Decision Procedures

Azadeh Farzan
CS410 - Fall 2020

Decision Procedures

@ A decision procedure iIs an algorithm that given a
decision problem, terminates with a correct yes/no
answer.

@ Play an important part in automated verification,
theorem proving, compiler optimization, ,
and

@ The problems are

@ Procedures need to be a very efficient.

Quick Example

Are these two code fragments equivalent?

It seems to be a YES/NO type of problem. Can we state
this generally as a 4

Reminders

A propositional formula is satisfiable if there is an assignment (to
propositions) that makes the formal to evaluate to true.

ANDB

A formula is valid if all assignments make it to evaluate fo true.

Theorles

3 A is (informally):

@ A finite or infinite set of formulas, which are
characterized by common grammatical rules,
functions and predicates, and a domain of values.

Theory name

Propositional logic
Equality

Linear arithmetic
Bit vectors

Arrays

Pointer logic
Combined theories

Example formula

xl/\(CIZQ\/_ICE;g)

USSRV (Uisis B (=)
(221 + 322 < 5) V (22 + 522 — 1023 > 6)
((a>>b) & ¢) <c

(i=jAajl=1) = ali] =1
Pp=qA*xp=>5H — *xq =295
(i<jAalj]=1 = ali] <2

More Definitions

A procedure for a decision problem is sound if when it answers
to the validity/satisfiability question, the formula is valid/
satisfiable.

A procedure for a decision problem is complete if it always
, and when formula is valid, it it answers "YES" to the
validity question.

A procedure is called a decision procedure for T if it is sound and
complete with respect to every formula in T.

A theory is decidable if and only if there is a decision procedure
for it.

Theories and Algorithms

oA is interesting if:
@ It is expressive enough to model a real decision problem.

@ It is either decidable or semi-decidable, and more
efficiently solvable than more expressive theories.

|
Computational

challenge |
-

|

|

|

|

|

|

|

|
-
Easier to decide : More expressive
|

|

|

Polynomial '

Decidable '+ Undecidable

SAT Solvers

@ Given a propositional formula F, a SAT Solver decides if F is
satisfable.

1,000,000 -

0]
&}
r—{
@)
av
or—
=
=

Propose a trivial SAT
solving Algorithm.

The satisfiability problem for propositional logic is NP-Complete.

SAT Solving Techniques

@ DPLL-based
@ Davis-Putnam-Loveland-Logemann

@ Traversing and backtracking on a binary tree, in which
infernal nodes represent partial assignments, and leaves
present full assignments.

@ Stochastic Search

@ The solver guesses a full assignment, and if it doesnt
work, it starts flipping values based on some greedy
heuristic.

Lets see a reasonable
SAT-solving algorithm ...

CNF

A formula in Conjunctive Normal Form (CNF) is a conjunction of clauses

CiyNCoN...NC,

each clause C' is a disjunction of literals
C=L{V...VL,

and each literal is either a plain variable x or a negated variable 7.

Example (aVbVce)A(aVb)A(aVe)

For every Propositional formula there exists an equisatisfiable
propositional formula in CNF which is at most polynomially larger:

States of a Clause

D@ A clause is satisfied if one or more of its literals are satisfied.

@ A clause is conflicting if all of its literals are assigned, but not
satisfied.

D A clause is unit if it is not satisfied and all but one of its literals are
assigned.

@ A clause is unresolved if it is none of the above.

{x1—1, 23— 0, x4 — 1}

Simple Algorithm Overview

@ Partial Evaluations:

@ We start with the empty evaluation (no variable has been assigned).

@ We step by step extend it to all variables.

@ Davis-Putnam-Logemann-Loveland basic structure: Start with empty

boolean DPLL(clause set N, partial valuation A) {
if (all clauses in N are true under A) return true;
elsif (some clause in N is false under A) return false;
elsif (N contains unit clause P) return DPLL(N, AU {P — 1});
elsif (N contains unit clause = P) return DPLL(N, AU {P — 0});

else { Not chosen
let P be some undefined variable in N, randomly

if (DPLL(N, AU {P > 0})) return true;
else return DPLL(N, AU {P — 1});

T, Tterative Algorithm

with smart backtracking

The better algorithm
takes shortcuts ...

