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Decision Procedures

A decision procedure is an algorithm that given a 
decision problem, terminates with a correct yes/no 
answer.

Play an important part in automated verification, 
theorem proving, compiler optimization, synthesis, 
and many areas of AI.

The problems are inherently difficult.

Procedures need to be a very efficient.



Quick Example
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• Every station is assigned not more than one frequency:

n∧

i=1

k−1∧

j=1

(xij =⇒
∧

j<t≤k

¬xit) . (2.2)

• Close stations are not assigned the same frequency. For each (i, j) ∈ E,

k∧

t=1

(xit =⇒ ¬xjt) . (2.3)

Note that the input of this problem can be represented by a graph, where
the stations are the graph’s nodes and E corresponds to the graph’s edges.
Checking whether the allocation problem is solvable corresponds to solving
what is known in graph theory as the k-colorability problem: can all nodes be
assigned one of k colors such that two adjacent nodes are assigned different
colors? Indeed, one way to solve k-colorability is by reducing it to propositional
logic.

Example 2.2. Consider the two code fragments in Fig. 2.1. The fragment
on the right-hand side might have been generated from the fragment on the
left-hand side by an optimizing compiler.

if(!a && !b) h();
else

if(!a) g();
else f();

if(a) f();
else

if(b) g();
else h();

Fig. 2.1. Two code fragments – are they equivalent?

We would like to check if the two programs are equivalent. The first step
in building the verification condition is to model the variables a and b and
the procedures that are called using the Boolean variables a, b, f , g, and h,
as can be seen in Fig. 2.2.

if ¬a ∧ ¬b then h
else

if ¬a then g
else f

if a then f
else

if b then g
else h

Fig. 2.2. In the process of building a formula – the verification condition – we
replace the program variables and the function symbols with new Boolean variables

The if-then-else construct can be replaced by an equivalent proposi-
tional logic expression as follows:

Are these two code fragments equivalent?
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(if x then y else z) ≡ (x ∧ y) ∨ (¬x ∧ z) . (2.4)

Consequently, the problem of checking the equivalence of the two code frag-
ments is reduced to checking the validity of the following propositional for-
mula:

(¬a ∧ ¬b) ∧ h ∨ ¬(¬a ∧ ¬b) ∧ (¬a ∧ g ∨ a ∧ f)
⇐⇒ a ∧ f ∨ ¬a ∧ (b ∧ g ∨ ¬b ∧ h) .

(2.5)

2.2 SAT Solvers

2.2.1 The Progress of SAT Solving

Given a Boolean formula B, a SAT solver decides whether B is satisfiable;
if it is, it also reports a satisfying assignment. In this chapter, we consider
only the problem of solving formulas in conjunctive normal form (CNF) (see
Definition 1.20). Since every formula can be converted to this form in linear
time (as explained right after Definition 1.20), this does not impose a real
restriction.1 Solving general propositional formulas can be somewhat more
efficient in some problem domains, but most of the solvers and most of the
research are still focused on CNF formulas.

The practical and theoretical importance of the satisfiability problem has
led to a vast amount of research in this area, which has resulted in excep-
tionally powerful SAT solvers. Modern SAT solvers can solve many real-life
CNF formulas with hundreds of thousands or even millions of variables in a
reasonable amount of time. Figure 2.3 shows a sketch of the progress of these
tools through the years. Of course, there are also instances of problems two
orders of magnitude smaller that these tools still cannot solve. In general, it
is very hard to predict which instance is going to be hard to solve, without
actually attempting to solve it.

For many years, SAT solvers were better at solving satisfiable instances
than unsatisfiable ones. This is not true anymore. The success of SAT solvers
can be largely attributed to their ability to learn from wrong assignments,
to prune large search spaces quickly, and to focus first on the “important”
variables, those variables that, once given the right value, simplify the prob-
lem immensely.2 All of these factors contribute to the fast solving of both
satisfiable and unsatisfiable instances.
1 Appendix B provides a library for performing this conversion and generating

CNF in the DIMACS format, which is used by virtually all publicly available
SAT solvers.

2 Specifically, every formula has what is known as back-door variables [200],
which are variables that, once given the right value, simplify the formula to the
point that it is polynomial to solve.

It seems to be a YES/NO type of problem. Can we state 
this generally as a decision problem? 
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Reminders

A propositional formula is satisfiable if there is an assignment (to 
propositions) that makes the formal to evaluate to true. 

A formula is valid if all assignments make it to evaluate to true. 

6 1 Introduction and Basic Concepts

formula, a truth table can be used for checking whether it satisfies a given
formula, or, in other words, whether the given formula evaluates to true
under this assignment.

It is not hard to see that a formula ϕ is valid if and only if ¬ϕ is a
contradiction. Although somewhat trivial, this is a very useful observation,
because it means that we can check whether a formula is valid by checking
instead whether its negation is a contradiction, i.e., not satisfiable.

Example 1.3. The propositional formula

A ∧ B (1.7)

is satisfiable because there exists an assignment, namely {A "→ true, B "→
true}, which makes the formula evaluate to true. The formula

(A =⇒ B) ∧ A ∧ ¬B (1.8)

is a contradiction, as we saw earlier: no assignment satisfies it. On the other
hand, the negation of this formula, i.e.,

¬((A =⇒ B) ∧ A ∧ ¬B) , (1.9)

is valid: every assignment satisfies it.

Given a formula ϕ and an assignment α of its variables, we write α |= ϕ to
!" #$α |= ϕ

denote that α satisfies ϕ. If a formula ϕ is valid (and hence, all assignments
satisfy it), we write |= ϕ.3

!" #$|= ϕ

Definition 1.4 (the decision problem for formulas). The decision prob-
lem for a given formula ϕ is to determine whether ϕ is valid.

Given a theory T , we are interested in a procedure4 that terminates with
!" #$T

a correct answer to the decision problem, for every formula of the theory T .5
This can be formalized with a generalization of the notions of “soundness”

and “completeness” that we saw earlier in the context of inference systems.
These terms can be defined for the more general case of procedures as follows:
3 Recall that the discussion here refers to propositional logic. In the more general

case, we are not talking about assignments, rather about structures that may
or may not satisfy a formula. In that case, the notation |= ϕ means that all
structures satisfy ϕ. These terms are explained later in Sect. 1.4.

4 We follow the convention by which a procedure does not necessarily terminate,
whereas an algorithm terminates. This may cause confusion, because a “decision
procedure” is by definition terminating, and thus should actually be called a
“decision algorithm”. This confusion is rooted in the literature, and we follow it
here.

5 Every theory is defined over a set of symbols (e.g., linear arithmetic is defined
over symbols such as “+” and “≥”). By saying “every formula of the theory” we
mean every formula that is restricted to the symbols of the theory. This will be
explained in more detail in Sect. 1.4.

A ) A



Theories
A theory is (informally):

A finite or infinite set of formulas, which are 
characterized by common grammatical rules, 
functions and predicates, and a domain of values.

2 1 Introduction and Basic Concepts

properties. Up to that point in the chapter, there is no new material. As of
Sect. 1.5, the chapter is dedicated to more advanced issues that are necessary
as a general introduction to the book. Section 1.4 positions the subject which
this book is dedicated to in the theoretical framework in which it is typically
discussed in the literature. This is important mainly for the second type of
reader: those who are interested in entering this field as researchers, and, more
generally, those who are trained to some extent in mathematical logic. This
section also includes a description of the types of problem that we are con-
cerned with in this book, and the standard form in which they are presented
in the following chapters. Section 1.5 describes the trade-off between expres-
siveness and decidability. In Sect. 1.6, we conclude the chapter by discussing
the need for reasoning about formulas with a Boolean structure.

What about the rest of the book? Each chapter is dedicated to a different
first-order theory. We have not yet explained what a theory is, and specifi-
cally what a first-order theory is – this is the role of Sect. 1.4 – but some
examples are still in order, as some intuition as to what theories are is required
before we reach that section in order to understand the direction in which we
are proceeding.

Informally, one may think of a theory as a finite or an infinite set of formu-
las, which are characterized by common grammatical rules, allowed functions
and predicates, and a domain of values. The fact that they are called “first-
order” means only that there is a restriction on the quantifiers (only variables,
rather than sets of variables, can be quantified), but this is mostly irrelevant
to us, because, in all chapters but one, we restrict the discussion to quantifier-
free formulas. The table below lists some of the first-order theories that are
covered in this book.1

Theory name Example formula Chapter

Propositional logic x1 ∧ (x2 ∨ ¬x3) 2
Equality y1 = y2 ∧ ¬(y1 = y3) =⇒ ¬(y1 = y3) 3, 4
Linear arithmetic (2z1 + 3z2 ≤ 5) ∨ (z2 + 5z2 − 10z3 ≥ 6) 5
Bit vectors ((a>> b) & c) < c 6
Arrays (i = j ∧ a[j] = 1) =⇒ a[i] = 1 7
Pointer logic p = q ∧ ∗p = 5 =⇒ ∗q = 5 8
Combined theories (i ≤ j ∧ a[j] = 1) =⇒ a[i] < 2 10

In the next few sections, we use propositional logic, which we assume the
reader is familiar with, in order to demonstrate various concepts that apply
equally to other first-order theories.

