CSC410

AZADEHFARZAN
FALL 2020

Model Checking

Overview

\square Nontraditional use of nontraditional logic!
\square Checking whether a formula is satisfied in a finite domain.
\square Model: finite-state transition system
\square Logic: Propositional Temporal Logic.
\square Verification Procedure: exhaustively search of the state space to determine the truth of specification.

Why Model checking?

\square Doesn't aim too high!
\square Originally restricted to finite-state systems.
\square applicable to systems with "short" descriptions.
\square control-oriented systems such as hardware, protocols, ...
\square Fully automatic with low computational complexity.
\square Can be viewed as an elaborate debugging tool: counterexamples.

First Step:
We need a formal model!

Labeled Transition Systems

A transition system $T S$ is a tuple $(S, A c t, \rightarrow, I, A P, L)$ where

- S is a set of states,
- Act is a set of actions,
- $\longrightarrow \subseteq S \times$ Act $\times S$ is a transition relation,
- $I \subseteq S$ is a set of initial states,
- $A P$ is a set of atomic propositions, and
- $L: S \rightarrow 2^{A P}$ is a labeling function.
$T S$ is called finite if $S, A c t$, and $A P$ are finite.

Example

Example

Second Step:

 We need a formal Specification!
Example: Dining Philosophers

There are 5 philosophers at a table sharing 5 chopsticks for eating. Each philosopher needs two chopsticks to eat.

At each point in time at most one of two neighbouring philosophers can eat.
Classic deadlock scenario example!

Reachability

Problem: given an TS, and a target set T, is T reachable from Q_{0}.

Solution? Depth First Search, in $O(n+m)$ time.

What if we are interested in more sophisticated properties?
Suggest a non-reachability property for philosophers!

The light will always eventually turn green.

Option 1 for properties
 beyond reachability ...

One TS as a Spec for Another TS!

Given a TS M for the model and a TS S for the specification:

Question: Is every behaviour of M a behaviour of S ?

$$
L(M) \subseteq L(S)
$$

Solvable in PSpace: linear in M and exponential in S.

Best choice: new logic!

Alternative: Temporal Logic

\square Language for describing properties of infinite sequences.
\square Extension of propositional logic.
\square Uses temporal operators to describe sequencing properties.

Linear Temporal Logic

LTL Syntax

$$
\varphi::=\operatorname{true}|a| \varphi_{1} \wedge \varphi_{2}|\neg \varphi| \bigcirc \varphi \mid \varphi_{1} \cup \varphi_{2}
$$

$$
\diamond \varphi \stackrel{\text { def }}{=} \operatorname{true} \mathrm{U} \varphi \quad \square \varphi \stackrel{\text { def }}{=} \neg \diamond \neg \varphi
$$

LTL: Intuition

always $\square a$

LTL Semantics

LTL is interpreted over paths.
These paths are (infinite) words labeled with subset of the atomic propositions (AP) that are true at each letter.
$\sigma \models$ true
$\sigma \models a \quad$ iff $a \in A_{0} \quad$ (i.e., $A_{0} \models a$)
$\sigma \models \varphi_{1} \wedge \varphi_{2} \quad$ iff $\sigma \models \varphi_{1}$ and $\sigma \models \varphi_{2}$
$\sigma \models \neg \varphi \quad$ iff $\sigma \not \models \varphi$
$\sigma \models \bigcirc \varphi \quad$ iff $\quad \sigma[1 \ldots]=A_{1} A_{2} A_{3} \ldots \models \varphi$
$\sigma \models \varphi_{1} \cup \varphi_{2}$ iff $\exists j \geqslant 0 . \sigma[j \ldots] \models \varphi_{2}$ and $\sigma[i \ldots] \models \varphi_{1}$, for all $0 \leqslant i<j$

LTL's \models is the smallest relation satisfying the above rules.

$$
\begin{aligned}
\sigma & \models \diamond \varphi \quad \text { iff } \quad \exists j \geqslant 0 . \sigma[j \ldots] \models \varphi \\
\sigma \models \square \varphi & \text { iff } \quad \forall j \geqslant 0 . \sigma[j \ldots] \models \varphi
\end{aligned}
$$

$$
\begin{aligned}
\sigma & \models \square \diamond \varphi \text { iff } \quad \stackrel{\infty}{\exists} j . \sigma[j \ldots] \models \varphi \\
\sigma & \models \diamond \square \varphi \text { iff } \quad \forall j . \sigma[j \ldots] \models \varphi
\end{aligned}
$$

More Examples in Class

