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Partially Ordered Sets

(S,C): aset S and a (partial) order relation C

e [ is reflexive, transitive, and anti-symmetric
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Second Structure




Semi-Lattices

A (meet) semi-lattice L = (S,MM) is a set .S with
a binary operation, called meet (1), that has the
following properties:

(1) For all z,y € S, there exist a unique z € S such
Bhaieir il =2 (CLOSURE).

(2) For all z,y,z € S, we have
rx=x (idempotence)

ry=yMNx (commutativity)

rM(yMz)=(xMy)z (associativity)
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Complete Semi-Lattices

iFhe unit forMis T:

Wipsdtb et Flad b = R AR el

The meet semi-lattice is called complete if T € LL
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The Connection Between The Structures

Given a semi-lattice and define a binary operation
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The Converse

Given a partially ordered set (S, C), where the greatest lower
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The Converse

Given a partially ordered set (S, C), where the greatest lower
bound of every pair of elements is defined, let:
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The Converse
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The Converse

Given a partially ordered set (S, C), where the greatest lower
bound of every pair of elements is defined, let:

x 1y = the greatest lower bound according to C
(S,1) is provably a semi-lattice.
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The Converse

Given a partially ordered set (S, C), where the greatest lower
bound of every pair of elements is defined, let:

x 1y = the greatest lower bound according to C
(S,1) is provably a semi-lattice.

(111)

I

(110)  (101)  (011)

> ]

(100)  (010)  (001)

~.]

(000) i s 32




The Converse

Given a partially ordered set (S, C), where the greatest lower
bound of every pair of elements is defined, let:

x 1y = the greatest lower bound according to C
(S,1) is provably a semi-lattice.
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Theorem 1

Given a semi-lattice and define a binary operation

aHER i andio RV It =

L 1s provably a partial order relation.

(proof on the board)




Theorem 2

1 is provably the greatest lower bound defined based on

(proof on the board)




Theorem &

Let (S,C) be a partially ordered set such that for all
x,y € S the greatest lower bound of z and vy is always
defined (and in S). Prove (5,11) to be a semi-lattice if:

FiE = alb (s

(proof on the board)




Example: Subset SemiLattice
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(P(S),N) is a complete meet semi-lattice.
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Recall Live Variable Analysis
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the true set of live variables.
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Recall Live Variable Analysis

Any solution Liveentry , Liveexit o this system of equations overapproximates
the true set of live variables.

X is live at 1 = Xe LVeexit(1)

Our domain is a subset lattice where S is the set of all variables!
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Descending Chains

A descending chain is a sequence of elements related by the
order:
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The height of a lattice (or semi-lattice) is the length of its
longest descending chain.
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Descending Chains

A descending chain is a sequence of elements related by the
order:

£y Jag I .-+ Dy,

The height of a lattice (or semi-lattice) is the length of its
longest descending chain.

Useful for Algorithmic convergence: a finite height!
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Recall Live Variable Analysis

Any solution Liveentry , Liveexit to this system of equations overapproximates
the true set of live variables.

Xt lis Hlive tat M= e Ve el

Our domain is a subset lattice where S is the set of all variables!

What is the height of this lattice?

The worklist algorithm terminates because this lattice has a finite height!
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The aim of the Constant Propagation Analysis is to determine

For each program point, whether or not a variable has a constant
value whenever execution reaches that point.




An Infinite Lattice with Finite Height

The aim of the Constant Propagation Analysis is to determine

For each program point, whether or not a variable has a constant
value whenever execution reaches that point.

X 1= 2

% D

X 1

z = 0

if (x <= 0) {
zZ = X + 2

} else {
Zz =Y * Y
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An Infinite Lattice

The aim of the Constant Propagation Analysis is to determine

For each program point, whether or not a variable has a constant
value whenever execution reaches that point.

Integer Constant Propagation Lattice
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A General Framework for
Dataflow Analyses
based on
Basic Lattice Theory
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Component 1:
Domains are (semi)-lattices

of finite height!




Example: Live Variable Analysis

The domain is a (complete) subset
lattice (P(S),U, D, S) where S is the
set of all program variables.
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Example: Live Variable Analysis

The domain is a (complete) subset
lattice (P(.5),U, D, S) where S is the
set of all program variables.

Why U? Because a variable is live if
it is live on some path from the node.
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Example: Live Variable Analysis

The domain is a (complete) subset

(P(S),U, D, S) where S is the

all program variables.

Why U? Because a variable is live if

e on some path from the node.

By choosing to call variables live at

e also decide that this 1s a
rd dataflow problem.
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Example: Live Variable Analysis

To fully define the domain:
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To fully define the domain:

- Define the (semi) lattice: dataflow facts and how to
combine them!




