Compromise: A New Proof Rule

In the context of safety verification, with an analogous problem, a dual approach
was proposed as a way forward [18] based on program reductions.

Definition 2 (ω-Reduction and ωp-Reduction). A language R ⊆ P is an
ω-reduction (resp. ωp-reduction of P ) of program P under independence relation
I iff for all τ ∈ P there is some τ ′ ∈ R such that τ ∈ [τ ′]ωI (resp. τ ∈ [τ ′]pωI ).

The idea is that a program reduction can be soundly proven in place of the
original program but, with strictly fewer behaviours to prove correct, less work
has to be done by the prover.

Proposition 3. Let P be a concurrent program and Π be ω-regular. We have:

– P ⊆ [Π]ωI iff there exists an ω-reduction R of P under I such that R ⊆ Π.
– P ⊆ [Π]pωI iff there exists an ωp-reduction R of P under I such that R ⊆ Π.

An ω/ωp-reduction R may not always be ω-regular. However, Proposition 3
puts forward a way for us to make a compromise to rule TermClosure for the
sake of algorithmic implementability. Consider a universe of program reductions
Red(P ), which does not include all reductions. This gives us a new proof rule:

∃Π ∈ T .∃R ∈ Red(P ).R ⊆ Π

P is terminating
(TermReduc)

If Red(P ) is the set of all ω-reductions (resp. ωp-reductions), then RuleTermRe-
duc becomes logically equivalent to Rule TermClosure (resp. with [Π]pωI ). By
choosing a strict subset of all reductions for Red(P ), we trade the undecidable
premise check of the proof rule TermClosure with a new decidable premise
check for Rule TermReduc. The specific algorithmic problem that this paper
solves is then the following: What are good candidates for Red(P ) such that an
effective and efficient algorithmic implementation of Rule TermReduc exists?
Moreover, we want this implementation to show significant advantages over the
existing algorithms that implement the Rule TermUP.

In Section 5, we propose Foata Reduction as a theoretically clean option for
Red(P ) in the universe of all ω-reductions. In particular, they have the algo-
rithmically essential property that the reductions do not include any transfinite
words. In the universe of ωp-reductions, which does account for transfinite words,
such a theoretically clean notion does not exist. This paper instead proposes the
idea of mixing both closures and reductions as a best algorithmic solution for the
undecidable Rule TermClosure in the form of the following new proof rule:

∃Π ⊆ T .∃R ∈ Red(P ).R ⊆ [Π]opgI

P is terminating
(TermOP)

In Section 3.2, we introduce [Π]opgI as an underapproximation of [Π]pωI that is
guaranteed to be ω-regular and computable. Then, in Section 4, we discuss how,
through a representation shift from infinite words to finite words, an appropriate
class of reductions for Red(P ) can be defined and computed.
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3.2 Omega Prefix Generalization

We can implement the underapproximation of [Π]pωI by generalizing the proof
of termination of each individual lasso in the refinement loop of Figure 2. Let
u1, ...um, v1, ...vm′ ∈ Σ and consider the lasso uvω, where u = u1...um,v =
v1...vm′ , and m′ > 0. Let Auvω = (Q,Σ, δ, q0, {qm}) a Büchi automaton consist-
ing of a stem and a loop, with a single accepting state qm at the head of the
loop, recognizing the ultimately periodic word uvω — in [25], this automaton
is called a lasso module of uvω. Let ΣIloop ⊆ Σ = {a : {v1, ..., vm′} × {a} ⊆ I}
the statements that are independent with the statements v1, . . . , vm′ of the loop,
and ΣIstem ⊆ ΣIloop = {a : {u1, . . . , um, v1, . . . , vm′} × {a} ⊆ I} the statements
that are independent of all statements appearing in uvω.

Define OPG(Aτ ) = (Q ∪ {q′}, Σ, δOPG , q0, {qm}) for a lasso τ = uvω where

δOPG(q, a) =



q if q ∈ {q0, ..., qm−1} ∧ a ∈ ΣIstem

or if q ∈ {qm+1, ..., qm+m′} ∪ {q′} ∧ a ∈ ΣIloop

q′ if q = qm ∧ a ∈ ΣIloop or m′ = 1 and a = v1

δ(qm, v1) if q = q′ ∧ a = v1

δ(q, a) o.w.

We refer to the language L(OPG(Aτ )) recognized by this automaton as [τ ]opgI

for short. Note that this construction is given for individual lassos; we may
generalize this to a (finite) set of lassos by simply taking their union. For a lasso
τ = uvω, OPG(Aτ ) is a linearly-sized Büchi automaton whose language satisfies
the following:

Proposition 4. [τ ]opgI ⊆ [τ ]pωI .

Intuitively, this holds because this automaton simply allows us to inter-
sperse the statements of uvω with independent statements; when considering the
Mazurkiewicz trace arising from a word interspersed as described, these added
independent statements may all be ordered after uvω, resulting in a transfinite
word with ω-prefix uvω.

Theorem 3. If τ is terminating, then every run in [τ ]opgI is terminating.

This follows directly from Theorem 2 and Proposition4, and concludes the
soundness and algorithmic implementability of Rule TermOP if Red(P ) = {P}.

4 Finite-word Reductions

In this section, inspired by the program reductions used in safety verification, we
propose a way of using those families of reductions to implement Red(P ) in Rule
TermReduc. This method can be viewed as a way of translating the liveness
problem into an equivalent safety problem.

In [4], a finite-word encoding of ω-regular languages was proposed that can
be soundly used for checking inclusion in the premise of rules such as Rule
TermReduc:
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Definition 3 ($-language [4]). Let L ∈ Σω. Define the $-language of L as

$(L) = {u$v| u, v ∈ Σ∗ ∧ uvω ∈ L}.

If L is ω-regular, then $(L) is regular [4]. This is proved by construction, but
the one given in [4] is exponential. Since the Büchi automaton for a concurrent
program P is already large, an exponential blowup to construct $(P ) can hardly
be tolerated. We propose an alternative polynomial construction.

4.1 Efficient Reduction to Safety

Our polynomial construction, denoted by fast$, consists of linearly many copies
of the Büchi automaton recognizing the program language.

Definition 4 (fast$). Given a Büchi automaton A = (Q,Σ, δ, q0, F ), define
fast$(A) = (Q$, Σ ∪ {$}, δ$, q0, F$) with Q$ = Q ∪ (Q × Q × {0, 1}), F$ =
{(q, q, 1) : q ∈ Q}, and for q, r ∈ Q, i ∈ {0, 1}:

δ$(q, a) =

{
{(q, q, 0)} if a = $

δ(q, a) o.w.

δ$((q, r, i), a) =

{
{(q, r′, 1) : r′ ∈ δ(r, a)} if i = 0 and r ∈ F

{(q, r′, i) : r′ ∈ δ(r, a)} o.w.

Let L be an ω-regular language and A be a Büchi automaton recognizing L.
We overload the notation and use fast$(L) to denote the language recognized by
fast$(A). Note that fast$(L), unlike $(L), is a construction parametric on the
Büchi automaton recognizing the language, rather than the language itself. In
general, fast$(L) under-approximates $(L). But, under the assumption that all
alphabet symbols of Σ label at most one transition in the Büchi automaton A
(recognizing L), then fast$(L) = $(L). This condition is satisfied for any Büchi
automaton that is constructed from the control flow graph of a (concurrent)
program since we may treat each statement appearing on the graph as unique,
and these graph edges correspond to the transitions of the automaton.

Theorem 4. For any ω-regular language L, we have fast$(L) ⊆ $(L). If P is a
concurrent program then fast$(P ) = $(P ).

First, let us observe that in Rule TermUP, we can replace P with fast$(P )
and Π with fast$(Π) (and hence the universe T with a correspondingly appro-
priate universe) and derive a new sound rule.

Theorem 5. The finite word version of Rule TermUP using fast$ is sound.

