Tutorial Week 5: SAT

Outline:

1. Encode Propositional Formulas in CNF with Tsetin Transformation

2. Model Bit-vector with SAT

3. Problem Solving with SAT: Palindrome Sum

Propositional Formulas

Propositional formulas can be defined as:

f: $\top | v | \neg f' | f_1 \land f_2 \quad (\perp can be expressed as \neg \top)$

Other operators can be defined as syntax sugars :

$$\begin{array}{ll} f_1 \lor f_2 & \coloneqq \neg (\neg f_1 \land \neg f_2) \\ f_1 \Rightarrow f_2 & \coloneqq \neg f_1 \lor f_2 \\ f_1 \Leftarrow f_2 & \coloneqq (f_1 \Rightarrow f_2) \land (f_2 \Rightarrow f_1) \\ f_1 \bigoplus f_2 & \coloneqq \neg (f_1 \Leftarrow f_2) \end{array}$$

Conjunctive Normal Form (CNF)

• A formula *F* in CNF is conjunction of clauses:

$$F \coloneqq C_1 \wedge C_2 \dots C_n$$

where a clause C is a disjunction of literals: $C \coloneqq l_1 \lor l_2 \dots l_m$

where a literal l is either a variable or its complement: $l \coloneqq v \mid \overline{v}$

From Formula to CNF: Tsetin Transformation

- Sufficient to define transformation for:
 - 1. Negation:
 - $\neg a \rightarrow \overline{a}$
 - 2. Conjunction:
 - $a \wedge b \rightarrow$ a fresh literal c and constraints $(\overline{a} \vee \overline{b} \vee c) \wedge (\overline{c} \vee a) \wedge (\overline{c} \vee b)$

Modeling Bit-vectors with SAT

Bit-vector (BV) is an array of 0 and 1s.

BV 1110 has the value of 14

We can model BV operations in CNF:

$$bv_1 = bv_2 \qquad bv_1 + bv_2$$

Bit-vector Equality

 $bv_1 = bv_2$ iff

$$\begin{array}{l} bv_1[0] \Leftarrow bv_2[0] \\ bv_1[1] \Leftarrow bv_2[1] \end{array}$$

$$bv_1[k] \iff bv_2[k]$$

Bit-vector Addition (no overflow)

 $bv_1 + bv_2$ returns a new bit-vector bv_3 where (ripple-carry adder)

$$bv_{3}[0] = bv_{1}[0] \bigoplus bv_{2}[0]$$

$$bv_{3}[1] = bv_{1}[1] \bigoplus bv_{2}[1] \bigoplus carry_{1}$$

$$bv_{3}[2] = bv_{1}[2] \bigoplus bv_{2}[2] \bigoplus carry_{2}$$

. . .

$$bv_{3}[k] = bv_{1}[k] \oplus bv_{2}[k] \oplus carry_{k}$$
$$bv_{3}[k+1] = carry_{k+1}$$

 $carry_{i+1} = AtLeastTwo(carry_i, bv_1[i], bv_2[i])$

Bit-vector in Action

Let's prove the following statement with SAT:

$bv_1 > bv_3 \wedge bv_2 \ge bv_4$

\Rightarrow

 $bv_1 + bv_2 > bv_3 + bv_4$

Palindrome Sum

Given a natural number n, find two bit-vectors bv_1 and bv_2 such that

1. bv_1 and bv_2 are both palindromes: symmetrical, allow padding 0s to the left

2. The value of $bv_1 + bv_2$ is n

Solving Palindrome Sum with SAT

We already know how to encode bit-vector addition and equality!

We know the bit-vector representation of the input *n*!

We still need to model the conditions for palindrome: We need to consider different sizes of paddings for each bit-vector

Finally, we need to call a SAT solver!