Example: Live Variable Analysis

To fully define the domain:

- Define the (semi) lattice: dataflow facts and how to
combine them!

- Decide on the direction of the analysis: forward or
backward!




Component 2:

Transfer Functions




Transfer Functions

A transfer function models, for a particular data flow analysis
problem, the effect of the programming language constructs as
a mapping from the lattice (used in the analysis) to itself).
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Transfer Functions

A transfer function models, for a particular data flow analysis
problem, the effect of the programming language constructs as
a mapping from the lattice (used in the analysis) to itself).

Vst € Statements, fq: L +— L

Example: backward: would reverse for forward!
LVeptry(d) = LVeyi(£) \ write(£) Uread ()
LVe:mjt (6) — U LVe'n,tfry (é/)

(=0 el I
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Monotonicity: a5 R 1 gy i et {75 |

Distributivity: Y,y €L flePy) = flx) R

Example:

LVepiry(£) = LVezi(£) \ write(£) Uread()

Lveacit (6) U Lventry (8/)
{—0' el
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Properties of Transfer Functions

Monotonicity: Vrjy el By —  filz) =N

[Transfer functions in a dataflow analysis must be monotoneD *

Distributivity: Vg€ Lo f (e y) = flx)FEfa

(But not necessarily distributive!]

Constant Propagation:
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Component A:

The Computation




The Goal

What is the goal of dataflow analyses?




The Goal

What is the goal of dataflow analyses?

meet-over-all-paths (MOP) solutions.




The Goal

What is the goal of dataflow analyses?

meet-over-all-paths (MOP) solutions.

- Start from the beginning (entry node, or exist note for

backward flow problems) with some initial information.




The Goal

What is the goal of dataflow analyses?

meet-over-all-paths (MOP) solutions.

- Start from the beginning (entry node, or exist note for
backward flow problems) with some initial information.

- Walk down a path and apply transfer functions along these
paths to each node in the flow graph.
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The Goal

What is the goal of dataflow analyses?

meet-over-all-paths (MOP) solutions.

- Start from the beginning (entry node, or exist note for
backward flow problems) with some initial information.

- Walk down a path and apply transfer functions along these
paths to each node in the flow graph.

- For each node, compute the meet of all paths to this point.
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Formally

gei#a path 7w = wnt .. .1

Jii==til e i@ ol

MOPO(Z) i HWEPath(l) fw( )

MOP,(I) = fi( MOP,(1)).




Formally

For a path # = init. ..l lTransFer Function for location |

Tzt it s i ol

Set of all paths to | l-Ir\li’rial information at “init"

MOPo(l) il HwEPath(l) fw( )

MOP.(1) = f;(MOP,(1)).




Can this solution be

computed effectively?




Bad News!

For an arbitrary data flow analysis problem where transfer
functions are only monotone, one can show that there may
be no algorithm to compute the MOP solution.




Bad News!

For an arbitrary data flow analysis problem where transfer
functions are only monotone, one can show that there may
be to compute the M OP solution.

The MOP solution for Constant Propagation is undecidable.

Let uq, -, un and vy, .-, vy be strings over the alphabet {1,---,9};
let | u | denote the length of w; let [[u] be the natural number denoted.

The Modified Post Correspondence Problem is to determine whether or
not w;, - --u;, = v;, ---v;, for some sequence iy, --,im With i; = 1.

m

x:=[u1]; y:=[v1l;
while [---] do

(if [---] then x:=x * 101Ut + [uq]; y:=y * 10/Y1] + [v1] else

if [---] then x:=x * 10lun| + Tunl; y:=y * 10lvnl + [vn] else skip)
[z:=abs ((x-y)*(x-y))]*

Then MOP.(¥¢) will map z to 1 if and only if the Modified Post Corre-

e SPpONAdence Problem has no solution. This is undecidable. E—



S0, what do we do?
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Good News

Instead, compute the maximal fixed point solution (MFP).

Consider the set of constraints below:
[ ="niy

MFP,(l) =

\em‘ry

L
{ [ e prow MEPe(l")  otherwise
forward
MFP,(l) = fl(MFPO(Z))L

exit
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Good News

Instead, compute the maximal fixed point solution (MFP).

Consider the set of constraints below:
L ="
[ e prow MEPe(l")  otherwise

MFP,(l) = {

WEEE (1) = [ (M EP(T))
What is a solution to these set of constraints?

A solution is a fixed point!

Is it unique?




Algebra brings it all

together!
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Theorem: (Knaster-Tarski Fixpoint Theorem)
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Fixed Point Solutions

Theorem: (Knaster-Tarski Fixpoint Theorem)

Let L be a complete lattice and F': L — L be a monotone
function. Then, the set of fixpoints of F' in L is also a

complete lattice.