More Sophisticated Algorithm

+

>£ DECIDE } ol

assignment

%ACKTRACKJ“
no Y ¥

conflict { BOP } coOmnict){ANALYZE—

CONFLICT

partial
assignment

dl > 0

BCP-Conflict Analysis-Backtracking

@ Each assignment is associated with a decision level.

@ the level at which a decision or implication was made.

@ BCP is performed over an implication graph.

@ the graph represents a current partial assignment and the reason for
each implication.

(_1213‘1 V 213‘2) ,
- (—I£E1 \ X3 \ 5135) :
(mz2 V 24) , Decision
(_15133 \V; _ICIZ4) - 5131@6 o
= (213‘1 V L5 \V4 ﬁxg) ,
= (SBQ \V4 5173) :
(
=

C7 = (22 V 7x3) ,
L6 V _15135) .

Implication Graph

@ A labeled directed acyclic graph G(V,E) where:

@ V represents the literals of the current assignment. Each node is labeled
with a literal and its decision level.

@ E represents the connection between literals. (u,v) belongs to the graph
if the assignment to u plays a role in what value should be assigned fo v
(they both belong to a unit clause).

@ G can also contain a single conflict node labeled with k (now the
incoming edges are all from the literals that are part of a conflict
clause with k).

@ The root nodes correspond to decisions and the internal nodes
correspond to implications made by propagation.

The graph may be partial; only referring fo a certain decision level.

Analyze Conflict: Example

(Therefore, we can safely add a conflict clause:

cg = (x5 V 1)

_To our formula.

*

ey

-/

generally called
learning.

backtrack fo the highest decision

level before the current one.

We backtrack to level 3 after learning the conflict clause.

We erase all the decisions and implications made after that level,
including assignments fo X1,X2,X3,Xas.

Clause ¢y was a special kind of conflict clause, called asserting clause which
forced an immediate implication after backtracking.

Conflict Resolution

How are conflict clauses generated?
(specifically, asserting clauses)

Conflict Resolution

Binary resolution inference rule:

(a1 V...Vay,VP) (b1 V...V b, V-0)

(a1 V...Va, Vb V...Vby,)

An inference system based on the above rule for propositional
logic is sound and complete.

Unsatisfiability of a CNF formula is decided through finitely
many applications of the resolution rule.

Example

x4 V 22 V T5) Implication Order in BCP:
L4y L5, L6, LT

T4 V 10 V 336)
—x5 V —xe V Dx7)

Example

x4 V 22 V T5) Implication Order in BCP:

T4 V 10 V ZCG)
—x5 V —xe V Dx7)

The first UIP

(—x4 V 210 V —5)
An asserting clause which contains the negation of xu. (_'£U4 V Iy V 51310)

Conflict Resolution

What is the stopping condition for binary resolution steps?

@ Given a partial graph for a decision level, a unique implication point
(UIP) is a node (other than the conflict node) that is on all paths from
the decision node to the conflict node.

D First UIP is a UIP that is closest to the conflict node.

x,Q7 x1Q@4

Why first? It is faster and one backtracks to the lowest level.

Termination

Why does this tferminate? How do we know that a partial assignment
cannot be repeated forever?

: It Is never the case that the solver enters
decision level dl again with the same partial assignment.

Refutation of £ = 1

o,
>
(<D}

=
g
S

k2
(@]
(D)
-

® Decision
© Conflict

Decision Procedures for
Other Theories

Equality Logic

An equality logic formula is defined by the following grammar:

formula : formula A\ formula | —formula | (formula) | atom

atom : term = term

term : identifier | constant

infinite domain: integers, reals

The satisfiability problem for equality logic is NP-Complete.

It is more natural and convenient fo use equality logic for modeling
some problems compared fo propositional logic.

Uninterpreted Functions

An equality logic formula with uninterpreted functions is defined
by the following grammar:

formula : formula N\ formula | —formula | (formula) | atom

atom : term = term | predicate-symbol (list of terms)

term : identifier | function-symbol (list of terms)

Functional Consistency: same function same output on same input.

