CSC410

AZADEH FARZAN

FALL 2020

Step 3: model checking against an LTL/CTL property

For LTL, you would need to know/learn about automata on infinite words

CTL Model Checking

CTL Expansion Laws

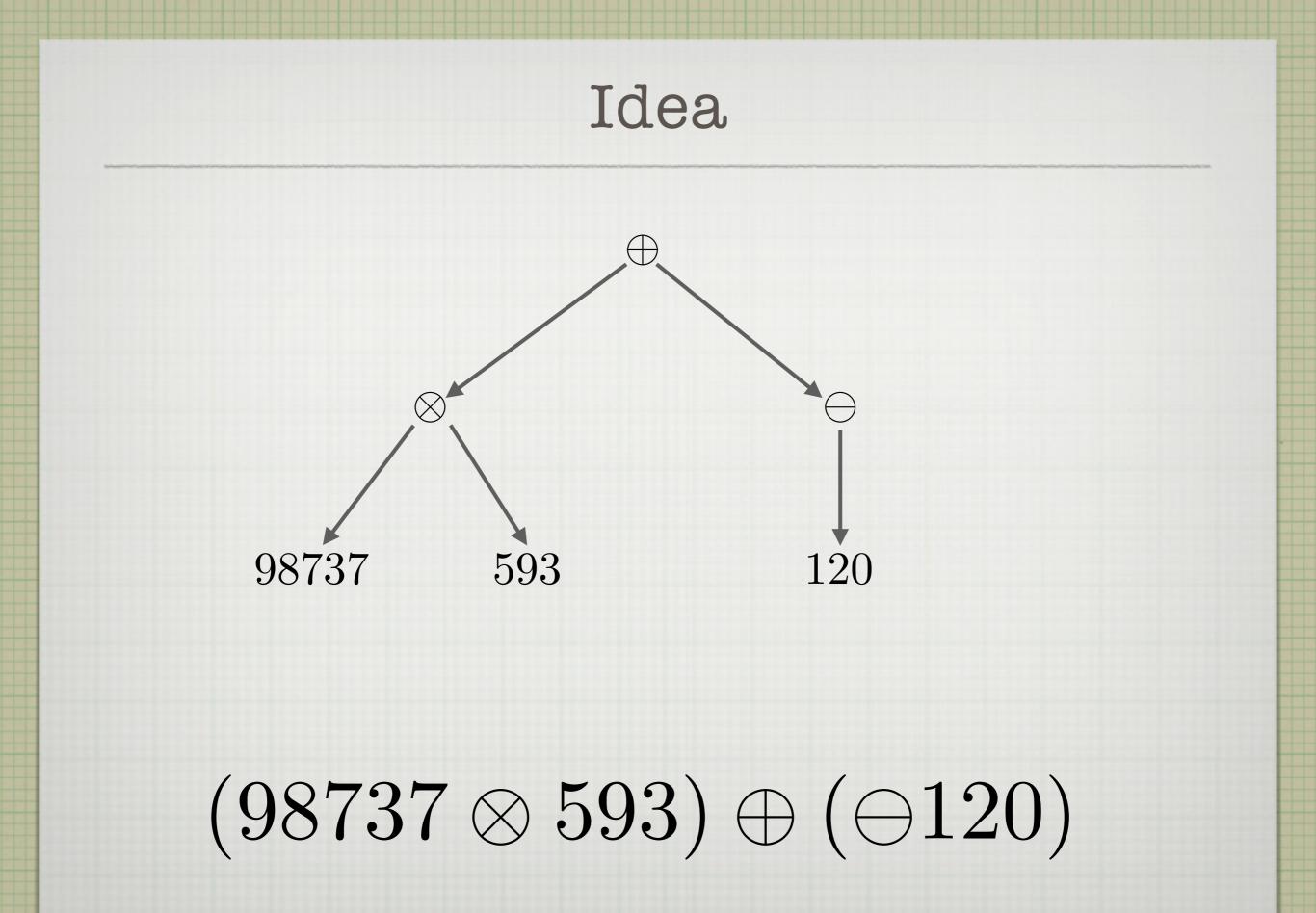
$$\exists (\Phi \cup \Psi) \equiv \Psi \lor (\Phi \land \exists \bigcirc \exists (\Phi \cup \Psi))$$
$$\exists \Diamond \Phi \equiv \Phi \lor \exists \bigcirc \exists \Diamond \Phi$$
$$\exists \Box \Phi \equiv \Phi \lor \exists \bigcirc \exists \Diamond \Phi$$
$$\exists \Box \Phi \equiv \Phi \land \exists \bigcirc \exists \Box \Phi$$

