Tutorial Week 6: SMT

Garden Tree Problem

- Given a garden with 5×5 slots for trees
- An infinite number of trees with heights: 1, 2, 3, 4
- Two trees with the same height x cannot be placed within x radius
- We want to find an arrangement of trees to maximizing the total height

Garden Example

$$
\begin{aligned}
& 3-143 \\
& -1-21 \\
& 12-1- \\
& 41-- \\
& 13-24
\end{aligned}
$$

Total Height: 34

We can solve a
simpler problem

Simplified Garden Tree Problem

- Given a garden with $N \times N$ slots
- A finite multi-set of trees of different heights: $\{\mathrm{h} 1: 8, \mathrm{~h} 2: 4, \mathrm{~h} 3: 3, \mathrm{~h} 4: 3\}$
- Two trees with the same height x cannot be placed within x radius
-3241
--1-2
21-13
4-1-1
13214
Total Height: 37

Simplified Garden Tree Problem Constraints

Each tree has three symbolic attributes:

$$
\begin{aligned}
& x: n a t \\
& y: n a t
\end{aligned}
$$

the x coordinate of the tree the y coordinate of the tree

Constraints:

1. Range constraints for trees' coordinates
2. Every slot can only contain one tree
3. Trees with the same height cannot be placed within a certain radius

Challenge: Multi-set of Trees

- A finite multi-set of trees of different heights: $\{\mathrm{h} 1: 8, \mathrm{~h} 2: 4, \mathrm{~h} 3: 3, \mathrm{~h} 4: 3\}$

The multi-set is currently given by us, how do we identify a multi-set of trees such that the total height is better than what we already have?

We can use the upper-bound of the multi-set as the search space:
\{h1:13, h2: 5, h3:4, h4:3\}
and search for a multi-set within the search space

Garden Tree Problem Constraints

Each tree has three symbolic attributes:

planted:bool
x : nat
y : nat

If the tree is planted the x coordinate of the tree
the y coordinate of the tree

Constraints:

1. Range constraints for trees' coordinates
2. Every slot can only plant one tree
3. Planted trees with the same height cannot be placed within a certain radius
4. The total height of the planted trees must be no less than the target value

Garden Tree

2-131
31214
1-1-2
21-13
431-1

Total Height: 38

$\{\mathrm{h} 1: 10, \mathrm{~h} 2: 4, \mathrm{~h} 3: 4, \mathrm{~h} 4: 2\}$

Can we find the optimal solution?