The satisfiability problem is reduced to that of equality logic.

Example: Translation Validation

Consider the statement: z=(x1+y1)* (T2 + y2)

A compiler translates this to:

Ul = T1 T Y15 U2 = T2 + Y25 2 = U] * U9

Correctness of this translation ties to the validity of the
verification condition:

U1 = T1+Y1 AUz = To+Ya A2 = ur*Uus — 2z = (T1+y1)*(T2+Yy2)

which can be turned into an EUF formula.

Example: Translation Validation

Starting with:

U1 = T1+Y1 AUz = To+ Yo Az = urxus —> 2z = (T1+y1)*(T2+ys2

We make addition and multiplication uninterpreted fo get:

(u1 = F(x1,y1) Nug = F(x2,y2) A 2 = G(u1, uz))

— 2 =G(F(z1,y1), F(z2,92)) -

If this formula is satishable, then the translation is valid.

How is this solved?

Example: Translation Validation

Starting with: g% t i

e L i o T m——
NPT o w Sl SIRTY SCRMBIAR S SR, s o AR R BR i e

(u1 = F(%,yl)//\ Y = F(@QW;)A z = G(u1,uz))
— 2= G(Fkxlayl)aF('mQayZ

)
Iz

Then we apply Ackermans reduction: g%ﬂ chignal Consi 3}€%ﬂ

o B e 1t . - —y - g8 7 b B AL pas L T A e
B Srae L RPN s b b) S5 el = BT . o /) " - -

Linear Arithmetic

A linear arithmetic formula is defined by the following rules:

formula : formula N formula | (formula) | atom

atom : Sum op Sum

op:= | < | <

. term | sum + term

. identifier | constant | constant identifier

rational numbers and integers

The satisfiability problem for linear arithmetic theory is polynomial
for rational numbers and NP-Complete for integers.

A variant of the simplex method works as a decision procedure.

Difference Logic

A difference logic formula is defined by the following rules:

formula : formula N formula | atom

atom : identifier — identifier op constant

op: < | <

rational numbers or infegers

The satisfiability problem for difference logic is polynomial time
solvable in both cases.

DPLL-SAT Algorithm

Input: A propositional CNF formula B
Output: “Satisfiable” if the formula is satisfiable and “Unsatisfiable”
otherwise

function DPLL

if BCP() = “conflict” then return “Unsatisfiable”;
while (TRUE) do
if —DECIDE() then return “Satisfiable”;

while (BCP() = “conflict”) do
backtrack-level := ANALYZE-CONFLICT();
if backtrack-level < 0 then return “Unsatisfiable”;

1.

2

3

Al

2. else
6

7

8

9 else BackTrack(backtrack-level);

DPLL-SAT Components

Name DECIDE()

Output FALSE if and only if there are no more variables to assign.

Description Chooses an unassigned variable and a truth value for it.

Name BCP()

Output “conflict” if and only if a conflict is encountered.

Description Repeated application of the unit clause rule until either a conflict
is encountered or there are no more implications.

Name ANALYZE-CONFLICT()

Output Minus 1 if a conflict at decision level 0 is detected (which implies
that the formula is unsatisfiable). Otherwise, a decision level

which the solver should backtrack to.

Name BACKTRACK(d!)

Description Sets the current decision level to dl and erases assignments at
decision levels larger than dI.

Conflict Resolution Algorithm

Input:
Output: Backtracking decision level + a new conflict clause

if current-decision-level = 0 then return -1;
cl := current-con flicting-clause;
while (—=STOP-CRITERION-MET(cl)) do
lit ;= LAST-ASSIGNED-LITERAL(cl);
var := VARIABLE-OF-LITERAL(lit);
ante := ANTECEDENT(lit);
cl := RESOLVE(cl, ante, var);
add-clause-to-database(cl);
return clause-asserting-level(cl); > 2nd highest decision level in ¢l

L.
2
3.
4.
D.
6.
7.
8.
9.

