
CSC410

AZADEH FARZAN

FALL 2020

Computational Tree Logic
(CTL)

Limitations of LTL

106 Linear-Time Properties

Corollary 3.18. Trace Equivalence and LT Properties

Let TS and TS′ be transition systems without terminal states and with the same set of
atomic propositions. Then:

Traces(TS) = Traces(TS′) ⇐⇒ TS and TS′ satisfy the same LT properties.

There thus does not exist an LT property that can distinguish between trace-equivalent
transition systems. Stated differently, in order to establish that the transition systems TS
and TS′ are not trace-equivalent it suffices to find one LT property that holds for one but
not for the other.

Example 3.19. Two Beverage Vending Machines

Consider the two transition systems in Figure 3.8 that both model a beverage vending

pay

selectsoda beerτ
τ

pay

select1 select2soda beer

τ
τ

Figure 3.8: Two beverage vending machines.

machine. For simplicity, the observable action labels of transitions have been omitted.
Both machines are able to offer soda and beer. The left transition system models a
beverage machine that after insertion of a coin nondeterministically chooses to either
provide soda or beer. The right one, however, has two selection buttons (one for each
beverage), and after insertion of a coin, nondeterministically blocks one of the buttons. In
either case, the user has no control over the beverage obtained—the choice of beverage is
under full control of the vending machine.

Let AP = { pay , soda , beer }. Although the two vending machines behave differently, it
is not difficult to see that they exhibit the same traces when considering AP, as for both
machines traces are alternating sequences of pay and either soda or beer. The vending
machines are thus trace-equivalent. By Corollary 3.18 both vending machines satisfy
exactly the same LT properties. Stated differently, it means that there does not exist an
LT property that distinguishes between the two vending machines.

These two transition systems satisfy the same set of LTL formulas. But
they function in different ways.

They are trace equivalent.

Computational Tree Logic (CTL)
Introduction 315

(s0, 0)

(s1, 1)

(s2, 2) (s3, 2)

(s3, 3) (s2, 3) (s3, 3)

(s2, 4) (s3, 4) (s3, 4)(s2, 4) (s3, 4)

(b)

s0 s1

s2s3

(a)

{x = 0 }

{x = 0 }

{x ̸= 0 }

{ x = 1, x ̸= 0 }

Figure 6.1: (a) A transition system and (b) a prefix of its infinite computation tree

is eventually reached. This does not, however, exclude the fact that there can also be
computations for which this property does not hold, for instance, computations for which
Φ is always refuted. The property ∀♦Φ, in contrast, states that all computations satisfy
the property ♦Φ. More complicated properties can be expressed by nesting universal
and existential path quantifiers. For instance, the aforementioned property “for every
computation it is always possible to return to the initial state” can be faithfully expressed
by ∀" ∃♦ start: in any state (") of any possible computation (∀), there is a possibility (∃)
to eventually return to the start state (♦ start).

This chapter considers Computation Tree Logic (CTL), a temporal logic based on proposi-
tional logic with a discrete notion of time, and only future modalities. CTL is an important
branching temporal logic that is sufficiently expressive for the formulation of an impor-
tant set of system properties. It was originally used by Clarke and Emerson [86] and (in
a slightly different form) by Queille and Sifakis [347] for model checking. More impor-
tantly, it is a logic for which efficient and—as we will see—rather simple model-checking
algorithms do exist.

Anticipatory to the results presented in this chapter, we summarize the major aspects of
the linear-vs-branching-time debate and provide arguments that justify the treatment of
model checking based on linear or branching time logics:

• The expressiveness of many linear and branching temporal logics is incomparable.
This means that some properties that are expressible in a linear temporal logic
cannot be expressed in certain branching temporal logics, and vice versa.

Introduction 315

(s0, 0)

(s1, 1)

(s2, 2) (s3, 2)

(s3, 3) (s2, 3) (s3, 3)

(s2, 4) (s3, 4) (s3, 4)(s2, 4) (s3, 4)

(b)

s0 s1

s2s3

(a)

{x = 0 }

{x = 0 }

{x ̸= 0 }

{ x = 1, x ̸= 0 }

Figure 6.1: (a) A transition system and (b) a prefix of its infinite computation tree

is eventually reached. This does not, however, exclude the fact that there can also be
computations for which this property does not hold, for instance, computations for which
Φ is always refuted. The property ∀♦Φ, in contrast, states that all computations satisfy
the property ♦Φ. More complicated properties can be expressed by nesting universal
and existential path quantifiers. For instance, the aforementioned property “for every
computation it is always possible to return to the initial state” can be faithfully expressed
by ∀" ∃♦ start: in any state (") of any possible computation (∀), there is a possibility (∃)
to eventually return to the start state (♦ start).

