Tutorial Week 5: SAT

Outline:

1. Encode Propositional Formulas in CNF with Tsetin Transformation
2. Model Bit-vector with SAT
3. Problem Solving with SAT: Palindrome Sum

Propositional Formulas

Propositional formulas can be defined as:

$$
f: \mathrm{T}|v| \neg f^{\prime} \mid f_{1} \wedge f_{2} \quad(\perp \text { can be expressed as } \neg \mathrm{T})
$$

Other operators can be defined as syntax sugars :

$$
\begin{aligned}
& f_{1} \vee f_{2}:=\neg\left(\neg f_{1} \wedge \neg f_{2}\right) \\
& f_{1} \Rightarrow f_{2}:=\neg f_{1} \vee f_{2} \\
& f_{1} \Leftarrow \Rightarrow f_{2}:=\left(f_{1} \Rightarrow f_{2}\right) \wedge\left(f_{2} \Rightarrow f_{1}\right) \\
& f_{1} \oplus f_{2}:=\neg\left(f_{1} \Leftarrow \Rightarrow f_{2}\right)
\end{aligned}
$$

Conjunctive Normal Form (CNF)

- A formula F in CNF is conjunction of clauses:

$$
F:=C_{1} \wedge C_{2} \ldots C_{n}
$$

where a clause C is a disjunction of literals:

$$
C:=l_{1} \vee l_{2} \ldots l_{m}
$$

where a literal l is either a variable or its complement:

$$
l:=v \mid \bar{v}
$$

From Formula to CNF: Tsetin Transformation

- Sufficient to define transformation for:

1. Negation:
$\neg a \quad \rightarrow \quad \bar{a}$
2. Conjunction:
$a \wedge b \quad \rightarrow$
a fresh literal \boldsymbol{c} and constraints

$$
(\bar{a} \vee \bar{b} \vee c) \wedge(\bar{c} \vee a) \wedge(\bar{c} \vee b)
$$

Modeling Bit-vectors with SAT

Bit-vector (BV) is an array of 0 and 1 s .

BV 1110 has the value of 14

We can model BV operations in CNF:

$$
b v_{1}=b v_{2} \quad b v_{1}+b v_{2}
$$

Bit-vector Equality

$$
b v_{1}=b v_{2} \text { iff }
$$

$$
\begin{aligned}
b v_{1}[0] & \Leftrightarrow \\
b v_{1}[1] & \Leftrightarrow b v_{2}[0] \\
& \Leftrightarrow b v_{2}[1] \\
& \ldots \\
b v_{1}[k] & \Leftrightarrow b v_{2}[k]
\end{aligned}
$$

Bit-vector Addition (no overflow)

 $b v_{1}+b v_{2}$ returns a new bit-vector $b v_{3}$ where (ripple-carry adder)$$
\begin{gathered}
b v_{3}[0]=b v_{1}[0] \oplus b v_{2}[0] \\
b v_{3}[1]=b v_{1}[1] \oplus b v_{2}[1] \oplus \operatorname{carry}_{1} \\
b v_{3}[2]=b v_{1}[2] \oplus b v_{2}[2] \oplus \operatorname{carry}_{2} \\
\ldots \\
b v_{3}[k]=b v_{1}[k] \oplus b v_{2}[k] \oplus \operatorname{carry}_{k} \\
b v_{3}[k+1]=\operatorname{carry}_{k+1}
\end{gathered}
$$

carry $_{i+1}=$ AtLeastTwo $\left(\right.$ carry $\left._{i}, b v_{1}[i], b v_{2}[i]\right)$

Bit-vector in Action

Let's prove the following statement with SAT:

$$
\begin{gathered}
b v_{1}>b v_{3} \wedge b v_{2} \geq b v_{4} \\
\Rightarrow \\
b v_{1}+b v_{2}>b v_{3}+b v_{4}
\end{gathered}
$$

Palindrome Sum

Given a natural number n, find two bit-vectors $b v_{1}$ and $b v_{2}$ such that

1. $b v_{1}$ and $b v_{2}$ are both palindromes:
symmetrical, allow padding 0 s to the left
2. The value of $b v_{1}+b v_{2}$ is n

Solving Palindrome Sum with SAT

We already know how to encode bit-vector addition and equality!

We know the bit-vector representation of the input n !

We still need to model the conditions for palindrome:
We need to consider different sizes of paddings for each bit-vector

Finally, we need to call a SAT solver!

