
CSC410

ASSIGNMENT 4
Due on December 6, 2023 at 11:59pm, worth 15% of the course mark

Assignment Format and Guidelines on Submission

Submit a properly typed PDF on Markus. No handwritten assignment will be accepted. Unless otherwise
specified, no English words will be marked.

This assignment is partially released and will be completed by November 23rd.

List of files to submit:

• a4.pdf which will include the cleanly typed solutions to the problems.

LTL Problems

Problem 1 – Warmup (12 points)

Alice and Bob work together in a workshop and share some tools. They also have different set of skills and
may need each others’ help to finish a project from time to time. Consider the following atomic propositions:

• at: Alice is using tool t.

• bt: Bob is using tool t.

• aw: Alice has requested Bob’s help with a task and is waiting for help.

• bw: Bob has requested Alice’s help with a task and is waiting for help.

• ah: Alice provides help to Bob.

• bh: Bob provides help to Alice.

Translate each of the following desirable properties of the workshop to an LTL formula:

(a) Whenever Alice is waiting for Bob’s help, Alice is not using the tool t.

(b) If Bob requests help, then either Alice will eventually help or Bob will be waiting forever.

(c) If Alice requests Bob’s help, then Bob cannot request Alice’s help until he provides help to Alice.

(d) Neither Bob nor Alice can request the other person’s help if their help has already been requested until
they provide the requested help. To clarify: this is like adding a “vice versa” to (c) so that it states the
same condition about Bob requesting help from Alice.

Problem 2 (20 points)

Below, use atomic propositions p1, p2, and p3 to indicate that processes 1, 2, and 3 are respectively being
executed by the scheduler. It is OK to assume that the scheduler can run a single process at any given time.
Use req to indicate that a request is issued, and res for a response being issued.

(a) Operating Systems: processes 1, 2, and 3 are executed by a round-robin scheduler. That is, each
process gets executed for one time step, and then we switch to the next.
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(b) Modify the above to let the scheduler run each process for more than one step at a time, but only for
finitely many steps before switching to the next process.

(c) Client-Server Systems: a response is only ever issued if there is a request pending. That is, no response
is issued if there is no request or if the request has already received a response.

Below, assume that the light bulb can be of colours white (w), red (r), green (g), and blue (b) when it
is on, or it can be off (o). The system changes state every second, and the status of the light accordingly
changes (or remains the same). Note that it is assumed that the light is always exactly one colour.

Translate each of the following English specification for this simple system to an LTL formula.

(d) The light bulb turns red at most once. To clarify: turning red means the bulb should be a different
colour in the previous step and change colour to red. It can then stay red for an arbitrary amount of
time. But, if it changes colour to something else, then it cannot turn back to red again.

(e) The light bulb can only turn white if it has previously been at least once blue, once green, and once
red (but not necessarily in that order).

Problem 3 (24 points)

Which one of the following equivalences hold? Give a formal proof for the correct ones and provide a
counterexample for the incorrect ones. A counterexample is an infinite path that satisfies one side and not
the other. You may not use any of the equivalences from the lecture/book as a boost. You are meant to prove
these from scratch whenever they hold.

(a) φ U¬φ ≡ true

(b) (♢□ φ1) ∧ (♢□ φ2) ≡ ♢(□φ1 ∧ □φ2)

(c) □♢φ ⟹ □♢ψ ≡ □(φ ⟹ ♢ψ)

(d) φ U(ψ ∨ ¬φ) ≡ □φ ⟹ ♢ψ

Problem 4 (10 points)

Recall that satisfiability and validity of LTL formulas are defined in the same way as propositional logic
formulas. An LTL formula φ is satisfiable if and only if there exists a path π that satisfies it (∃π ∶ π ⊧ φ).
An LTL formula φ is valid if and only if all paths π satisfy it (∀π ∶ π ⊧ φ). Note that validity of φ can also be
reformulated as the equality φ ≡ true.