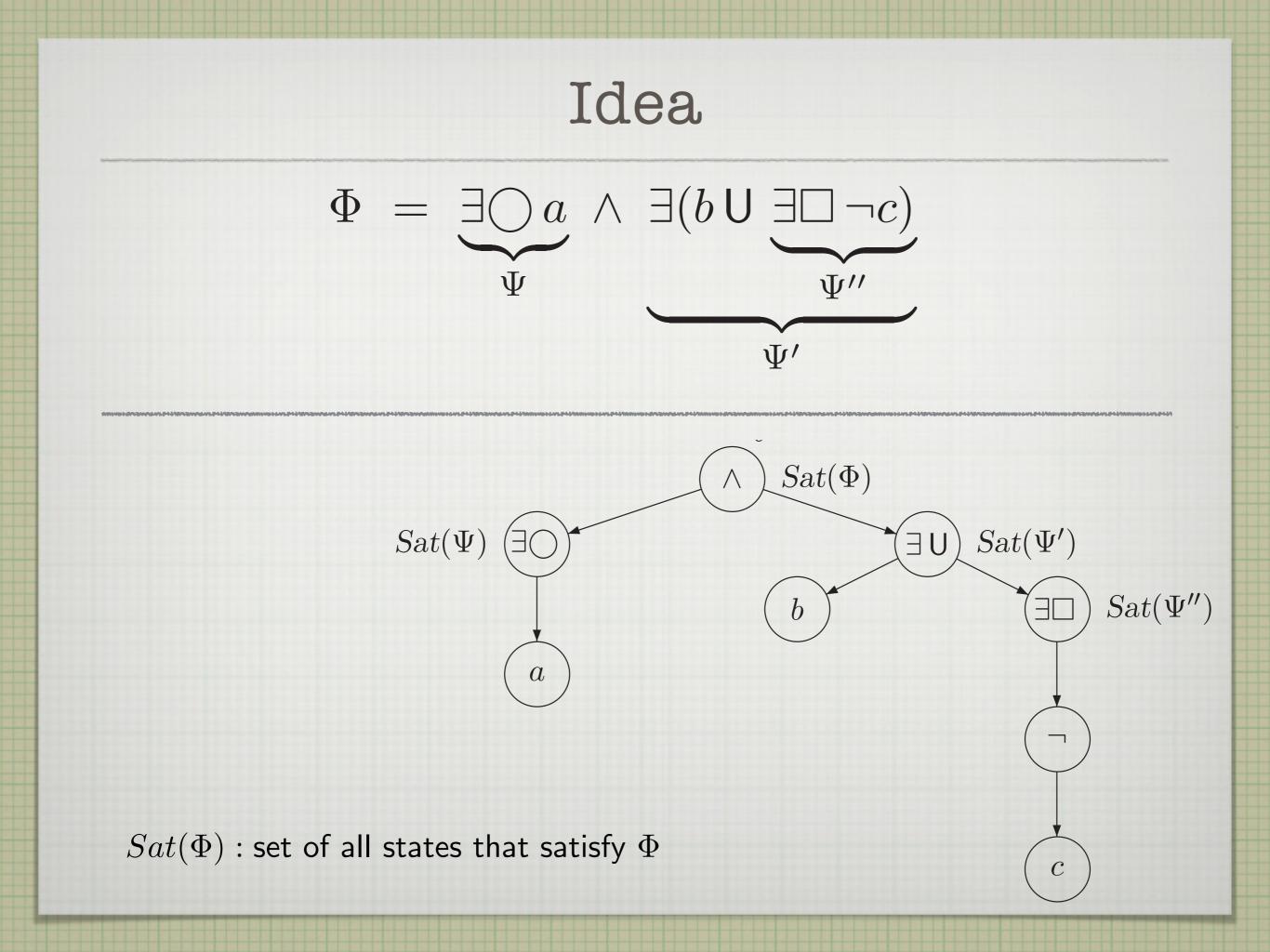
Lemma. Until is the least solution to the expansion law.

The following equation has many solutions:

$$F \equiv \Psi \lor (\Phi \land \exists \bigcirc F)$$

Until is the smallest set that satisfies this equation.





Let's invent the algorithm together

Watch the white board lecture!

Recursive Rules for ENF

(a) Sat(true) = S, (b) $Sat(a) = \{s \in S \mid a \in L(s)\}, \text{ for any } a \in AP,$ (c) $Sat(\Phi \land \Psi) = Sat(\Phi) \cap Sat(\Psi)$, (d) $Sat(\neg \Phi) = S \setminus Sat(\Phi)$, (e) $Sat(\exists \bigcirc \Phi) = \{ s \in S \mid Post(s) \cap Sat(\Phi) \neq \emptyset \},\$ (f) $Sat(\exists (\Phi \cup \Psi))$ is the smallest subset T of S, such that (1) $Sat(\Psi) \subseteq T$ and (2) $s \in Sat(\Phi)$ and $Post(s) \cap T \neq \emptyset$ implies $s \in T$, (g) $Sat(\exists \Box \Phi)$ is the largest subset T of S, such that (3) $T \subseteq Sat(\Phi)$ and (4) $s \in T$ implies $Post(s) \cap T \neq \emptyset$.

Final words on Model Checking...