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Overview

Goal: specifying and proving properties of programs.

Model: Control Flow Graph, or the program itself.

Specifications: First Order Logic (FOL) formulas.

Proof Methods: Inductive Assertion Method, and Ranking 
Functions.



A Simple Language
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@pre ⊤
@post ⊤
bool LinearSearch(int[] a, int ℓ, int u, int e) {
for @ ⊤

(int i := ℓ; i ≤ u; i := i + 1) {
if (a[i] = e) return true;

}
return false;

}

Fig. 5.1. LinearSearch

guages: its data types do not include pointer or reference types; and it does
not allow global variables, although it does have global constants (see Exercise
6.5). After reading this chapter and Chapter 12, the interested reader should
consult the wide literature on program analysis to learn how the techniques of
these chapters extend to reasoning about standard programming languages.

5.1.1 The Language

Because pi is superficially a C-like language with restrictions, we present the
essential features of pi through examples.

Example 5.1. Figure 5.1 lists the function LinearSearch, which searches the
range [ℓ, u] of an array a of integers for a value e. It returns true iff the given
array contains the value between the lower bound ℓ and upper bound u. It
behaves correctly only if 0 ≤ ℓ and u < |a|; otherwise, the array a is accessed
outside of its domain [0, |a|− 1]. |a| denotes the length of array a.

Observe that most of the syntax is similar to C. For example, the for loop
sets i to be ℓ initially and then executes the body of the loop and increments i
by 1 as long as i ≤ u. Also, an integer array has type int[], which is constructed
from base type int. One syntactic difference occurs in assignment, which is
written := to distinguish it from the equality predicate =. We use = as the
equality predicate, rather than ==, to correspond to the standard equality
predicate of FOL. Finally, unlike C, pi has type bool and constants true and
false.

Notice the lines beginning with @. They are program annotations, which
we discuss in detail in the next section.

In LinearSearch, a, ℓ, u, and e are the formal parameters (also, param-
eters) of the function. If LinearSearch is called as LinearSearch(b, 0, |b|− 1, v),
then b, 0, |b|− 1, and v are the arguments. !

Example 5.2. Figure 5.2 lists the recursive function BinarySearch, which
searches a range [ℓ, u] of a sorted (weakly increasing: a[i] ≤ a[j] if i ≤ j)
array a of integers for a value e. Like LinearSearch, it returns true iff the

Annotations



Annotations
• An annotation is a First Order Logic formula F whose free variables only 
include program variables.  

• An annotation F at program location L means that F holds whenever program 
control reaches L.  
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@ i = u



5.1 pi: A Simple Imperative Language 119

@pre 0 ≤ ℓ ∧ u < |a|
@post rv ↔ ∃i. ℓ ≤ i ≤ u ∧ a[i] = e
bool LinearSearch(int[] a, int ℓ, int u, int e) {
for @ ⊤

(int i := ℓ; i ≤ u; i := i + 1) {
if (a[i] = e) return true;

}
return false;

}

Fig. 5.6. LinearSearch with function specification

@pre ⊤
@post rv ↔ ∃i. 0 ≤ ℓ ≤ i ≤ u < |a| ∧ a[i] = e
bool LinearSearch(int[] a, int ℓ, int u, int e) {
if (ℓ < 0 ∨ u ≥ |a|) return false;
for @ ⊤

(int i := ℓ; i ≤ u; i := i + 1) {
if (a[i] = e) return true;

}
return false;

}

Fig. 5.7. Robust LinearSearch with function specification

Example 5.5. In Example 5.1, we informally specified the behavior of Lin-
earSearch as follows: LinearSearch returns true iff the array a contains the
value e in the range [ℓ, u]. It behaves correctly only when ℓ ≥ 0 and u < |a|.

Function specifications formalize such statements. Figure 5.6 presents Lin-
earSearch with its specification. The precondition asserts that the lower bound
ℓ should be at least 0 and that the upper bound u should be less than the
length |a| of the array a. The postcondition asserts that the return value rv
is true iff a[i] = e for some index i ∈ [ℓ, u] of a. !