For the formulas below, determine if the formula is satisfiable, unsatisfiable, or valid. Formally justify
your answer.

(a) ♢b ⟹ (a U b).

(b) ◯(a ∨♢a) ⟹ ♢a

CTL Problems

Problem 5 (16 points)

Recall the setup of Problems 1 and 2. We will reuse them for this problem to write a few more properties in
CTL.

(a) Bob cannot ask for Alice’s help unless he has already helped Alice at least once. Note that Bob does
not have to ask for Alice’s help at all; but, if he does, it should be after having helped Alice before.

(b) If Alice asks for Bob’s help, then it is a future possibility (but not necessity) that the tool remains
available from this moment (that the help was requested) until the help is delivered.
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(c) The light bulb has a possible future in which it is never indefinitely stuck on any one colour.

(d) If the light bulb has ever switched from white to blue in the past, then it cannot switch from blue to
white in the future.

Problem 6 (16 points)

Let TS be a finite transition system (over AP ) without terminal states (i.e. every state has an outgoing
transition), and Φ and Ψ be CTL state formulae (over AP ). Prove or disprove: TS ⊧ ∃(Φ UΨ) if and only if
TS

′
⊧ ∃♢Ψ where TS ′ is obtained from TS by eliminating all outgoing transitions from states s such that

s ⊧ Ψ ∨ ¬Φ.

Problem 7 (20 points)

Which one of the following equivalences hold? Give a formal proof for the correct ones and provide a coun-
terexample for the incorrect ones. Proofs should be from scratch, and not by referencing other equalities.

(a) ∀□ ∃♢(φ1 ∧ φ2) ≡ ∀□ ∃♢φ1 ∧∀ □ ∃♢φ2

(b) ∃ □ ∀♢(φ1 ∧ φ2) ≡ ∃ □ ∀♢φ1 ∧ ∃ □ ∀♢φ2

(c) ∃ □ φ ≡ φ ∧ ∃◯∃ □ φ

Model Checking

One more problem left on model checking, which will be released in synch with class on November 23rd.
The grad problem will also be released by that date.

Problem 8 (30 points)

This problem is for undergraduates only, and its goals is to ensure the understanding of the ideas behind
the CTL model checking algorithm, specifically the way universal and existential until is computed through
fixpoints.

There is a game played on a grid of squares with one piece which is initially located at a position (m,n) of
a grid (with m,n ∈ N). The grid’s origin (0, 0) is at the bottom left corner and it is arbitrarily large including
all squares with pairs of natural number coordinates.

The game is played between two players, who take alternate turns to move this game piece towards the
origin. The valid moves for the piece are like a chess queen, as long as the direction of the move is towards
the origin, i.e. left, down or diagonally towards left-down. Like a chess queen, the piece is allowed to travel
as far as the player chooses in a valid direction during the one move. The player that moves the piece to the
origin wins the game. Below is an example play of the game:
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played from the initial location (8, 6) where the first player loses the game.
We say a player has a winning strategy for a game iff there is play for this player to win this game

independent of the choices that the opponent makes. For example, the first player always has a winning
strategy from any location (n, 0), (0, n), or (n, n) because the player can move the piece in one move to the
origin and win.

A two-player game is called determined if from any given position, exactly one of the players has a winning
strategy. The above game is determined. Given two excellent players and any location (m,n), either player
one always wins the game from (m,n) or he always loses.

The goal of this exercise is to implement a decision procedure. The input will be the pair of numbers
(m,n). The output is “1” if the first player has a winning strategy from this location, and “2” if the second
player has a winning strategy from this location.
Note: this problem is not a random implementation problem. To come up with a solution that scales up, you
are encouraged to think carefully about how checking for the existence of a winning strategy relates to the
concepts of existential and universal path properties. You are also encouraged to think about the algorithm
we discussed for until and how the idea behind that algorithm can hint at a nice solution for this problem.
Forbidden Implementation Tricks: In order to let your solution win on merit, rather than hacks, we explic-
itly forbid any sort of optimization trick. For example:

• You cannot boost your solution by giving it a lookup table for smaller values. For example, one can
manually computer all solutions for a 10 × 10 grid, enter those values as a constant for the algorithm,
and let further points to get to one of these points. This will be considered cheating.

