
Dataflow Analysis: Part 2
October 6, 2023

Check List

Define semi-lattice

Direction: forward / backward.

Check the order (does it make sense?)

Decide initial values.

Design the transfer functions.

How does each statement affect the dataflow facts?

Prove monotonicity.

Review: Monotone Frameworks

Implementing Analyses in Tundra

Create new file in analysis/ folder:

Define AnalysisType

Create a subclass of abstract Analysis class (analysis/analysis.py)

Define methods: initial_in, initial_out, and get_new_values

Useful functions in lang/utils.py

Example: Live Variables Analysis

A variable is live at the exit from a label if there exists a path from the
label to a use of the variable that does not re-define the variable.

Check List: Live Variables Analysis

Define semi-lattice

Direction: forward / backward.

Check the order (does it make sense?)

Decide initial values.

Design the transfer functions.

How does each statement affect the dataflow facts?

Prove monotonicity.

Example: Live Variables Analysis

Tundra Demo

Example: Reaching Definitions

For each program point, which assignments may have been made and not
overwritten, when program execution reaches this point along some path.

l1: x = 0;
l2: y = 10;

Check List: Reaching Definitions

Define semi-lattice

Direction: forward / backward.

Check the order (does it make sense?)

Decide initial values.

Design the transfer functions.

How does each statement affect the dataflow facts?

Prove monotonicity.

Example: Reaching Definitions

Tundra Demo

Example: Very Busy Expressions

An expression is very busy at the exit from a label if, no matter what

path is taken from the label, the expression must always be used before

any of the variables occurring in it are redefined.

Example: Very Busy Expressions

An expression is very busy at the exit from a label if, no matter what

path is taken from the label, the expression must always be used before

any of the variables occurring in it are redefined.

if (a > b) {
 x = b - a;
 y = a - b;
} else {
 y = b - a;
 x = a - b;
}

Check List: Very Busy Expressions

Define semi-lattice

Direction: forward / backward.

Check the order (does it make sense?)

Decide initial values.

Design the transfer functions.

How does each statement affect the dataflow facts?

Prove monotonicity.

Example: Very Busy Expressions

Tundra Demo

Example: Available Expressions

For each program point, which expressions must have already been

computed, and not later modified, on all paths to the program point.

Example: Available Expressions

For each program point, which expressions must have already been

computed, and not later modified, on all paths to the program point.

 x = a + b;
l1: y = a + b;

Check List: Available Expressions

Define semi-lattice

Direction: forward / backward.

Check the order (does it make sense?)

Decide initial values.

Design the transfer functions.

How does each statement affect the dataflow facts?

Prove monotonicity.

Example: Available Expressions

Tundra Demo