The proof of Theorem 5 follows from Theorem 4. Using fast$, the program is
precisely represented and the proof is under-approxiamted, therefore the inclu-
sion check implies the termination of the program.
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4.2 Sound Finite Word Reductions

With a finite word version of the Rule TermUP, the natural question arises
if one can adopt the analogue of the sound proof rule used for safety [18] by
introducing an appropriate class of reductions for program termination in the
following proof rule:

∃Π ∈ T .∃R ∈ Red($(P )).R ⊆ fast$(Π)

P is terminating
(FiniteTermReduc)

A language R is a sound reduction of $(P ) if the termination of all ultimately
periodic words uvω, where u$v ∈ R, implies the termination of all ultimately
periodic words of P . Since, in u$v, the word u represents the stem of a lasso and
the word v represents its loop, it is natural to define equivalence, considering
the two parts separately, that is: u$v ≡I u′$v′ iff u′ ≡I u∧ v′ ≡I v. One can use
any technique for producing reductions for safety, for example sleep sets for lexi-
cographical reductions [18], in order to produce a sound reduction that includes
representatives from this equivalence relation. Assume that $ does not commute
with any other letter in an extension I$ of I over Σ ∪ {$} and observe that the
standard finite-length word Mazurkiewicz equivalence relation of u$v ≡I$ u′$v′

coincides with u$v ≡I u′$v′ as defined above. Let FRed($(P )) be the set of all
such reductions. An algorithmic implementation of Rule FiniteTermReduc
with Red($(P )) = FRed($(P )) may then be taken straightforwardly from the
safety literature.

Note, however, that reductions in FRed($(P )) are more restrictive than their
infinite analogues; for example, uv$v ̸∈ [u$v]I , whereas uvvω = uvω and there-
fore uvvω ≡I uvω for any I. By treating $(P )’s $-word as a a finite word without
recognizing its underlying lasso structure, every word uvω in the program neces-
sarily engenders an infinite family of representatives in R — one for each $-word
{u$v, uv$v, u$vv, ...} ⊆ $(P ) corresponding to uvω ∈ P .

We define dollar closure as variant of classic closure that is sensitive to the
termination equivalence of the corresponding infinite words:

[u$v]$I = {x$y : uvω ∈ [xyω]pωI }

The termination of uvω is implied by the termination of any xyω such that x$y is
a member of [u$v]$I (see Theorem 2). However, the converse does not necessarily

hold. Therefore, like omega-prefix closure, [u$v]$I is not an equivalence class. It
suggests a more relaxed condition (than the one used for FRed($(P ))) for the
soundness of a reduction:

Definition 5 (Sound $-Program Reduction). A language R ⊆ P is called
a sound $-program reduction of $(P ) under independence relation I iff for all
uvω ∈ P we have [u$v]$I ∩R ̸= ∅.

A $-reduction R satisfying the above condition is obviously sound: It must
contain a $-representative x$y ∈ [u$v]$I for each word uvω in the program. If R
is terminating, then xyω is terminating, and therefore so is uvω. Moreover, these
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a a a

(i)

b b b

(ii)

a a a

b b b

(iii)

Fig. 4: The only three traces in P = aω||bω when (a, b) ∈ I.

sound $-program reductions can be quite parsimonious, since one word can be
an omega-prefix corresponding to many classes of program behaviours.

Under this soundness condition, we may now include one representative of
[u$v]$I for each uvω ∈ P in a sound reduction of P . For example, R = {$a, $b} is
a sound $-program reduction of P = aω||bω when (a, b) ∈ I. To illustrate, note
that the only traces of P are the three depicted as Hasse diagrams in Figure 4;
the distinct program words (ab)ω, (aba)ω, (abaa)ω, ... all correspond to the same
infinite trace shown in Figure 4(iii). A salient feature of Figure 4(iii) is that aω

and bω correspond to disconnected components of this dependence graph. The
omega-prefix rule of Theorem 2 can be interpreted in this graphical context as
follows: if any connected component of the trace is terminating, then the entire
class is terminating.

Recall that module (d) of the refinement loop of Figure 2 may naturally be
implemented as the inclusion check P ⊆ Π, or one of its variations that ap-
pear in the proof rules proposed throughout this paper. In a typical inclusion
check, a product of the program and the complement of the proof automata
are explored for the reachability of an accept state. Therefore, classic reduction
techniques that operate on the program by pruning transitions/states during
this exploration are highly desirable in this context. We propose a repurposing
of such techniques that shares the simplicity and efficiency of constructing re-
ductions from FRed($(P ))) (in the style of safety) and yet takes advantage of
the weaker soundness condition in Definition 5 and performs a more aggressive
reduction. In short, a reduced program may be produced by pruning transitions
while performing an on-the-fly exploration of the program automaton. In prun-
ing, our goal is to discard transitions that would necessarily form words whose
suffixes lead us into the disconnected components of the program traces under-
lying the program words that have been explored so far. This selective pruning
technique is provided by a straightforward adaptation of the well-known safety
reduction technique of persistent sets [22]. Consider the program illustrated in
Figure 5(a). In the graph in Figure 5(b), the green states are explored and the
dashed transitions are pruned. This amounts to proving two lassos terminating
in the refinement loop of Figure 2, where each lasso corresponds to one connected
component of a program trace.

We compute persistent sets using a variation of Algorithm 1 in Chapter
4 of [22]. In brief, a ∈ Persistent≺(q) if a is the lexicographically least en-
abled state at q according to thread order ≺, if a is an enabled statement from
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1 while x < z:
2 x++
3 end

1 while y < z:
2 y++
3 end

1,1

1,3 2,1 1,2 3,1

2,3 2,2 3,2

[y >= z] [x >= z]

[x < z] x++ [y < z]

[y < z]
[y < z]

y++[y >= z]
(a)

(b)

Fig. 5: Example of persistent set selective search.

Algorithm 1: PersistentSS

Input: fast$(AP ) = (Q,Σ, δ, q0, F )
Output: x$y

1 H ← ∅, S ← {(q0, “”)}
2 while (q, w) = S.pop() do
3 if q ̸∈ H then
4 if q ∈ F then
5 return w
6 for a ∈ Σ ∩ Persistent(q) do
7 S.push(δ(q, a), w · a)
8 H ← H ∪ {q}
9 return “EMPTY”

the same thread as another state-
ment a′ ∈ Persistent≺(q), or if
a is dependent on some statement
a′ ∈ Persistent≺(q) from a differ-
ent thread than a. In addition, $
is also persistent whenever it is en-
abled. This set may be computed
via a fixed-point algorithm; when-
ever a statement that is not en-
abled is added to Persistent≺(q),
then Persistent≺(q) is simply the set
of all enabled states. Intuitively, this
procedure works because transitions
are ignored only when they are necessarily independent from all the statements
that will be explored imminently; these may soundly be ignored indefinitely or
deferred. Transitions that are deferred indefinitely are precisely those that would
lead into a disconnected component of a program traces.

The reduced program that arises from the persistent set selective search
of fast$(AP ) based on thread order ≺ is denoted by PersistentSS≺($(P )).
Figure 5(b) illustrates a reduced program; note that $-transitions are omitted
for simplicity. The reduced program corresponds to the states shown in green.
The other program states are unreachable because the only persistent transitions
correspond to statements from the least enabled thread; the transitions shown
with dashed lines are not persistent.

Theorem 6 (soundness of finite word reductions). Rule FiniteTermRe-
duc is a sound proof rule when Red($(P )) = {∀ ≺: PersistentSS≺($(P ))}.

The theorem holds under the condition that the set T from Rule FiniteTermRe-
duc is the set of all terminating ω-regular languages, and the under the assump-
tion that the program is fair (or, equivalently, that the proof includes the unfair
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runs of P , as discussed in Section 2.2), where a fair run is one where no en-
abled thread action is indefinitely deferred. The proof of soundness appears in
Appendix C.2. Intuitively, it relies on the fact that PersistentSS≺($(P )) is a
$-program reduction for all the fair runs in P .