This chapter considers Computation Tree Logic (CTL), a temporal logic based on proposi-
tional logic with a discrete notion of time, and only future modalities. CTL is an important
branching temporal logic that is sufficiently expressive for the formulation of an impor-
tant set of system properties. It was originally used by Clarke and Emerson [86] and (in
a slightly different form) by Queille and Sifakis [347] for model checking. More impor-
tantly, it is a logic for which efficient and—as we will see—rather simple model-checking
algorithms do exist.

Anticipatory to the results presented in this chapter, we summarize the major aspects of
the linear-vs-branching-time debate and provide arguments that justify the treatment of
model checking based on linear or branching time logics:

• The expressiveness of many linear and branching temporal logics is incomparable.
This means that some properties that are expressible in a linear temporal logic
cannot be expressed in certain branching temporal logics, and vice versa.

CTL Syntax

Computation Tree Logic 317

6.2 Computation Tree Logic

This section presents the syntax and the semantics of CTL. The following sections will
discuss the relation and differences between CTL and LTL, present a model-checking
algorithm for CTL, and introduce some extensions of CTL.

6.2.1 Syntax

CTL has a two-stage syntax where formulae in CTL are classified into state and path
formulae. The former are assertions about the atomic propositions in the states and their
branching structure, while path formulae express temporal properties of paths. Compared
to LTL formulae, path formulae in CTL are simpler: as in LTL they are built by the
next-step and until operators, but they must not be combined with Boolean connectives
and no nesting of temporal modalities is allowed.

Definition 6.1. Syntax of CTL

CTL state formulae over the set AP of atomic proposition are formed according to the
following grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧Φ2

∣∣∣ ¬Φ
∣∣∣ ∃ϕ

∣∣∣ ∀ϕ

where a ∈ AP and ϕ is a path formula. CTL path formulae are formed according to the
following grammar:

ϕ ::= ⃝Φ
∣∣∣ Φ1 U Φ2

where Φ, Φ1 and Φ2 are state formulae.

Greek capital letters will denote CTL state formulae (CTL formulae, for short), whereas
lowercase Greek letters will denote CTL path formulae.

CTL distinguishes between state formulae and path formulae. Intuitively, state formulae
express a property of a state, while path formulae express a property of a path, i.e., an
infinite sequence of states. The temporal operators ⃝ and U have the same meaning as
in LTL and are path operators. Formula ⃝Φ holds for a path if Φ holds at the next
state in the path, and Φ UΨ holds for a path if there is some state along the path for
which Ψ holds, and Φ holds in all states prior to that state. Path formulae can be turned
into state formulae by prefixing them with either the path quantifier ∃ (pronounced “for
some path”) or the path quantifier ∀ (pronounced “for all paths”). Note that the linear

Computation Tree Logic 317

6.2 Computation Tree Logic

This section presents the syntax and the semantics of CTL. The following sections will
discuss the relation and differences between CTL and LTL, present a model-checking
algorithm for CTL, and introduce some extensions of CTL.

6.2.1 Syntax

CTL has a two-stage syntax where formulae in CTL are classified into state and path
formulae. The former are assertions about the atomic propositions in the states and their
branching structure, while path formulae express temporal properties of paths. Compared
to LTL formulae, path formulae in CTL are simpler: as in LTL they are built by the
next-step and until operators, but they must not be combined with Boolean connectives
and no nesting of temporal modalities is allowed.

Definition 6.1. Syntax of CTL

CTL state formulae over the set AP of atomic proposition are formed according to the
following grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧Φ2

∣∣∣ ¬Φ
∣∣∣ ∃ϕ

∣∣∣ ∀ϕ

where a ∈ AP and ϕ is a path formula. CTL path formulae are formed according to the
following grammar:

ϕ ::= ⃝Φ
∣∣∣ Φ1 U Φ2

where Φ, Φ1 and Φ2 are state formulae.

