Tutorial 8: Linear Temporal Logic

CSC410

November 3, 2023

Consider a server with three clients. Clients can issue requests, and the server can provide answers. You may assume that the system can only process one event at a time; that is, at a given time step, either no action is made, or a single request/answer is issued.

Let req_i denote that Client *i* has issued a request, and let ans_i denote that the server has issued an answer to Client *i*.

Formalize the following specification in LTL:

"If Client 1 issues a request, then Clients 2 and 3 will not receive answers until Client 1 is answered."

$$\Box(\texttt{req}_1 \implies \neg(\texttt{ans}_2 \lor \texttt{ans}_3) \ \mathcal{U} \ \texttt{ans}_1)$$

Now add additional variables $wait_i$ to denote that client i is waiting for an answer. Formalize the following specification in LTL:

"After issuing a request, Client 2 will be waiting until it receives an answer."

Note that an answer is not guaranteed to arrive.

$$\Box(\texttt{req}_2 \implies (\texttt{wait}_2 \,\mathcal{U}\,\texttt{ans}_2) \lor \Box \,\texttt{wait}_2)$$

Formalize the following specification in LTL:

"If a request is received from both Clients 1 and 2 before either Client is answered, then Client 2 will be answered before Client 1. Both clients will be answered."

$$egin{aligned} & \Box(& & \ \operatorname{req}_1 \wedge (\neg \operatorname{ans}_1 \mathcal{U} \operatorname{req}_2) & \lor & \operatorname{req}_2 \wedge (\neg \operatorname{ans}_2 \mathcal{U} \operatorname{req}_1) \ & \Longrightarrow & (\neg \operatorname{ans}_1 \mathcal{U} \operatorname{ans}_2) \wedge \Diamond \operatorname{ans}_1 \ & \end{pmatrix} \end{aligned}$$

For each of the following, either prove or disprove the equivalence. If it is not true, provide a counterexample.

$\Box(\phi \lor \psi) \equiv \Box \phi \lor \Box \psi$

$\Diamond \Box (\phi \lor \psi) \equiv \Diamond \Box \phi \lor \Diamond \Box \psi$

$\Diamond \phi \equiv \phi \vee \bigcirc \Diamond \phi$

$\Box(\phi \lor \neg \psi) \equiv \neg \Diamond (\neg \phi \land \psi)$

LTL Tutorial

CSC410

November 2023

1 Equivalences

Prove or disprove the following LTL equivalences. If they do not hold, provide a counterexample.

1. $\Box(\phi \lor \psi) \equiv \Box \phi \lor \Box \phi$

Fix a set of atomic propositions AP. If this is true, this means that

 $\forall \pi \in \mathcal{P}(AP)^{\omega}. \ \pi \models \Box(\phi \lor \psi) \iff \pi \models \Box\phi \lor \Box\psi$

We can see that the reverse direction is true:

Assume $\pi \models \Box \phi \lor \Box \psi$. Proceed by cases analysis.

Case 1: $\pi \vDash \Box \phi$. We need to prove $\pi \vDash \Box (\pi \lor \psi)$. That is, we need to prove

$$\forall k \in \mathbb{N}. \ \pi[k..] \vDash \phi \lor \psi$$

Fix such a k. By our assumption, $\forall i \in \mathbb{N}. \pi[i..] \vDash \phi$. Then in particular, $\pi[k..] \vDash \phi$. And hence $\pi[k..] \vDash \phi \lor \psi$.

Case 2: Symmetric with case 1. So by case analysis, $\pi \models \Box \phi \lor \Box \psi \implies \pi \models \Box (\phi \lor \psi)$

However, the reverse direction does not hold. Suppose that $\pi \vDash \Box(\phi \lor \psi)$. We need to prove $\pi \vDash \Box \phi \lor \pi \vDash \Box \pi$.

Consider fixing $AP = \{a, b\}$, and consider the path $\pi = (\{a\}\{b\})^{\omega}$. Then $\pi \models \Box(a \lor b)$. However, $\pi \nvDash \Box a \lor \Box b$. For instance, $\pi[1..] \nvDash a$ since $\pi[1] = \{b\}$, so $\pi \nvDash \Box a$. Likewise, $\pi[2..] \nvDash b$ since $\pi[2] = \{a\}$. Since $\pi \nvDash \Box a$ and $\pi \nvDash \Box b$, we have $\pi \nvDash \Box \phi \lor \Box \phi$.