• You cannot use an oracle like a SAT/SMT solver under the hood.

The list above is naturally not comprehensive, because it is impossible to a priori guess any trick you may
have up your sleeves as an intelligent bunch. But, it should give you the idea that we are not looking for
shortcuts, but elegant algorithmic solutions.

Format

You are free to implement this in the programming language of your choice. Submit your source files as one
zipped directory source.zip. This directory should include an executable called game that runs on the CDF
machines. The input is passed to your executable as a command line parameter, that is:

./game 2 1

should execute on a CDF machine and return “2”, since the second player has a winning strategy from the
location (2, 1).
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Grading

There is a naive algorithm to solve this which will scale very poorly. What does poorly mean? It means that
the algorithm has exponential complexity and will likely take over a minute to process a location as small
as (12, 10). You may assume that this naive algorithm will get no marks. The reason is that this default
naive solution is something anyone who knows programming can implement and has nothing to do with the
material taught in this class.

A reasonable algorithm should handle the same location (12, 10) in a small fraction of a second. It would
be imprecise to put an exact number on this (since it will be hardware dependent), but think of it as around
0.01s. But, more importantly, you should not see a substantial jumps for small coordinate changes at these
values, for example, between the times for (12, 10) and (13, 12). As an another example, think about your
algorithm scaling up to around coordinates (60, 60) with the execution time remaining under one minute. A
solution like this will take the full mark. But, if you are truly careful with your solution, you should be able
to solve any point in the 60 × 60 grid in under one second.

Note that we will not grade your source code. We ask you to submit it for insurance, that is, in case
something goes wrong with the executables and you would like to reclaim your mark through the original
material submitted, and also glance at it to make sure there are no cheats.
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Graduate Problem (30 points)

Graduate students do not need to submit problem 8. This problem is your replacement for problem 8.
You will have a standard extension for handing this problem in one week later than the due date of this
assignment. We will setup a different Markus entry for this with a different due date.

Linear temporal logic admits an axiomatization. This linked paper provides one such axiomatization in
Section 3, as illustrated below:

TEMPORAL LOGIC CAN BE MORE EXPRESSIVE 

The relation between U and UE is 

f ,  UEf2-- f l  U f2 A ~f2. 

75 

3. PTL: AXIOMATIZATION, DECISION PROCEDURE, AND COMPLEXITY 

Propositional temporal logic has a simple complete axiomatization. The 
following is a variant of the system proved to be complete in Gabbay, 
Pnueli, Shelah, and Stavi, (1980) and also described in Manna, (1981). 

Axiom schemas: 

Inference rules: 

b D(p D q) ~ ( • p  ~ r-lq), 

b O ~ p  = ~ Op, 

~- © (p ~ q) D (©p ~ O q), 

~- [2p~ p A Op A OVlp, 

~- [] (p ~ O p) ~ (p ~ r-lp), 

b r q p ~ p U q ,  

F- p Uq =- q V (p A O(p Uq)). 

(A1) 

(A2) 

(A3) 

(A4) 

(A5) 

(16)  

(A7) 

(A8) 

If w is a propositional tautology, then b w, 

If t--w~ ~ w 2 and Hwl,  then ~-w2, 

If b w, then ~- [] w, 

(R1) 
(R2) 

(R3) 

As will be seen later, our results on extended temporal logic imply that the 
two axioms concerning "until" (U) can be replaced by 

~- p Uq D q  V (p A O ( p  Uq)), (19)  

~- [u A 13(u D q V (p A Ou)] ~ p Uq. (A10) 

The last axiom is an explicit induction axiom for U which makes proofs of 
statements involving U substantially easier. 