Greek capital letters will denote CTL state formulae (CTL formulae, for short), whereas
lowercase Greek letters will denote CTL path formulae.

CTL distinguishes between state formulae and path formulae. Intuitively, state formulae
express a property of a state, while path formulae express a property of a path, i.e., an
infinite sequence of states. The temporal operators ⃝ and U have the same meaning as
in LTL and are path operators. Formula ⃝Φ holds for a path if Φ holds at the next
state in the path, and Φ UΨ holds for a path if there is some state along the path for
which Ψ holds, and Φ holds in all states prior to that state. Path formulae can be turned
into state formulae by prefixing them with either the path quantifier ∃ (pronounced “for
some path”) or the path quantifier ∀ (pronounced “for all paths”). Note that the linear

State Formula

Path Formula

Examples:

318 Computation Tree Logic

temporal operators ⃝ and U are required to be immediately preceded by ∃ or ∀ to obtain
a legal state formula. Formula ∃ϕ holds in a state if there exists some path satisfying ϕ
that starts in that state. Dually, ∀ϕ holds in a state if all paths that start in that state
satisfy ϕ.

Example 6.2. Legal CTL Formulae

Let AP = {x = 1, x < 2, x ! 3 } be a set of atomic propositions. Examples of syntactically
correct CTL formulae are

∃⃝ (x = 1),∀⃝ (x = 1), and x < 2 ∨ x = 1

and ∃((x < 2)U (x ! 3)) and ∀(trueU (x < 2)). Some examples of formulae that are
syntactically incorrect are

∃(x = 1 ∧ ∀⃝ (x ! 3)) and ∃⃝ (trueU (x = 1)).

The first is not a CTL formula since x = 1 ∧ ∀⃝ (x ! 3) is not a path formula and thus
must not be preceded by ∃. The second formula is not a CTL formula since trueU (x = 1)
is a path formula rather than a state formula, and thus cannot be preceded by ⃝. Note
that

∃⃝ (x = 1 ∧ ∀⃝ (x ! 3)) and ∃⃝∀(trueU (x = 1))

are, however, syntactically correct CTL formulae.

The Boolean operators true, false, ∧ , → and ⇔ are defined in the usual way. The
temporal modalities “eventually”, “always”, and “weak until” can be derived—similarly
as for LTL—as follows:

eventually: ∃♦Φ = ∃(trueU Φ)

∀♦Φ = ∀(trueU Φ)

always: ∃#Φ = ¬∀♦¬Φ

∀#Φ = ¬∃♦¬Φ

∃♦ Φ is pronounced “Φ holds potentially” and ∀♦ Φ is pronounced “Φ is inevitable”. ∃# Φ
is pronounced “potentially always Φ”, ∀# Φ is pronounced “invariantly Φ”, and ∀⃝Φ is
pronounced “for all paths next Φ”.

318 Computation Tree Logic

temporal operators ⃝ and U are required to be immediately preceded by ∃ or ∀ to obtain
a legal state formula. Formula ∃ϕ holds in a state if there exists some path satisfying ϕ
that starts in that state. Dually, ∀ϕ holds in a state if all paths that start in that state
satisfy ϕ.

Example 6.2. Legal CTL Formulae

Let AP = {x = 1, x < 2, x ! 3 } be a set of atomic propositions. Examples of syntactically
correct CTL formulae are

∃⃝ (x = 1),∀⃝ (x = 1), and x < 2 ∨ x = 1

and ∃((x < 2)U (x ! 3)) and ∀(trueU (x < 2)). Some examples of formulae that are
syntactically incorrect are

∃(x = 1 ∧ ∀⃝ (x ! 3)) and ∃⃝ (trueU (x = 1)).

The first is not a CTL formula since x = 1 ∧ ∀⃝ (x ! 3) is not a path formula and thus
must not be preceded by ∃. The second formula is not a CTL formula since trueU (x = 1)
is a path formula rather than a state formula, and thus cannot be preceded by ⃝. Note
that

∃⃝ (x = 1 ∧ ∀⃝ (x ! 3)) and ∃⃝∀(trueU (x = 1))

are, however, syntactically correct CTL formulae.