1 Here we consider propositional logic as a first-order theory, which is technically
correct, although not common.



More Definitions

A procedure is called a decision procedure for T if it is sound and 
complete with respect to every formula in T.

A procedure for a decision problem is sound if when it answers 
“YES” to the validity/satisfiability question, the formula is valid/
satisfiable. 

A theory is  decidable if and only if there is a decision procedure 
for it.

A procedure for a decision problem  is complete if it always 
terminates, and when formula is valid, it it answers “YES” to the 
validity question. 



Theories and Algorithms
A theory is interesting if:

It is expressive enough to model a real decision problem.

It is either decidable or semi-decidable, and more 
efficiently solvable than more expressive theories.
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Computational

More expressiveEasier to decide

Decidable Undecidable

Polynomial

challenge

Fig. 1.3. The trade-off between expressiveness of theories and the hardness of de-
ciding them, illustrated for an imaginary series of theories T1, . . . , Tn, T for which
each Ti, i ∈ {1, . . . , n}, is less expressive than its successor

Many applications, however, require a more complex Boolean structure.
In program analysis and verification, for example, disjunctions may appear in
the program to be verified, either explicitly (e.g., x = y || z) or implicitly
through constructs such as if and switch statements. Any reasoning system
about such programs, therefore, must be able to deal with disjunctions. For
example, verification conditions that arise in program verification (e.g.,
using Hoare logic), often have the form of an implication.

The following example focuses on a technique for reasoning about pro-
grams, that demonstrates how program structure, including if statements, is
evident in the underlying verification conditions that need to be checked.

Example 1.25. Bounded model checking (BMC) of programs is a tech-
nique for verifying that a given property (typically given as an assertion by
the user) holds for a program in which the number of loop iterations and re-
cursive calls is bounded by a given number k. The states that the program can
reach within this bound are represented symbolically by a formula, together
with the negation of the property. If the combined formula is satisfiable, then
there exists a path in the program that violates the property.

Consider the program in the left part of Fig. 1.4. The number of paths
through this program is exponential in N , as each of the a[i] elements can
be either zero or nonzero. Despite the exponential number of paths through
the program, its states can be encoded with a formula of size linear in N , as
demonstrated in the right part of the figure.

The formula on the right of Fig. 1.4 encodes the states of the program on
its left, using the static-single-assignment (SSA) form. Briefly, this means
that in each assignment of the form x = exp;, the left-hand side variable
x is replaced with a new variable, say x1, and any reference to x after this
line and before x is assigned again is replaced with x1. Such a replacement is
possible because there are no loops (recall that this is done in the context of
BMC). After this transformation, the statements are conjoined. The resulting
equation represents the states of the original program.



Propositional Logic



SAT Solvers
� Given a propositional formula F, a SAT Solver decides if F is 
satisfiable. 
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Fig. 2.3. The size of industrial CNF formulas (instances generated for solving var-
ious realistic problems such as verification of circuits and planning problems) that
are regularly solved by SAT solvers in a few hours, according to year. Most of the
progress in efficiency has been made in the last decade

The majority of modern SAT solvers can be classified into two main cate-
gories. The first category is based on the Davis–Putnam–Loveland–Logemann
(DPLL) framework: in this framework the tool can be thought of as traversing
and backtracking on a binary tree, in which internal nodes represent partial
assignments, and the leaves represent full assignments, i.e., an assignment to
all the variables.

The second category is based on a stochastic search: the solver guesses
a full assignment, and then, if the formula is evaluated to false under this
assignment, starts to flip values of variables according to some (greedy) heuris-
tic. Typically it counts the number of unsatisfied clauses and chooses the flip
that minimizes this number. There are various strategies that help such solvers
avoid local minima and avoid repeating previous bad moves. DPLL solvers,
however, are considered better in most cases, at least at the time of writ-
ing this chapter (2007), according to annual competitions that measure their
performance with numerous CNF instances. DPLL solvers also have the ad-
vantage that, unlike most stochastic search methods, they are complete (see
Definition 1.6). Stochastic methods seem to have an average advantage in
solving randomly generated (satisfiable) CNF instances, which is not surpris-
ing: in these instances there is no structure to exploit and learn from, and no
obvious choices of variables and values, which makes the heuristics adopted
by DPLL solvers ineffective. We shall focus on DPLL solvers only.

2.2.2 The DPLL Framework

In its simplest form, a DPLL solver progresses by making a decision about a
variable and its value, propagates implications of this decision that are easy
to detect, and backtracks in the case of a conflict. Viewing the process as a



Propose a trivial SAT 
solving Algorithm.

The satisfiability problem for propositional logic is NP-Complete. 



SAT Solving Techniques

DPLL-based

Davis-Putnam-Loveland-Logemann

Traversing and backtracking on a binary tree, in which 
internal nodes represent partial assignments, and leaves 
present full assignments.

Stochastic Search

The solver guesses a full assignment, and if it doesn’t 
work, it starts flipping values based on some greedy 
heuristic.



Let’s see a reasonable 
SAT-solving algorithm …



CNF
Conjunctive Normal Form

Definition (Conjunctive Normal Form)

A formula in Conjunctive Normal Form (CNF) is a conjunction of clauses

C1 � C2 � . . . � Cn

each clause C is a disjunction of literals

C = L1 ⇥ . . . ⇥ Lm

and each literal is either a plain variable x or a negated variable x.

Example (a ⇥ b ⇥ c) � (a ⇥ b) � (a ⇥ c)

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 11 / 24

Conjunctive Normal Form

Definition (Conjunctive Normal Form)

A formula in Conjunctive Normal Form (CNF) is a conjunction of clauses

C1 � C2 � . . . � Cn

each clause C is a disjunction of literals

C = L1 ⇥ . . . ⇥ Lm

and each literal is either a plain variable x or a negated variable x.

Example (a ⇥ b ⇥ c) � (a ⇥ b) � (a ⇥ c)

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 11 / 24
For every Propositional formula there exists an equisatisfiable 
propositional formula in CNF which is at most polynomially larger. 



States of a Clause
A clause is satisfied if one or more of its literals are satisfied. 

A clause is conflicting if all of its literals are assigned, but not 
satisfied. 

A clause is unit if it is not satisfied and all but one of its literals are 
assigned. 

A clause is unresolved if it is none of the above. 
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search on a binary tree, each decision is associated with a decision level,
which is the depth in the binary decision tree in which it is made, starting
from 1. The assignments implied by a decision are associated with its decision
level. Assignments implied regardless of the current assignments (owing to
unary clauses, which are clauses with a single literal) are associated with
decision level 0, also called the ground level.

Definition 2.3 (state of a clause under an assignment). A clause is
satisfied if one or more of its literals are satisfied (see Definition 1.12), con-
flicting if all of its literals are assigned but not satisfied, unit if it is not
satisfied and all but one of its literals are assigned, and unresolved other-
wise.

Note that the definition of a unit clause and an unresolved clause are only
relevant for partial assignments (see Definition 1.1).

Example 2.4. Given the partial assignment

{x1 !→ 1, x2 !→ 0, x4 !→ 1} , (2.6)

(x1 ∨ x3 ∨ ¬x4) is satisfied,
(¬x1 ∨ x2) is conflicting,
(¬x1 ∨ ¬x4 ∨ x3) is unit,
(¬x1 ∨ x3 ∨ x5) is unresolved.

Given a partial assignment under which a clause becomes unit, it must
be extended so that it satisfies the unassigned literal of this clause. This
observation is known as the unit clause rule. Following this requirement is
necessary but obviously not sufficient for satisfying the formula.

For a given unit clause C with an unassigned literal l, we say that l
is implied by C and that C is the antecedent clause of l, denoted by
Antecedent(l). If more than one unit clause implies l, we refer to the clause
that the SAT solver used in order to imply l as its antecedent.

Example 2.5. The clause C := (¬x1 ∨ ¬x4 ∨ x3) and the partial assignment
{x1 !→ 1, x4 !→ 1}, imply the assignment x3 and Antecedent(x3) = C.

A framework followed by most modern DPLL solvers has been presented
by, for example, Zhang and Malik [211], and is shown in Algorithm 2.2.1. The
table in Fig. 2.5 includes a description of the main components used in this
algorithm, and Fig. 2.4 depicts the interaction between them. A description
of the Analyze-Conflict function is delayed to Sect. 2.2.6.
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Simple Algorithm Overview
Partial Evaluations: 

We start with the empty evaluation (no variable has been assigned). 

We step by step extend it to all variables.