Example 2. Recall the producer-consumer in Figure 1, and consider the program
with two producers P1 and P2 and one consumer C. Let λ1 denote the loop body
of P1, and λ2 that of P2. Concretely, λ1 = [i < producer limit] ; C++ ; i++

where [...] is an assume statement, and similarly for λ2. In addition, each
loop has an exit statement, which we denote by ι1 and ι2. For instance, ι1 =
[i >= producer limit]. Let ≺ such that P1 ≺ P2 ≺ C.

In A = PersistentSS≺($(P )), P1 is the first thread and therefore persistent;
that is, the word $λ1 — the $-word corresponding to λω

1 – is in the reduction.
Since λ1 is independent of all statements in P2 and C, any run in which P1 enters
the loop (and does not exit via ι1) will not be included in the reduction. In effect,
this means that λω

1 is the only representative of [λω
1 ]

pω
I = [λω

1 ]
ω
I ∪ [λω

1 ·(P2+C)ω]ωI
in the program reduction.

Even though P2 seems identical to P1, the same is not true for P2 because
it appears later in the thread order. In this case, [λ2]

pω
I is represented by the

family of words (λ1)
∗ι1λ

ω
2 .

5 Omega Regular Reductions

In the classic implementation of Rule TermUP [25], ω-regular languages are
used to represent the program P and the proof Π. It is therefore natural to
ask if Red(P ) in Rule TermReduc can be a family of ω-regular program re-
ductions. For finite program reductions [18,19,16,17], and also for classic POR,
lexicographical normal forms are almost always the choice. Infinite traces have
lexicographic normal forms that are analogous to their finite counterparts [13].
However, these normal forms are not suitable for defining Red(P ). For example,
if (a, b) ∈ I, then the lexicographic normal form of the trace [(ab)ω]∞I is aωbω

if a < b or bωaω otherwise; both transfinite words. Fortunately, Foata normal
forms do not share the same problem.

Definition 6 (Foata Normal Form of an infinite trace [13]). Foata Nor-
mal Form FNF(t) of an infinite trace t is a sequence of non-empty sets S1S2...
such that t = Πi≤ωSi and for all i:

∀a, b ∈ Si a ̸= b =⇒ (a, b) ∈ I (no dependencies in Si)

∀b ∈ Si+1 ∃a ∈ Si (a, b) ̸∈ I (Si dependent on Si+1)

For example, FNF([(ab)ω]∞I ) = (ab)ω if (a, b) ∈ I. To define a reduction
based on FNF, we need a mild assumption about the program language.

Definition 7 (Closedness). A language L ⊆ Σ∞ is closed under the indepen-
dence relation I iff [L]∞I ⊆ L and is ω-closed under I iff [L]ωI ⊆ L.
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It is straightforward to see that any concurrent program P (as defined in
Section 2.1), and any valid dependence relation I, we have that P is ω-closed.
This means that for any (infinite) program run τ , any other ω-word τ that is
equivalent to τ is also in the language of the program.

The key result that makes Foata normal forms amenable to automation in
the automaton-theoretic framework is the following theorem.

Theorem 7. If L ⊆ Σω is ω-regular and closed, FNF(L) is ω-regular.

The proof of this theorem provides a construction for the Büchi automa-
ton that recognizes the language FNF(L) (details in Appendix D). However,
this construction is not efficient since, for a program P , of size Θ(n), the Büchi
automaton recognizing FNF(P ) can be as large as O(n2n) (see Appendix D). Fi-
nally, Foata reductions are minimal in the same exact sense that lexicographical
reductions of finite-word languages are minimal:

Theorem 8. [Theorem 11.2.15 [13]] If L ⊆ Σω is ω-regular and closed, then
for all τ ∈ L, τ ′ ∈ FNF(L) ∩ [τ ]ωI =⇒ τ ′ = τ .

Our experimental results in Section 6 suggest that this complexity is a big
bottleneck in practical benchmarks. Therefore, despite the fact that Foata nor-
mal forms put forward an algorithmic solution for the implementation of Rule
TermReduc, the inefficiency of the solution makes it unsuitable for practical
termination checkers.

6 Experimental Results

The techniques presented in this paper have been implemented in a prototype
tool called TerMute written in Python and C++. The inputs are concurrent
integer programs written in a C-like language. TerMute may output “Termi-
nating”, or “Unknown”, in the latter case also returning a lasso whose termina-
tion could not be proved. Ranking functions and invariants are produced using
the method described in [24], which is restricted to linear ranking functions of
linear lassos. Interpolants are generated using SMTInterpol [6] and MathSAT
[7]; the validity of Hoare triples are checked using CVC4 [2].

TerMute may be run in several different modes. FOATA is an implemen-
tation of the algorithm described in Section 5 (and Appendix D). The baseline
is the core counterexample-guided refinement algorithm of [25], which has been
adapted to the finite-word context in order to operate on the automata fast$(P )
and fast$(Π) of Section 4.1. All other modes are modifications of this base-
line, maintaining the same refinement scheme, so that we can isolate the impact
of adding commutativity reasoning. Hoare triple generalization (“HGen”) aug-
ments the baseline by making solver calls after each refinement round in order
to determine if edges may soundly be added to the proof for any valid Hoare
triples not produced as part of the original proof (details in Appendix E.1).
“POR” implements the persistent set technique of Section 4.2 and “OPG” is
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the finite-word analogue of the ω-prefix generalization in Section 3.2. TerMute
can also be run on any combinations of these techniques. In what follows, we
use TerMute to refer to the portfolio winner among all algorithms that employ
commutativity reasoning, namely POR, OPG, POR + HGen, POR + OPG, and
POR + OPG + HGen.

Benchmarks. Our benchmarks include 114 terminating concurrent linear in-
teger programs that range from 2 to 12 threads and cover a variety of patterns
commonly used for synchronization, including the use of locks, barriers, and
monitors. Some are drawn from the literature on termination verification of
concurrent programs, specifically [29,33,36], and the rest were created by us,
some of which are based on sequential benchmarks from The Termination Prob-
lem Database [37], modified to be multi-threaded. We include programs whose
threads display a wide range of independence — from complete independence
(e.g. the producer threads in Figure 1), all the way to complete dependence —
and demonstrate a range of complexity with respect to control flow.

Results. Our experiments have a timeout of 300 seconds and a memory cap of
32 GB, and were run on a 12th Gen Intel Core i7-12700K with 64 GB of RAM
running Ubuntu 22.04. We experimented with both interpolating solvers and the
reported times correspond to the winner of the two. The results are depicted in
Figure 6(a) as a quantile plot that compares the algorithms. The total number
of benchmarks solved is noted on each curve. FOATA times out on all but the
simplest benchmarks, and therefore is omitted from the plot.

The portfolio winner, TerMute, solves 101 benchmarks in total. It solves
any benchmark otherwise solved by algorithms without commutativity reasoning
(namely, the baseline or HGen). It is also faster on 95 out of 101 benchmarks
it solves. The figure below illustrates how often each of the portfolio algorithms
emerges as the fastest among these 95 benchmarks.