The Boolean operators true, false, ∧ , → and ⇔ are defined in the usual way. The
temporal modalities “eventually”, “always”, and “weak until” can be derived—similarly
as for LTL—as follows:

eventually: ∃♦Φ = ∃(trueU Φ)

∀♦Φ = ∀(trueU Φ)

always: ∃#Φ = ¬∀♦¬Φ

∀#Φ = ¬∃♦¬Φ

∃♦ Φ is pronounced “Φ holds potentially” and ∀♦ Φ is pronounced “Φ is inevitable”. ∃# Φ
is pronounced “potentially always Φ”, ∀# Φ is pronounced “invariantly Φ”, and ∀⃝Φ is
pronounced “for all paths next Φ”.

But not:

318 Computation Tree Logic

temporal operators ⃝ and U are required to be immediately preceded by ∃ or ∀ to obtain
a legal state formula. Formula ∃ϕ holds in a state if there exists some path satisfying ϕ
that starts in that state. Dually, ∀ϕ holds in a state if all paths that start in that state
satisfy ϕ.

Example 6.2. Legal CTL Formulae

Let AP = {x = 1, x < 2, x ! 3 } be a set of atomic propositions. Examples of syntactically
correct CTL formulae are

∃⃝ (x = 1),∀⃝ (x = 1), and x < 2 ∨ x = 1

and ∃((x < 2)U (x ! 3)) and ∀(trueU (x < 2)). Some examples of formulae that are
syntactically incorrect are

∃(x = 1 ∧ ∀⃝ (x ! 3)) and ∃⃝ (trueU (x = 1)).

The first is not a CTL formula since x = 1 ∧ ∀⃝ (x ! 3) is not a path formula and thus
must not be preceded by ∃. The second formula is not a CTL formula since trueU (x = 1)
is a path formula rather than a state formula, and thus cannot be preceded by ⃝. Note
that

∃⃝ (x = 1 ∧ ∀⃝ (x ! 3)) and ∃⃝∀(trueU (x = 1))

are, however, syntactically correct CTL formulae.

The Boolean operators true, false, ∧ , → and ⇔ are defined in the usual way. The
temporal modalities “eventually”, “always”, and “weak until” can be derived—similarly
as for LTL—as follows:

eventually: ∃♦Φ = ∃(trueU Φ)

∀♦Φ = ∀(trueU Φ)

always: ∃#Φ = ¬∀♦¬Φ

∀#Φ = ¬∃♦¬Φ

∃♦ Φ is pronounced “Φ holds potentially” and ∀♦ Φ is pronounced “Φ is inevitable”. ∃# Φ
is pronounced “potentially always Φ”, ∀# Φ is pronounced “invariantly Φ”, and ∀⃝Φ is
pronounced “for all paths next Φ”.

318 Computation Tree Logic

temporal operators ⃝ and U are required to be immediately preceded by ∃ or ∀ to obtain
a legal state formula. Formula ∃ϕ holds in a state if there exists some path satisfying ϕ
that starts in that state. Dually, ∀ϕ holds in a state if all paths that start in that state
satisfy ϕ.

Example 6.2. Legal CTL Formulae

Let AP = {x = 1, x < 2, x ! 3 } be a set of atomic propositions. Examples of syntactically
correct CTL formulae are

∃⃝ (x = 1),∀⃝ (x = 1), and x < 2 ∨ x = 1

and ∃((x < 2)U (x ! 3)) and ∀(trueU (x < 2)). Some examples of formulae that are
syntactically incorrect are

∃(x = 1 ∧ ∀⃝ (x ! 3)) and ∃⃝ (trueU (x = 1)).

The first is not a CTL formula since x = 1 ∧ ∀⃝ (x ! 3) is not a path formula and thus
must not be preceded by ∃. The second formula is not a CTL formula since trueU (x = 1)
is a path formula rather than a state formula, and thus cannot be preceded by ⃝. Note
that

∃⃝ (x = 1 ∧ ∀⃝ (x ! 3)) and ∃⃝∀(trueU (x = 1))

are, however, syntactically correct CTL formulae.