Corollary: We have a set of solutions (fixed points), with
a guarantee for the existence of a maximal (also minimal)

solution.

_—



How do we compute it?
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Theorem: (Kleene Fixpoint Theorem)

Let L be a complete lattice and F': L — L be a monotone
function. The maximal fixpoint of L is the infimum of the
descending chain R (S LR T R ST s

We can start with the solution
T and continually apply F' to its
own result until we eventually

reach a fixed point which will
be maximal.




Fixed Point Solutions

Theorem: (Kleene Fixpoint Theorem)

Let L be a complete lattice and /' : L — L be a monotone

function. The maximal fixpoint of I. is the infimum of the
descending chain R (S LR T R ST s

We can start with the solution DFA Algorithm
T and continually apply F' to its Vk € N.IN = OUT, = T
: repeat
own result until we eventually foreach k € N do {
reach a fixed point which will INg = T{ouT, | p € pred(k)}
be maximal 0T = FilINi)
| }

while solution changes
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The Coincidence

If transfer functions are monotone:

MOP,(I) 3 MFP,()  MOP.(I) 3 MFP,(I)

\Less Precise!

The fixpoint solution over-approximates the result!

If transfer functions are distributive:

MOP,(l) = MFP.(l) MOP,(l) = MFP,(l)

The two solutions coincidel |
%— i v : T ‘ . L Y ; T - T v -




Let’s make another
instance of our

framework!




Very Busy Expressions
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Very Busy Expressions

if [a>b]! then ([x:=Db-a]?; [y:=J@8BI]>) else ([y:=b-a]*; [x:=|E88I]°)

[t1:=b—a]A; [t2:=-]B;

if [a>b]! then ([x:=t1]?; [y:=t2]3) else ([y:=t1]%; [x:=t2]°)




Very Busy Expressions

if [a>b]" then ([x:=Db-a]®; [y:=J@8BI]°) else ([y:=b-a]*; [x:=[E8HI]")

[t1:=b—a]A; [t2:=-]B;

if [a>b]! then ([x:=t1]?; [y:=t2]3) else ([y:=t1]%; [x:=t2]°)

An expression is very busy at the exit from a label if, no
matter what path is taken from the label, the expression is

always used before any of the variables occurring in it are
redefined.

Freed SeRe e S dww v




Check List




Check List

- Define the semi-lattice: dataflow facts and how to combine them!




Check List

- Define the semi-lattice: dataflow facts and how to combine them!

- Decide on the direction of the analysis: forward vs backward.




Check List

- Define the semi-lattice: dataflow facts and how to combine them!

- Decide on the direction of the analysis: forward vs backward.

- Sanity check: the corresponding order should make sense!




Check List

- Define the semi-lattice: dataflow facts and how to combine them!

- Decide on the direction of the analysis: forward vs backward.
- Sanity check: the corresponding order should make sense!

- Decide on the initial values.




Check List

- Define the semi-lattice: dataflow facts and how to combine them!

- Decide on the direction of the analysis: forward vs backward.
- Sanity check: the corresponding order should make sense!

- Decide on the initial values.

- Design the transfer functions:




Check List

- Define the semi-lattice: dataflow facts and how to combine them!

- Decide on the direction of the analysis: forward vs backward.
- Sanity check: the corresponding order should make sense!

- Decide on the initial values.

- Design the transfer functions:

- How does each statement affect the dataflow facts?




Check List
- Define the semi-lattice: dataflow facts and how to combine them!

- Decide on the direction of the analysis: forward vs backward.
- Sanity check: the corresponding order should make sense!

- Decide on the initial values.

- Design the transfer functions:

- How does each statement affect the dataflow facts?

- Sanity check: Monotonicity!
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The Design Process

‘ Kill

N = (X \{all expressions with an z})
U iall subexpressions of a}:

gen

r .= a

X = NyN N>
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Dataflow Facts: D = P(Ezp)
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Very Busy Expressions: Formal Setup

Dataflow Facts: D = P(Ezp)
Domain: complete meet semi-lattice (D, N, D)

Direction: Backward

Transfer Functions:

() [ = exit

VB‘(Z) 15 <\ ﬂ(l,l’)Eflow VB.(Z/) OtherWise

V Bo(l) = RD4(1) \ {exp|var(exp) N write(l) #£ (0}

U computed(l) I




Very Busy Expressions: Formal Setup

Dataflow Facts: D = P(Ezp)

Domain: complete meet semi-lattice (D,/ﬂ,D)

[unlike live variables: here we want the greatest fixed point!

Direction: Backward

Transfer Functions:

0 L=t enit
| (Niefion VBe(l')  otherwise

VB (1) = RD, (1) \ { ezp|var(exp) N write(l) # 0}
U computed (1) l

WaE ()=




