
CSC410

AZADEH FARZAN 

FALL 2020



Model Checking



Overview

Nontraditional use of nontraditional logic!


Checking whether a formula is satisfied in a finite domain.


Model: finite-state transition system


Logic: Propositional Temporal Logic.


Verification Procedure: exhaustively search of the state space 
to determine the truth of specification.



Why Model checking?

Doesn’t aim too high!


Originally restricted to finite-state systems.


applicable to systems with “short” descriptions.


control-oriented systems such as hardware, protocols, ...


Fully automatic with low computational complexity.


Can be viewed as an elaborate debugging tool: counterexamples.



First Step: 
We need a formal model!



Labeled Transition Systems

20 Modelling Concurrent Systems

In the literature, many different types of transition systems have been proposed. We
use transition systems with action names for the transitions (state changes) and atomic
propositions for the states. Action names will be used for describing communication
mechanisms between processes. We use letters at the beginning of the Greek alphabet
(such as α,β, and so on) to denote actions. Atomic propositions are used to formalize
temporal characteristics. Atomic propositions intuitively express simple known facts about
the states of the system under consideration. They are denoted by arabic letters from the
beginning of the alphabet, such as a, b, c, and so on. Examples of atomic propositions are
“x equals 0”, or “x is smaller than 200” for some given integer variable x. Other examples
are “there is more than a liter of fluid in the tank” or “there are no customers in the
shop”.

Definition 2.1. Transition System (TS)

A transition system TS is a tuple (S,Act,→, I,AP, L) where

• S is a set of states,

• Act is a set of actions,

• −→ ⊆ S × Act × S is a transition relation,

• I ⊆ S is a set of initial states,

• AP is a set of atomic propositions, and

• L : S → 2AP is a labeling function.

TS is called finite if S, Act, and AP are finite.

For convenience, we write s α−−→ s′ instead of (s,α, s′) ∈ −→. The intuitive behavior of a
transition system can be described as follows. The transition system starts in some initial
state s0 ∈ I and evolves according to the transition relation −→. That is, if s is the
current state, then a transition s α−−→ s′ originating from s is selected nondeterministically
and taken, i.e., the action α is performed and the transition system evolves from state
s into the state s′. This selection procedure is repeated in state s′ and finishes once a
state is encountered that has no outgoing transitions. (Note that I may be empty; in that
case, the transition system has no behavior at all as no initial state can be selected.) It
is important to realize that in case a state has more than one outgoing transition, the
“next” transition is chosen in a purely nondeterministic fashion. That is, the outcome of
this selection process is not known a priori, and, hence, no statement can be made about
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the likelihood with which a certain transition is selected. Similarly, when the set of initial
states consists of more than one state, the start state is selected nondeterministically.

The labeling function L relates a set L(s) ∈ 2AP of atomic propositions to any state s.1

L(s) intuitively stands for exactly those atomic propositions a ∈ AP which are satisfied
by state s. Given that Φ is a propositional logic formula, then s satisfies the formula Φ if
the evaluation induced by L(s) makes the formula Φ true; that is:

s |= Φ iff L(s) |= Φ.

(Basic principles of propositional logic are explained in Appendix A.3, see page 915 ff.)

Example 2.2. Beverage Vending Machine

We consider an (somewhat foolish) example, which has been established as standard in the
field of process calculi. The transition system in Figure 2.1 models a preliminary design
of a beverage vending machine. The machine can either deliver beer or soda. States are
represented by ovals and transitions by labeled edges. State names are depicted inside the
ovals. Initial states are indicated by having an incoming arrow without source.

pay

selectsoda beer

insert coin

τ
τ

get soda get beer

Figure 2.1: A transition system of a simple beverage vending machine.