HGen aggressively generalizes the proof and consequently, it forces convergence
in many fewer refinement rounds. This, however, comes at the cost of a time
overhead per round. Therefore, HGen helps in solving more benchmarks, but
whenever a benchmarks is solvable without it, it is solved much faster. The
scatter plot in Figure 6(b) illustrates this phenomenon when HGen is added
to POR+OPG. The plot compares the times of benchmarks solved by both
algorithms on a logarithmic scale, and the overhead caused by HGen is significant
in the majority of the cases.
Recall, from Section 4, that the persistent set algorithm is parametrized on an
order over the participating threads. The choice of order centrally affects the
way the persistent set algorithm works, by influencing which transitions may
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<latexit sha1_base64="+GlZ25qZlzuXrHaBWtkisCkOtxY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnqSgBePEc0DkiXMTnqTIbOzy8ysEEI+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDvzW0+oNI/loxkn6Ed0IHnIGTVWeijT816x5FbcOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeG1P+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSvKh4l5XqfbVUu8niyMMJnEIZPLiCGtxBHRrAYADP8ApvjnBenHfnY9Gac7KZY/gD5/MHimWNTw==</latexit>

(a)
<latexit sha1_base64="rgwQ6omayice5ZfcvkeYw0I2Cuc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnqSgBePEc0DkiXMTnqTIbOzy8ysEEI+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDvzW0+oNI/loxkn6Ed0IHnIGTVWeigH571iya24c5BV4mWkBBnqveJXtx+zNEJpmKBadzw3Mf6EKsOZwGmhm2pMKBvRAXYslTRC7U/mp07JmVX6JIyVLWnIXP09MaGR1uMosJ0RNUO97M3E/7xOasJrf8JlkhqUbLEoTAUxMZn9TfpcITNibAllittbCRtSRZmx6RRsCN7yy6ukeVHxLivV+2qpdpPFkYcTOIUyeHAFNbiDOjSAwQCe4RXeHOG8OO/Ox6I152Qzx/AHzucPi+qNUA==</latexit>

(b)

Fig. 6: Experimental results for TerMute: (a) quantile plot for the throughput
of each algorithm, and (b) scatter plot for the impact of thread order on efficiency.

be explored and, by extension, which words appear in the reduced program.
Experimentally, we have observed that the chosen order plays a significant role
in how well the algorithms work, but to varying degrees. For instance, for POR,
the worst thread order times out on 16% of the benchmarks that the best order
solves. For POR+OPG+HGen, the difference is more modest at 7%. In practice,
it is sensible then to instantiate a few instances of the TerMute with a few
different random orders to increase the chances of getting better performance.

See Appendix E.3 for more experimental data.

7 Related Work

The contribution of this paper builds upon sequential program termination
provers to produce termination proofs for concurrent programs. As such, any
progress in the state of the art in sequential program termination can be used
to produce proofs for more lassos, and is, therefore, complementary to our ap-
proach. So, we only position this paper in the context of algorithmic concurrent
program termination, and the use of commutativity for verification in general,
and skip the rich literature on sequential program termination [35,11] or model
checking liveness [8,26,9,32].

Concurrent Program Termination. The thread-modular approach to prov-
ing termination of concurrent programs [33,10,36,34] aims to prove a thread’s
termination without reasoning directly about its interactions with other threads,
but rather by inferring facts about the thread’s environment. In [36], this ap-
proach is combined with compositional reasoning about termination arguments.
Our technique can also be viewed as modular in the sense that lassos – which,
like isolated threads, are effectively sequential programs – are dealt with inde-
pendently of the broader program in which they appear; however, this is distinct
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from thread-modularity insofar as we reason directly about behaviours arising
from the interaction of threads. Whenever a thread-modular termination proof
can be automatically generated for the program, that proof is the most efficient
in terms of scalability with the number of threads. However, for a thread-modular
proof to always exist, local thread states have to be exposed as auxiliary infor-
mation. The modularity in our technique does not rely on this information at
all. Commutativity can be viewed as a way of observing and taking advantage
of some degree of non-interference, different from that of thread modularity.

Causal dependence [29] presents an abstraction refinement scheme for prov-
ing concurrent programs terminating that takes advantage of the equivalence
between certain classes of program runs. These classes of runs are determined
by partial orders that capture the causal dependencies between transitions, in a
manner reminiscent of the commutativity-based partial orders of Mazurkiewicz
traces. The key to scalability of this method is that they forgo a containment
check in the style of module (d) of Figure 2. Instead, they cover the space
of program behaviour by splitting it into cases. Therefore, for the producer-
only instance of the example in Section 1, this method can scale to many
many thread easily, while our commutativity-based technique cannot. Similar
to thread-modular approach, this technique cannot be beaten in scalability for
the programs that can be split into linearly many cases. However, there is no
guarantee (none given in [29]), that a bounded complete causal trace tableau
for a terminating program must exist; for example, when there is a dependency
between loops in different threads that would cause the program to produce un-
boundedly many (Mazurkiewicz) traces that have to be analyzed for termination.
The advantage of our method is that, once consumers are added to the example
in Section 1, we can still take advantage of all the existing commutativity to
gain more efficiency.

Similar to safety verification, context bounding [3] has been used as a way of
under-approximating concurrent programs for termination analysis as well.

Commutativity in Verification. Program reductions have been used as a
means of simplifying proofs of concurrent and distributed programs before. Lip-
ton’s movers [31] have been used to simplify programs for verification. CIVL
[28,27] uses a combination of abstraction and reduction to produce layered pro-
grams; in an interactive setup, the programmer can prove that an implemen-
tation satisfies a specification by moving through these layered programs to in-
creasingly more abstract programs. In the context of message-passing distributed
systems [12,21], commutativity is used to produce a synchronous (rather than
sequential) program with a simpler proof of correctness.

In [18,19,16,17] program reductions are used in a refinement loop in the
same style as this paper to prove safety properties of concurrent programs. In
[18,19], an unbounded class of lexicographical reductions are enumerated with
the purpose of finding a simple proof for at least one of the reductions; the thesis
being that there can be a significant variation in the simplicity of the proof for
two different reductions. In [19], the idea of contextual commutativity — i.e.
considering two statements commutative in some context yet not all contexts
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— is introduced and algorithmically implemented. In [16,17], only one reduction
at a time is explored, in the same style as this paper. In [16], a persistent-set-
based algorithm is used to produce space-efficient reductions. In [17] the idea of
abstract commutativity is explored. It is shown that no best abstraction exists
that provides a maximal amount of commutativity and, therefore, the paper
proposes a way to combine the benefits of different commutativity relations in
one verification algorithm. The algorithm in this paper can theoretically take
advantage of all of these (orthogonal) findings to further increase the impact of
commutativity in proving termination.

Non-termination. The problem of detecting non-termination has also been
directly studied [5,23,20,1,30]. Presently, our technique does not accommodate
proving the non-termination of a program. However, it is relatively straight-
forward to adapt any such technique (or directly use one of these tools) to
accommodate this; in particular, when we fail to find a termination proof for
a particular lasso, sequential methods for proving non-termination may be em-
ployed to determine if the lasso is truly a non-termination witness. However, it
is important to note that a program may be non-terminating while all its lassos
are terminating, and the refinement loop in Figure 2 may just diverge without
producing a counterexample in this style; this is a fundamental weakness of using
lassos as modules to prove termination of programs.

8 Conclusion

In the literature on the usage of commutativity in safety verification, sound pro-
gram reductions are constructed by selecting lexicographical normal forms of
equivalence classes of concurrent program runs. These are not directly applica-
ble in the construction of sound program reductions for termination checking,
since the lexicographical normal forms of infinite traces may not be ω-words.
In this paper, we take this apparent shortcoming and turn it into an effective
solution. First, these transfinite words are used in the design of the omega prefix
proof rule (Theorem 2). They also inform the design of the termination aware
persistent set algorithm described in Section 4.2. Overall, this paper contributes
mechanisms for using commutativity-based reasoning in termination checking,
and demonstrates that, using these mechanisms, one can efficiently check the
termination of concurrent programs.
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A Additional Material for Section 2

A.1 Concurrent Programs

Let L a regular language, AL = (Q,Σ, δ, q0, F ). Recall the definitions

Lω = {τ ∈ Σω : ∀τ ′ ∈ pref(τ).τ ′ ∈ pref(L)}

and the Büchi automaton Büchi(AL) = (Q,Σ, δ, q0, Q)

Proposition 5. Büchi(AL) recognizes Lω.

