
Software Verification
and Testing

Azadeh Farzan
CS410 - Fall 2020

Motivation
Software Validation: one of the toughest
open problems in Computer Science.

Verification has always been derived by
academia

very rich theoretical basis

logics, algorithms, calculi, ...

a lot of room for pragmatism

theoretically-motivated heuristics

A List of Known Software Bugs

Northeast blackout

data race error

Ariane V Crash (1996)

64 bit to 16 bit conversion

Pentium FDIV bug (1997)

lookup table had mistakes

Mars Orbiter

feet-per-second vs. Newtons-per-second

Therac-25

radiation therapy over-radiated patients

Windows crashed during Gate’s presentation
in 2006

windows is used to control highly sensitive
army carriers (including those that carry
thermo-nuclear intercontinental ballistic
missiles).

Newer Bugs

The Heartbleed bug

Random generator error

Loads of airline outages

British Airways (the most recent)

Loads of news about security breeches

Spectre: most famous

What kind of
certification do we get

for software these
days?

My favourite part of
“The Good Omens”

… along with the standard computer warranty agreement which
said that if the machine 1) didn't work, 2) didn't do what the
expensive advertisements said, 3) electrocuted the immediate
neighborhood, 4) and in fact failed entirely to be inside the
expensive box when you opened it.

… this was expressly, absolutely, implicitly and in no event the
fault or responsibility of the manufacturer, that the purchaser
should consider himself lucky to be allowed to give his money to
the manufacturer, and that any attempt to treat what had just
been paid for as the purchaser's own property would result in
the attentions of serious men with menacing briefcases and very
thin watches.

Our Holy Grail
Make software (more) reliable

Software is a product!

needs industry standards.

A notion of certification for Software

Meanwhile ... make it more reliable

partial validation, intelligent testing, ...

Next generation languages with better validation
support.

What is Verification
Anyway?

Proving (in a formal way) that program satisfies a
specification written in a logical language.

Formal models for programs.

Logics for specifications.

Algorithms for checking the model against the
specification.

Extended Example:

Greatest Common Divisor

in Dafny

Remind Yourself of

CSC236

program correctness material!

Program Correctness

Partial Correctness

Pre/Postconditions: formal specification

Every terminating execution of the program satisfies
the specification.

 Total Correctness

partial correctness + proof of program termination

Practical Relevance

What is the point?

Watch this talk!

And, this one if your interest was piqued .

https://www.youtube.com/watch?v=x6wsTFnU3eY
https://www.youtube.com/watch?v=x6wsTFnU3eY
https://www.youtube.com/watch?v=BbXK_-b3DTk
https://www.youtube.com/watch?v=BbXK_-b3DTk

Overview:

Brief History

Verification in the Past

In 70s

Proving programs Correct

Floyd, Hoare, Dijkstra, ...
Philosophy: programmers write programs and
prove them correct with a prover.

Failed but is resurging

All or nothing approach: no way to find bugs.

heavily manual ... non-appealing!

Success Stories
SPIN (Holzmann)

Explicit-state model checker

Heuristics to control state-space explosion

partial order reduction

hashing and approximate search

specification: LTL/automata

Success Stories
SMV (Started by McMillan), later NuSMV

Symbolic model checker using binary
decision diagrams (BDD)

handles large state spaces

heuristics to handle search spaces well

specification: CTL (and later LTL)

by far the most useful for hardware

Success Stories

Big advances in SAT solvers

zChaff (Princeton)

can handle formulas with 100000 variables and
millions of clauses!

Boosted the idea of Bounded Model Checking (BMC)

NuSMV, and other more contemporary model
checkers

AW
S S

ecu
rity

 Gu
y r

efe
rs

to
the

se!

Success Stories

The SLAM tool from Microsoft Research (Ball and
Rajamani)

Static Driver Verifier: big breakthrough

model checker that validates device derivers against
formal spec.

Key ideas: predicate abstraction, algorithms for
pushdown automata, BDDs for boolean programs.

Correct by Construction

Program Synthesis: produce a program that satisfies a
specification

Specifications: logical or examples

Algorithms for performing the synthesis

Formal models: to define state space of viable
candidates.

Program Synthesis

End user programming: for those who know zero
programming

Example: Excel’s Flashfill

Menial Programming Tasks: saving precious
programmer time

The reverse Von Neumann

Removing Human Error: removing human error

Learning Objectives

Ultimate Goal:

Change the way you think and reason
about programs by producing a paradigm

shift in your thinking.

Learning Objectives
How to reason about programs

Hoare Logic and Invariants

Become familiar with formal models

CFGs, state transition systems, symbolic
representations, ...

Specification of properties

Temporal logics (LTL, CTL), assertions, pre-post
conditions

Algorithms/techniques for reasoning

Invariants, Fixpoints, Model Checking

You will teach yourself tools such as:

Dafny (a theorem prover)

A SAT and an SMT solver

Rosette: a program synthesis tool

A rough outline to the
course

Course Progression by Topic

Program Correctness

Recursive Programs

Iterative Programs

Hoare Logic

Decision Procedures

Symbolic Methods

Temporal Logics

LTL

CTL

Model Checking

Program Synthesis

End of Intro.

Your part

Read the assigned reading

Consult all the resources listed

Do the work

It is cliche but: you will get as much as you
put into the course.

Text Books, Aids, ...

No official Text

A list of helpful references are posted on the
course webpage

Four TAs

They will do most tutorials for you and partially
help you use the tools and help you with problem
solving.

Prerequisites

Prerequisites:

Basic knowledge of Automata and
Languages, Theory of Computation,
Propositional (boolean) logic, First Order
Logic, set theory, algorithms, data
structures, and programming

Now, a word of advice …

Don’t take this course if …

You don’t like logic

You don’t like proofs or theory

Your knowledge of logic/theory is shaky

You want to an easy course to satisfy a
breath/depth requirement

You think this is a systems course

Don’t take this course if …

You are not self-sufficient at learning new things
quickly on your own

You are bad at working in a team

It will basically be assumed that you can dig yourself
out of a hole with the help of your peers!

The course is adversarial
partially by design

and, partially out of necessity

What does adversarial mean?

This is an elective 4th year course.

It will not be as cleanly streamlined as your 1st/2nd
year courses.

There are lectures, but you are meant to learn a lot
on your own.

Problem solving requires undefinable background.

You are meant to learn to use new tools on your own
with shady online documentation.

Just do your best
and

do not worry about grades!

As in the real word, you will
be only compared to your

peers.

