Program Correctness:
Mechanics

CS410
Fall 2020

What happens under
the hood in Dafny?

Reference

Aaron R. Bradley
Zohar Manna

il | I S I)00 AV S 1 |

N T 1 1 R A A

RN L0 '
AR
EE T

R (11111 RN L

~++{ LR U
1 4 o T o S M

The Calculus
of Computation

Decision Procedures
with Applications to Verification

@ Springer

Overview

@ Goal: specifying and proving properties of programs.
@ Model: Control Flow Graph, or the program itself.
@ Specifications: First Order Logic (FOL) formulas.

@ Proof Methods: Inductive Assertion Method, and Ranking
Functions.

A Simple Language

>Anno+a’rions

bool LinearSgarch(int|| a, int ¢, int u, int e) {
for
(int 2 :=¢; i <wu; 1:=1+1) {
if (ali] = e) return true;

}

return false;

}

Annotations

e An is a First Order Logic formula F whose variables only
include variables.

e An annotation F at program location L means that

Qpre T
Qpost T

bool LinearSearch(int|] a, int ¢, int w, int e) {
for @ T

(int¢:=¥¢; 1 <w; i:=i4+1){
if (a[t] = e) return true;
}@i=u
return false;

}

o indicates what is true upon the function. Free variables
only include

o indicates what is true upon the function. Free variables only
include and a special variable, rv, that refers fo the

Qpre

Q@post

bool LinearSearch(int|| @, int ¢, int u, int e) {
for

(int i :=4; 1 <w; 1:=14+1){
if (ali] = e) return true;

}

return false;

}

Loop Invariant

holds at the .
of each iteration. while

Q F
((condition)) {
(body)

F N (condition)

F N\ —(condition)

(initialize);
while
Q F
((condition)) {
(body)

(increment)

;

for
Q F
((initialize); (condition); (increment)) {

(body)

}

Qpre 0 < /4 A u < |a ‘

@Qpost v > Fi. £ <i<al

bool LinearSearch(intf®
for o

oY =i) {

= _curn true;

Assertions

We can add annotations in the program.

o when they are
, they are simply
called assertions.

Overview

@ A function is partially correct if when the functions precondition is
satisfied on entry, its postcondition is satisfied when it returns (

).

Some Definitions

° an assignment of values (of the proper type) to program
variables.

s pet— Pbes e 3.0 3. a s @B Ty < T}

The state can also be represented
by any logical formula in any theory.

Partial Correctness

e Given pre/post conditions Liprenttin: 8

solpc|] = Lyg

S0 prr’e

e The function may have both finite and infinite paths:
S0S5152 ...5n

SQS189". .Sy ..«

!f""
e The function is if for ever finite path:

S0 :prr’e S Sn e

How do we prove partial
correctness?

How does Dafny work?

Overview

@ How do we prove program path satisfies the specification?

@ We partial correctness of programs by the Inductive Assertion
Method.

@ For each function, we generate a set of Verification
Conditions (VC); if all VCs are correct, then the program is
partially correct.

Some Definitions

° sequence of program statements.

° a Path that starts at a precondition or a loop invariant, and
ends at a loop invariant, an assertion, or a post condition.

Qpre 0 < ¢ A u < |al

Qpost rv «— Fi. £<i<u A alt]=c¢€

bool LinearSearch(int|] a, int ¢, int u, int e) {
for

QL: (<i AN (Vj. £<j<i — alj] #e)

(int i :=4; 1 <wu; i:=1+1) {
if (ali] = e) return true; @Q@QL: ¢(<i A (Vj.0<j<i — alj]#e)
! QL: 0<i A (Vj.£<j<i — a[j] #e)

return false; SR § >
} rv .= false;

Qpost rv <« J5. £<j<u A alj]=e - ¢)

Inductive Assertion Method

e We reduce the reasoning about the function to reasoning about

e We reason about the basic paths, by reducing the reasoning to a
Verification Condition (VC).

P-Invariant vs. P-Inductive

e P-Invariant: an at of program P is P-invariant
iff whenever program reaches location L during with
program , then s |= F.

Sipe| =k — us =7

e P-Inductive: if generated by the program are
, Then all program annotations are P-inductive.

Theorem: p-induct riant.

For iterative progrc ctive annotation

mostly amounts to ppropriate loop Invariant.

Watch all Dafny Videos
on Iterative examples:

Find, Quotient/Remainder,
Strengthening, Robot, Partition

Total Correctness

e To prove termination of functions, we use

e Ranking functions are a convenient way of dealing with
well-founded relations.

® We need to prove that annotations are inductive.

@ We need to prove that the ranking function decreases
. beginning and ending with ranking functions.

Watch the Dafny Video
on termination

Basic Paths: Functions

e A functions post condition summarizes the effect of calling the
function, by relating its to its

e Replacing function calls by their makes listing of basic
paths and the reasoning about the function local.

Qpre 0 < ¢ A u < |a|] A sorted(a,l,u)

Qpost v <« Fi. £<i<u A aft] =e

bool BinarySearch(int|| a, int ¢, int u, int e) {
if (¢ > u) return false;
else {

int m := (£ +u) div 2;

if (alm| = e) return true;

else if (a|[m] < e) return BinarySearch(a, m + 1, u, e);
else return BinarySearch(a,?,m — 1,e);

}
}

Basic Paths: Functions

e A functions post condition summarizes the effect of calling the
function, by relating its to its

e Replacing function calls by their makes listing of basic
paths and the reasoning about the function local.

@Qpre 0 </ A u < |a| N sorted(a,?,u)
Qpost v «— Ji. £<i<u A alil =e
bool BinarySearch(int|| a, int ¢, int w, int e) {
if (¢ > u) return false;
else {
int m = (£ + u) div 2;
if (a|m] = e) return true;
else if (ajm] <e) {

QR:1: 0<m+1 A u<la|] A sorted(a,m+ 1,u);
return BinarySearch(a,m + 1, u, e);

} else {
QRy: 0<{ A m—1<|a|] A sorted(a,?,m —1);
return BinarySearch(a,?,m — 1, e);

Function Summaries

e A functions post condition summarizes the effect of calling the
function, by relating its to its

e An appropriate function summary is inductive (same as P-inductive).

¢ To construct a proof, an inductive function summary is required.

Watch the recursive Robot Dafny video to
understand the difference between
and summaries!

Read the full binary search
example from the
recommended book chapfter!

Your Input
VS
Theorem Provers Help

Motivation for Strategies

' Main Challenge: discovering the extra information to
make the method succeed: loop invariants, ...

' We know how to reduce the checking of an annotated
function to a finite set of basic paths.

' We can use the SMT fechnology to automatically
check the validity of these paths.

You think and strategize to come up with these
annotations in the first place.

Challenges

@ Writing function specification (pre/post-conditions)
requires human ingenuity.

@ Simple and generic assertions, such as ruling out run
time errors, can be generated automatically.

@ Writing loop invariants also requires human ingenuity.

@ Writing inductive loop invariants are specifically hard.

D@ A lot of research has been done for this.

@ Example: linear and polynomial relations
between variables can be discovered.