Davis-Putnam-Logemann-Loveland basic structure:The Davis-Putnam-Logemann-Loveland Proc.

boolean DPLL(clause set N, partial valuation A) {

if (all clauses in N are true under A) return true;

elsif (some clause in N is false under A) return false;

elsif (N contains unit clause P) return DPLL(N, A ∪ {P "→ 1});

elsif (N contains unit clause ¬P) return DPLL(N, A ∪ {P "→ 0});

elsif (N contains pure literal P) return DPLL(N, A ∪ {P "→ 1});

elsif (N contains pure literal ¬P) return DPLL(N, A ∪ {P "→ 0});

else {

let P be some undefined variable in N;

if (DPLL(N, A ∪ {P "→ 0})) return true;

else return DPLL(N, A ∪ {P "→ 1});

}

}
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Start with empty

Not chosen 
randomly

Iterative Algorithm
with smart backtracking



The better algorithm 
takes shortcuts …



More Sophisticated Algorithm
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Algorithm 2.2.1: DPLL-SAT

Input: A propositional CNF formula B
Output: “Satisfiable” if the formula is satisfiable and “Unsatisfiable”

otherwise

1. function DPLL
2. if BCP() = “conflict” then return “Unsatisfiable”;
3. while (true) do
4. if ¬Decide() then return “Satisfiable”;
5. else
6. while (BCP() = “conflict”) do
7. backtrack-level := Analyze-Conflict();
8. if backtrack-level < 0 then return “Unsatisfiable”;
9. else BackTrack(backtrack-level);

full

conflict

SAT

UNSAT

dl ≥ 0

BackTrack

Analyze-
ConflictBCP

conflict
no

partial
assignment

Decide

assignment

Fig. 2.4. DPLL-SAT: high-level overview of the Davis-Putnam-Loveland-Logemann
algorithm. The variable dl is the decision level to which the procedure backtracks

2.2.3 BCP and the Implication Graph

We now demonstrate Boolean constraints propagation (BCP), reaching a con-
flict, and backtracking. Each assignment is associated with the decision level
at which it occurred. If a variable xi is assigned 1 (true) (owing to either
a decision or an implication) at decision level dl, we write xi@dl. Similarly,

!" #$xi@dl
¬xi@dl reflects an assignment of 0 (false) to this variable at decision level
dl. Where appropriate, we refer only to the truth assignment, omitting the
decision level, in order to make the notation simpler.



BCP-Conflict Analysis-Backtracking
Each assignment is associated with a  decision level. 
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2.2.3 BCP and the Implication Graph

We now demonstrate Boolean constraints propagation (BCP), reaching a con-
flict, and backtracking. Each assignment is associated with the decision level
at which it occurred. If a variable xi is assigned 1 (true) (owing to either
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¬xi@dl reflects an assignment of 0 (false) to this variable at decision level
dl. Where appropriate, we refer only to the truth assignment, omitting the
decision level, in order to make the notation simpler.

the level at which a decision or implication was made.

BCP is performed over an implication graph. 

the graph represents a current partial assignment and the reason for 
each implication. 
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• G can also contain a single conflict node labeled with κ and incoming
edges {(v,κ) | ¬v ∈ c} labeled with c for some conflicting clause c.

The root nodes of an implication graph correspond to decisions, and the inter-
nal nodes to implications through BCP. A conflict node with incoming edges
labeled with c represents the fact that the BCP process has reached a con-
flict, by assigning 0 to all the literals in the clause c (i.e., c is conflicting).
In such a case, we say that the graph is a conflict graph. The implication
graph corresponds to all the decision levels lower than or equal to the current
one, and is dynamic: backtracking removes nodes and their incoming edges,
whereas new decisions, implications, and conflict clauses increase the size of
the graph.

The implication graph is sensitive to the order in which the implications
are propagated in BCP, which means that the graph is not unique for a given
partial assignment. In most SAT solvers, this order is rather arbitrary (in
particular, BCP progresses along a list of clauses that contain a given literal,
and the order of clauses in this list can be sensitive to the order of clauses in
the input CNF formula). In some other SAT solvers – see for example [151]
– this order is not arbitrary; rather, it is biased towards reaching a conflict
faster.

A partial implication graph is a subgraph of an implication graph,
which illustrates the BCP at a specific decision level. Partial implication
graphs are sufficient for describing Analyze-Conflict. The roots in such
a partial graph represent assignments (not necessarily decisions) at decision
levels lower than dl, in addition to the decision at level dl, and internal nodes
correspond to implications at level dl. The description that follows uses mainly
this restricted version of the graph.

Consider, for example, a formula that contains the following set of clauses,
among others:

c1 = (¬x1 ∨ x2) ,
c2 = (¬x1 ∨ x3 ∨ x5) ,
c3 = (¬x2 ∨ x4) ,
c4 = (¬x3 ∨ ¬x4) ,
c5 = (x1 ∨ x5 ∨ ¬x2) ,
c6 = (x2 ∨ x3) ,
c7 = (x2 ∨ ¬x3) ,
c8 = (x6 ∨ ¬x5) .

(2.7)

Assume that at decision level 3 the decision was ¬x6@3, which implied ¬x5@3
owing to clause c8 (hence, Antecedent(¬x5) = c8). Assume further that the
solver is now at decision level 6 and assigns x1 = 1. At decision levels 4 and 5,
variables other than x1, . . . , x6 were assigned, and are not listed here as they
are not relevant to these clauses.

The implication graph on the left of Fig. 2.6 demonstrates the BCP process
at the current decision level 6 until, in this case, a conflict is detected. The
roots of this graph, namely ¬x5@3 and x1@6, constitute a sufficient condition
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for creating this conflict. Therefore, we can safely add to our formula the
conflict clause

c9 = (x5 ∨ ¬x1) . (2.8)

While c9 is logically implied by the original formula and therefore does not
change the result, it prunes the search space. The process of adding conflict
clauses is generally referred to as learning, reflecting the fact that this is the
solver’s way to learn from its past mistakes. As we progress in this chapter,
it will become clear that conflict clauses not only prune the search space, but
also have an impact on the decision heuristic, the backtracking level, and the
set of variables implied by each decision.

Analyze-Conflict is the function responsible for deriving new conflict
clauses and computing the backtracking level. It traverses the implication
graph backwards, starting from the conflict node κ, and generates a conflict
clause through a series of steps that we describe later in Sect. 2.2.4. For now,
assume that c9 is indeed the clause generated.

After detecting the conflict and adding c9, the solver determines which
decision level to backtrack to according to the conflict-driven backtracking
strategy. According to this strategy, the backtracking level is set to the second
most recent decision level in the conflict clause3 (or, equivalently, it is set to
the highest of the decision levels in the clause other than the current decision
level), while erasing all decisions and implications made after that level.

In the case of c9, the solver backtracks to decision level 3 (the decision level
of x5), and erases all assignments from decision level 4 onwards, including the
assignments to x1, x2, x3, and x4.

The newly added conflict clause c9 becomes a unit clause since x5 = 0, and
therefore the assignment ¬x1@3 is implied. This new implication re-starts the
BCP process at level 3. Clause c9 is a special kind of a conflict clause, called
an asserting clause: it forces an immediate implication after backtracking.
Analyze-Conflict can be designed to generate asserting clauses only, as
indeed most competitive solvers do.

3 In the case of learning a unary clause, the solver backtracks to the ground level.



Implication Graph
A labeled directed acyclic graph G(V,E) where: 

V represents the literals of the current assignment. Each node is labeled 
with a literal and its decision level. 

E represents the connection between literals. (u,v) belongs to the graph 
if the assignment to u plays a role in what value should be assigned to v 
(they both belong to a unit clause).
G can also contain a single conflict node labeled with k (now the 
incoming edges are all from the literals that are part of a conflict 
clause with k). 
The root nodes correspond to decisions and the internal nodes 
correspond to implications made by propagation.

The graph may be partial; only referring to a certain decision level.



Analyze Conflict: Example
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• G can also contain a single conflict node labeled with κ and incoming
edges {(v,κ) | ¬v ∈ c} labeled with c for some conflicting clause c.

The root nodes of an implication graph correspond to decisions, and the inter-
nal nodes to implications through BCP. A conflict node with incoming edges
labeled with c represents the fact that the BCP process has reached a con-
flict, by assigning 0 to all the literals in the clause c (i.e., c is conflicting).
In such a case, we say that the graph is a conflict graph. The implication
graph corresponds to all the decision levels lower than or equal to the current
one, and is dynamic: backtracking removes nodes and their incoming edges,
whereas new decisions, implications, and conflict clauses increase the size of
the graph.

The implication graph is sensitive to the order in which the implications
are propagated in BCP, which means that the graph is not unique for a given
partial assignment. In most SAT solvers, this order is rather arbitrary (in
particular, BCP progresses along a list of clauses that contain a given literal,
and the order of clauses in this list can be sensitive to the order of clauses in
the input CNF formula). In some other SAT solvers – see for example [151]
– this order is not arbitrary; rather, it is biased towards reaching a conflict
faster.

A partial implication graph is a subgraph of an implication graph,
which illustrates the BCP at a specific decision level. Partial implication
graphs are sufficient for describing Analyze-Conflict. The roots in such
a partial graph represent assignments (not necessarily decisions) at decision
levels lower than dl, in addition to the decision at level dl, and internal nodes
correspond to implications at level dl. The description that follows uses mainly
this restricted version of the graph.