Example 5.6. A nontrivial precondition (a formula other than ⊤) is not al-
ways acceptable, especially if a function is public to a module. Figure 5.7 lists
a more robust version of linear search. The formula

0 ≤ ℓ ≤ i ≤ u < |a|

abbreviates

0 ≤ ℓ ∧ ℓ ≤ i ∧ i ≤ u ∧ u < |a| .

A nontrivial precondition is sometimes acceptable for a function that is private
to a module. The verification method of this chapter checks that every instance
of a call to such a function obeys the precondition. !

• Precondition indicates what is true upon entering the function. Free variables 
only include function parameters.  

• Postcondition: indicates what is true upon exiting the function. Free variables only 
include function parameters and a special variable, rv, that refers to the return 
value.



Loop Invariant
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and could be specified as well. For example, the returned array rv should be
a permutation of the original array a0 (see Exercise 6.5). !

Section 5.2 presents a method for proving that a function satisfies its
partial correctness specification: if the function precondition is satisfied and
the function halts, then the function postcondition holds upon return. Section
5.3 discusses a method for proving that, additionally, the function always halts.

Loop Invariants

Each for loop and while loop has an attendant annotation called the loop
invariant. A while loop

while
@ F
(⟨condition⟩) {
⟨body⟩

}

says to apply the ⟨body⟩ as long as ⟨condition⟩ holds. The assertion F must
hold at the beginning of every iteration. It is evaluated before the ⟨condition⟩
is evaluated, so it must hold even on the final iteration when ⟨condition⟩ is
false. Therefore, on entering the ⟨body⟩ of the loop,

F ∧ ⟨condition⟩

must hold, and on exiting the loop,

F ∧ ¬⟨condition⟩

must hold.
To consider a for loop, translate the loop

for
@ F
(⟨initialize⟩; ⟨condition⟩; ⟨increment⟩) {
⟨body⟩

}

into the equivalent loop

⟨initialize⟩;
while

@ F
(⟨condition⟩) {
⟨body⟩
⟨increment⟩

}

F must hold after the ⟨initialize⟩ statement has been evaluated and, on each
iteration, before the ⟨condition⟩ is evaluated.
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• Loop Invariant holds at the 
   beginning of each iteration. 
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@pre 0 ≤ ℓ ∧ u < |a|
@post rv ↔ ∃i. ℓ ≤ i ≤ u ∧ a[i] = e
bool LinearSearch(int[] a, int ℓ, int u, int e) {
for

@L : ℓ ≤ i ∧ (∀j. ℓ ≤ j < i → a[j] ≠ e)
(int i := ℓ; i ≤ u; i := i + 1) {
if (a[i] = e) return true;

}
return false;

}

Fig. 5.10. LinearSearch with loop invariant

Example 5.9. Figure 5.10 lists LinearSearch with a nontrivial loop invariant
at L. It asserts that whenever control reaches L, the loop index is at least ℓ
and that a[j] ̸= e for previously examined indices j. !

Section 5.2 shows that loop invariants are crucial for constructing an in-
ductive argument that a function obeys its specification.

Assertions

In pi, one can add an annotation anywhere. When an annotation is not a
function precondition, function postcondition, or loop invariant, we call it an
assertion. Assertions allow programmers to provide a formal comment. For
example, if at the statement

i := i + k;

the programmer thinks that k is positive, then the programmer can add an
assertion stating that supposition:

@ k > 0;
i := i + k;

Later, the programmer’s hyothesis about k is verified with formal verification
at compile time or with dynamic assertion tests at runtime.

Runtime assertions are a special class of assertions. In most program-
ming languages, runtime errors include division by 0, modulo by 0, and
dereference of null. In particular, division by 0 and modulo by 0 cause hard-
ware exceptions, while only some languages, such as Java, catch a dereference
of null. In pi, runtime errors include division by 0, modulo by 0, and accessing
an array out of bounds. The pi compiler generates runtime assertions to catch
runtime errors.

