
Tutorial 8: Linear Temporal Logic

CSC410

November 3, 2023

1 / 10



Formalizing Specifications

Consider a server with three clients. Clients can issue requests, and the server can provide
answers. You may assume that the system can only process one event at a time; that is, at a
given time step, either no action is made, or a single request/answer is issued.

Let reqi denote that Client i has issued a request, and let ansi denote that the server has
issued an answer to Client i .

2 / 10



Formalizing Specifications

Formalize the following specification in LTL:

“If Client 1 issues a request, then Clients 2 and 3 will not receive answers until Client 1 is
answered.”

□(req1 =⇒ ¬(ans2 ∨ ans3) U ans1)

3 / 10



Formalizing Specifications

Now add additional variables waiti to denote that client i is waiting for an answer.
Formalize the following specification in LTL:

“After issuing a request, Client 2 will be waiting until it receives an answer.”

Note that an answer is not guaranteed to arrive.

□(req2 =⇒ (wait2 U ans2) ∨□ wait2)

4 / 10



Formalizing Specifications

Formalize the following specification in LTL:

“If a request is received from both Clients 1 and 2 before either Client is answered, then Client
2 will be answered before Client 1. Both clients will be answered.”

□(

req1 ∧ (¬ans1 U req2) ∨ req2 ∧ (¬ans2 U req1)

=⇒ (¬ans1 U ans2) ∧ ♢ans1
)

5 / 10



LTL Equivalences

For each of the following, either prove or
disprove the equivalence. If it is not true,
provide a counterexample.

6 / 10



LTL Equivalences

Prove or disprove:

□(ϕ ∨ ψ) ≡ □ϕ ∨□ψ

7 / 10



LTL Equivalences

Prove or disprove:

♢□(ϕ ∨ ψ) ≡ ♢□ϕ ∨ ♢□ψ

8 / 10



LTL Equivalenecs

Prove or disprove:

♢ϕ ≡ ϕ ∨ ,♢ϕ

9 / 10



LTL Equivalences

Prove or disprove:

□(ϕ ∨ ¬ψ) ≡ ¬♢(¬ϕ ∧ ψ)

10 / 10



LTL Tutorial

CSC410

November 2023

1 Equivalences

Prove or disprove the following LTL equivalences. If they do not hold, provide
a counterexample.

1. □(ϕ ∨ ψ) ≡ □ϕ ∨□ϕ

Fix a set of atomic propositions AP . If this is true, this means that

∀π ∈ P(AP )ω. π ⊨ □(ϕ ∨ ψ) ⇐⇒ π ⊨ □ϕ ∨□ψ

We can see that the reverse direction is true:

Assume π ⊨ □ϕ ∨□ψ. Proceed by cases analysis.

Case 1: π ⊨ □ϕ. We need to prove π ⊨ □(π ∨ ψ). That is, we need to
prove

∀k ∈ N. π[k..] ⊨ ϕ ∨ ψ

Fix such a k. By our assumption, ∀i ∈ N.π[i..] ⊨ ϕ. Then in particular,
π[k..] ⊨ ϕ. And hence π[k..] ⊨ ϕ ∨ ψ.

Case 2: Symmetric with case 1.

So by case analysis, π ⊨ □ϕ ∨□ψ =⇒ π ⊨ □(ϕ ∨ ψ)

However, the reverse direction does not hold. Suppose that π ⊨ □(ϕ ∨
ψ). We need to prove π ⊨ □ϕ ∨ π ⊨ □π.

1



Consider fixing AP = {a, b}, and consider the path π = ({a}{b})ω.
Then π ⊨ □(a ∨ b). However, π ⊭ □a ∨ □b. For instance, π[1..] ⊭ a
since π[1] = {b}, so π ⊭ □a. Likewise, π[2..] ⊭ b since π[2] = {a}. Since
π ⊭ □a and π ⊭ □b, we have π ⊭ □ϕ ∨□ϕ.

2. Prove or disprove ♢□(ϕ ∨ ψ) ≡ ♢□ϕ ∨ ♢□ψ.

You should be able to see that this is basically the same problem as
before, just slightly generalized. We could even use the same coun-
terexample, but I’ll use a different one anyway.

Let us fix AP = {a, b} and some number – say 3. The choice of the
number doesn’t matter. Let’s define π such that for all j < 3, π[j] = ∅,
π[3] = {a}, and for all i, if i is even, π[3+ i] = {a}, and if i is odd, then
π[3 + i] = {b}. We could also write this as π = ∅∅∅({a}{b})ω. One can
easily prove that π ⊨ ♢□(a ∨ b).
It can also prove, from our construction, that for arbitrary k, if π[k] ⊨ a,
then π[k + 1] ⊭ a, and likewise for b.

However, it is not the case that π ⊨ ♢□a. By way of contradiction,
assume there is some k such that π[k..] ⊨ □a.

So a holds in every time point after k. Then in particular we have
π[k..] ⊨ a, and also π[k + j + 1..] ⊨ a. But this contradicts our con-
struction of π, as noted above. The argument is symmetric to show
why π ⊭ ♢□a∨ b. Since neither of these disjuncts are satisfied by π, it
serves as a counterexample to the equivalence.

2



3. Prove or disprove ♢ϕ ≡ ϕ ∨ ,♢ϕ

Forward Direction:

Assume π ⊨ ♢ϕ. Then ∃k. π[k..] ⊨ ϕ. Fix such a k.

Then k = 0 ∨ k = k′ + 1 for some k′ ∈ N.
Case 1. k = 0. Then π[0..] = π ⊨ ϕ, and therefor π ⊨ ϕ ∨ ,♢ϕ.

Case 2. k = k′ + 1. Then π[k′ + 1.. ⊨ ϕ], so π[1..][k′..] ⊨ ϕ.

Hence ∃k′ ∈ N. π[1..][k′..] ⊨ ϕ. Then π[1..] ⊨ ♢ϕ. And so π ⊨ ,♢ϕ,
and hence π ⊨ ϕ ∨ ,♢ϕ.

Reverse Direction:

Assume π ⊨ ϕ ∨ ,♢ϕ. We proceed by case analysis.

Case 1. Assume π ⊨ ϕ. Then use the witness 0 to prove ∃k. π[k..] ⊨ ϕ.
Case 2. Assume π ⊨ ,♢ϕ. Then π[1..] ⊨ ♢ϕ, which means ∃j ∈
N. π[1..][j..] ⊨ ϕ. That is, we have j such that π[j + 1..] ⊨ ϕ. So we use
j + 1 as the witness for ∃k ∈ N. π[k..] ⊨ ϕ

4. Prove or disprove: □(ϕ ∨ ¬ψ) ≡ ¬♢(¬ϕ ∧ ψ)
This one we can do as a series of rewrites. Fix a path π.

π ⊨ □(ϕ ∨ ¬ψ) ⇐⇒ ∀i ∈ N. π[i..] ⊨ ϕ ∨ ¬ψ (Def. □)

⇐⇒ ∀i ∈ N. ϕ ⊨ ¬¬(ϕ ∨ ¬ψ) (Double Negation)

⇐⇒ ¬∃i ∈ N. π ⊨ ¬(ϕ ∨ ¬ψ) (Distribute ¬ over ∀)
⇐⇒ ¬∃i ∈ N. π ⊨ ¬ϕ ∧ ψ (DeMorgan)

⇐⇒ ¬π ⊨ ♢(¬ϕ ∧ ψ) (Def. ♢)

⇐⇒ π ⊨ ¬♢(¬ϕ ∧ ψ)

3