PTL has what is often called the small model property. This means that if 
a PTL formula of length l is satisfiable, then it is satisfiable in a structure 
(sg, So) of size at most k I for a fixed k (i.e., it has a model of size at most 

There are others. Your task in this problem is to take one such axiomatization and write a small theorem
prover based on it that can prove goals in LTL. This provides an alternative way of proving goals, compared
to how we did things in class through classic proofs.

For example, let’s say we want to prove the validity of

□(p ⟹ q) ⟹ ♢p ⟹ ♢q

.
The derivation using the axioms would go as

⊢ p ⟹ q ≡ ¬q ⟹ ¬p (R1) (1)

⊢ □(p ⟹ q) ≡ □(¬q ⟹ ¬p) (R3) (2)

⊢ □(¬q ⟹ ¬p) ⟹ □¬q ⟹ □¬p (A2) (3)

⊢ □¬q ⟹ □¬p ≡ ¬♢q ⟹ ¬♢p (A1 and R1) (4)

⊢ ¬♢q ⟹ ¬♢p ≡ ♢p ⟹ ♢q (A1 and R1) (5)

⊢ □(p ⟹ q) ⟹ ♢p ⟹ ♢q (2, 3, 4, 5, and R1) (6)

As another example, let’s consider proving the equality

□(p ∧ q) ≡ □p ∧ □q

.
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The derivation using the axioms would go as

⊢ (p ∧ q) ⟹ p (R1) (1)

⊢ □(p ∧ q) ⟹ □p (R3) (2)

⊢ (p ∧ q) ⟹ q (R1) (3)

⊢ □(p ∧ q) ⟹ □q (R3) (4)

⊢ □(p ∧ q) ⟹ □p ∧ □q (2, 4, and R1) (5)

⊢ p ⟹ (q ⟹ (p ∧ q)) (R1) (6)

⊢ □p ⟹ □(q ⟹ (p ∧ q)) (R1) (7)

⊢ □(q ⟹ (p ∧ q)) ⟹ (□q ⟹ □(p ∧ q)) (R2) (8)

⊢ □p ⟹ (□q ⟹ □(p ∧ q)) (7, 8, and R1) (9)

⊢ □p ∧ □q ⟹ □(p ∧ q) (9 and R1) (10)

⊢ □p ∧ □q ≡ □(p ∧ q) (5 and 10) (11)

Your tool should be able to take (validity) goals of this type as an input, and produce proofs of the above
form. Formally, you are proving the validity of an input LTL formula. For equivalences (in the style of our
second example above), your tool proves the validity of the LTL formula

□(p ∧ q) ⟺ □p ∧ □q

Clearly, a proof search scheme comes with concerns about termination. As a graduate problem, we are
intentionally leaving things open ended for you and treat this as a small research problem. You may need
to think about a compromise between completeness and convergence. As such, we do not give you a very
precise description on what your tool should and should not able to handle. You need to make some decisions
about the type of compromises you want to make.

Accordingly, we do not expect you to submit a tool that will be able to prove everything, especially within
a reasonable time bound. The examples listed here are supposed to inform, and not be treated as test cases
that must definitely pass through the tool. As is often the case with research questions, once faced with a
task that cannot be completed in its most perfect version, your job as the researchers is to define a reasonable
subproblem that can be solved. We are asking you to define (and solve) the best subproblem that you can,
describe your approach, and discuss its strengths and weaknesses.

It is noteworthy that the entire power of propositional reasoning is packed under the single axiom (R1).
You may use the power of a SAT solver to check your propositional tautologies, rather than having to write
your own theorem prover for propositional logic.

Submit your work as:

• A package ltl-prover.zip with a proper Readme on how to run it.

• A clearly mark examples directory under the package that would include samples of at least 10 proofs
your tool can do.

• A one page PDF that explains your research solution to the tension between convergence and com-
pleteness, and a discussion of its strengths and shortcomings.

We will set aside some bonus marks for a tool that really does this well, and can solve many problems.
You can use these bonus marks then globally to compensate for lost marks in other assignments.
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