Example 5.10. Figure 5.11 lists LinearSearch with runtime assertions. The
array read a[i] is protected by the assertion that i is a legal index of a. !
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Assertions
We can add annotations anywhere in the program.  

• Assertions: when they are not preconditions,   
  postconditions, or loop invariants, they are simply 
  called assertions.
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Partial Correctness



Overview

A function is partially correct if when the function’s precondition is 
satisfied on entry, its postcondition is satisfied when it returns (if it 
ever does).



Some Definitions
• Program States: an assignment of values (of the proper type) to program 
variables.  

s : {pc� L1, l� 1, u� 3, i� 3, a� [4; 7; 1], rv � []}

The state can also be represented
by any logical formula in any theory.



Partial Correctness

s0[pc] = L0

Fpre , Fpost• Given pre/post conditions  

s0s1s2 . . . sn

s0s1s2 . . . sn . . .

• The function may have both finite and infinite paths: 

• The function is partially correct if for ever finite path:

s0 |= Fpre =� sn |= Fpost

s0 |= Fpre



How do we prove partial 
correctness?

How does Dafny work?



Overview

How do we prove every program path satisfies the specification?

We prove partial correctness of programs by the Inductive Assertion 
Method. 

For each function, we generate a finite set of Verification 
Conditions (VC); if all VCs are correct, then the program is 
partially correct. 
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@pre

L

@post

(1)

(3)

(2),(4)

Fig. 5.16. Visualization of basic paths of LinearSearch

(4)
@L : ℓ ≤ i ∧ (∀j. ℓ ≤ j < i → a[j] ≠ e)
assume i > u;
rv := false;
@post rv ↔ ∃j. ℓ ≤ j ≤ u ∧ a[j] = e

To avoid forgetting a basic path, we list paths in a depth-first order. When
a guard is encountered, assume that it holds and generate the resulting paths;
then assume that it does not hold and generate the resulting paths. In this
example, the loop guard i ≤ u in (2) is first encountered; (2) and (3) follow
from the assumption that the loop guard holds, while (4) follows from the
assumption that it does not hold. The if statement guard a[i] = e is next
encountered in (2); (2) follows from the assumption that it holds, while (3)
follows from the assumption that it does not hold. Figure 5.16 visualizes these
basic paths. !

Example 5.14. Figure 5.17 lists BubbleSort with loop invariants. The outer
loop invariant at L1 asserts that

• i is in the range [−1, |a|− 1] (if |a| = 0, then i is initially −1);
• a is sorted in the range [i, |a|− 1];
• and a is partitioned such that each element in the range [0, i] is at most

(less than or equal to) each element in the range [i + 1, |a|− 1].

Its inner loop invariant at L2 asserts that

• i is in the range [1, |a|− 1], and j is in the range [0, i];
• a is sorted in the range [i, |a|− 1] as in the outer loop;
• a is partitioned as in the outer loop;
• and a is also partitioned such that each element in the range [0, j − 1] is

at most a[j].

The partitioned predicate is defined in the theory TZ ∪ TA:

partitioned(a, ℓ1, u1, ℓ2, u2)
⇔ ∀i, j. ℓ1 ≤ i ≤ u1 < ℓ2 ≤ j ≤ u2 → a[i] ≤ a[j] .
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Some Definitions
• Path: sequence of program statements.  

• Basic Path: a Path that starts at a precondition or a loop invariant, and 
ends at a loop invariant, an assertion, or a post condition.
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Example 5.10. Figure 5.11 lists LinearSearch with runtime assertions. The
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Example 5.13. Figure 5.15 lists an annotated version of LinearSearch. Its
basic paths are the following. The first basic path starts at the function pre-
condition, enters the for loop via the initialization statement, and ends at
the loop invariant L:

(1)
@pre 0 ≤ ℓ ∧ u < |a|
i := ℓ;
@L : ℓ ≤ i ∧ (∀j. ℓ ≤ j < i → a[j] ≠ e)

The second basic path begins at the loop invariant at L, passes the loop
guard i ≤ u, passes the guard a[i] = e of the if statement, executes the
return (of true), and ends at the postcondition:

(2)
@L : ℓ ≤ i ∧ (∀j. ℓ ≤ j < i → a[j] ≠ e)
assume i ≤ u;
assume a[i] = e;
rv := true;
@post rv ↔ ∃j. ℓ ≤ j ≤ u ∧ a[j] = e

This path exhibits two new aspects of basic paths. First, return statements
become assignments to the special variable rv representing the return value.