Consider, for example, a formula that contains the following set of clauses,
among others:

c1 = (¬x1 ∨ x2) ,
c2 = (¬x1 ∨ x3 ∨ x5) ,
c3 = (¬x2 ∨ x4) ,
c4 = (¬x3 ∨ ¬x4) ,
c5 = (x1 ∨ x5 ∨ ¬x2) ,
c6 = (x2 ∨ x3) ,
c7 = (x2 ∨ ¬x3) ,
c8 = (x6 ∨ ¬x5) .

(2.7)

Assume that at decision level 3 the decision was ¬x6@3, which implied ¬x5@3
owing to clause c8 (hence, Antecedent(¬x5) = c8). Assume further that the
solver is now at decision level 6 and assigns x1 = 1. At decision levels 4 and 5,
variables other than x1, . . . , x6 were assigned, and are not listed here as they
are not relevant to these clauses.

The implication graph on the left of Fig. 2.6 demonstrates the BCP process
at the current decision level 6 until, in this case, a conflict is detected. The
roots of this graph, namely ¬x5@3 and x1@6, constitute a sufficient condition
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• G can also contain a single conflict node labeled with κ and incoming
edges {(v,κ) | ¬v ∈ c} labeled with c for some conflicting clause c.

The root nodes of an implication graph correspond to decisions, and the inter-
nal nodes to implications through BCP. A conflict node with incoming edges
labeled with c represents the fact that the BCP process has reached a con-
flict, by assigning 0 to all the literals in the clause c (i.e., c is conflicting).
In such a case, we say that the graph is a conflict graph. The implication
graph corresponds to all the decision levels lower than or equal to the current
one, and is dynamic: backtracking removes nodes and their incoming edges,
whereas new decisions, implications, and conflict clauses increase the size of
the graph.

The implication graph is sensitive to the order in which the implications
are propagated in BCP, which means that the graph is not unique for a given
partial assignment. In most SAT solvers, this order is rather arbitrary (in
particular, BCP progresses along a list of clauses that contain a given literal,
and the order of clauses in this list can be sensitive to the order of clauses in
the input CNF formula). In some other SAT solvers – see for example [151]
– this order is not arbitrary; rather, it is biased towards reaching a conflict
faster.

A partial implication graph is a subgraph of an implication graph,
which illustrates the BCP at a specific decision level. Partial implication
graphs are sufficient for describing Analyze-Conflict. The roots in such
a partial graph represent assignments (not necessarily decisions) at decision
levels lower than dl, in addition to the decision at level dl, and internal nodes
correspond to implications at level dl. The description that follows uses mainly
this restricted version of the graph.

Consider, for example, a formula that contains the following set of clauses,
among others:

c1 = (¬x1 ∨ x2) ,
c2 = (¬x1 ∨ x3 ∨ x5) ,
c3 = (¬x2 ∨ x4) ,
c4 = (¬x3 ∨ ¬x4) ,
c5 = (x1 ∨ x5 ∨ ¬x2) ,
c6 = (x2 ∨ x3) ,
c7 = (x2 ∨ ¬x3) ,
c8 = (x6 ∨ ¬x5) .

(2.7)

Assume that at decision level 3 the decision was ¬x6@3, which implied ¬x5@3
owing to clause c8 (hence, Antecedent(¬x5) = c8). Assume further that the
solver is now at decision level 6 and assigns x1 = 1. At decision levels 4 and 5,
variables other than x1, . . . , x6 were assigned, and are not listed here as they
are not relevant to these clauses.

The implication graph on the left of Fig. 2.6 demonstrates the BCP process
at the current decision level 6 until, in this case, a conflict is detected. The
roots of this graph, namely ¬x5@3 and x1@6, constitute a sufficient condition
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• G can also contain a single conflict node labeled with κ and incoming
edges {(v,κ) | ¬v ∈ c} labeled with c for some conflicting clause c.

The root nodes of an implication graph correspond to decisions, and the inter-
nal nodes to implications through BCP. A conflict node with incoming edges
labeled with c represents the fact that the BCP process has reached a con-
flict, by assigning 0 to all the literals in the clause c (i.e., c is conflicting).
In such a case, we say that the graph is a conflict graph. The implication
graph corresponds to all the decision levels lower than or equal to the current
one, and is dynamic: backtracking removes nodes and their incoming edges,
whereas new decisions, implications, and conflict clauses increase the size of
the graph.

The implication graph is sensitive to the order in which the implications
are propagated in BCP, which means that the graph is not unique for a given
partial assignment. In most SAT solvers, this order is rather arbitrary (in
particular, BCP progresses along a list of clauses that contain a given literal,
and the order of clauses in this list can be sensitive to the order of clauses in
the input CNF formula). In some other SAT solvers – see for example [151]
– this order is not arbitrary; rather, it is biased towards reaching a conflict
faster.

A partial implication graph is a subgraph of an implication graph,
which illustrates the BCP at a specific decision level. Partial implication
graphs are sufficient for describing Analyze-Conflict. The roots in such
a partial graph represent assignments (not necessarily decisions) at decision
levels lower than dl, in addition to the decision at level dl, and internal nodes
correspond to implications at level dl. The description that follows uses mainly
this restricted version of the graph.

Consider, for example, a formula that contains the following set of clauses,
among others:

c1 = (¬x1 ∨ x2) ,
c2 = (¬x1 ∨ x3 ∨ x5) ,
c3 = (¬x2 ∨ x4) ,
c4 = (¬x3 ∨ ¬x4) ,
c5 = (x1 ∨ x5 ∨ ¬x2) ,
c6 = (x2 ∨ x3) ,
c7 = (x2 ∨ ¬x3) ,
c8 = (x6 ∨ ¬x5) .

(2.7)

Assume that at decision level 3 the decision was ¬x6@3, which implied ¬x5@3
owing to clause c8 (hence, Antecedent(¬x5) = c8). Assume further that the
solver is now at decision level 6 and assigns x1 = 1. At decision levels 4 and 5,
variables other than x1, . . . , x6 were assigned, and are not listed here as they
are not relevant to these clauses.

The implication graph on the left of Fig. 2.6 demonstrates the BCP process
at the current decision level 6 until, in this case, a conflict is detected. The
roots of this graph, namely ¬x5@3 and x1@6, constitute a sufficient condition
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Fig. 2.6. A partial implication graph for decision level 6, corresponding to the
clauses in (2.7), after a decision x1 = 1 (left) and a similar graph after learning the
conflict clause c9 = (x5 ∨ ¬x1) and backtracking to decision level 3 (right)

for creating this conflict. Therefore, we can safely add to our formula the
conflict clause

c9 = (x5 ∨ ¬x1) . (2.8)

While c9 is logically implied by the original formula and therefore does not
change the result, it prunes the search space. The process of adding conflict
clauses is generally referred to as learning, reflecting the fact that this is the
solver’s way to learn from its past mistakes. As we progress in this chapter,
it will become clear that conflict clauses not only prune the search space, but
also have an impact on the decision heuristic, the backtracking level, and the
set of variables implied by each decision.

Analyze-Conflict is the function responsible for deriving new conflict
clauses and computing the backtracking level. It traverses the implication
graph backwards, starting from the conflict node κ, and generates a conflict
clause through a series of steps that we describe later in Sect. 2.2.4. For now,
assume that c9 is indeed the clause generated.

After detecting the conflict and adding c9, the solver determines which
decision level to backtrack to according to the conflict-driven backtracking
strategy. According to this strategy, the backtracking level is set to the second
most recent decision level in the conflict clause3 (or, equivalently, it is set to
the highest of the decision levels in the clause other than the current decision
level), while erasing all decisions and implications made after that level.

In the case of c9, the solver backtracks to decision level 3 (the decision level
of x5), and erases all assignments from decision level 4 onwards, including the
assignments to x1, x2, x3, and x4.

The newly added conflict clause c9 becomes a unit clause since x5 = 0, and
therefore the assignment ¬x1@3 is implied. This new implication re-starts the
BCP process at level 3. Clause c9 is a special kind of a conflict clause, called
an asserting clause: it forces an immediate implication after backtracking.
Analyze-Conflict can be designed to generate asserting clauses only, as
indeed most competitive solvers do.

3 In the case of learning a unary clause, the solver backtracks to the ground level.
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for creating this conflict. Therefore, we can safely add to our formula the
conflict clause

c9 = (x5 ∨ ¬x1) . (2.8)

While c9 is logically implied by the original formula and therefore does not
change the result, it prunes the search space. The process of adding conflict
clauses is generally referred to as learning, reflecting the fact that this is the
solver’s way to learn from its past mistakes. As we progress in this chapter,
it will become clear that conflict clauses not only prune the search space, but
also have an impact on the decision heuristic, the backtracking level, and the
set of variables implied by each decision.

Analyze-Conflict is the function responsible for deriving new conflict
clauses and computing the backtracking level. It traverses the implication
graph backwards, starting from the conflict node κ, and generates a conflict
clause through a series of steps that we describe later in Sect. 2.2.4. For now,
assume that c9 is indeed the clause generated.

