CSC410 SAT Solving Inverted Lecture

AZADEH FARZAN FALL 2023

Conjunctive Normal Form

$$\qquad \qquad \left(\left(p \vee (\neg q) \right) \wedge r \wedge \left((\neg r) \vee p \vee q \right) \right)$$

- $((\neg r) \lor p \lor q)$ (Only one clause.)
- $((\neg r) \land p \land q)$ (Three singleton clauses.)

Converting to CNF

1. Eliminate implication and equivalence.

Replace
$$(\alpha \to \beta)$$
 by $((\neg \alpha) \lor \beta)$
Replace $(\alpha \leftrightarrow \beta)$ by $((\neg \alpha) \lor \beta) \land (\alpha \lor (\neg \beta))$.
(Now only \land , \lor and \neg appear as connectives.)

2. Apply De Morgan's and double-negation laws as often as possible.

Replace
$$(\neg(\alpha \lor \beta))$$
 by $((\neg\alpha) \land (\neg\beta))$.
Replace $(\neg(\alpha \land \beta))$ by $((\neg\alpha) \lor (\neg\beta))$.
Replace $(\neg(\neg\alpha))$ by α .

(Now negation only occurs in literals.)

3. Transform into a conjunction of clauses using distributivity.

Replace
$$(\alpha \lor (\beta \land \gamma))$$
 by $((\alpha \lor \beta) \land (\alpha \lor \gamma))$. (One could stop here, but....)

4. Simplify using idempotence, contradiction, excluded middle and Simplification I & II.

How do we decide if a propositional logic formula is satisfiable or unsatisfiable?

Example

$$p \land q \land (\neg p \lor \neg q)$$

Satisfiable or unsatisfiable?

Inference Rules

$$\frac{\alpha_1 \quad \alpha_2 \quad \dots \quad \alpha_n}{\beta}$$
 Conclusion

Examples:

$$\frac{\alpha \quad \beta}{(\alpha \land \beta)}$$

$$\frac{(\alpha \land \beta)}{(\alpha \lor \beta)}$$

What is a proof?

Start with some premises and using the rules, derive a conclusion!

Binary Resolution Rule

$$\frac{(\alpha \vee p) \quad ((\neg p) \vee \beta)}{(\alpha \vee \beta)}$$

- It works with formulas in CNF forms.
- It is used to prove contradictions.

Example

$$p \land q \land (\neg p \lor \neg q)$$

Example

$$(p \lor q \lor r) \land (\neg p \lor q) \land (\neg q \lor \neg r)$$

Binary Resolution Rule in CDCL

$$\frac{(\alpha \vee p) \quad ((\neg p) \vee \beta)}{(\alpha \vee \beta)}$$

Unit resolution:

$$\frac{(\alpha \vee p) \quad (\neg p)}{\alpha}$$

Contradiction:

$$\frac{p \quad (\neg p)}{\bot}$$

And, the standard rule used in conflict clause learning.

Important Properties

Theorem. If from a set of clauses as a premise, we derive false, then the set of clauses is unsatisfiable.

Theorem. If there is no proof leading to *false*, then the set of clauses is satisfiable.