2. Prove or disprove $\Diamond \Box (\phi \lor \psi) \equiv \Diamond \Box \phi \lor \Diamond \Box \psi$.

You should be able to see that this is basically the same problem as before, just slightly generalized. We could even use the same counterexample, but I'll use a different one anyway.

Let us fix $AP = \{a, b\}$ and some number – say 3. The choice of the number doesn't matter. Let's define π such that for all j < 3, $\pi[j] = \emptyset$, $\pi[3] = \{a\}$, and for all i, if i is even, $\pi[3+i] = \{a\}$, and if i is odd, then $\pi[3+i] = \{b\}$. We could also write this as $\pi = \emptyset \emptyset \emptyset (\{a\} \{b\})^{\omega}$. One can easily prove that $\pi \models \Diamond \Box (a \lor b)$.

It can also prove, from our construction, that for arbitrary k, if $\pi[k] \vDash a$, then $\pi[k+1] \nvDash a$, and likewise for b.

However, it is not the case that $\pi \models \Diamond \Box a$. By way of contradiction, assume there is some k such that $\pi[k..] \models \Box a$.

So a holds in every time point after k. Then in particular we have $\pi[k..] \vDash a$, and also $\pi[k+j+1..] \vDash a$. But this contradicts our construction of π , as noted above. The argument is symmetric to show why $\pi \nvDash \Diamond \Box a \lor b$. Since neither of these disjuncts are satisfied by π , it serves as a counterexample to the equivalence.

3. Prove or disprove $\Diamond \phi \equiv \phi \lor \bigcirc \Diamond \phi$

Forward Direction:

Assume $\pi \models \Diamond \phi$. Then $\exists k. \pi[k..] \models \phi$. Fix such a k. Then $k = 0 \lor k = k' + 1$ for some $k' \in \mathbb{N}$. **Case 1.** k = 0. Then $\pi[0..] = \pi \models \phi$, and therefor $\pi \models \phi \lor \bigcirc \Diamond \phi$. **Case 2.** k = k' + 1. Then $\pi[k' + 1.. \models \phi]$, so $\pi[1..][k'..] \models \phi$. Hence $\exists k' \in \mathbb{N}$. $\pi[1..][k'..] \models \phi$. Then $\pi[1..] \models \Diamond \phi$. And so $\pi \models \bigcirc \Diamond \phi$, and hence $\pi \models \phi \lor \bigcirc \Diamond \phi$.

Reverse Direction:

Assume $\pi \vDash \phi \lor \bigcirc \Diamond \phi$. We proceed by case analysis.

Case 1. Assume $\pi \models \phi$. Then use the witness 0 to prove $\exists k. \pi[k..] \models \phi$.

Case 2. Assume $\pi \models \bigcirc \Diamond \phi$. Then $\pi[1..] \models \Diamond \phi$, which means $\exists j \in \mathbb{N}$. $\pi[1..][j..] \models \phi$. That is, we have j such that $\pi[j+1..] \models \phi$. So we use j+1 as the witness for $\exists k \in \mathbb{N}$. $\pi[k..] \models \phi$

4. Prove or disprove: $\Box(\phi \lor \neg \psi) \equiv \neg \Diamond(\neg \phi \land \psi)$

This one we can do as a series of rewrites. Fix a path π .

$$\pi \models \Box(\phi \lor \neg \psi) \iff \forall i \in \mathbb{N}. \pi[i..] \models \phi \lor \neg \psi \qquad \text{(Def. }\Box)$$
$$\iff \forall i \in \mathbb{N}. \phi \models \neg \neg (\phi \lor \neg \psi) \qquad \text{(Double Negation)}$$
$$\iff \neg \exists i \in \mathbb{N}. \pi \models \neg (\phi \lor \neg \psi) \qquad \text{(Distribute }\neg \text{ over }\forall)$$
$$\iff \neg \exists i \in \mathbb{N}. \pi \models \neg \phi \land \psi \qquad \text{(DeMorgan)}$$
$$\iff \neg \pi \models \Diamond (\neg \phi \land \psi) \qquad \text{(Def. }\Diamond)$$
$$\iff \pi \models \neg \Diamond (\neg \phi \land \psi)$$