Program Correctness: Mechanics

CS410 Fall 2020

What happens under the hood in Dafny?

Reference

Aaron R. Bradley Zohar Manna

The Calculus of Computation

Decision Procedures with Applications to Verification

Overview

Goal: specifying and proving properties of programs.
Model: Control Flow Graph, or the program itself.
Specifications: First Order Logic (FOL) formulas.
Proof Methods: Inductive Assertion Method, and Ranking Functions.

A Simple Language

```
Annotations

bool LinearSearch(int[] a, int \ell, int u, int e) {

for

(int i := \ell; i \le u; i := i + 1) {

if (a[i] = e) return true;

}

return false;
```

Annotations

• An annotation is a First Order Logic formula F whose free variables only include program variables.

• An annotation F at program location L means that F holds whenever program control reaches L.

```
@pre \top
@post \top
bool LinearSearch(int[] a, int \ell, int u, int e) {
  for @ \top
    (int i := \ell; i \le u; i := i + 1) {
    if (a[i] = e) return true;
  } @ i = u
  return false;
}
```

 Precondition indicates what is true upon entering the function. Free variables only include function parameters.

 Postcondition: indicates what is true upon exiting the function. Free variables only include function parameters and a special variable, rv, that refers to the return value.

```
@pre
@post
bool LinearSearch(int[] a, int \ell, int u, int e) {
  for
    (int i := \ell; i \le u; i := i + 1) {
    if (a[i] = e) return true;
  }
  return false;
}
```

Loop Invariant

• Loop Invariant holds at the beginning of each iteration.

 $F \land \langle condition \rangle$

 $F \wedge \neg \langle condition \rangle$

for (\hat{W} F ($\langle initialize \rangle$; $\langle condition \rangle$; $\langle increment \rangle$) { ($\langle body \rangle$ $\langle initialize \rangle;$ while @ F ($\langle condition \rangle$) { $\langle body \rangle$ $\langle increment \rangle$

 $(\langle condition \rangle)$ {

while

 $\bigcirc F$

 $\langle body \rangle$

}

Example

Assertions

We can add annotations anywhere in the program.

 Assertions: when they are not preconditions, postconditions, or loop invariants, they are simply called assertions.

(a)
$$k > 0;$$

 $i := i + k;$

Partial Correctness

Overview

A function is partially correct if when the function's precondition is satisfied on entry, its postcondition is satisfied when it returns (if it ever does).

Some Definitions

• Program States: an assignment of values (of the proper type) to program variables.

 $s: \{pc \leftarrow L_1, l \leftarrow 1, u \leftarrow 3, i \leftarrow 3, a \leftarrow [4;7;1], rv \leftarrow []\}$

The state can also be represented by any logical formula in any theory.

Partial Correctness

Given pre/post conditions

$$F_{pre}, F_{post}$$

$$s_0[pc] = L_0$$
$$s_0 \models F_{pre}$$

• The function may have both finite and infinite paths: $s_0s_1s_2\ldots s_n$ $s_0s_1s_2\ldots s_n$

• The function is partially correct if for ever finite path:

$$s_0 \models F_{pre} \implies s_n \models F_{post}$$

How do we prove partial correctness?

How does Dafny work?

- How do we prove every program path satisfies the specification?
- We prove partial correctness of programs by the Inductive Assertion Method.
 - For each function, we generate a finite set of Verification Conditions (VC); if all VCs are correct, then the program is partially correct.

Some Definitions

• Path: sequence of program statements.

• Basic Path: a Path that starts at a precondition or a loop invariant, and ends at a loop invariant, an assertion, or a post condition.

@pre $0 \leq \ell \land u < |a|$ ⁽⁰⁾pre @post $rv \leftrightarrow \exists i. \ell \leq i \leq u \land a[i] = e$ (1)bool LinearSearch(int[] a, int ℓ , int u, int e) { (3)for $@L: \ \ell \leq i \ \land \ (\forall j. \ \ell \leq j < i \ \rightarrow \ a[j] \neq e)$ (2), (4) $(int \ i := \ell; \ i \le u; \ i := i+1)$ ((nost if (a[i] = e) return true; $@L: \ \ell \leq i \ \land \ (\forall j. \ \ell \leq j < i \ \rightarrow \ a[j] \neq e)$ $@L: \ \ell \leq i \ \land \ (\forall j. \ \ell \leq j < i \ \rightarrow \ a[j] \neq e)$ assume i > u; return false; rv := false;(e)@post $rv \leftrightarrow \exists j. \ell \leq j \leq u \wedge a[j] = e$

Inductive Assertion Method

• We reduce the reasoning about the function to reasoning about a finite set of basic paths.

• We reason about the basic paths, by reducing the reasoning to a Verification Condition (VC).

ⓐ
$$x ≥ 0$$

 $x := x + 1;$
ⓐ $x ≥ 1$

P-Invariant vs. P-Inductive

• P-Invariant: an annotation F at location L of program P is P-invariant iff whenever program reaches location L during any computation with program state s, then s |= F.

$$s[pc] = L \implies s \models F$$

• P-Inductive: if all verification conditions generated by the program are valid, then all program annotations are P-inductive.

For iterative progra mostly amounts to

Theorem: p-induct

active annotation opropriate loop invariant.

Watch all Dafny Videos on iterative examples:

Find, Quotient/Remainder,
Strengthening, Robot, Partition

Total Correctness

Total Correctness

• To prove termination of functions, we use well-founded relations.

 Ranking functions are a convenient way of dealing with well-founded relations.

We need to prove that annotations are inductive.

We need to prove that the ranking function decreases along each basic path. beginning and ending with ranking functions.

Watch the Dafny Video on termination

What about function calls?

Basic Paths: Functions

• A functions post condition summarizes the effect of calling the function, by relating its return value to its parameters.

• Replacing function calls by their summaries makes listing of basic paths and the reasoning about the function local.

```
@pre 0 ≤ \ell \land u < |a| \land \text{sorted}(a, \ell, u)
@post rv \leftrightarrow \exists i. \ell \leq i \leq u \land a[i] = e
bool BinarySearch(int[] a, int \ell, int u, int e) {
  if (\ell > u) return false;
  else {
    int m := (\ell + u) \text{ div } 2;
    if (a[m] = e) return true;
    else if (a[m] < e) return BinarySearch(a, m + 1, u, e);
    else return BinarySearch(a, \ell, m - 1, e);
```

}

Basic Paths: Functions

• A functions post condition summarizes the effect of calling the function, by relating its return value to its parameters.

• Replacing function calls by their summaries makes listing of basic paths and the reasoning about the function local.

Function Summaries

• A functions post condition summarizes the effect of calling the function, by relating its return value to its parameters.

• An appropriate function summary is inductive (same as P-inductive).

• To construct a proof, an inductive function summary is required.

Watch the recursive Robot Dafny video to understand the difference between inductive and non-inductive summaries! Read the full binary search example from the recommended book chapter!

Your Input vs Theorem Prover's Help

Motivation for Strategies

- Main Challenge: discovering the extra information to make the method succeed: loop invariants, ...
- We know how to reduce the checking of an annotated function to a finite set of basic paths.
- We can use the SMT technology to automatically check the validity of these paths.
- You think and strategize to come up with these annotations in the first place.

Challenges

- Writing function specification (pre/post-conditions) requires human ingenuity.
- Simple and generic assertions, such as ruling out run time errors, can be generated automatically.
- Writing loop invariants also requires human ingenuity.
- Writing inductive loop invariants are specifically hard.
 - A lot of research has been done for this.
 Example: linear and polynomial relations between variables can be discovered.

Next: Hoare Logic