Second, guards arising in program statements (in for loop guards, while
loop guards, or if statements) become assume statements in basic paths.
An assume statement assume c in a basic path means that the remainder of
the basic path is executed only if the condition c holds at assume c. Each
guard with condition c results in two assumptions: the guard holds (c) or
it does not hold (¬c). Therefore, each guard produces two paths with the
same prefix up to the guard. They diverge on the assumption: one basic path
has the statement assume c, and the other has the statement assume ¬c.
These assumptions and the control structure of the program determine the
construction of the remainder of the basic paths.

For example, the third path has the same prefix as (2) but makes the
opposite assumption at the if statement guard: it assumes a[i] ≠ e rather
than a[i] = e. Therefore, this path loops back around to the loop invariant:

(3)
@L : ℓ ≤ i ∧ (∀j. ℓ ≤ j < i → a[j] ≠ e)
assume i ≤ u;
assume a[i] ≠ e;
i := i + 1;
@L : ℓ ≤ i ∧ (∀j. ℓ ≤ j < i → a[j] ≠ e)

The final basic path has the same prefix as (2) and (3) but makes the
opposite assumption at the for loop guard: it assumes i > u rather than
i ≤ u. Therefore, this path exits the loop and returns false:
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Example 5.13. Figure 5.15 lists an annotated version of LinearSearch. Its
basic paths are the following. The first basic path starts at the function pre-
condition, enters the for loop via the initialization statement, and ends at
the loop invariant L:

(1)
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i := ℓ;
@L : ℓ ≤ i ∧ (∀j. ℓ ≤ j < i → a[j] ≠ e)

The second basic path begins at the loop invariant at L, passes the loop
guard i ≤ u, passes the guard a[i] = e of the if statement, executes the
return (of true), and ends at the postcondition:

(2)
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assume i ≤ u;
assume a[i] = e;
rv := true;
@post rv ↔ ∃j. ℓ ≤ j ≤ u ∧ a[j] = e

This path exhibits two new aspects of basic paths. First, return statements
become assignments to the special variable rv representing the return value.

Second, guards arising in program statements (in for loop guards, while
loop guards, or if statements) become assume statements in basic paths.
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assume i ≤ u;
assume a[i] ≠ e;
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@pre

L

@post

(1)

(3)

(2),(4)

Fig. 5.16. Visualization of basic paths of LinearSearch

(4)
@L : ℓ ≤ i ∧ (∀j. ℓ ≤ j < i → a[j] ≠ e)
assume i > u;
rv := false;
@post rv ↔ ∃j. ℓ ≤ j ≤ u ∧ a[j] = e

To avoid forgetting a basic path, we list paths in a depth-first order. When
a guard is encountered, assume that it holds and generate the resulting paths;
then assume that it does not hold and generate the resulting paths. In this
example, the loop guard i ≤ u in (2) is first encountered; (2) and (3) follow
from the assumption that the loop guard holds, while (4) follows from the
assumption that it does not hold. The if statement guard a[i] = e is next
encountered in (2); (2) follows from the assumption that it holds, while (3)
follows from the assumption that it does not hold. Figure 5.16 visualizes these
basic paths. !

Example 5.14. Figure 5.17 lists BubbleSort with loop invariants. The outer
loop invariant at L1 asserts that

• i is in the range [−1, |a|− 1] (if |a| = 0, then i is initially −1);
• a is sorted in the range [i, |a|− 1];
• and a is partitioned such that each element in the range [0, i] is at most

(less than or equal to) each element in the range [i + 1, |a|− 1].