Proof. Consider BL = Büchi(AL), the Büchi automaton constructed from AL

by considering all states final.
If a word τ is accepted by BL, then there is sequence of states qi1qi2 ... ∈ Qω

such that qi1 = q0 witnessing the acceptance. A k-length prefix of τ has a path
from qi1 to qik+1

in AL; since there are no dead states in AL, every state can
reach a final state, so prefk(τ) is a prefix of a word in L. So, L(BL) ⊆ Lω.

Conversely, assume τ ∈ Lω. Every prefix τ ′ of τ is the prefix of some word in
L, so there is a path which takes τ ′ from q0 to some qk in AL. Every statement
of τ is the final statement of some prefix of τ , and every qk is final in BL, so
there is an accepting run of of τ in BL. Therefore, Lω ⊆ L(BL).

Proposition 6. Pω is ω-closed.

Proof. P is closed by construction. Let τ ∈ Pω, τ ′ ∈ Σω and τ ≡I τ ′. Let k ∈ N
and consider the k-length prefix prefk(τ

′) of τ ′. By Remark 11.2.25 in [13],
since τ ≡I τ ′, there exists k′, prefix prefk′(τ) of τ and a word u ∈ Σ∗ such that
prefk′(τ) ≡ prefk(τ

′) · u.
We can observe that pref(P ) must be closed, since ∀v, v′ ∈ Σ∗, v ∈ pref(P )

implies that ∃u ∈ Σ∗, vu ∈ P , and v ≡ v′ =⇒ vu ≡ v′u. By the closure of P ,
v′u is in P and thus v′ is a prefix of a word in P so v′ ∈ pref(P ).

So, prefk(τ
′) · u ∈ pref(P ). Since pref(P ) is prefix-closed, prefk(τ

′) is thus
in pref(P ). So, an arbitrary prefix of τ ′ is in pref(P ). Therefore, τ ′ ∈ Pω.

A.2 Insufficiency of Lassos

i := 1

while true:

j := i++ // outer

while (j > 0):

j-- // inner

Fig. 7: Program with non-
UP non-terminating run.

Consider the program illustrated in Figure
7 with a nested loop, in which the outer loop
increments a counter i and the inner loop ex-
ecutes i times. The syntactic program includes
many infeasible infinite runs such as (outer ·
inner)ω. It also include the feasible infinite run
outer · inner · outer · inner2 · outer · inner3....
This run is not ultimately periodic and not ter-
minating.
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B Additional Material for Section 3

B.1 Proof of Proposition 1

Proof.

Let τ, τ ′ ∈ Σω and assume τ ≡I τ ′. Assume that τ is terminating. Let x ∈ X.
Since τ terminating, ∃k ∈ N.prefk(τ)(x) = ∅. By Remark 11.2.25 [13], ∃k′ ∈
N.z ∈ Σ∗.prefk(τ) · z ≡I prefk′(τ ′). Since (prefk(τ) · z)(x) = z(∅) = ∅, from
the equivalence of the finite traces, prefk′(τ)(x) = ∅. Since τ ′ has an infeasible
prefix for an arbitrary x, τ ′ is terminating.

B.2 Proof of Theorem 2

We start with a lemma stating that, if an ω-word τ is equivalent to a transfinite
word τ ′, then it is also equivalent a family of ω-words — at least one for each
finite prefix of τ ′.

Lemma 1. ∀τ ∈ Σω. τ ′ transfinite. If τ ≡I τ ′ then

∀k ≤ ω.∃v ∈ Σ∗ ∪Σω.τ ≡I prefk(τ
′) · v

where v ∈ Σω when k < ω.

Proof (Lemma 1). Let τ ∈ Σω. τ ′ transfinite. Assume τ ≡I τ ′. Note that [.]∞I
is a morphism with respect to concatenation (with concatenation of traces as
defined in the usual way for dependence graphs). This means that ∀ρ, ρ′.[ρ·ρ′]∞I =
[ρ]∞I · [ρ′]∞I .

Let τ ′′ a transfinite word such that τ ′ = prefk(τ) · τ ′′. Since τ ≡I τ ′,

[τ ]∞I = [τ ′]∞I = [prefk(τ)]
∞
I · [τ ′′]∞I

Furthermore, all traces containing words in Σ∗ ∪ Σω are real traces, that is:
[Σ∗ ∪ Σω]∞I = R(Σ,D) (Proposition 11.2.18, [13]). So, [τ ]∞I and [prefk(τ)]

∞
I

are real traces, and thus the concatenation of [τ ′′]∞I with a real trace is a real
trace. From below Def. 11.2.7 in [13], if [τ ′′]∞I were non-real, [τ ]∞I would be
non-real as well. So, it is a real trace and thus ∃v ∈ Σ∗ ∪ Σω .[τ ′′]∞I = [v]∞I .
Since [τ ]∞I = [prefk(τ)]

∞
I · [v]∞I , τ ≡I prefk(τ) · v. Furthermore, if k < ω,

prefk(τ) ∈ Σ∗. If v ∈ Σ∗, then τ ∈ Σω is equivalent to a finite word – this is a
contradiction so, when k < ω, v ∈ Σω.

Using this lemma, we may now prove Theorem 2.

Proof (Theorem 2). Let τ ′′, τ ′ ∈ Σω, τ transfinite. Assume τ ′′ ≡ τ and τ ′ is a
prefix of τ . Assume that τ ′ is terminating. Let x ∈ X. Since τ ′ terminating, let
k < ω such that prefk(τ

′)(x) = ∅. By Lemma 1, since prefk(τ
′) is a finite prefix

of τ , let v ∈ Σω such that τ ′′ ≡ prefk(τ
′) · v. Since τ ′′ and prefk(τ

′) · v are
both omega words, we may apply Remark 11.2.25 [13] to conclude that there is
some z ∈ Σ∗ and some finite prefix y of τ ′′ such that y ≡ prefk(τ

′) · z. Since
(prefk(τ

′) · z)(x) = ∅, y(x) = ∅. So, τ ′′ at x has an infeasible prefix. Since x is
arbitrary, τ ′′ is terminating.
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B.3 Proof of Proposition 2

Proof. Let L = L((ab)∗cω) an ω-regular language and I = {(a, b), (b, a)}. Then
[L]ωI = {u · cω : u ∈ {a, b}∗ ∧ |u|a = |u|b}, in which all stems have the same
number of a’s and b’s. This language is not ω-regular. In the case of [L]pωI : let
τ ∈ L. Then there is some k, τ = (ab)kcω, which can be a prefix of a transfinite
word (ab)kcωτ ′ where τ ′ ∈ {a, b, c}ω. Consider the Mazurkiewicz trace of such a
word; since c is dependent with a, b, and c, all statements occuring in τ ′ must
necessarily be ordered after τ ′ in a linear extension of this trace. So, this trace
contains no ω words. Therefore, [L]pωI = [L]ωI , and, as we’ve shown already, this
is not an ω-regular language.

The undecidability result follows directly from the analogous result in the
case of finite-word languages.

B.4 Proof of Proposition 3

Proof. I will prove the second part of this fact, in the case of ωp-reduction. The
proof of the first part is straightforward. Recall that

[Π]pωI =
⋃

τ ′∈Π

[τ ′]pωI =
⋃

τ ′∈Π

([τ ′]ωI ∪
⋃

τ ′′.τ ′∈prefω(τ ′′)

[τ ′′]ωI )

Assume P ⊆ [Π]pωI . So, each τ in P is either ≡I to some τ ′ in Π, or is
equivalent to some transfinite word τ ′′ that has an ω-prefix τ ′ in Π. Construct
R as taking the corresponding τ ′ for each τ , in either case. This R is an ωp-
reduction (Definition 2). Since τ ′ ∈ Π, R ⊆ Π.