The state space is S = { pay , select , soda , beer }. The set of initial states consists of
only one state, i.e., I = { pay }. The (user) action insert coin denotes the insertion of a
coin, while the (machine) actions get soda and get beer denote the delivery of soda and
beer, respectively. Transitions of which the action label is not of further interest here,
e.g., as it denotes some internal activity of the beverage machine, are all denoted by the
distinguished action symbol τ . We have:

Act = { insert coin , get soda , get beer , τ }.

Some example transitions are:

pay insert coin−−−−−−−−→ select and beer get beer−−−−−−→ pay .

1Recall that 2 AP denotes the power set of AP.
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Figure 2.3: Transition system modeling the extended beverage vending machine.



Second Step: 
We need a formal 

Specification!
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Five philosophers are sitting at a round table with a bowl of rice in the middle. For the
philosophers (being a little unworldly) life consists of thinking and eating (and waiting,
as we will see). To take some rice out of the bowl, a philosopher needs two chopsticks.
In between two neighboring philosophers, however, there is only a single chopstick. Thus,
at any time only one of two neighboring philosophers can eat. Of course, the use of the
chopsticks is exclusive and eating with hands is forbidden.

Note that a deadlock scenario occurs when all philosophers possess a single chopstick.
The problem is to design a protocol for the philosophers, such that the complete system is
deadlock-free, i.e., at least one philosopher can eat and think infinitely often. Additionally,
a fair solution may be required with each philosopher being able to think and eat infinitely
often. The latter characteristic is called freedom of individual starvation.

The following obvious design cannot ensure deadlock freedom. Assume the philosophers
and the chopsticks are numbered from 0 to 4. Furthermore, assume all following calcula-
tions be “modulo 5”, e.g., chopstick i−1 for i=0 denotes chopstick 4, and so on.

Philosopher i has stick i on his left and stick i−1 on his right side. The action request i,i

express that stick i is picked up by philosopher i. Accordingly, request i−1,i denotes the
action by means of which philosopher i picks up the (i−1)th stick. The actions release i,i

and release i−1,i have a corresponding meaning.

The behavior of philosopher i (called process Phil i) is specified by the transition system
depicted in the left part of Figure 3.2. Solid arrows depict the synchronizations with the
i-th stick, dashed arrows refer to communications with the i−1th stick. The sticks are
modeled as independent processes (called Stick i) with which the philosophers synchronize
via actions request and release; see the right part of Figure 3.2 that represents the process
of stick i. A stick process prevents philosopher i from picking up the ith stick when
philosopher i+1 is using it.

There are 5 philosophers at a table sharing 5 chopsticks for eating. 

Each philosopher needs two chopsticks to eat. 

At each point in time at most one of two neighbouring philosophers can eat.

Classic deadlock scenario example!



Suggest a non-reachability property for philosophers!

Reachability
Problem: given an TS, and a target set T, is T 
           reachable from Q0.

Solution? Depth First Search, in O(n+m) time.

What if we are interested in more sophisticated properties?

The light will always eventually turn green.



Option 1 for properties 
beyond reachability …



One TS as a Spec for Another TS!

Given a TS  for the model and a TS  for the specification: M S

Question: Is every behaviour of  a behaviour of ?M S

Solvable in PSpace: linear in M and exponential in S.

L(M) ✓ L(S)



Best choice: new logic!



Alternative: Temporal Logic

Language for describing properties of infinite sequences.


Extension of propositional logic.


Uses temporal operators to describe sequencing 
properties.



Linear Temporal Logic
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of real-time constraints in asynchronous systems by means of a continuous-time domain
will be discussed in Chapter 9 where a timed version of CTL, called Timed CTL, will be
introduced. Table 5.1 summarizes the distinguishing features of the main temporal logics
considered in this monograph.

logic linear-time branching-time real-time requirements
(path-based) (state-based) (continuous-time domain)

LTL
√

CTL
√

Timed CTL
√ √

Table 5.1: Classification of the temporal logics in this monograph.