Its inner loop invariant at L2 asserts that

• i is in the range [1, |a|− 1], and j is in the range [0, i];
• a is sorted in the range [i, |a|− 1] as in the outer loop;
• a is partitioned as in the outer loop;
• and a is also partitioned such that each element in the range [0, j − 1] is

at most a[j].

The partitioned predicate is defined in the theory TZ ∪ TA:

partitioned(a, ℓ1, u1, ℓ2, u2)
⇔ ∀i, j. ℓ1 ≤ i ≤ u1 < ℓ2 ≤ j ≤ u2 → a[i] ≤ a[j] .



Inductive Assertion Method
• We reduce the reasoning about the function to reasoning about a 
finite set of basic paths.  

• We reason about the basic paths, by reducing the reasoning to a 
Verification Condition (VC).
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states that satisfy wp(F, S). Every state s on which executing statement S
leads to a state s′ in the F region must be in the wp(F, S) region.

Define the weakest precondition for the two statement types of basic paths
introduced in Section 5.2.1:

• Assumption: What must hold before statement assume c is executed to
ensure that F holds afterward? If c → F holds before, then satisfying c in
assume c guarantees that F holds afterward:

wp(F, assume c) ⇔ c → F

• Assignment : What must hold before statement v := e is executed to ensure
that F [v] holds afterward? If F [e] holds before, then assigning e to v with
v := e makes F [v] hold afterward:

wp(F [v], v := e) ⇔ F [e]

For a sequence of statements S1; . . . ; Sn, define

wp(F, S1; . . . ; Sn) ⇔ wp(wp(F, Sn), S1; . . . ; Sn−1) .

The weakest precondition moves a formula backward over a sequence of state-
ments: for F to hold after executing S1; . . . ; Sn, wp(F, S1; . . . ; Sn) must hold
before executing the statements. Because basic paths have only assumption
and assignment statements, the definition of wp is complete.

Then the verification condition of basic path

@ F
S1;
...
Sn;
@ G

is

F → wp(G, S1; . . . ; Sn) .

Its validity implies that when F holds before the statements of the path are
executed, then G holds afterward. Traditionally, this verification condition is
denoted by the Hoare triple

{F}S1; . . . ; Sn{G} .

Example 5.20. Consider the basic path
(1)

@ x ≥ 0
x := x + 1;
@ x ≥ 1

The VC is
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P-Invariant vs. P-Inductive
• P-Invariant: an annotation F at location L of program P is P-invariant 
iff whenever program reaches location L during any computation with 
program state s, then s |= F.   

• P-Inductive: if all verification conditions generated by the program are 
valid, then all program annotations are P-inductive.   

Theorem: p-inductive implies p-invariant.   

s[pc] = L =� s |= F

For iterative programs, finding an inductive annotation 
mostly amounts to discovery of an appropriate loop invariant.
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@post
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(2),(4)

Fig. 5.16. Visualization of basic paths of LinearSearch

(4)
@L : ℓ ≤ i ∧ (∀j. ℓ ≤ j < i → a[j] ≠ e)
assume i > u;
rv := false;
@post rv ↔ ∃j. ℓ ≤ j ≤ u ∧ a[j] = e

To avoid forgetting a basic path, we list paths in a depth-first order. When
a guard is encountered, assume that it holds and generate the resulting paths;
then assume that it does not hold and generate the resulting paths. In this
example, the loop guard i ≤ u in (2) is first encountered; (2) and (3) follow
from the assumption that the loop guard holds, while (4) follows from the
assumption that it does not hold. The if statement guard a[i] = e is next
encountered in (2); (2) follows from the assumption that it holds, while (3)
follows from the assumption that it does not hold. Figure 5.16 visualizes these
basic paths. !

Example 5.14. Figure 5.17 lists BubbleSort with loop invariants. The outer
loop invariant at L1 asserts that

• i is in the range [−1, |a|− 1] (if |a| = 0, then i is initially −1);
• a is sorted in the range [i, |a|− 1];
• and a is partitioned such that each element in the range [0, i] is at most

(less than or equal to) each element in the range [i + 1, |a|− 1].