After detecting the conflict and adding c9, the solver determines which
decision level to backtrack to according to the conflict-driven backtracking
strategy. According to this strategy, the backtracking level is set to the second
most recent decision level in the conflict clause3 (or, equivalently, it is set to
the highest of the decision levels in the clause other than the current decision
level), while erasing all decisions and implications made after that level.

In the case of c9, the solver backtracks to decision level 3 (the decision level
of x5), and erases all assignments from decision level 4 onwards, including the
assignments to x1, x2, x3, and x4.

The newly added conflict clause c9 becomes a unit clause since x5 = 0, and
therefore the assignment ¬x1@3 is implied. This new implication re-starts the
BCP process at level 3. Clause c9 is a special kind of a conflict clause, called
an asserting clause: it forces an immediate implication after backtracking.
Analyze-Conflict can be designed to generate asserting clauses only, as
indeed most competitive solvers do.

3 In the case of learning a unary clause, the solver backtracks to the ground level.

Therefore, we can safely add a conflict clause:

to our formula.

generally called
learning.

backtrack to the highest decision 
level before the current one.
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• G can also contain a single conflict node labeled with κ and incoming
edges {(v,κ) | ¬v ∈ c} labeled with c for some conflicting clause c.

The root nodes of an implication graph correspond to decisions, and the inter-
nal nodes to implications through BCP. A conflict node with incoming edges
labeled with c represents the fact that the BCP process has reached a con-
flict, by assigning 0 to all the literals in the clause c (i.e., c is conflicting).
In such a case, we say that the graph is a conflict graph. The implication
graph corresponds to all the decision levels lower than or equal to the current
one, and is dynamic: backtracking removes nodes and their incoming edges,
whereas new decisions, implications, and conflict clauses increase the size of
the graph.

The implication graph is sensitive to the order in which the implications
are propagated in BCP, which means that the graph is not unique for a given
partial assignment. In most SAT solvers, this order is rather arbitrary (in
particular, BCP progresses along a list of clauses that contain a given literal,
and the order of clauses in this list can be sensitive to the order of clauses in
the input CNF formula). In some other SAT solvers – see for example [151]
– this order is not arbitrary; rather, it is biased towards reaching a conflict
faster.

A partial implication graph is a subgraph of an implication graph,
which illustrates the BCP at a specific decision level. Partial implication
graphs are sufficient for describing Analyze-Conflict. The roots in such
a partial graph represent assignments (not necessarily decisions) at decision
levels lower than dl, in addition to the decision at level dl, and internal nodes
correspond to implications at level dl. The description that follows uses mainly
this restricted version of the graph.

Consider, for example, a formula that contains the following set of clauses,
among others:

c1 = (¬x1 ∨ x2) ,
c2 = (¬x1 ∨ x3 ∨ x5) ,
c3 = (¬x2 ∨ x4) ,
c4 = (¬x3 ∨ ¬x4) ,
c5 = (x1 ∨ x5 ∨ ¬x2) ,
c6 = (x2 ∨ x3) ,
c7 = (x2 ∨ ¬x3) ,
c8 = (x6 ∨ ¬x5) .

(2.7)

Assume that at decision level 3 the decision was ¬x6@3, which implied ¬x5@3
owing to clause c8 (hence, Antecedent(¬x5) = c8). Assume further that the
solver is now at decision level 6 and assigns x1 = 1. At decision levels 4 and 5,
variables other than x1, . . . , x6 were assigned, and are not listed here as they
are not relevant to these clauses.

The implication graph on the left of Fig. 2.6 demonstrates the BCP process
at the current decision level 6 until, in this case, a conflict is detected. The
roots of this graph, namely ¬x5@3 and x1@6, constitute a sufficient condition
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for creating this conflict. Therefore, we can safely add to our formula the
conflict clause

c9 = (x5 ∨ ¬x1) . (2.8)

While c9 is logically implied by the original formula and therefore does not
change the result, it prunes the search space. The process of adding conflict
clauses is generally referred to as learning, reflecting the fact that this is the
solver’s way to learn from its past mistakes. As we progress in this chapter,
it will become clear that conflict clauses not only prune the search space, but
also have an impact on the decision heuristic, the backtracking level, and the
set of variables implied by each decision.

Analyze-Conflict is the function responsible for deriving new conflict
clauses and computing the backtracking level. It traverses the implication
graph backwards, starting from the conflict node κ, and generates a conflict
clause through a series of steps that we describe later in Sect. 2.2.4. For now,
assume that c9 is indeed the clause generated.

After detecting the conflict and adding c9, the solver determines which
decision level to backtrack to according to the conflict-driven backtracking
strategy. According to this strategy, the backtracking level is set to the second
most recent decision level in the conflict clause3 (or, equivalently, it is set to
the highest of the decision levels in the clause other than the current decision
level), while erasing all decisions and implications made after that level.

In the case of c9, the solver backtracks to decision level 3 (the decision level
of x5), and erases all assignments from decision level 4 onwards, including the
assignments to x1, x2, x3, and x4.

The newly added conflict clause c9 becomes a unit clause since x5 = 0, and
therefore the assignment ¬x1@3 is implied. This new implication re-starts the
BCP process at level 3. Clause c9 is a special kind of a conflict clause, called
an asserting clause: it forces an immediate implication after backtracking.
Analyze-Conflict can be designed to generate asserting clauses only, as
indeed most competitive solvers do.

3 In the case of learning a unary clause, the solver backtracks to the ground level.

We backtrack to level 3 after learning the conflict clause.
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for creating this conflict. Therefore, we can safely add to our formula the
conflict clause

c9 = (x5 ∨ ¬x1) . (2.8)

While c9 is logically implied by the original formula and therefore does not
change the result, it prunes the search space. The process of adding conflict
clauses is generally referred to as learning, reflecting the fact that this is the
solver’s way to learn from its past mistakes. As we progress in this chapter,
it will become clear that conflict clauses not only prune the search space, but
also have an impact on the decision heuristic, the backtracking level, and the
set of variables implied by each decision.

Analyze-Conflict is the function responsible for deriving new conflict
clauses and computing the backtracking level. It traverses the implication
graph backwards, starting from the conflict node κ, and generates a conflict
clause through a series of steps that we describe later in Sect. 2.2.4. For now,
assume that c9 is indeed the clause generated.

After detecting the conflict and adding c9, the solver determines which
decision level to backtrack to according to the conflict-driven backtracking
strategy. According to this strategy, the backtracking level is set to the second
most recent decision level in the conflict clause3 (or, equivalently, it is set to
the highest of the decision levels in the clause other than the current decision
level), while erasing all decisions and implications made after that level.

In the case of c9, the solver backtracks to decision level 3 (the decision level
of x5), and erases all assignments from decision level 4 onwards, including the
assignments to x1, x2, x3, and x4.

The newly added conflict clause c9 becomes a unit clause since x5 = 0, and
therefore the assignment ¬x1@3 is implied. This new implication re-starts the
BCP process at level 3. Clause c9 is a special kind of a conflict clause, called
an asserting clause: it forces an immediate implication after backtracking.
Analyze-Conflict can be designed to generate asserting clauses only, as
indeed most competitive solvers do.

3 In the case of learning a unary clause, the solver backtracks to the ground level.

Clause c9 was a special kind of conflict clause, called asserting clause which 
forced an immediate implication after backtracking.

We erase all the decisions and implications made after that level,
including assignments to x1,x2,x3,x4.



Conflict Resolution

How are conflict clauses generated? 
(specifically, asserting clauses)



Conflict Resolution

Binary resolution inference rule:
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Fig. 2.8. An implication graph (stripped of most of its labels) with two UIPs. The
left UIP is the decision node, and the right one is the first UIP, as it is the one
closest to the conflict node

2. It backtracks to the lowest decision level.

The second fact can be demonstrated with the help of Fig. 2.8. Let l1
and l2 denote the literals at the first and the second UIP, respectively. The
asserting clauses generated with the first UIP and second-UIP strategies are,
respectively, (¬l1∨¬x1∨¬x2) and (¬l2∨¬x1∨¬x2∨¬x4). It is not a coincidence
that the second clause subsumes the first, other than the asserting literals ¬l1
and ¬l2: it is always like this, by construction. Now recall how the backtracking
level is determined: it is equal to the decision level corresponding to the second
highest in the asserting clause. Clearly, this implies that the backtracking level
computed with regard to the first clause is lower than that computed with
regard to the second clause. In our example, these are decision levels 4 and 7,
respectively.

In order to explain lines 4–7 of Analyze-Conflict, we need the following
definition.

Definition 2.11 (binary resolution and related terms). Consider the
following inference rule:

(a1 ∨ . . . ∨ an ∨ β) (b1 ∨ . . . ∨ bm ∨ ¬β)
(a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm)

(Binary Resolution) , (2.9)

where a1, . . . , an, b1, . . . , bm are literals and β is a variable. The variable β is
called the resolution variable. The clauses (a1 ∨ . . .∨an ∨β) and (b1 ∨ . . .∨
bm ∨ (¬β)) are the resolving clauses, and (a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm) is
the resolvent clause.

