CSC410

AZADEH FARZAN

FALL 2020

Computational Tree Logic (CTL)

Limitations of LTL

They are trace equivalent.

These two transition systems satisfy the same set of LTL formulas. But they function in different ways.

Computational Tree Logic (CTL)

State Formula

$$\Phi ::= true$$
 a
 $\Phi_1 \land \Phi_2$
 $\neg \Phi$
 $\exists \varphi$
 $\forall \varphi$

 Path Formula
 $\varphi ::= \bigcirc \Phi$
 $\Phi_1 \cup \Phi_2$

Examples: $\exists \bigcirc (x = 1)$ $\forall \bigcirc (x = 1)$ needs a path quantification But not: $\exists (x = 1 \land \forall \bigcirc (x \ge 3))$ $\exists \bigcirc (true \bigcup (x = 1))$ needs a femporal operator!

Eventually and Always

eventually: $\exists \Diamond \Phi = \exists (\operatorname{true} \bigcup \Phi)$ $\forall \Diamond \Phi = \forall (\operatorname{true} \bigcup \Phi)$

Meaning of CTL: Examples

CTL Semantics

Same as LTL $\begin{cases} \pi \models \bigcirc \Phi & \text{iff} \quad \pi[1] \models \Phi \\ \pi \models \Phi \cup \Psi & \text{iff} \quad \exists j \ge 0. \ (\pi[j] \models \Psi \land (\forall 0 \le k < j. \pi[k] \models \Phi)) \end{cases}$

End of CTL