Its inner loop invariant at L2 asserts that

• i is in the range [1, |a|− 1], and j is in the range [0, i];
• a is sorted in the range [i, |a|− 1] as in the outer loop;
• a is partitioned as in the outer loop;
• and a is also partitioned such that each element in the range [0, j − 1] is

at most a[j].

The partitioned predicate is defined in the theory TZ ∪ TA:

partitioned(a, ℓ1, u1, ℓ2, u2)
⇔ ∀i, j. ℓ1 ≤ i ≤ u1 < ℓ2 ≤ j ≤ u2 → a[i] ≤ a[j] .



Watch all Dafny Videos
on iterative examples:

Find, Quotient/Remainder, 
Strengthening, Robot, Partition



Total Correctness



Total Correctness

• To prove termination of functions, we use well-founded relations.

• Ranking functions are a convenient way of dealing with 
well-founded relations.

We need to prove that annotations are inductive.

We need to prove that the ranking function decreases along each 
basic path. beginning and ending with ranking functions.



Watch the Dafny Video
on termination



What about function 
calls? 



Basic Paths: Functions
• A functions post condition summarizes the effect of calling the 
function, by relating its return value to its parameters.  

• Replacing function calls by their summaries makes listing of basic 
paths and the reasoning about the function local.
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@pre 0 ≤ ℓ ∧ u < |a| ∧ sorted(a, ℓ, u)
@post rv ↔ ∃i. ℓ ≤ i ≤ u ∧ a[i] = e
bool BinarySearch(int[] a, int ℓ, int u, int e) {
if (ℓ > u) return false;
else {
int m := (ℓ + u) div 2;
if (a[m] = e) return true;
else if (a[m] < e) return BinarySearch(a, m + 1, u, e);
else return BinarySearch(a, ℓ, m − 1, e);

}
}

Fig. 5.8. BinarySearch with function specification

@pre ⊤
@post sorted(rv , 0, |rv |− 1)
int[] BubbleSort(int[] a0) {
int[] a := a0;
for @ ⊤

(int i := |a|− 1; i > 0; i := i − 1) {
for @ ⊤

(int j := 0; j < i; j := j + 1) {
if (a[j] > a[j + 1]) {
int t := a[j];
a[j] := a[j + 1];
a[j + 1] := t;

}
}

}
return a;

}

Fig. 5.9. BubbleSort with function specification

Example 5.7. Figure 5.8 lists BinarySearch with its specification. As ex-
pected, its postcondition is identical to the postcondition of LinearSearch.
However, its precondition also states that the array a is sorted.

The sorted predicate is defined in the combined theory of integers and
arrays, TZ ∪ TA:

sorted(a, ℓ, u) ⇔ ∀i, j. ℓ ≤ i ≤ j ≤ u → a[i] ≤ a[j] .

!

Example 5.8. Figure 5.9 lists BubbleSort with its specification. Given any
array, the returned array is sorted. Of course, other properties are desirable



Basic Paths: Functions
• A functions post condition summarizes the effect of calling the 
function, by relating its return value to its parameters.  

• Replacing function calls by their summaries makes listing of basic 
paths and the reasoning about the function local.5.2 Partial Correctness 131

@pre 0 ≤ ℓ ∧ u < |a| ∧ sorted(a, ℓ, u)
@post rv ↔ ∃i. ℓ ≤ i ≤ u ∧ a[i] = e
bool BinarySearch(int[] a, int ℓ, int u, int e) {
if (ℓ > u) return false;
else {
int m := (ℓ + u) div 2;
if (a[m] = e) return true;
else if (a[m] < e) {

@R1 : 0 ≤ m + 1 ∧ u < |a| ∧ sorted(a, m + 1, u);
return BinarySearch(a, m + 1, u, e);

} else {
@R2 : 0 ≤ ℓ ∧ m − 1 < |a| ∧ sorted(a, ℓ, m − 1);
return BinarySearch(a, ℓ, m − 1, e);

}
}

}

Fig. 5.20. BinarySearch with function call assertions

5.2.2 Basic Paths: Function Calls

Like loops, recursive functions create an unbounded number of paths within
programs. But just as loop invariants cut loops to produce a finite number of
basic paths, function specifications cut function calls.

