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Recall: Live Variable Analysis
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i = 0;
j = 1;
while (i < 10) {
  i = i + 1;
  j = i
}
j = 0;

Dataflow analysis operates on the control-flow graph (CFG).



Recall: Live Variable Analysis
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CFG nodes have values that are updated through transfer functions.



Demo: Tundra
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Tundra is a toy language and dataflow analysis framework (more detail later).

l1: x = 10;
l2: y = 10;
if (x == 10) {
  y = 3;
} else { }



Demo: Live Variable Analysis in Tundra
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Demo: Live Variable Analysis in Tundra
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Real World Applications: Dataflow Analysis
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Real World Applications: Clang compilation pipeline
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Lesser-Known Clang Tools…
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Refactoring

Tidy

Clang provides tools for analysis on the AST. LLVM actually compiles.



Clang Dataflow Example: Automatic Refactoring
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Before C++11, there were no “move” semantics.

Functions used “output parameters” to pass 
around pointers.



Clang Dataflow Example: Automatic Refactoring
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Idiomatic C++ code should use return values in this case.



Clang Dataflow Example: Identify Candidates with DFA
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Candidates for refactoring fulfill the following 
properties:

1. pointee is completely overwritten by the 
function

2. pointee is not read before it is overwritten

Question: is c an output parameter?



Clang Dataflow Example Two
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Candidates for refactoring fulfill the following 
properties:

1. pointee is completely overwritten by the 
function

2. pointee is not read before it is overwritten

Question: is c an output parameter?



Clang Dataflow Example Two
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Candidates for refactoring fulfill the following 
properties:

1. pointee is completely overwritten by the 
function

2. pointee is not read before it is overwritten

Result of DFA: there exists a path with no stores to c->name.
Example two is not a refactoring candidate.



Other Clang-Based Refactor Examples Using DFA
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● Refactor raw pointers to unique_ptr
● Find dead stores
● Finding uninitialized variables
● Sign analysis



Some Actual Code…
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Lattices: Not So Complicated
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Other Levels of Dataflow Analysis: LLVM IR Examples 
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for (int i = 0; i < n; ++i)
  a[i] = b[i] * c[i];

for (int i = 0; i < n/4*4; i += 4) {
  b_v = vec_load(&b[i]);
  c_v = vec_load(&c[i]);
  store_vec(&a[i], b_v*c_v)
}

Vectorize

This transformation is unsafe! Why?



Other Levels of Dataflow Analysis: LLVM IR Examples 
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for (int i = 0; i < n; ++i)
  a[i] = b[i] * c[i];

for (int i = 0; i < n/4*4; i += 4) {
  b_v = vec_load(&b[i]);
  c_v = vec_load(&c[i]);
  store_vec(&a[i], b_v*c_v)
}

Vectorize

b and c must point to different memory regions than a.



Other Levels of Dataflow Analysis: Alias Analysis
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for (int i = 0; i < n; ++i)
  a[i] = b[i] * c[i];

Alias Sets:

{a, b} a may alias b
{a, c} a may alias c

Alias Analysis

if !alias(a, b) && !alias(a, c)
  vectorizedLoop();
else
  originalLoop();

Generate runtime checks 
to guard the loops.


