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Problem 1

For the following transition system,
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cover the full class of ω-regular LT properties, Vardi and Wolper introduced an extension
of LTL by automata formulae [424, 425, 411, 412].

LTL model checking. Vardi and Wolper also developed the automata-based model checking
algorithm for LTL presented in this chapter. The presented algorithm to construct an NBA
from a given LTL formula is, in our opinion, the simplest and most intuitive one. In the
meantime, various alternative techniques have been developed that generate more compact
NBAs or that attempt to minimize a given NBA, see e.g. [166, 110, 148, 375, 162, 149,
167, 157, 389, 369]. Alternative LTL model-checking algorithms that do not use Büchi
automata, but a so-called tableau for the LTL formula, were presented by Lichtenstein and
Pnueli [273] and Clarke, Grumberg, and Hamaguchi [88]. The results about the complexity
of LTL model checking and the satisfiability problem are due to Sistla and Clarke [372].

There is a variety of surveys and textbooks; see, e.g.,[245, 138, 173, 283, 158, 284, 92, 219,
379, 365], where several other aspects of LTL and related logics, such as deductive proof
systems, alternative model-checking algorithms, or more details about the expressiveness,
are treated.

Examples. The garbage collection algorithm presented in Example 5.31 is due to Ben-Ari
[41]. Several leader election protocols that fit into the shape of Example 5.13 have been
suggested; see, e.g., [280].

LTL model checkers. SPIN is the most well-known LTL model checker and has been
developed by Holzmann [209]. Transition systems are described in the modeling language
Promela, and LTL formulae are checked using the algorithm advocated by Gerth et al.
[166]. LTL model checking using a tableau construction is supported by NuSMV [83].

5.5 Exercises

Exercise 5.1. Consider the following transition system over the set of atomic propositions { a, b }:

s2

{ a }
s1{ a } s3 { a, b }

s4 { b }

Indicate for each of the following LTL formulae the set of states for which these formulae are
Determine which states satisfy each given LTL formula below:
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fulfilled:

(a) © a

(b) © © © a

(c) ! b

(d) ! ♦ a

(e) ! (b Ua)

(f) ♦ (a U b)

Exercise 5.2. Consider the transition system TS over the set of atomic propositions AP =
{ a, b, c }:

s1

{a}

s3

{b, c}

s2

{c}

s5

{a, b, c}

s4

{b}

Decide for each of the LTL formulae ϕi below, whether TS |= ϕi holds. Justify your answers! If
TS "|= ϕi, provide a path π ∈ Paths(TS) such that π "|= ϕi.

ϕ1 = ♦! c
ϕ2 = ! ♦ c
ϕ3 = © ¬c → © © c
ϕ4 = ! a
ϕ5 = a U ! (b ∨ c)
ϕ6 = (© © b)U (b ∨ c)

Exercise 5.3. Consider the sequential circuit in Figure 5.24 and let AP = { x, y, r1, r2 }. Provide
LTL formulae for the following properties:

r_1,r_2

x y

Figure 5.24: Circuit for Exercise 5.3.
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Problem 2

For the following transition system and the given formulas, determine which states satisfy each
given formula:

Problem 2
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Problem 3

Consider the following three simple constraints about three unknown LTL formulas F , G, and H:

F ≡ a ∨G

G ≡ b ∧⃝F

Find (standard non-recursive) LTL formulas to stand for F and G above such that the constraints
are satisfied and the formulas represent the smallest set of paths satisfying the constraints.

(a) F ≡

(b) G ≡

What if we are interested in the formulas representing the largest set of paths satisfying the con-
straints?

(a) F ≡

(b) G ≡
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