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Step 3: model checking 
against an LTL/CTL 

property



For LTL, you would need to 
know/learn about automata 

on infinite words ….



CTL Model Checking



CTL Expansion Laws

Lemma. Until is the least solution to the expansion law.

The following equation has many solutions:

Until is the smallest set that satisfies this equation.

346 Computation Tree Logic

are based upon the fixed-point equation induced by the expansion laws for ∃(Φ UΨ) and
∃! Φ, respectively. Consider, for instance, the expansion law

∃(Φ U Ψ) ≡ Ψ ∨ (Φ ∧ ∃⃝∃(Φ U Ψ)).

The recursive nature of this law suggests to considering the CTL formula ∃(Φ U Ψ) as a
fixed point of the logical equation

F ≡ Ψ ∨ (Φ ∧ ∃⃝F ).

By the expansion law F = ∃(Φ UΨ) is a solution, but there are also other solutions that are
not equivalent to ∃(Φ UΨ), such as F = ∃(Φ W Ψ) (see Remark 6.25). However, a unique
characterization of ∃(Φ UΨ) is obtained by the fact that ∃(Φ UΨ) is the least solution
of F ≡ Ψ ∨ (Φ ∧ ∃⃝F ). Using a set-theoretical counterpart by means of Sat(·), we
obtain the following equivalent formulation of constraint (f) in Theorem 6.23:

(f′) Sat(∃(Φ U Ψ)) is the smallest set T ⊆ S satisfying

Sat(Ψ) ∪ { s ∈ Sat(Φ) | Post(s) ∩ T ̸= ∅ } ⊆ T.

In fact, “⊆” may be replaced by “=”.

In a similar way, ∃! Φ can be considered as the greatest fixed point of the logical equation

F = Φ ∧ ∃⃝F.

Using a set-theoretical counterpart of this equation we obtain the following equivalent
formulation of constraint (g) in Theorem 6.23:

(g′) Sat(∃!Φ) is the largest set T ⊆ S satisfying

T ⊆ { s ∈ Sat(Φ) | Post(s) ∩ T ̸= ∅ }.

Also in this characterization “⊆” may be replaced by “=”.

Characterizations of the satisfaction sets for universally quantified CTL formulae can be
obtained using the result in Theorem 6.23. This yields

(h) Sat(∀⃝Φ) = { s ∈ S | Post(s) ⊆ Sat(Φ) }.
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duality laws for path quantifiers

∀⃝Φ ≡ ¬∃⃝¬Φ ∃⃝Φ ≡ ¬∀⃝¬Φ

∀♦Φ ≡ ¬∃"¬Φ ∃♦Φ ≡ ¬∀"¬Φ

∀(Φ UΨ) ≡ ¬∃(¬Ψ U (¬Φ∧¬Ψ)) ∧ ¬∃"¬Ψ

≡ ¬∃((Φ∧¬Ψ)U (¬Φ∧¬Ψ)) ∧ ¬∃"(Φ∧¬Ψ)

≡ ¬∃((Φ∧¬Ψ)W (¬Φ∧¬Ψ))

expansion laws

∀(Φ UΨ) ≡ Ψ ∨ (Φ ∧ ∀⃝ ∀(Φ UΨ))

∀♦Φ ≡ Φ ∨ ∀⃝ ∀♦Φ

∀"Φ ≡ Φ ∧ ∀⃝ ∀"Φ

∃(Φ UΨ) ≡ Ψ ∨ (Φ ∧ ∃⃝ ∃(Φ UΨ))

∃♦Φ ≡ Φ ∨ ∃⃝ ∃♦Φ

∃"Φ ≡ Φ ∧ ∃⃝ ∃"Φ

distributive laws

∀"(Φ∧Ψ) ≡ ∀"Φ ∧ ∀"Ψ

∃♦(Φ ∨ Ψ) ≡ ∃♦Φ ∨ ∃♦Ψ

Figure 6.5: Some equivalence rules for CTL.
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Example 6.22.

Consider the following state formula over AP = { a, b, c }:

Φ = ∃⃝ a︸ ︷︷ ︸
Ψ

∧ ∃(bU ∃!¬c)︸ ︷︷ ︸
Ψ′′

︸ ︷︷ ︸
Ψ′

.