A well-known result obtained by Robinson [166] shows that a deductive system
based on the binary-resolution rule as its single inference rule is sound and
complete. In other words, a CNF formula is unsatisfiable if and only if there
exists a finite series of binary-resolution steps ending with the empty clause.

An inference system based on the above rule for propositional 
logic is sound and complete. 

Unsatisfiability of a CNF formula is decided through finitely 
many applications of the resolution rule.
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Fig. 2.9. A partial implication graph and a set of clauses that demonstrate Algo-
rithm 2.2.2. The first UIP is x4, and, correspondingly, the asserted literal is ¬x4

name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3

(¬x5 ∨ ¬x6) ¬x6 x6 c2

(¬x4 ∨ x10 ∨ ¬x5) ¬x5 x5 c1

c5 (¬x4 ∨ x2 ∨ x10)

The clause c5 is an asserting clause in which the negation of the first UIP (x4)
is the only literal from the current decision level.

2.2.5 Decision Heuristics

Probably the most important element in SAT solving is the strategy by which
the variables and the value given to them are chosen. This strategy is called the
decision heuristic of the SAT solver. Let us survey some of the best-known
decision heuristics, in the order in which they were suggested, which is also
the order of their average efficiency as measured by numerous experiments.
New strategies are published every year.

Jeroslow–Wang

Given a CNF formula B, compute for each literal l

J(l) = Σω∈B,l∈ω2−|ω| , (2.10)

where ω represents a clause and |ω| its length. Choose the literal l for which
J(l) is maximal, and for which neither l or ¬l is asserted.

This strategy gives higher priority to literals that appear frequently
in short clauses. It can be implemented statically (one computation in the
beginning of the run) or dynamically, where in each decision only unsatisfied
clauses are considered in the computation. In the context of a SAT solver
that learns through addition of conflict clauses, the dynamic approach is more
reasonable.
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Aside: Hard Problems for Resolution-Based Procedures
Some propositional formulas can be decided with no less than an exponential
number of resolution steps in the size of the input. Haken [90] proved in 1985
that the pigeonhole problem is one such problem: given n > 1 pigeons and
n − 1 pigeonholes, can each of the pigeons be assigned a pigeonhole without
sharing? While a formulation of this problem in propositional logic is rather
trivial with n · (n − 1) variables, currently no SAT solver (which, recall, im-
plicitly perform resolution) can solve this problem in a reasonable amount of
time for n larger than several tens, although the size of the CNF itself is rela-
tively small. As an experiment, we tried to solve this problem for n = 20 with
three leading SAT solvers: Siege4 [171], zChaff-04 [133] and HaifaSat [82]. On
a Pentium 4 with 1 GB of main memory, none of the three could solve this
problem within three hours. Compare this result with the fact that, bounded
by the same timeout, these tools routinely solve problems arising in industry
with hundreds of thousands of variables.

The function Resolve(c1, c2, v) used in line 7 of Analyze-Conflict re-
turns the resolvent of the clauses c1, c2, where the resolution variable is v. The
Antecedent function used in line 6 of this function returns Antecedent(lit).
The other functions and variables are self-explanatory.

Analyze-Conflict progresses from right to left on the conflict graph,
starting from the conflicting clause, while constructing the new conflict clause
through a series of resolution steps. It begins with the conflicting clause cl,
in which all literals are set to 0. The literal lit is the literal in cl assigned
last, and var denotes its associated variable. The antecedent clause of var,
denoted by ante, contains ¬lit as the only satisfied literal, and other literals,
all of which are currently unsatisfied. The clauses cl and ante thus contain
lit and ¬lit, respectively, and can therefore be resolved with the resolution
variable var. The resolvent clause is again a conflicting clause, which is the
basis for the next resolution step.

Example 2.12. Consider the partial implication graph and set of clauses in
Fig. 2.9, and assume that the implication order in the BCP was x4, x5, x6, x7.

The conflict clause c5 := (x10 ∨ x2 ∨ ¬x4) is computed through a series
of binary resolutions. Analyze-Conflict traverses backwards through the
implication graph starting from the conflicting clause c4, while following the
order of the implications in reverse, as can be seen in the table below. The
intermediate clauses, in this case the second and third clauses in the resolution
sequence, are typically discarded.

Implication Order in BCP:

2.2 SAT Solvers 39

c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)

... c2

x4@5

¬x10@3

¬x2@3

c1

c2 c4

c4

c3

c3

¬x7@5

x6@5

c1

x5@5

κ

Fig. 2.9. A partial implication graph and a set of clauses that demonstrate Algo-
rithm 2.2.2. The first UIP is x4, and, correspondingly, the asserted literal is ¬x4

name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3

(¬x5 ∨ ¬x6) ¬x6 x6 c2

(¬x4 ∨ x10 ∨ ¬x5) ¬x5 x5 c1

c5 (¬x4 ∨ x2 ∨ x10)

The clause c5 is an asserting clause in which the negation of the first UIP (x4)
is the only literal from the current decision level.

2.2.5 Decision Heuristics

Probably the most important element in SAT solving is the strategy by which
the variables and the value given to them are chosen. This strategy is called the
decision heuristic of the SAT solver. Let us survey some of the best-known
decision heuristics, in the order in which they were suggested, which is also
the order of their average efficiency as measured by numerous experiments.
New strategies are published every year.

Jeroslow–Wang

Given a CNF formula B, compute for each literal l

J(l) = Σω∈B,l∈ω2−|ω| , (2.10)

where ω represents a clause and |ω| its length. Choose the literal l for which
J(l) is maximal, and for which neither l or ¬l is asserted.

This strategy gives higher priority to literals that appear frequently
in short clauses. It can be implemented statically (one computation in the
beginning of the run) or dynamically, where in each decision only unsatisfied
clauses are considered in the computation. In the context of a SAT solver
that learns through addition of conflict clauses, the dynamic approach is more
reasonable.
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The clause c5 is an asserting clause in which the negation of the first UIP (x4)
is the only literal from the current decision level.

2.2.5 Decision Heuristics

Probably the most important element in SAT solving is the strategy by which
the variables and the value given to them are chosen. This strategy is called the
decision heuristic of the SAT solver. Let us survey some of the best-known
decision heuristics, in the order in which they were suggested, which is also
the order of their average efficiency as measured by numerous experiments.
New strategies are published every year.

Jeroslow–Wang

Given a CNF formula B, compute for each literal l

J(l) = Σω∈B,l∈ω2−|ω| , (2.10)

where ω represents a clause and |ω| its length. Choose the literal l for which
J(l) is maximal, and for which neither l or ¬l is asserted.

This strategy gives higher priority to literals that appear frequently
in short clauses. It can be implemented statically (one computation in the
beginning of the run) or dynamically, where in each decision only unsatisfied
clauses are considered in the computation. In the context of a SAT solver
that learns through addition of conflict clauses, the dynamic approach is more
reasonable.
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Conflict Resolution
What is the stopping condition for binary resolution steps?

 Given a partial graph for a decision level, a unique implication point 
(UIP) is a node (other than the conflict node) that is on all paths from 
the decision node to the conflict node.

First UIP is a UIP that is closest to the conflict node.2.2 SAT Solvers 37

x2@2

x4@7

UIPUIP
κ

x1@4

Fig. 2.8. An implication graph (stripped of most of its labels) with two UIPs. The
left UIP is the decision node, and the right one is the first UIP, as it is the one
closest to the conflict node

2. It backtracks to the lowest decision level.

The second fact can be demonstrated with the help of Fig. 2.8. Let l1
and l2 denote the literals at the first and the second UIP, respectively. The
asserting clauses generated with the first UIP and second-UIP strategies are,
respectively, (¬l1∨¬x1∨¬x2) and (¬l2∨¬x1∨¬x2∨¬x4). It is not a coincidence
that the second clause subsumes the first, other than the asserting literals ¬l1
and ¬l2: it is always like this, by construction. Now recall how the backtracking
level is determined: it is equal to the decision level corresponding to the second
highest in the asserting clause. Clearly, this implies that the backtracking level
computed with regard to the first clause is lower than that computed with
regard to the second clause. In our example, these are decision levels 4 and 7,
respectively.

In order to explain lines 4–7 of Analyze-Conflict, we need the following
definition.

Definition 2.11 (binary resolution and related terms). Consider the
following inference rule:

(a1 ∨ . . . ∨ an ∨ β) (b1 ∨ . . . ∨ bm ∨ ¬β)
(a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm)

(Binary Resolution) , (2.9)

where a1, . . . , an, b1, . . . , bm are literals and β is a variable. The variable β is
called the resolution variable. The clauses (a1 ∨ . . .∨an ∨β) and (b1 ∨ . . .∨
bm ∨ (¬β)) are the resolving clauses, and (a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm) is
the resolvent clause.

A well-known result obtained by Robinson [166] shows that a deductive system
based on the binary-resolution rule as its single inference rule is sound and
complete. In other words, a CNF formula is unsatisfiable if and only if there
exists a finite series of binary-resolution steps ending with the empty clause.