5.1.1 Syntax

This subsection describes the syntactic rules according to which formulae in LTL can
be constructed. The basic ingredients of LTL-formulae are atomic propositions (state
labels a ∈ AP), the Boolean connectors like conjunction ∧, and negation ¬, and two
basic temporal modalities ⃝ (pronounced “next”) and U (pronounced “until”). The
atomic proposition a ∈ AP stands for the state label a in a transition system. Typically,
the atoms are assertions about the values of control variables (e.g., locations in program
graphs) or the values of program variables such as ”x > 5” or ”x ! y”. The ⃝ -modality
is a unary prefix operator and requires a single LTL formula as argument. Formula ⃝ϕ
holds at the current moment, if ϕ holds in the next “step”. The U -modality is a binary
infix operator and requires two LTL formulae as argument. Formula ϕ1 U ϕ2 holds at the
current moment, if there is some future moment for which ϕ2 holds and ϕ1 holds at all
moments until that future moment.

Definition 5.1. Syntax of LTL

LTL formulae over the set AP of atomic proposition are formed according to the following
grammar:1

ϕ ::= true
∣∣∣ a

∣∣∣ ϕ1 ∧ ϕ2

∣∣∣ ¬ϕ
∣∣∣ ⃝ ϕ

∣∣∣ ϕ1 Uϕ2

where a ∈ AP.
1The Backus Naur form (BNF) is used in a somewhat liberal way. More concretely, nonterminals are

identified with derived words (formulae) and indices in the rules. Moreover, brackets will be used, e.g. in
a∧ (bU c), which are not shown in the grammar. Such simplified notations for grammars to determine the
syntax of formulae of some logic (or terms of other calculi) are often called abstract syntax.
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We mostly abstain from explicitly indicating the set AP of propositions as this follows
either from the context or can be defined as the set of atomic propositions occurring in
the LTL formula at hand.

The precedence order on the operators is as follows. The unary operators bind stronger
than the binary ones. ¬ and ⃝ bind equally strong. The temporal operator U takes
precedence over ∧, ∨, and →. Parentheses are omitted whenever appropriate, e.g., we write
¬ϕ1 U ⃝ ϕ2 instead of (¬ϕ1)U (⃝ϕ2). Operator U is right-associative, e.g., ϕ1 Uϕ2 U ϕ3

stands for ϕ1 U (ϕ2 Uϕ3).

Using the Boolean connectives ∧ and ¬, the full power of propositional logic is obtained.
Other Boolean connectives such as disjunction ∨, implication →, equivalence ↔, and the
parity (or: exclusive or) operator ⊕can be derived as follows:

ϕ1 ∨ ϕ2
def= ¬(¬ϕ1 ∧¬ϕ2)

ϕ1 → ϕ2
def= ¬ϕ1 ∨ ϕ2

ϕ1 ↔ ϕ2
def= (ϕ1 → ϕ2)∧ (ϕ2 → ϕ1)

ϕ1 ⊕ϕ2
def= (ϕ1 ∧¬ϕ2) ∨ (ϕ2 ∧¬ϕ1)
...

The until operator allows to derive the temporal modalities ♦ (“eventually”, sometimes
in the future) and " (“always”, from now on forever) as follows:

♦ϕ
def= trueU ϕ "ϕ

def= ¬♦¬ϕ

As a result, the following intuitive meaning of ♦ and " is obtained. ♦ϕ ensures that ϕ
will be true eventually in the future. "ϕ is satisfied if and only if it is not the case that
eventually ¬ϕ holds. This is equivalent to the fact that ϕ holds from now on forever.

Figure 5.1 sketches the intuitive meaning of temporal modalities for the simple case in
which the arguments of the modalities are just atomic propositions from { a, b }. On the
left-hand side, some LTL formulae are indicated, whereas on the right hand side sequences
of states (i.e., paths) are depicted.