The indicated formulae Ψ and Ψ′ are the maximal proper subformulae of Φ, while Ψ′′ is
a maximal proper subformula of Ψ. The syntax tree for Φ is of the following form:

∧ Sat(Φ)

∃⃝Sat(Ψ) ∃U Sat(Ψ′)

a

b ∃! Sat(Ψ′′)

¬

c

The satisfaction sets for the leaves result directly from the labeling function L. The treat-
ment of subformula ¬c only needs the satisfaction set for Sat(c) to be complemented. Using
Sat(¬c), the set Sat(∃!¬c) can be computed. The subformula Ψ′′ can now be replaced
by the fresh atomic proposition a3 where a3 ∈ L(s) if and only if s ∈ Sat(∃!¬c). The
computation now continues with determining Sat(∃(bU a3)). In a similar way, Sat(∃⃝ a)
can be computed by means of Sat(a).

Once the subformulae Ψ and Ψ′ are treated, they can be replaced by the atomic proposi-
tions a1, a2, respectively, such that

a1 ∈ L(s) iff s |= ∃⃝ a and a2 ∈ L(s) iff s |= ∃(bU a3).

The formula that is to be treated for the root node simply thus is: Φ′ = a1 ∧ a2. Sat(Φ′)
results from intersecting Sat(a1) = Sat(Ψ) and Sat(a2) = Sat(Ψ′). Note that a1, a2, and
a3 are fresh atomic propositions, i.e., { a1, a2, a3 } ∩ AP = ∅. The above procedure thus
is considered over AP′ = AP ∪ { a1, a2, a3 }.

Theorem 6.23. Characterization of Sat(·) for CTL formulae in ENF

Let TS = (S,Act,→, I,AP, L) be a transition system without terminal states. For all CTL
formulae Φ,Ψ over AP it holds that
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Sat(�) : set of all states that satisfy �



Let’s invent the algorithm 
together ….



Watch the white board lecture!
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(a) Sat(true) = S,

(b) Sat(a) = { s ∈ S | a ∈ L(s) }, for any a ∈ AP,

(c) Sat(Φ ∧ Ψ) = Sat(Φ) ∩ Sat(Ψ),

(d) Sat(¬Φ) = S \ Sat(Φ),

(e) Sat(∃⃝Φ) = { s ∈ S | Post(s) ∩ Sat(Φ) ̸= ∅ },

(f) Sat(∃(Φ U Ψ)) is the smallest subset T of S, such that

(1) Sat(Ψ) ⊆ T and (2) s ∈ Sat(Φ) and Post(s) ∩ T ̸= ∅ implies s ∈ T ,

(g) Sat(∃! Φ) is the largest subset T of S, such that

(3) T ⊆ Sat(Φ) and (4) s ∈ T implies Post(s) ∩ T ̸= ∅.

In the clauses (f) and (g), the terms “smallest” and “largest” should be interpreted with
respect to the partial order induced by set inclusion.

Proof: The validity of the claims indicated in (a) through (e) is straightforward. We only
prove the propositions (f) and (g):

Proof of (f): The proof of this claim consists of two parts:

(i) Show that T = Sat(∃(Φ U Ψ)) satisfies (1) and (2). From the expansion law

∃(Φ UΨ) ≡ Ψ ∨ (Φ ∧ ∃⃝∃(Φ UΨ)),

it directly follows that T satisfies the properties (1) and (2).

(ii) Show that for any T satisfying properties (1) and (2) we have

Sat(∃(Φ U Ψ)) ⊆ T.

This is proven as follows. Let s ∈ Sat(∃(Φ UΨ)). Distinguish between s ∈ Sat(Ψ)
and s ̸∈ Sat(Ψ). If s ∈ Sat(Ψ), it follows from (1) that s ∈ T . In case s /∈ Sat(Ψ),
there exists a path π = s0 s1 s2 . . . starting in s=s0, such that π |= Φ UΨ. Let
n > 0, such that si |= Φ, 0 " i < n, and sn |= Ψ. Then:

• sn ∈ Sat(Ψ) ⊆ T ,
• sn−1 ∈ T , since sn ∈ Post(sn−1) ∩ T and sn−1 ∈ Sat(Φ),
• sn−2 ∈ T , since sn−1 ∈ Post(sn−2) ∩ T and sn−2 ∈ Sat(Φ),



Final words on  
Model Checking …