Conversely: Let R an ωp-reduction of P and assume that R ⊆ Π. Let τ ∈ P .
By definition of ωp-reduction, take τ ′ ∈ R such that τ ∈ [τ ′]pωI . Since R ⊆ Π,
τ ′ ∈ Π. So, [τ ′]pωI ⊆ [Π]pωI . Therefore, since τ ∈ [τ ′]pωI , τ ∈ [Π]pωI .

B.5 Proof of Proposition 4

Let τ = uvω a lasso, with lasso module Aτ . Let τ ′ ∈ [τ ]opgI . So, τ ′ is accepted
by OPG(Aτ ). All accepting runs of this automaton must start at q0, eventually
reach qm, and then visit qm infinitely often. The only paths from q0 to qm in this
automaton must visit each of u1...um in turn, since all other stem transitions
are self-loops, with all other symbols from ΣIstem . Similarly for all paths from
qm back to qm, with all other symbols being from ΣIloop . The ΣIstem symbols
may be ordered after all of u1, ..., um, v1, ..., vm′ in the linear extension of the
trace τ ′, and similarly for ΣIloop . So, [τ

′]∞I = [uvω ·τ ′′]∞I , where τ ′′ is the infinite
word resulting from the restriction of τ ′ to the alphabet ΣIloop . Since τ ′ ∈ Σω,
τ ′ ∈ [uvω · τ ′′]ωI . And τ = uvω ∈ prefω(uv

ω · τ ′′). So, τ ′ ∈ [τ ]pωI .

C Additional Material for Section 4

C.1 Proof of Theorem 4

Let A = (Q,Σ, δ, q0, F ) a Büchi automaton recognizing a language L.
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First, we will show that fast$(A) ⊆ $(L).
Let w accepted by fast$(A). We want to show that w ∈ $(L). Since the only

final states of fast$(A) are (q, q, 1) for some q ∈ Q, and we can see that such
a state may only be reached by first passing from some qs to (qs, qs, 0), via a
$-labelled transition. So, w has some prefix u$. Let v such that w = u$v. Remark
that all subsequent transitions retain qs in the first position. Note that the only
reachable final state from (qs, qs, 0) is (qs, qs, 1). In order to cross over from the
0 states to the 1 states, there must be some v′ ∈ Σ∗ and a ∈ Σ such that
v′ takes (qs, qs, 0) to (qs, qf , 0) where qf ∈ F , and then takes a to (qs, q

′
f , 1) for

q′f ∈ δ(qf , a). Finally, there is some v′′ ∈ Σ∗ that takes (qs, q
′
f , 1) to (qs, qs, 1). So,

w may be broken down into u$v′ ·a ·v′′. We can start by making the observation
that u is also the prefix of an accepting run of A ending at qs, since δ$ behaves
as δ here. We also note the same for v′ and v′′: qf ∈ δ(v′, qs) and qs ∈ δ(v′, q′f ).

Altogether, we have that q0
u−→ qs

v′

−→ qf
a−→ q′f

v′′

−→ qs is a run of A. Clearly, this
run contains a loop v′ · a · v′′ that passes a final state. So, u(v′ · a · v′′)ω ∈ L and
therefore w = u$(v′ · a · v′′) ∈ $(L).

Now we will show that, whenever A has each transition labelled with a unique
symbol, fast$(A) = $(L).

Let uvωL. So, u$v ∈ $(L). Since A accepts uvω, consider an accepting run

qi0
u1−→ qi1

u2−→ ... of A on u$v. For every symbol a of u, v, every transition

q
a−→ q′ in the run is unique, so the structure of the run mirrors the structure

of the word: it is ultimately periodic, with a period of |v|. Let q be the first
state in the looping part of the run. Then q ∈ δ(q0, u) and q ∈ δ(q, v). So, q is
also reachable via u in fast$(A) by construction, and (q, q, 1) is reachable from
(q, q, 0), since the run of A on v from q passes a final state. So, u$v is accepted
by fast$(A).

C.2 Proof of Theorem 6

We start by giving some definitions, as well as stating and proving some inter-
mediary facts.

Fix a (Büchi) program P = (Q,Σ, δ, q0, F ) and an independence relation I.
Assume that ∀q ∈ Q.∀u, v ∈ Σ∗.u ≡I v =⇒ δ(q, u) = δ(q, v). (This property
holds of an automaton constructed, as we do, by interleaving sequential programs
corresponding to each thread.)

For a program location q ∈ Q, we define enabled(q) as the set of statements
such that ∀σ ∈ enabled(q).∃q′ ∈ Q.(q, σ, q′) is an edge in the program’s control-
flow graph. As for the $-automaton fast$(P ), we define enabled′ as: ∀q, q′ ∈
Q.∀i ∈ {0, 1}.enabled′(q) = enabled(q) ∪ {$} ∧ enabled′((q, q′, i)) = enabled(q′).
In the following, we do not distinguish between enabled and enabled′.

Let m ∈ N the number of threads and T = [1..m] the set of threads. Let
thr : Σ → T a function mapping program statements to threads. Let alpha :
Σ∞ → P(Σ) a function mapping a word in Σ∞ = Σ∗ ∪ Σω to the set of
statements ⊆ Σ appearing in the word, which we may formally define recursively
as alpha(ϵ) = ∅, alpha(a · τ) = {a} ∪ alpha(τ) for a ∈ Σ, τ ∈ Σ∞.
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For S ⊆ Σ, and ≺ a total order on threads, define min≺(S) ⊆ S as all
statements s whose threads thr(s) are minimal according to ≺.

Definition 8 (Persistent(q)).

Persistent(q) = FixedPoint(min≺(enabled(q)), fpers)

where FixedPoint(S, f) is the fixed point of the function f with initial value S,
and fpers is computed according to the following algorithm:

Algorithm 2: fpers

Input: S ⊆ Σ, q ∈ Q
Output: S′ ⊆ Σ

1 S′ ← S
2 if $ ∈ enabled(q) then
3 S′ ← S′ ∪ {$}
4 for ς ∈ S do
5 for ς ′ ∈ Σ do
6 if thr(ς ′) ̸= thr(ς) and (ς, ς ′) ∈ D then
7 S′ ← S′ ∪ {ς ′}
8 if ς ′ ̸∈ enabled(q) then
9 return enabled(q)

10 return S′

Proposition 7. Let x, y, x′, y′, u, v ∈ Σ∗. If x′y′
ω ≡I xyω and x$y ∈ [u$v]$I ,

then x′$y′ ∈ [u$v]$I .

This proposition illustrates that $-closure is sensitive to the underlying lasso
structure of $-words. For example, if x$y ∈ [u$v]$I , then so are xy$y and x$yy.

Proof (Proposition 7). Assume x$y ∈ [u$v]$I . From the definition of $-closure,
x$y satisfies uvω ∈ [xyω]pωI . So, either uvω ∈ [xyω]ωI or ∃τ ′.xyω ∈ prefω(τ

′) ∧
uvω ∈ [τ ′]ωI .

Since x′y′
ω ≡I xyω, clearly [xyω]ωI = [x′y′

ω
]ωI . So, in the first case, uvω ∈

[x′y′
ω
]ωI and thus uvω ∈ [x′y′

ω
]pωI .

In the second case, and x′y′
ω ∈ prefω(τ

′) for some transfinite word τ ′. So,
there is some transfinite τ ′′ such that τ ′ = xyω · τ ′′. Remark that xyω · τ ′′ ≡i

x′y′
ω · τ ′′, so uvω ∈ [x′y′

ω · τ ′′]ωI , where x′y′
ω · τ ′′ has ω-prefix x′y′

ω
. So, again,

uvω ∈ [x′y′
ω
]pωI . Therefore, by the definition of $-closure, x′$y′ ∈ [u$v]$I .

Definition 9 (uvω is min≺−connected). Let G = (V,E) the dependence
graph of the trace [uvω]∞I , where l : V → Σ labels the vertices with program
statements. We say that uvω is min≺-connected if min≺(Σ) ∩ alpha(uv) ̸= ∅
and ∀a ∈ alpha(uv).∀b ∈ alpha(v).∃v, v′ ∈ V such that l(v) = a, l(v′) = b, and ∃
path (with no repeated vertices) from v to v′ in the dependence graph G of trace
[uvω]∞I .

