Tutorial Week 6: SMT

Garden Tree Problem

- Given a garden with 5×5 slots for trees
- An infinite number of trees with heights: 1, 2, 3, 4
- Two trees with the same height x cannot be placed within x radius
- We want to find an arrangement of trees to maximizing the total height

Garden Example

Simplified Garden Tree Problem

- Given a garden with $N \times N$ slots
- A finite multi-set of trees of different heights: {h1:8, h2: 4, h3:3, h4:3}
- Two trees with the same height x cannot be placed within x radius
 - 3 2 4 1 - - 1 - 2 2 1 - 1 3 4 - 1 - 1 1 3 2 1 4

Simplified Garden Tree Problem Constraints

Each tree has three symbolic attributes:

x:nat	the x coordinate of the tree
y:nat	the y coordinate of the tree

Constraints:

- 1. Range constraints for trees' coordinates
- 2. Every slot can only contain one tree
- 3. Trees with the same height cannot be placed within a certain radius

Challenge: Multi-set of Trees

• A finite multi-set of trees of different heights: {h1:8, h2: 4, h3:3, h4:3}

The multi-set is currently given by us, how do we identify a multi-set of trees such that the total height is better than what we already have?

We can use the **upper-bound** of the multi-set as the search space:

{h1:13, h2: 5, h3:4, h4:3}

and search for a multi-set within the search space

• • • •

Garden Tree Problem Constraints

Each tree has three symbolic attributes:

planted: bool	If the tree is planted
x:nat	the x coordinate of the tree
y: nat	the y coordinate of the tree

Constraints:

- 1. Range constraints for trees' coordinates
- 2. Every slot can only plant one tree
- 3. Planted trees with the same height cannot be placed within a certain radius
- 4. The total height of the planted trees must be no less than the target value

Garden Tree

Total Height: 38

{h1:10, h2: 4, h3:4, h4:2}

Linear search by increasing the target value until UNSAT!

