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Thus, TS |= ϕ if and only if s0 |= ϕ for all initial states s0 of TS.
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Example 5.8. Semantics of LTL

Consider the transition system TS depicted in Figure 5.3 with the set of propositions
AP = { a, b }. For example, we have that TS |= !a, since all states are labeled with a,
and hence, all traces of TS are words of the form A0 A1 A2 . . . with a ∈ Ai for all i " 0.
Thus, si |= !a for i = 1, 2, 3. Moreover:

s1 |= ⃝ (a ∧ b) since s2 |= a ∧ b and s2 is the only successor of s1

s2 ̸|= ⃝ (a ∧ b) and s3 ̸|= ⃝ (a ∧ b) as s3 ∈ Post(s2), s3 ∈ Post(s3) and s3 ̸|= a ∧ b.

This yields TS ̸|= ⃝ (a ∧ b) as s3 is an initial state for which s3 ̸|= ⃝ (a ∧ b). As another
example:

TS |= !(¬b → !(a ∧ ¬b)),

since s3 is the only ¬b state, s3 cannot be left anymore, and a∧¬b in s3 is true. However,

TS ̸|= bU (a ∧ ¬b),

since the initial path (s1s2)ω does not visit a state for which a ∧ ¬b holds. Note that the
initial path (s1s2)∗sω

3 satisfies bU (a ∧ ¬b).

Remark 5.9. Semantics of Negation

For paths, it holds π |= ϕ if and only if π ̸|= ¬ϕ. This is due to the fact that

Words(¬ϕ) = (2AP)ω \ Words(ϕ).

However, the statements TS ̸|= ϕ and TS |= ¬ϕ are not equivalent in general. Instead, we
have TS |= ¬ϕ implies TS ̸|= ϕ. Note that

TS ̸|= ϕ iff Traces(TS) ̸⊆Words(ϕ)

iff Traces(TS) \ Words(ϕ) ̸= ∅
iff Traces(TS) ∩ Words(¬ϕ) ̸= ∅.
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Thus, it is possible that a transition system (or a state) satisfies neither ϕ nor ¬ϕ. This
is caused by the fact that there might be paths π1 and π2 in TS such that π1 |= ϕ and
π2 |= ¬ϕ (and therefore π2 ̸|= ϕ). In this case, TS ̸|= ϕ and TS ̸|= ¬ϕ holds.

To illustrate this effect, consider the transition system depicted in Figure 5.4. Let AP =
{ a }. It follows that TS ̸|= ♦a, since the initial path s0(s2)ω ̸|= ♦a. On the other hand,
TS ̸|= ¬♦a also holds, since the initial path s0(s1)ω |= ♦a, and thus, s0(s1)ω ̸|= ¬♦a.

{ a }

s1

∅

s0

∅

s2

Figure 5.4: A transition system for which TS ̸|= ♦a and TS ̸|= ¬♦a.

5.1.3 Specifying Properties

⟨n1, n2, y=1⟩

⟨w1, n2, y=1⟩ ⟨n1, w2, y=1⟩

⟨c1, n2, y=0⟩ ⟨w1, w2, y=1⟩ ⟨n1, c2, y=0⟩

⟨c1, w2, y=0⟩ ⟨w1, c2, y=0⟩

Figure 5.5: Transition system of semaphore-based mutual exclusion algorithm.

Example 5.10. Semaphore-Based Mutual Exclusion Revisited

Consider the transition system TSSem depicted in Figure 5.5 which represents a semaphore-
based solution to the mutual exclusion problem; see also Example 3.9 on page 98. Each
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duality law idempotency law

¬⃝ ϕ ≡ ⃝¬ϕ ♦♦ϕ ≡ ♦ϕ

¬♦ϕ ≡ "¬ϕ " "ϕ ≡ "ϕ

¬"ϕ ≡ ♦¬ϕ ϕU (ϕU ψ) ≡ ϕU ψ

(ϕU ψ)U ψ ≡ ϕU ψ

absorption law expansion law

♦ " ♦ϕ ≡ " ♦ϕ ϕU ψ ≡ ψ ∨ (ϕ ∧ ⃝ (ϕU ψ))

" ♦ "ϕ ≡ ♦ "ϕ ♦ψ ≡ ψ ∨ ⃝♦ψ

"ψ ≡ ψ ∧ ⃝"ψ

distributive law

⃝ (ϕU ψ) ≡ (⃝ϕ)U (⃝ψ)

♦(ϕ ∨ ψ) ≡ ♦ϕ ∨ ♦ψ

"(ϕ ∧ ψ) ≡ "ϕ ∧ "ψ

Figure 5.7: Some equivalence rules for LTL.

same truth-value under all interpretations. For example, it seems useless to distinguish
between ¬¬a and a, although both formulae are syntactically different.

Definition 5.17. Equivalence of LTL Formulae

LTL formulae ϕ1,ϕ2 are equivalent, denoted ϕ1 ≡ ϕ2, if Words(ϕ1) = Words(ϕ2).

As LTL subsumes propositional logic, equivalences of propositional logic also hold for LTL,
e.g., ¬¬ϕ ≡ ϕ and ϕ∧ϕ ≡ ϕ. In addition, there exist a number of equivalence rules for
temporal modalities. They include the equivalence laws indicated in Figure 5.7. We
explain some of these equivalence laws. The duality rule ¬⃝ ϕ ≡ ⃝¬ϕ shows that the
next-step operator ⃝ is dual to itself. It results from the observation that

A0 A1 A2 . . . |= ¬⃝ ϕ

iff A0 A1 A2 . . . ̸|= ⃝ϕ

iff A1 A2 . . . ̸|= ϕ

iff A1 A2 . . . |= ¬ϕ

iff A0 A1 A2 . . . |= ⃝¬ϕ.

The first absorption law is explained by the fact that “infinitely often ϕ” is equal to “from
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Lemma. Until is the least solution to the expansion law.
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The following equation has many solutions:

Until is the smallest set that satisfies this equation.
X =  _ (� ^ �X)



Expansion Laws

Lemma. Until is the least solution to the expansion law.

Note that we are using the notions of sets (of paths) and formulas 
interchangeably, by referring to the set of paths that satisfy a given formula.
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End of LTL!