For brevity, we will subsequently simply call such as uvω ”connected”.
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Definition 10 (q-fair). A word τ = τ1τ2... is q-fair whenever there is an ac-

cepting run q1
τ1−→ q2

τ2−→ ... of P on τ such that q1 = q and ∀i ≥ 1.∀s ∈
enabled(qi).∃j ≥ i.thr(τj) = thr(s).

We say τ is fair whenever it is q0-fair.

Definition 11 (tmin(τ)). Given a word τ whose trace [τ ]∞I has dependence
graph G = (V,E) and labelling function l : V → Σ, tmin(τ) ⊆ Σ are the
statements labelling the topologically minimal vertices of the graph. Formally,
a ∈ tmin(τ) ⇐⇒ ∃v ∈ V.l(v) = a ∧ ∀v′ ∈ V.(v′, v) ̸∈ E.

Proposition 8. Let τ = τ1τ2... and q such that min≺(enabled(q))∩alpha(τ) ̸=
∅ and tmin(τ) ∩ enabled(q) ̸= ∅. Then tmin(τ) ∩ Persistent(q) ̸= ∅.

This proposition states that, given a word that contains a statement from the
minimal thread, and a program state q at which there is a topologically minimal
statement enabled, there is a topologically minimal statement in the persistent
set of q.

Proof (Proposition 8). Let t ∈ T the minimal thread of enabled(q).

Since min≺(enabled(q)) ∩ alpha(τ) ̸= ∅, let τi the first occurrence of a
statement from thread t in τ . Note that τi ∈ Persistent(q), by definition of
Persistent, since it is enabled and ≺-minimal. If all statements occurring before
τi are independent with τi, then τi ∈ tmin(τ) and we’re done. Suppose, how-
ever, that there is an edge incoming to v, the first vertex labelled with τi of the
dependence graph of the trace of τ .

Consider the definition of Persistent. This is given as a fixed-point procedure
which either continues adding statements to Persistent(q) until no other state-
ments of the program are dependent and parallel with Persistent(q), or until
Persistent(q) = enabled(q). We will show that, when this procedure terminates,
tmin(τ) ∩ Persistent(q) ̸= ∅.

Since the dependence graph G of a trace is a DAG, every reverse path lead-
ing backwards from v is finite and must end with a element of the topolog-
ical minimum of G. So, let vk → vk−1 → ... → v some such path, where
vk ∈ tmin(τ). At each vertex vj , either the statement τm labelling this ver-
tex is enabled or not. If τm is not enabled, the Persistent procedure termi-
nates with Persistent(q) = enabled(q), which gives us our desired conclusion.
If it is enabled, τm′ = l(vj−1) is added to Persistant(q), since (τm′ , τm) ∈ D,
by definition of G, and the procedure continues with vj−1. Finally, since vk is
minimal, if it is not enabled, once again Persistent(q) = enabled(q) and thus
tmin(τ) ∩ Persistent(q) ̸= ∅. If it is enabled, l(vk) is added to Persistent(q);
if this is the last such path explored, the persistent set procedure terminates.
Since vk is topologically minimal, tmin(τ) ∩ Persistent(q) ̸= ∅.

Define the stem language of a $-automaton $(A), where A = (Q,Σ, δ, q0, F ),
as the language of words recognized by A′ = (Q,Σ, δ, q0, Q).
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We may now prove Theorem 6. At a high level: recall that a representative
of a trace may be constructed by repeatedly taking a statement in the topolog-
ical minimum of the trace’s dependence graph. The following proof amounts to
showing that, as we explore PersistentSS≺($(P )), a member of the topological
minimum of each accepted word’s trace will be always be persistent. So, for each
word, the persistent set selective search can iteratively build up a representative
of the word’s trace. If the word is ultimately periodic and the word’s trace is
connected, then this representative is an ultimately periodic ω-word; therefore,
its corresponding $-word is contained in PersistentSS≺($(P )). However, if the
word’s trace is not connected, then by the omega-prefix rule (Theorem 2) its ter-
mination is implied by the termination of any of its connected components, which
(by the same argument given above for connected words) have an ultimately pe-
riodic ω-word representative explored by the persistent set selective search and
thus a corresponding $-word that will appear in PersistentSS≺($(P )).

Proof (Theorem 6). Let τ = uvω. We want to show that if τ ∈ L(P ), then there
is some u′$v′ ∈ PersistentSS≺($(P )) such that, if τ is non-terminating, then
u′v′

ω
is non-terminating.

Assume that τ is fair.
We will start by showing, by induction, that, ∀k.∃u ∈ Σ∗ in the prefix lan-

guage of PersistentSS≺($(P )) and τ ′ ∈ Σω such that |u| = k and τ ≡I u · τ ′.
First, note that min≺(enabled(q0)) ∩ alpha(τ) ̸= ∅ (by fairness, since some

statement of the minimal enabled thread must occur eventually) and tmin(τ)∩
enabled(q0) ̸= ∅. The latter is true because, if a ∈ tmin(τ), then ∃k.τ1...τka ≡I

aτ1...τk. Since δ(q0, τ1...τka) = δ(q0, aτ1...τk) = q for some state q, and τ ∈ L(P ),
q has a path to an accepting state, so a is enabled at q0.

So, by Proposition 8, tmin(τ) ∩ Persistent(q0) ̸= ∅.
Let q ∈ Q, τ a fair word such that there is an accepting run of P on τ starting

at q, and a ∈ tmin(q). Let τ ′ and q′ such that τ = aτ ′ and δ(q, a) = q′. Note
that min≺(enabled(q

′))∩ alpha(τ ′) ̸= ∅ by fairness of τ . In addition, tmin(τ ′)∩
enabled(q′) ̸= ∅, using the same reasoning given above. So, Proposition 8 may be
applied to τ ′: tmin(τ ′)∩Persistent(q′) is non-empty and this contains some a′.
By induction, we may continue in this manner iteratively; this implicitly gives
a procedure for exploring a prefix of a word γ = aa′... which is a representative
of the trace of τ in the stem language of PersistentSS≺($(P )).

Assume that the trace of τ is connected. Let s an arbitrary statement of τ at
index i. Let a the first statement explored in the quasi-procedure given above.
Since there are only finitely many statements with index < i, this procedure will
eventually explore a statement a′′ with index ≥ i. By connectedness, there is
some path from s to a′′. At the time that it is explored, a′′ is topologically mini-
mal. This means that there are no incoming edges to the vertex corresponding to
a′′ in the remainder of the trace. Therefore, s must have been explored already.
It follows that all statements of τ are explored eventually in this procedure. In
other words, the representative γ is an ω-word; this precludes the scenario in
which γ is a transfinite word whose ω-length prefix is explored while certain
statements of τ are deferred indefinitely.
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Suppose, however, that τ is not connected. Note that the trace has some
component that is connected. (Furthermore, this component is unique since it
must contain statements from the minimal thread, and all such statements are
connected to each other.) Let τ ′ the restriction of τ to the statements appearing
in this component. The argument above may be applied to τ ′, which has a con-
nected trace; therefore, τ ′ has an ω-length representative in the stem language
of PersistentSS≺($(P )). Let τ ′′ the restriction of τ to the remaining compo-
nents of τ ’s trace. Note that τ is equivalent to the transfinite word τ ′τ ′′, since
the statements of τ and τ ′′ are independent — if they were not independent,
they would not appear in disconnected components. By Theorem 2, if τ is non-
terminating, then all representatives of τ ′ will also be non-terminating. So, τ ′ is
an adequate stand-in for τ and therefore we can restrict our attention to words
with connected traces in our soundness argument.