The Boolean operators true, false, ∧ , → and ⇔ are defined in the usual way. The
temporal modalities “eventually”, “always”, and “weak until” can be derived—similarly
as for LTL—as follows:

eventually: ∃♦Φ = ∃(trueU Φ)

∀♦Φ = ∀(trueU Φ)

always: ∃#Φ = ¬∀♦¬Φ

∀#Φ = ¬∃♦¬Φ

∃♦ Φ is pronounced “Φ holds potentially” and ∀♦ Φ is pronounced “Φ is inevitable”. ∃# Φ
is pronounced “potentially always Φ”, ∀# Φ is pronounced “invariantly Φ”, and ∀⃝Φ is
pronounced “for all paths next Φ”.

Eventually and Always

318 Computation Tree Logic

temporal operators ⃝ and U are required to be immediately preceded by ∃ or ∀ to obtain
a legal state formula. Formula ∃ϕ holds in a state if there exists some path satisfying ϕ
that starts in that state. Dually, ∀ϕ holds in a state if all paths that start in that state
satisfy ϕ.

Example 6.2. Legal CTL Formulae

Let AP = {x = 1, x < 2, x ! 3 } be a set of atomic propositions. Examples of syntactically
correct CTL formulae are

∃⃝ (x = 1),∀⃝ (x = 1), and x < 2 ∨ x = 1

and ∃((x < 2)U (x ! 3)) and ∀(trueU (x < 2)). Some examples of formulae that are
syntactically incorrect are

∃(x = 1 ∧ ∀⃝ (x ! 3)) and ∃⃝ (trueU (x = 1)).

The first is not a CTL formula since x = 1 ∧ ∀⃝ (x ! 3) is not a path formula and thus
must not be preceded by ∃. The second formula is not a CTL formula since trueU (x = 1)
is a path formula rather than a state formula, and thus cannot be preceded by ⃝. Note
that

∃⃝ (x = 1 ∧ ∀⃝ (x ! 3)) and ∃⃝∀(trueU (x = 1))

are, however, syntactically correct CTL formulae.

The Boolean operators true, false, ∧ , → and ⇔ are defined in the usual way. The
temporal modalities “eventually”, “always”, and “weak until” can be derived—similarly
as for LTL—as follows:

eventually: ∃♦Φ = ∃(trueU Φ)

∀♦Φ = ∀(trueU Φ)

always: ∃#Φ = ¬∀♦¬Φ

∀#Φ = ¬∃♦¬Φ

∃♦ Φ is pronounced “Φ holds potentially” and ∀♦ Φ is pronounced “Φ is inevitable”. ∃# Φ
is pronounced “potentially always Φ”, ∀# Φ is pronounced “invariantly Φ”, and ∀⃝Φ is
pronounced “for all paths next Φ”.

318 Computation Tree Logic

temporal operators ⃝ and U are required to be immediately preceded by ∃ or ∀ to obtain
a legal state formula. Formula ∃ϕ holds in a state if there exists some path satisfying ϕ
that starts in that state. Dually, ∀ϕ holds in a state if all paths that start in that state
satisfy ϕ.

Example 6.2. Legal CTL Formulae

Let AP = {x = 1, x < 2, x ! 3 } be a set of atomic propositions. Examples of syntactically
correct CTL formulae are

∃⃝ (x = 1),∀⃝ (x = 1), and x < 2 ∨ x = 1

and ∃((x < 2)U (x ! 3)) and ∀(trueU (x < 2)). Some examples of formulae that are
syntactically incorrect are

∃(x = 1 ∧ ∀⃝ (x ! 3)) and ∃⃝ (trueU (x = 1)).

The first is not a CTL formula since x = 1 ∧ ∀⃝ (x ! 3) is not a path formula and thus
must not be preceded by ∃. The second formula is not a CTL formula since trueU (x = 1)
is a path formula rather than a state formula, and thus cannot be preceded by ⃝. Note
that

∃⃝ (x = 1 ∧ ∀⃝ (x ! 3)) and ∃⃝∀(trueU (x = 1))

are, however, syntactically correct CTL formulae.

