Dataflow Analysis: Part 2

October 6, 2023

Check List

Define semi-lattice
Direction: forward / backward.
Check the order (does it make sense?)
Decide initial values.
Design the transfer functions.
How does each statement affect the dataflow facts?

Prove monotonicity.

Review: Monotone Frameworks

Available Reaching Very Busy Live

Expressions Definitions Expressions Variables
L | P(AExp,) | P(Var, xLab)) | P(AExp,) P(Var,)
- 2 C 2 -
L N U N U
1 AExp, 0 AExp, 0
L 0 {(z,?)|z€ FV(S.)} 0 0
E {init(S,)} {init(S.)} final(S,) final(S,)
F flow(S,) flow(S,) flow(8S.,) flowh(S,)
- {(f:LoL|3,l,: f(l)=(1\lLk)Ul}
fe fe(l) = (1 \ kill([B]%)) U gen([B]¢) where [B]¢ € blocks(S.)

Implementing Analyses in Tundra

Create new filein folder:

DEhAnalysisType

Create a subclass of abstract WEH(analysis/analysis. pyl)

Define methods: FN{ERERRIERY, TIISEIMENT, and
Useful functions in [EXaf=fAtial X)Y

Example: Live Variables Analysis

Avariable is live at the exit from a label if there exists a path from the
label to a use of the variable that does not re-define the variable.

Check List: Live Variables Analysis
Define semi-lattice

Direction: forward / backward.

Check the order (does it make sense?)

Decide initial values.
Design the transfer functions.

How does each statement affect the dataflow facts?

Prove monotonicity.

Example: Live Variables Analysis

class LiveVariables(Analysis[AnalysisType]):

def initial_in(self, node: Node) -> T:

def initial_out(self, node: Node) -> T:

Live AnalysisType = Set[Variable]
Variables /

L 'P(Var,,) g 14 usages Avery Laird *
C C T = AnalysisType
LI U Avery Laird *
¥ il 0

/ return set()
L 0 1 N

Avery Laird *

E | final(S,)
F HOVVR(S*) return set()
F {f:L—L|3lg: f1)=(1\L)Ul}
fo fo(l) = (1 \ kill([B]®)) U gen([B]¢) where [B]¢ € blocks(S.)

Tundra Demo

Example: Reaching Definitions

For each program point, which assignments may have been made and not
overwritten, when program execution reaches this point along some path.

11: x
12: vy

0;
10;

Check List: Reaching Definitions
Define semi-lattice
Direction: forward / backward.
Check the order (does it make sense?)
Decide initial values.
Design the transfer functions.
How does each statement affect the dataflow facts?

Prove monotonicity.

Example: Reaching Definitions

Reaching
Definitions

=

AnalysisType = Set[Tuple[Variable, Optional[Node]]]

L | P(Var, x Lab]) - T I
class ReachingDefinitions(Analysis[AnalysisType]):

; g Avery Laird

def initial_in(self, node: Node) -> AnalysisType:
LJ 5; return set()
d
L {(:B, ?)|3;€FV(S*)} de%. _im'_;{al_out(z.elf, node: Node) -> AnalysisType:

~eturn set()

E {init(S.)} &
F flow(S,)
F {f:L—L|3l,: f(l)=>1\lL)Ul}
fe fo(l) = (1 \ kill([B]%)) U gen([B]®) where [B]¢ € blocks(S.)

Tundra Demo

Example: Very Busy Expressions

An expression is very busy at the exit from a label if, no matter what
path is taken from the label, the expression must always be used before
any of the variables occurring in it are redefined.

Example: Very Busy Expressions

An expression is very busy at the exit from a label if, no matter what
path is taken from the label, the expression must always be used before
any of the variables occurring in it are redefined.

1f(a>b){
=b - a;

y=a—b'

} else {

y =b - a;

X =a - b;

}

Check List: Very Busy Expressions
Define semi-lattice

Direction: forward / backward.

Check the order (does it make sense?)

Decide initial values.
Design the transfer functions.

How does each statement affect the dataflow facts?

Prove monotonicity.

Example: Very Busy Expressions

Very Busy
. AnalysisType = Set[Expression]
L P(AEXP*) 1 2 usages Avery Laird
class VeryBusyExpressions(Analysis[AnalysisTypel):
E; ;2 T = AnalysisType
Lj n Avery Laird
A AExp* def initial_in(self, node: Node) -> T:
return set()
L 0
Avery Laird
E ﬁna](s*) def initial_out(self, node: Node) -> T:
return set()
F flow™(S,)
F {f:L—>L|3kl,:f(1)=(\l) UL}

fe(l) = (1\ kill([B]%)) U gen([B]¢) where [B]¢ € blocks(S,)

Tundra Demo

Example: Available Expressions

For each program point, which expressions must have already been
computed, and not later modified, on all paths to the program point.

Example: Available Expressions

For each program point, which expressions must have already been
computed, and not later modified, on all paths to the program point.

X
| I
o o
+ +
O O

11: vy

Check List: Available Expressions
Define semi-lattice
Direction: forward / backward.
Check the order (does it make sense?)
Decide initial values.
Design the transfer functions.
How does each statement affect the dataflow facts?

Prove monotonicity.

Example: Available Expressions

Available
Expressions

™~

P(AExp,)
>

N
AExp,

=N

0
{init(S,)}
flow(S.)

R T e I O I

{(f:L—L|3lg: f0) = (1\ k) UL,
fe fe(l) = (1\ kill([B])) U gen([B]%) where [B]¢ € blocks(S.)

Tundra Demo