Why first? It is faster and one backtracks to the lowest level.



Termination
Why does this terminate? How do we know that a partial assignment 
cannot be repeated forever?

Theorem: It is never the case that the solver enters 
decision level dl again with the same partial assignment.

2.2 SAT Solvers 35

of them after a while to prevent the formula from growing too much. The
reason is the following.

Theorem 2.8. It is never the case that the solver enters decision level dl
again with the same partial assignment.

Proof. Consider a partial assignment up to decision level dl − 1 that does
not end with a conflict, and assume falsely that this state is repeated later,
after the solver backtracks to some lower decision level dl− (0 ≤ dl− < dl).
Any backtracking from a decision level dl+ (dl+ ≥ dl) to decision level
dl− adds an implication at level dl− of a variable that was assigned at
decision level dl+. Since this variable has not so far been part of the partial
assignment up to decision level dl, once the solver reaches dl again, it is
with a different partial assignment, which contradicts our assumption.

The (hypothetical) progress of a SAT solver based on this strategy is illus-
trated in Fig. 2.7. More details of this graph are explained in the caption.
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Fig. 2.7. Illustration of the progress of a SAT solver based on conflict-driven back-
tracking. Every conflict results in a conflict clause (denoted by c1, . . . , c5 in the
drawing). If the top left decision is x = 1, then this drawing illustrates the work
done by the SAT solver to refute this wrong decision. Only some of the work during
this time was necessary for creating c5, refuting this decision, and computing the
backtracking level. The “wasted work” (which might, after all, become useful later
on) is due to the imperfection of the decision heuristic

2.2.4 Conflict Clauses and Resolution

Now consider Analyze-Conflict (Algorithm 2.2.2). The description of the
algorithm so far has relied on the fact that the conflict clause generated is



Decision Procedures for 
Other Theories



Equality Logic and 
Uninterpreted Functions



Equality Logic
An equality logic formula is defined by the following grammar:

3

Equality Logic and Uninterpreted Functions

3.1 Introduction

This chapter introduces the theory of equality, also known by the name
equality logic. Equality logic can be thought of as propositional logic where
the atoms are equalities between variables over some infinite type or between
variables and constants. As an example, the formula (y = z ∨ (¬(x = z)∧x =
2)) is a well-formed equality logic formula, where x, y, z ∈ R (R denotes the
reals). An example of a satisfying assignment is {x $→ 2, y $→ 2, z $→ 0}.

Definition 3.1 (equality logic). An equality logic formula is defined by the
following grammar:

formula : formula ∧ formula | ¬formula | (formula) | atom

atom : term = term

term : identifier | constant

where the identifiers are variables defined over a single infinite domain such
as the Reals or Integers.1 Constants are elements from the same domain
as the identifiers.

3.1.1 Complexity and Expressiveness

The satisfiability problem for equality logic is NP-complete. We leave the
proof of this claim as an exercise (Problem 4.7 in Chap. 4). The fact that
both equality logic and propositional logic are NP-complete implies that they
can model the same decision problems (with not more than a polynomial
difference in the number of variables). Why should we study both, then?

For two main reasons: convenience of modeling, and efficiency. It is more
natural and convenient to use equality logic for modeling certain problems
1 The restriction to a single domain (also called a single type or a single sort) is

not essential. It is introduced for the sake of simplicity of the presentation.

infinite domain: integers, reals

The satisfiability problem for equality logic is NP-Complete. 

It is more natural and convenient to use equality logic for modeling 
some problems compared to propositional logic.



Uninterpreted Functions
An equality logic formula with uninterpreted functions is defined 
by the following grammar:

The satisfiability problem is reduced to that of equality logic. 

3.2 Uninterpreted Functions 61

Unlike other function symbols, they should not be interpreted as part of a
model of a formula. In the following formula, for example, F and G are unin-
terpreted, whereas the binary function symbol “+” is interpreted as the usual
addition function:

F (x) = F (G(y)) ∨ x + 1 = y . (3.1)

Definition 3.3 (equality logic with uninterpreted functions (EUF)).
An equality logic formula with uninterpreted functions and uninterpreted
predicates2 is defined by the following grammar:

formula : formula ∧ formula | ¬formula | (formula) | atom

atom : term = term | predicate-symbol (list of terms)
term : identifier | function-symbol (list of terms)

We generally use capital letters to denote uninterpreted functions, and use
the superscript UF to denote EUF formulas.

Aside: The Logic Perspective
To explain the meaning of uninterpreted functions from the perspective of
logic, we have to go back to the notion of a theory, which was explained in
Sect. 1.4. Recall the set of axioms (1.35), and that in this chapter we refer to
the quantifier-free fragment.

Only a single additional axiom (an axiom scheme, actually) is necessary
in order to extend equality logic to EUF. For each n-ary function symbol,
n > 0,

∀t1, . . . , tn, t′1, . . . , t
′
n.∧

i ti = t′i =⇒ F (t1, . . . , tn) = F (t′1, . . . , t′n) (Congruence) ,
(3.2)

where t1, . . . , tn, t′1, . . . , t
′
n should be instantiated with terms that appear as

arguments of uninterpreted functions in the formula. A similar axiom can be
defined for uninterpreted predicates.

Thus, whereas in theories where the function symbols are interpreted
there are axioms to define their semantics – what we want them to mean –
in a theory over uninterpreted functions, the only restriction we have over
a satisfying interpretation is that imposed by functional consistency, namely
the restriction imposed by the (Congruence) rule.

3.2.1 How Uninterpreted Functions Are Used

Replacing functions with uninterpreted functions in a given formula is a com-
mon technique for making it easier to reason about (e.g., to prove its validity).
2 From here on, we refer only to uninterpreted functions. Uninterpreted predicates

are treated in a similar way.
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Functional Consistency: same function same output on same input.  



Example: Translation Validation

3.5 Two Examples of the Use of Uninterpreted Functions 77

L5 = L′
5 . (3.37)

This proof can be automated by using a decision procedure for equalities and
uninterpreted functions.

3.5.2 Verifying a Compilation Process with Translation Validation

The next example illustrates a translation validation process that relies on un-
interpreted functions and Ackermann’s reduction. Unlike the hardware exam-
ple, we start from interpreted functions and replace them with uninterpreted
functions.

Suppose that a source program contains the statement

z = (x1 + y1) ∗ (x2 + y2) , (3.38)

which the compiler that we wish to check compiles into the following sequence
of three assignments:

u1 = x1 + y1; u2 = x2 + y2; z = u1 ∗ u2 . (3.39)

Note the two new auxiliary variables u1 and u2 that have been added by the
compiler. To verify this translation, we construct the verification condition

u1 = x1+y1∧u2 = x2+y2∧z = u1∗u2 =⇒ z = (x1+y1)∗(x2+y2) , (3.40)

whose validity we wish to check.7
We now abstract the concrete functions appearing in the formula, namely

addition and multiplication, by the abstract uninterpreted-function symbols
F and G, respectively. The abstracted version of the implication above is

(u1 = F (x1, y1) ∧ u2 = F (x2, y2) ∧ z = G(u1, u2))
=⇒ z = G(F (x1, y1), F (x2, y2)) .

(3.41)

Clearly, if the abstracted version is valid, then so is the original concrete one
(see (3.3)).

Next, we apply Ackermann’s reduction (Algorithm 3.3.1), replacing each
function by a new variable, but adding, for each pair of terms with the same
function symbol, an extra antecedent that guarantees the functionality of these
terms. Namely, if the two arguments of the original terms are equal, then the
terms should be equal.
7 This verification condition is an implication rather than an equivalence because

we are attempting to prove that the values allowed in the target code are also
allowed in the source code, but not necessarily the other way. This asymmetry
can be relevant when the source code is interpreted as a specification that allows
multiple behaviors, only one of which is actually implemented. For the purpose of
demonstrating the use of uninterpreted functions, whether we use an implication
or an equivalence is immaterial.
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Consider the statement:

A compiler translates this to: 

Correctness of this translation ties to the validity of the 
verification condition:

which can be turned into an EUF formula.
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Starting with:

We make addition and multiplication uninterpreted to get:
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If this formula is satisfiable, then the translation is valid.
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Starting with:

Then we apply Ackerman’s reduction:
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78 3 Equality Logic and Uninterpreted Functions

Applying Ackermann’s reduction to the abstracted formula, we obtain the
following equality formula:

ϕE :=

 (x1 = x2 ∧ y1 = y2 =⇒ f1 = f2) ∧

(u1 = f1 ∧ u2 = f2 =⇒ g1 = g2)


 =⇒

((u1 = f1 ∧ u2 = f2 ∧ z = g1) =⇒ z = g2) ,
(3.42)

which we can rewrite as

ϕE :=




(x1 = x2 ∧ y1 = y2 =⇒ f1 = f2) ∧
(u1 = f1 ∧ u2 = f2 =⇒ g1 = g2) ∧

u1 = f1 ∧ u2 = f2 ∧ z = g1


 =⇒ z = g2 . (3.43)

It is left to prove, then, the validity of this equality logic formula.
The success of such a process depends on how different the two sides

are. Suppose that we are attempting to perform translation validation for
a compiler that does not perform heavy arithmetic optimizations. In such a
case, the scheme above will probably succeed. If, on the other hand, we are
comparing two arbitrary source codes, even if they are equivalent, it is unlikely
that the same scheme will be sufficient. It is possible, for example, that one
side uses the function 2 ∗ x while the other uses x + x. Since addition and
multiplication are represented by two different uninterpreted functions, they
are not associated with each other in any way according to Algorithm 3.3.1,
and hence the proof of equivalence is not able to rely on the fact that the two
expressions are semantically equal.