By combining the temporal modalities ♦ and ", new temporal modalities are obtained.
For instance, "♦a (“always eventually a”) describes the (path) property stating that at
any moment j there is a moment i # j at which an a-state is visited. This thus amounts
to assert that an a-state is visited infinitely often. The dual modality ♦"a expresses that
from some moment j on, only a-states are visited. So:

"♦ϕ “infinitely often ϕ”

♦"ϕ “eventually forever ϕ”
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a
atomic prop. a

arbitrary arbitrary arbitrary arbitrary

. . .

arbitrary

next step ⃝ a
a arbitrary arbitrary arbitrary

. . .

a ∧ ¬b

until aU b

a ∧ ¬b a ∧ ¬b b arbitrary

. . .

¬a
eventually ♦a

¬a ¬a a arbitrary

. . .

a
always "a

a a a a
. . .

Figure 5.1: Intuitive semantics of temporal modalities.

Before proceeding with the formal semantics of LTL, we present some examples.

Example 5.2. Properties for the Mutual Exclusion Problem

Consider the mutual exclusion problem for two concurrent processes P1 and P2, say. Pro-
cess Pi is modeled by three locations: (1) the noncritical section, (2) the waiting phase
which is entered when the process intends to enter the critical section, and (3) the critical
section. Let the propositions waiti and criti denote that process Pi is in its waiting phase
and critical section, respectively.

The safety property stating that P1 and P2 never simultaneously have access to their
critical sections can be described by the LTL-formula:

"(¬ crit1 ∨ ¬ crit2).

This formula expresses that always (") at least one of the two processes is not in its critical
section (¬criti).

The liveness requirement stating that each process Pi is infinitely often in its critical
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LTL is interpreted over paths.
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σ |= true

σ |= a iff a ∈ A0 (i.e., A0 |= a)

σ |= ϕ1 ∧ϕ2 iff σ |= ϕ1 and σ |= ϕ2

σ |= ¬ϕ iff σ ̸|= ϕ

σ |= ⃝ϕ iff σ[1 . . .] = A1A2A3 . . . |= ϕ

σ |= ϕ1 U ϕ2 iff ∃j ! 0. σ[j . . .] |= ϕ2 and σ[i . . .] |= ϕ1, for all 0 " i < j

Figure 5.2: LTL semantics (satisfaction relation |=) for infinite words over 2AP.

be regarded in order to be able to refer to the truth-value of the subformula aU b in the
“next step”.

For the derived operators ♦ and $ the expected result is:

σ |= ♦ϕ iff ∃j ! 0. σ[j . . .] |= ϕ

σ |= $ϕ iff ∀j ! 0. σ[j . . .] |= ϕ.

The statement for ♦ is immediate from the definition of ♦ and the semantics of U . The
statement for $ follows from:

σ |= $ϕ = ¬♦¬ϕ iff ¬∃j ! 0. σ[j . . .] |= ¬ϕ
iff ¬∃j ! 0. σ[j . . .] ̸|= ϕ
iff ∀j ! 0. σ[j . . .] |= ϕ.

The semantics of the combinations of $ and ♦ can now be derived:

σ |= $♦ϕ iff
∞
∃ j. σ[j . . .] |= ϕ

σ |= ♦$ϕ iff
∞
∀ j. σ[j . . .] |= ϕ.

Here,
∞
∃ j means ∀i ! 0. ∃j ! i, “for infinitely many j ∈ IN”, while

∞
∀ j stands for

∃i ! 0. ∀j ! i, “for almost all j ∈ IN”. Let us verify the first statement. The argument
for the second statement is similar.

σ |= $♦ϕ iff ∀i ! 0. σ[i . . .] |= ♦ϕ
iff ∀i ! 0. ∃j ! i. σ[j . . .] |= ϕ

iff
∞
∃ j. σ[j . . .] |= ϕ.

As a subsequent step, we determine the semantics of LTL-formulae with respect to a

These paths are (infinite) words labeled with subset of the atomic 
propositions (AP) that are true at each letter.

LTL’s |= is the smallest relation satisfying the above rules.
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More Examples in Class