By assumption, τ = uvω is ultimately periodic. Let s a statement of v and si
the ith occurrence of s in τ . Let γ = a1a2... be the representative of τ explored
in the procedure given above. Let S1, S2, ... a sequence of sets of statements such
that each Si is the set of topologically minimal and persistent statements at
the time that si is explored. Remark that there is a finite number of possible
such Sis. By the pidgeon-hole principle, there is some j < k such that Sj = Sk.
Assume that the exploration procedure is deterministic in the sense that there is
some well-defined function which deterministically picks a persistent statement
a to explore whenever some set S of statements is persistent. It follows that the
statement that is explored after sj is the same as the statement that is explored
after sk; it follows that the sets of statements that is topologically minimal and
persistent after Sj is the same as that after Sk. Let j

′ the index of sj in γ and k′

the index of sk in γ. By continuing to choose deterministically which statements
to explore, we have by induction that γ[j′..k′ − 1] = γ[k′..(2k′ − j′ − 1)] =
γ[(2k′ − j′)..(3k′ − 2j′ − 1)] = ... and therefore, since we are free to choose
deterministically which statements to explore next, we may assume that γ is an
ultimately periodic word with a period of k′ − j′ or some divisor of k′ − j′.

Remark that PersistentSS≺($(P )) is itself a $-language. In particular,
PersistentSS≺($(P )) = $(PersistentSS≺(P )), so it is the $-language of
PersistentSS≺(P ). This follows from the fast$ construction and the definition
of enabled, since, if a transition (r, a, r′) is persistent in P , then all of the corre-
sponding transitions ((q, r, i), a, (q′, r′, i′)) are persistent in $(P ).

Since γ, in the limit, appears in the stem language of a $-language, and it
is ultimately periodic, then there is some word u$v in the $-language such that
uvω = γ. This concludes the proof.

D Additional Material for Section 5

D.1 Proof of Theorem 7

Let S ⊆ P(Σ) all mutually independent sets of statements. That is, ∀S ∈
S.∀s, s′ ∈ S.(s, s′) ∈ I. For each S ∈ S, define a Büchi automaton AS as
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follows: let s1, ..., sk be the letters of S in alphabetical order. Then AS =
(QS , S, δS , qS,0, FS) where

– QS = {qS,0, qS,1, ..., qS,k}

– δ(qS,i, s) =


{qS,0} if i = k ∧ s = ϵ

{qS,i+1} if s = si+1

∅ o.w.
– FS = {qS,k}

This is a simple loop-shaped automaton accepting (s1...sk)
ω, although note that

the accepting state qS,k is not the initial state.
Define a relation R ⊆ S × S such that (S, S′) ∈ R ⇐⇒ ∀s′ ∈ S′.∃s ∈

S.(s, s′) ∈ D.
Let AF(Σ,I) = (QF(Σ,I), Σ, δF(Σ,I), q0, FF(Σ,I)) where

– QF(Σ,I) = {q0}
⋃

S∈S QS

– δF(Σ,I)(q, s) =


{qS,1 : S ∈ S} if q = q0 and s = ϵ

δS(q, s) if q ∈ QS ∧ s ∈ S

{qS′,0} if q ∈ FS ∧ s = ϵ ∧ (S, S′) ∈ R

∅ o.w.
– FF(Σ,I) =

⋃
S∈S FS

Let F(Σ, I) the language of all ω-word in Foata Normal Form.

Lemma 2. AF(Σ,I) recognizes the language F(Σ, I).

Proof (Lemma 2). Let τ a word in FNF . From Definition 6, we can write τ
uniquely as a sequence of sets Πi≤ωSi such that the symbols of each Si are
mutually independent, and each symbol of Si+1 is dependent on some symbol of
Si, and the sets are assumed to be in lexicographic order. Remark that each such
Si is contained in S defined in the construction above, and that the relation R
captures the dependence between adjacent sets in an FNF word. On any given
run of AF(Σ,I), we may initially transition into any AS and subsequently may
only transition into another loop AS′ at the completion of S’s loop and when
(S, S′) ∈ R; this condition captures the same condition that is applied to the
transitions between each Si in τ , so: there is a run of AF(Σ,I) on τ . The converse
argument is similar.

Proof (Theorem 7). It follows from Lemma 2 that F(Σ, I) is an ω-regular lan-
guage. And, since ω-regular languages are closed under intersection, if the pro-
gram P is ω-closed, it contains FNF (P ) and therefore P may be intersected
with F(Σ, I) to produce the ω-regular language FNF (P ).

Proposition 9. |AF(Σ,I)| ∈ O(2|Σ|)

This fact follows from the construction given above. As a result, given AP

with |AP | = n recognizing P , and, assuming that Σ ∈ Θ(n) (as is the case in our
program, by construction), we can intersect P with F(Σ, I) using the product
construction to make an automaton recognizing FNF (P ) with size O(n2n).
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E Additional Material for Section 6

E.1 Proof Automaton

Recall our core algorithm (shown in Figure 2). In the implementation of this algo-
rithm used for our evaluation, a proof is a Büchi automaton Π = (Q,Σ, δ, q0, F )
which we call sound whenever ∀τ ∈ L(Π). τ is terminating. Module (d) is per-
formed by checking fast$(P ) ⊆ fast$(Π); operations such as intersection and
complementation are never performed directly of Π as a Büchi. A counterexam-
ple to this inclusion check is a word u$v. If uvω is terminating, uvω is added
to Π. As in [25], in the simplest version of this algorithm, Π may simply be
unioned with a lasso module — a lasso-shaped automaton that recognizes an
ultimately periodic word.

Proofs may be annotated with assertions, Floyd-Hoare style. We apply the
technique presented in [25] for annotating lasso modules using ranking functions
(and their corresponding invariants) and interpolants. Our baseline algorithm
incorporates “Modificaton Rule 1” of [25]. We mirror their approach in intro-
ducing an auxiliary variable oldrnk. (In spirit, oldrnk serves to memoize the
value of a ranking function, evaluated on the current values of the program vari-
ables, each time an accepting state is encountered during a run of Π.) When we
perform the algorithm we call HGen, this is a variant of their “Modification Rule
2”. Our HGen rule differs in the following way: we add all edges corresponding to
valid Hoare triples, including self-loops; however, all outgoing edges of accepting
states must update oldrnk. This rule maintains the soundness of the proof.

E.2 Benchmarks

Our set of 114 benchmarks includes 47 2-threaded programs, 25 3-threaded pro-
grams, 14 4-threaded programs, 9 5-threaded programs, 8 6-threaded programs,
3 7-threaded programs, two each for 8- to 11-threaded program, and one 12-
threaded program. Our benchmark families are mostly characterized by consid-
ering one pattern, such as the use of locks or barriers, and replicating this pattern
with an increasing number of threads; in these cases, we include the largest vari-
ant that the tool cannot solve. We also have families that are characterized by
varying the amount of independence between threads (say, by replacing shared
variables with local ones), or by varying the number of infeasible behaviours of
the program (say, by introducing barriers). Note that our data does not include
non-terminating benchmarks.
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E.3 Additional Data

Table 1 summarizes the performance of each algorithm on our 114 benchmarks,
13 of which were not solved by any algorithm. In the following, H is short for
HGen; TerMute refers to the portfolio winner among all algorithms that em-
ploy commutativity reasoning, namely POR, OPG, POR + HGen, POR + OPG,
and POR + OPG + HGen

Table 1: Overview of Experiments

Baseline H POR OPG H+POR OPG+POR H+POR+OPG TerMute

Solved 31 59 77 48 92 81 97 101

Best 3 3 56 1 13 18 7 95

SMTInterpol 0 6 1 2 13 7 41 -

MathSAT 31 53 76 47 79 75 57 -

Table 1 also compares two interpolating solvers, SMTInterpol [6] and Math-
SAT [7]. The numbers in the table refer to the count of benchmarks solved faster
by each solver. In all cases, MathSAT exceeds SMTInterpol.
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