Recall that the function postcondition is a relation between the return
value rv and the formal parameters. A function’s postcondition summarizes
the effects of calling it. We use these summaries to replace function calls in
basic paths.

Remark 5.16. The postconditions of the functions of a program need only
include information that is relevant for proving the given specification, so the
summaries may be incomplete. Ignoring irrelevant aspects of functions reduces
the size of annotations. Chapter 6 discusses techniques for developing function
specifications.

The replacement of function calls by function summaries makes the listing
of basic paths (and the resulting analysis described in Section 5.2.4) local to
functions. Basic paths do not span multiple functions. However, recall that the
function postcondition is guaranteed to hold on return only when the function
precondition is satisfied on entry. To ensure that the precondition is satisfied,
each instance of a function call generates an extra basic path in which the
called function’s precondition is asserted. An example clarifies this discussion.

Example 5.17. Figure 5.8 lists BinarySearch with its function specification.
BinarySearch contains two (recursive) function calls. In Figure 5.20, each func-
tion call is protected by a function call assertion at R1 and R2. Each asser-
tion is constructed by applying a substitution to BinarySearch’s precondition
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@pre

R1 R2

@post

(1) (2)

(3),(4)

(4)

(5),(6)

(6)

Fig. 5.21. Visualization of basic paths of BinarySearch

Construct the final basic path for the function call BinarySearch(a, ℓ, m−
1, e) similarly:

(6)
@pre 0 ≤ ℓ ∧ u < |a| ∧ sorted(a, ℓ, u)
assume ℓ ≤ u;
m := (ℓ + u) div 2;
assume a[m] ≠ e;
assume a[m] ≥ e;
assume v2 ↔ ∃i. ℓ ≤ i ≤ m− 1 ∧ a[i] = e;
rv := v2;
@post rv ↔ ∃i. ℓ ≤ i ≤ u ∧ a[i] = e

Again, v2 is a fresh variable.
Figure 5.21 visualizes these basic paths. Paths (4) and (6) are shown to

pass through locations R1 and R2, respectively. !

For the general case, consider function f with prototype

@pre F [p1, . . . , pn]
@post G[p1, . . . , pn, rv ]
type0 f(type1 p1, . . . , typen pn)

Suppose that f is called in context

w := f(e1, . . . , en);

where e1, . . . , en are expressions. Then augment the calling context with the
function call assertion:

@ F [e1, . . . , en];
w := f(e1, . . . , en);

Treat this new assertion the same as any assertion: it results in at least one
basic path ending in

. . .
@ F [e1, . . . , en]



Function Summaries
• A functions post condition summarizes the effect of calling the 
function, by relating its return value to its parameters.  

• An appropriate function summary is inductive (same as P-inductive).

• To construct a proof, an inductive function summary is required.



Watch the recursive Robot Dafny video to 
understand the difference between 

inductive and non-inductive summaries!



Read the full binary search 
example from the 

recommended book chapter!
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Theorem Prover’s Help



Motivation for Strategies

Main Challenge: discovering the extra information to 
make the method succeed: loop invariants, ...

We know how to reduce the checking of an annotated 
function to a finite set of basic paths.

We can use the SMT technology to automatically 
check the validity of these paths.

You think and strategize to come up with these 
annotations in the first place.



Challenges
Writing function specification (pre/post-conditions) 
requires human ingenuity.

Simple and generic assertions, such as ruling out run 
time errors, can be generated automatically.

Writing loop invariants also requires human ingenuity. 

Writing inductive loop invariants are specifically hard. 

A lot of research has been done for this. 
Example: linear and polynomial relations   
between variables can be discovered. 



Next: Hoare Logic