3.6 Problems

3.6.1 Warm-up Exercises

Problem 3.1 (practicing Ackermann’s and Bryant’s reductions).
Given the formula

F (F (x1)) $= F (x1) ∧
F (F (x1)) $= F (x2) ∧
x2 = F (x1) ,

(3.44)

reduce its validity problem to a validity problem of an equality logic formula
through Ackermann’s reduction and Bryant’s reduction.

3.6.2 Problems

Problem 3.2 (eliminating constants). Prove that given an equality logic
formula, Algorithm 3.1.1 returns an equisatisfiable formula without con-
stants.8
8 Further discussion of the constants-elimination problem appears in the next chap-

ter, as part of Problem 4.4.

to reduce to this to standard propositional validity.
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Linear Arithmetic
A linear arithmetic formula is defined by the following rules:

The satisfiability problem for linear arithmetic theory is polynomial 
for rational numbers and NP-Complete for integers. 

A variant of the simplex method works as a decision procedure.

5

Linear Arithmetic

5.1 Introduction

This chapter introduces decision procedures for conjunctions of linear con-
straints. An extension of these decision procedures for solving a general lin-
ear arithmetic formula, i.e., with an arbitrary Boolean structure, is given in
Chap. 11.

Definition 5.1 (linear arithmetic). The syntax of a formula in linear
arithmetic is defined by the following rules:

formula : formula ∧ formula | (formula) | atom
atom : sum op sum

op : = | ≤ | <

sum : term | sum + term
term : identifier | constant | constant identifier

The binary minus operator a−b can be read as “syntactic sugar” for a+ −1b.
The operators ≥ and > can be replaced by ≤ and < if the coefficients are
negated. We consider the rational numbers and the integers as domains. For
the former domain the problem is polynomial, and for the latter the problem
is NP-complete.

As an example, the following is a formula in linear arithmetic:

3x1 + 2x2 ≤ 5x3 ∧ 2x1 − 2x2 = 0 . (5.1)

Note that equality logic, as discussed in Chap. 4, is a fragment of linear
arithmetic.

Many problems arising in the code optimization performed by compilers
are expressible with linear arithmetic over the integers. As an example, con-
sider the following C code fragment:

rational numbers and integers
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For the special case of 0–1 linear systems (integer linear systems in
which all the variables are constrained to be either 0 or 1), some preprocessing
steps are illustrated by the following examples:

1. Consider the constraint
5x1 − 3x2 ≤ 4 , (5.100)

from which we can conclude that

x1 = 1 =⇒ x2 = 1 . (5.101)

Hence, the constraint
x1 ≤ x2 (5.102)

can be added.
2. From

x1 + x2 ≤ 1, x2 ≥ 1 , (5.103)

we can conclude x1 = 0.

Generalization of these examples is left for Problem 5.8.

5.7 Difference Logic

5.7.1 Introduction

A popular fragment of linear arithmetic is called difference logic.

Definition 5.15 (difference logic). The syntax of a formula in difference
logic is defined by the following rules:

formula : formula ∧ formula | atom
atom : identifier − identifier op constant

op : ≤ | <

Here, we consider the case in which the variables are defined over Q, the
rationals. A similar definition exists for the case in which the variables are de-
fined over Z (see Problem 5.18). Solving both variants is polynomial, whereas,
recall, linear arithmetic over Z is NP-complete.

Some other convenient operands can be modeled with the grammar above:

• x − y = c is the same as x − y ≤ c ∧ y − x ≤ −c.
• x − y ≥ c is the same as y − x ≤ −c.
• x − y > c is the same as y − x < −c.
• A constraint with one variable such as x < 5 can be rewritten as x−x0 < 5,

where x0 is a special variable not used so far in the formula, called the
“zero variable”. In any satisfying assignment, its value must be 0.

Difference Logic

A difference logic formula is defined by the following rules:

The satisfiability problem for difference logic is polynomial time 
solvable in both cases.

rational numbers or integers
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Algorithm 2.2.1: DPLL-SAT

Input: A propositional CNF formula B
Output: “Satisfiable” if the formula is satisfiable and “Unsatisfiable”

otherwise

1. function DPLL
2. if BCP() = “conflict” then return “Unsatisfiable”;
3. while (true) do
4. if ¬Decide() then return “Satisfiable”;
5. else
6. while (BCP() = “conflict”) do
7. backtrack-level := Analyze-Conflict();
8. if backtrack-level < 0 then return “Unsatisfiable”;
9. else BackTrack(backtrack-level);

full

conflict

SAT

UNSAT

dl ≥ 0

BackTrack

Analyze-
ConflictBCP

conflict
no

partial
assignment

Decide

assignment

Fig. 2.4. DPLL-SAT: high-level overview of the Davis-Putnam-Loveland-Logemann
algorithm. The variable dl is the decision level to which the procedure backtracks

2.2.3 BCP and the Implication Graph

We now demonstrate Boolean constraints propagation (BCP), reaching a con-
flict, and backtracking. Each assignment is associated with the decision level
at which it occurred. If a variable xi is assigned 1 (true) (owing to either
a decision or an implication) at decision level dl, we write xi@dl. Similarly,

!" #$xi@dl
¬xi@dl reflects an assignment of 0 (false) to this variable at decision level
dl. Where appropriate, we refer only to the truth assignment, omitting the
decision level, in order to make the notation simpler.
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Name Decide()

Output false if and only if there are no more variables to assign.

Description Chooses an unassigned variable and a truth value for it.

Comments There are numerous heuristics for making these decisions, some
of which are described later in Sect. 2.2.5. Each such decision is
associated with a decision level, which can be thought of as the
depth in the search tree.

Name BCP()

Output “conflict” if and only if a conflict is encountered.

Description Repeated application of the unit clause rule until either a conflict
is encountered or there are no more implications.

Comments This repeated process is called Boolean constraint propagation
(BCP). BCP is applied in line 2 because unary clauses at this
stage are unit clauses.

Name Analyze-Conflict()

Output Minus 1 if a conflict at decision level 0 is detected (which implies
that the formula is unsatisfiable). Otherwise, a decision level
which the solver should backtrack to.

Description A detailed description of this function is delayed to Sect. 2.2.4.
Briefly, it is responsible for computing the backtracking level,
detecting global unsatisfiability, and adding new constraints on
the search in the form of new clauses.

Name BackTrack(dl)

Description Sets the current decision level to dl and erases assignments at
decision levels larger than dl.

Fig. 2.5. A description of the main components of Algorithm 2.2.1

The process of BCP is best illustrated with an implication graph. An
implication graph represents the current partial assignment and the reason
for each of the implications.

Definition 2.6 (implication graph). An implication graph is a labeled di-
rected acyclic graph G(V,E), where:
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an asserting clause, and we therefore continue with this assumption when
considering the termination criterion for line 3. The following definitions are
necessary for describing this criterion.

!

"

#

$

Algorithm 2.2.2: Analyze-Conflict

Input:
Output: Backtracking decision level + a new conflict clause

1. if current-decision-level = 0 then return -1;
2. cl := current-conflicting-clause;
3. while (¬Stop-criterion-met(cl)) do
4. lit := Last-assigned-literal(cl);
5. var := Variable-of-literal(lit);
6. ante := Antecedent(lit);
7. cl := Resolve(cl, ante, var);
8. add-clause-to-database(cl);
9. return clause-asserting-level(cl); ! 2nd highest decision level in cl

Definition 2.9 (unique implication point (UIP)). Given a partial con-
flict graph corresponding to the decision level of the conflict, a unique impli-
cation point (UIP) is any node other than the conflict node that is on all paths
from the decision node to the conflict node.

The decision node itself is a UIP by definition, while other UIPs, if they exist,
are internal nodes corresponding to implications at the decision level of the
conflict.

Definition 2.10 (first UIP). A first UIP is a UIP that is closest to the
conflict node.

We leave the proof that the notion of a first UIP in a conflict graph is well
defined as an exercise (see Problem 2.11). Figure 2.8 demonstrates UIPs in a
conflict graph (see also the caption).

Empirical studies show that a good strategy for the Stop-criterion-
met(cl) function (line 3) is to return true if and only if cl contains the
negation of the first UIP as its single literal at the current decision level.
This negated literal becomes asserted immediately after backtracking. There
are several advantages to this strategy, which may explain the results of the
empirical studies:

1. The strategy has a low computational cost, compared to strategies that
choose UIPs further away from the conflict.