The Boolean operators true, false, ∧ , → and ⇔ are defined in the usual way. The
temporal modalities “eventually”, “always”, and “weak until” can be derived—similarly
as for LTL—as follows:

eventually: ∃♦Φ = ∃(trueU Φ)

∀♦Φ = ∀(trueU Φ)

always: ∃#Φ = ¬∀♦¬Φ

∀#Φ = ¬∃♦¬Φ

∃♦ Φ is pronounced “Φ holds potentially” and ∀♦ Φ is pronounced “Φ is inevitable”. ∃# Φ
is pronounced “potentially always Φ”, ∀# Φ is pronounced “invariantly Φ”, and ∀⃝Φ is
pronounced “for all paths next Φ”.

Meaning of CTL: Examples
322 Computation Tree Logic

∃! black

∀! black

∃♦ black

∀♦ black

∃(grayU black) ∀(grayU black)

Figure 6.2: Visualization of semantics of some basic CTL formulae.

CTL Semantics

320 Computation Tree Logic

6.2.2 Semantics

CTL formulae are interpreted over the states and paths of a transition system TS. For-
mally, given a transition system TS, the semantics of CTL formulae is defined by two
satisfaction relations (both denoted by |=TS, or briefly |=): one for the state formulae and
one for the path formulae. For the state formulae, |= is a relation between the states in TS
and state formulae. We write s |= Φ rather than (s,Φ) ∈ |=. The intended interpretation
is: s |= Φ if and only if state formula Φ holds in state s. For the path formulae, |= is
a relation between maximal path fragments in TS and path formulae. We write π |= Φ
rather than (π,Φ) ∈ |=. The intended interpretation is: π |= ϕ if and only if path π
satisfies path formula ϕ.

Definition 6.4. Satisfaction Relation for CTL

Let a ∈ AP be an atomic proposition, TS = (S,Act,→, I,AP, L) be a transition system
without terminal states, state s ∈ S, Φ,Ψ be CTL state formulae, and ϕ be a CTL path
formula. The satisfaction relation |= is defined for state formulae by

s |= a iff a ∈ L(s)

s |= ¬Φ iff not s |= Φ

s |= Φ∧Ψ iff (s |= Φ) and (s |= Ψ)

s |= ∃ϕ iff π |= ϕ for some π ∈ Paths(s)

s |= ∀ϕ iff π |= ϕ for all π ∈ Paths(s)

For path π, the satisfaction relation |= for path formulae is defined by

π |= ⃝Φ iff π[1] |= Φ

π |= Φ UΨ iff ∃ j ! 0. (π[j] |= Ψ ∧ (∀ 0 " k < j.π[k] |= Φ)) .

where for path π = s0 s1 s2 . . . and integer i ! 0, π[i] denotes the (i+1)th state of π, i.e.,
π[i] = si.

The interpretations for atomic propositions, negation, and conjunction are as usual, where
it should be noted that in CTL they are interpreted over states, whereas in LTL they are
interpreted over paths. state formula ∃ϕ is valid in state s if and only if there exists some
path starting in s that satisfies ϕ. In contrast, ∀ϕ is valid in state s if and only if all
paths starting in s satisfy ϕ. The semantics of the path formulae is identical (although
formulated slightly more simply) to that for LTL.1 For instance, ∃⃝Φ is valid in state s if

1The semantics of the CTL path formulae is formulated more simply than for LTL, since in CTL each

320 Computation Tree Logic

6.2.2 Semantics

CTL formulae are interpreted over the states and paths of a transition system TS. For-
mally, given a transition system TS, the semantics of CTL formulae is defined by two
satisfaction relations (both denoted by |=TS, or briefly |=): one for the state formulae and
one for the path formulae. For the state formulae, |= is a relation between the states in TS
and state formulae. We write s |= Φ rather than (s,Φ) ∈ |=. The intended interpretation
is: s |= Φ if and only if state formula Φ holds in state s. For the path formulae, |= is
a relation between maximal path fragments in TS and path formulae. We write π |= Φ
rather than (π,Φ) ∈ |=. The intended interpretation is: π |= ϕ if and only if path π
satisfies path formula ϕ.

