
CSC410: Dataflow Analysis
September 29, 2023

1

Recall: Live Variable Analysis

2

i = 0;
j = 1;
while (i < 10) {
 i = i + 1;
 j = i
}
j = 0;

Dataflow analysis operates on the control-flow graph (CFG).

Recall: Live Variable Analysis

3

CFG nodes have values that are updated through transfer functions.

Demo: Tundra

4

InnerNode
l1: x = 10

InnerNode
l2: y = 10

InnerNode
[x == 10]

InnerNode
y = 3

Entry

Exit

Parse to AST Compute
Fixed Point

Data Flow Analysis

Tundra is a toy language and dataflow analysis framework (more detail later).

l1: x = 10;
l2: y = 10;
if (x == 10) {
 y = 3;
} else { }

Demo: Live Variable Analysis in Tundra

5

Domain

Powerset of program variables

Initial Values

Empty Set

Transfer Function

Demo: Live Variable Analysis in Tundra

6

Real World Applications: Dataflow Analysis

7

Real World Applications: Clang compilation pipeline

8

Abstract
Syntax Tree

Analysis and
Transformation

LLVM IR Machine Code

Clang (frontend) LLVM

…

Lesser-Known Clang Tools…

9

Refactoring

Tidy

Clang provides tools for analysis on the AST. LLVM actually compiles.

Clang Dataflow Example: Automatic Refactoring

10

Before C++11, there were no “move” semantics.

Functions used “output parameters” to pass
around pointers.

Clang Dataflow Example: Automatic Refactoring

11

Idiomatic C++ code should use return values in this case.

Clang Dataflow Example: Identify Candidates with DFA

12

Candidates for refactoring fulfill the following
properties:

1. pointee is completely overwritten by the
function

2. pointee is not read before it is overwritten

Question: is c an output parameter?

Clang Dataflow Example Two

13

Candidates for refactoring fulfill the following
properties:

1. pointee is completely overwritten by the
function

2. pointee is not read before it is overwritten

Question: is c an output parameter?

Clang Dataflow Example Two

14

Candidates for refactoring fulfill the following
properties:

1. pointee is completely overwritten by the
function

2. pointee is not read before it is overwritten

Result of DFA: there exists a path with no stores to c->name.
Example two is not a refactoring candidate.

Other Clang-Based Refactor Examples Using DFA

15

● Refactor raw pointers to unique_ptr
● Find dead stores
● Finding uninitialized variables
● Sign analysis

Some Actual Code…

16

Lattices: Not So Complicated

17

T

+ – 0

⟘

Other Levels of Dataflow Analysis: LLVM IR Examples

18

for (int i = 0; i < n; ++i)
 a[i] = b[i] * c[i];

for (int i = 0; i < n/4*4; i += 4) {
 b_v = vec_load(&b[i]);
 c_v = vec_load(&c[i]);
 store_vec(&a[i], b_v*c_v)
}

Vectorize

This transformation is unsafe! Why?

Other Levels of Dataflow Analysis: LLVM IR Examples

19

for (int i = 0; i < n; ++i)
 a[i] = b[i] * c[i];

for (int i = 0; i < n/4*4; i += 4) {
 b_v = vec_load(&b[i]);
 c_v = vec_load(&c[i]);
 store_vec(&a[i], b_v*c_v)
}

Vectorize

b and c must point to different memory regions than a.

Other Levels of Dataflow Analysis: Alias Analysis

20

for (int i = 0; i < n; ++i)
 a[i] = b[i] * c[i];

Alias Sets:

{a, b} a may alias b
{a, c} a may alias c

Alias Analysis

if !alias(a, b) && !alias(a, c)
 vectorizedLoop();
else
 originalLoop();

Generate runtime checks
to guard the loops.