Definition 6.4. Satisfaction Relation for CTL

Let a ∈ AP be an atomic proposition, TS = (S,Act,→, I,AP, L) be a transition system
without terminal states, state s ∈ S, Φ,Ψ be CTL state formulae, and ϕ be a CTL path
formula. The satisfaction relation |= is defined for state formulae by

s |= a iff a ∈ L(s)

s |= ¬Φ iff not s |= Φ

s |= Φ∧Ψ iff (s |= Φ) and (s |= Ψ)

s |= ∃ϕ iff π |= ϕ for some π ∈ Paths(s)

s |= ∀ϕ iff π |= ϕ for all π ∈ Paths(s)

For path π, the satisfaction relation |= for path formulae is defined by

π |= ⃝Φ iff π[1] |= Φ

π |= Φ UΨ iff ∃ j ! 0. (π[j] |= Ψ ∧ (∀ 0 " k < j.π[k] |= Φ)) .

where for path π = s0 s1 s2 . . . and integer i ! 0, π[i] denotes the (i+1)th state of π, i.e.,
π[i] = si.

The interpretations for atomic propositions, negation, and conjunction are as usual, where
it should be noted that in CTL they are interpreted over states, whereas in LTL they are
interpreted over paths. state formula ∃ϕ is valid in state s if and only if there exists some
path starting in s that satisfies ϕ. In contrast, ∀ϕ is valid in state s if and only if all
paths starting in s satisfy ϕ. The semantics of the path formulae is identical (although
formulated slightly more simply) to that for LTL.1 For instance, ∃⃝Φ is valid in state s if

1The semantics of the CTL path formulae is formulated more simply than for LTL, since in CTL each

CTL for LTSs

Computation Tree Logic 325

∃ (a U (¬ a ∧ ∀(¬ a U b)))

∃⃝ a ∀⃝ a

∃! a ∀! a

∃♦ (∃! a) ∀(a U b)

TS

s1s0

{ a } { a }

s3

{ b }

{ a, b }

s2

(a)

Figure 6.4: Interpretation of several CTL formulae.

Computation Tree Logic 325

∃ (a U (¬ a ∧ ∀(¬ a U b)))

∃⃝ a ∀⃝ a

∃! a ∀! a

∃♦ (∃! a) ∀(a U b)

TS

s1s0

{ a } { a }

s3

{ b }

{ a, b }

s2

(a)

Figure 6.4: Interpretation of several CTL formulae.

Computation Tree Logic 325

∃ (a U (¬ a ∧ ∀(¬ a U b)))

∃⃝ a ∀⃝ a

∃! a ∀! a

∃♦ (∃! a) ∀(a U b)

TS

s1s0

{ a } { a }

s3

{ b }

{ a, b }

s2

(a)

Figure 6.4: Interpretation of several CTL formulae.

Computation Tree Logic 325

∃ (a U (¬ a ∧ ∀(¬ a U b)))

∃⃝ a ∀⃝ a

∃! a ∀! a

∃♦ (∃! a) ∀(a U b)

TS

s1s0

{ a } { a }

s3

{ b }

{ a, b }

s2

(a)

Figure 6.4: Interpretation of several CTL formulae.

Computation Tree Logic 325

∃ (a U (¬ a ∧ ∀(¬ a U b)))

∃⃝ a ∀⃝ a

∃! a ∀! a

∃♦ (∃! a) ∀(a U b)

TS

s1s0

{ a } { a }

s3

{ b }

{ a, b }

s2

(a)

Figure 6.4: Interpretation of several CTL formulae.

Computation Tree Logic 325

∃ (a U (¬ a ∧ ∀(¬ a U b)))

∃⃝ a ∀⃝ a

∃! a ∀! a

∃♦ (∃! a) ∀(a U b)

TS

s1s0

{ a } { a }

s3

{ b }

{ a, b }

s2

(a)

Figure 6.4: Interpretation of several CTL formulae.

Computation Tree Logic 325

∃ (a U (¬ a ∧ ∀(¬ a U b)))

∃⃝ a ∀⃝ a

∃! a ∀! a

∃♦ (∃! a) ∀(a U b)

TS

s1s0

{ a } { a }

s3

{ b }

{ a, b }

s2

(a)

Figure 6.4: Interpretation of several CTL formulae.

Computation Tree Logic 325

∃ (a U (¬ a ∧ ∀(¬ a U b)))

∃⃝ a ∀⃝ a

∃! a ∀! a

∃♦ (∃! a) ∀(a U b)

TS

s1s0

{ a } { a }

s3

{ b }

{ a, b }

s2

(a)

Figure 6.4: Interpretation of several CTL formulae.

End of CTL

