
Learning Minimal Separating DFA's for

Compositional Veri�cation?

Yu-Fang Chen1, Azadeh Farzan2, Edmund M. Clarke3, Yih-Kuen Tsay1, and
Bow-Yaw Wang4

1National Taiwan University 2University of Toronto 3Carnegie Mellon University
4Academia Sinica

Abstract. Algorithms for learning a minimal separating DFA of two
disjoint regular languages have been proposed and adapted for di�erent
applications. One of the most important applications is learning mini-
mal contextual assumptions in automated compositional veri�cation. We
propose in this paper an e�cient learning algorithm, called LSep , that
learns and generates a minimal separating DFA. Our algorithm has a
quadratic query complexity in the product of sizes of the minimal DFA's
for the two input languages. In contrast, the most recent algorithm of
Gupta et al. has an exponential query complexity in the sizes of the two
DFA's. Moreover, experimental results show that our learning algorithm
signi�cantly outperforms all existing algorithms on randomly-generated
example problems. We describe how our algorithm can be adapted for
automated compositional veri�cation. The adapted version is evaluated
on the LTSA benchmarks and compared with other automated com-
positional veri�cation approaches. The result shows that our algorithm
surpasses others in 30 of 49 benchmark problems.

1 Introduction

Compositional veri�cation is seen by many as a promising approach for scaling
up Model Checking [8] to larger designs. In the approach, one applies a com-
positional inference rule to break the task of verifying a system down to the
subtasks of verifying its components. The compositional inference rule is usually
in the so-called assume-guarantee style. One widely used assume-guarantee rule,
formulated from a language-theoretic view, is the following:

L(M1) ∩ L(A) ⊆ L(P) L(M2) ⊆ L(A)
L(M1) ∩ L(M2) ⊆ L(P)

? This research was sponsored by the iCAST project of the National Science Council,
Taiwan, under the grants no. NSC96-3114-P-001-002-Y and no. NSC97-2745-P-001-
001, GSRC (University of California) under contract no. SA423679952, National
Science Foundation under contracts no. CCF0429120, no. CNS0411152, and no.
CCF0541245, Semiconductor Research Corporation under contract no. 2005TJ1366
and no. 2005TJ1860, and Air Force (University of Vanderbilt) under contract no.
1872753

We assume that the behaviors of a system or component are characterized
by a language and any desired property is also described as a language. The
parallel composition of two components is represented by the intersection of the
languages of the two components. A system (or component) satis�es a prop-
erty if the language of the system (or component) is a subset of the language
of the property. The above assume-guarantee rule then says that, to verify that
the system composed of components M1 and M2 satis�es property P , one may
instead verify the following two conditions: (1) component M1 satis�es (guaran-
tees) P under some contextual assumption A and (2) component M2 satis�es
the contextual assumption A.

The main di�culty in applying assume-guarantee rules to compositional ver-
i�cation is the need of human intervention to �nd contextual assumptions. For
the case where components and properties are given as regular languages, sev-
eral automatic approaches have been proposed to �nd contextual assumptions [4,
10] based on the machine learning algorithm L∗ [2, 17]. Following this line of re-
search, there have been results for symbolic implementations [1, 18], various opti-
mization techniques [12, 6], an extension to liveness properties [11], performance
evaluation [9], and applications to problems such as component substitutability
analysis [5]. However, all of the above su�er from the same problem: they do not
guarantee �nding a small assumption even if one exists. Though minimality of
the assumption does not ensure better performance, we will show in this paper
that it helps most of the time.

The problem of �nding a minimal assumption for compositional veri�cation
can be reduced to the problem of �nding a minimal separating DFA (determin-
istic �nite automaton) of two disjoint regular languages [14]. A DFA A separates
two disjoint languages L1 and L2 if its language L(A) contains L1 and is disjoint
from L2 (L1 ⊆ L(A) and L(A) ∩ L2 = ∅). The DFA A is minimal if it has the
least number of states among all separating DFA's. Several approaches [14, 16,
13] have been proposed to �nd a minimal separating DFA automatically. How-
ever, all of those approaches are computationally expensive. In particular, the
most recent algorithm of Gupta et al. [14] has an exponential query complexity
in the sizes of the minimal DFA's of the two input languages.

In this paper we propose a more e�cient learning algorithm, called LSep , that
�nds the aforementioned minimal separating DFA. The query complexity of our
algorithm is quadratic in the product of the sizes of the two minimal DFA's for
the two input languages. Moreover, our algorithm utilizes membership queries
to accelerate learning and has a more compact representation of the samples
collected from the queries. Experiments show that LSep signi�cantly outperforms
other algorithms on a large set of randomly-generated example problems.

We then give an adaptation of the LSep algorithm for automated compo-
sitional veri�cation and evaluate its performance on the LTSA benchmarks [9].
The result shows that the adapted version of LSep surpasses other compositional
veri�cation algorithms on 30 of 49 benchmark problems. Besides automated com-
positional veri�cation, algorithms for learning a minimal separating DFA have
found other applications. For example, Grinchtein et al. [13] used such an al-

gorithm as the basis for learning network invariants of parameterized systems.
Although we only discuss the application of LSep to automated compositional
veri�cation in this paper, the algorithm can certainly be adapted for other ap-
plications as well.

2 Preliminaries

An alphabet Σ is a �nite set. A �nite string over Σ is a �nite sequence of elements
from Σ. The empty string is represented by λ. The set of all �nite strings over
Σ is denoted by Σ∗, and Σ+ is the set of all nonempty �nite strings over Σ
(so, Σ+ = Σ∗\{λ}). The length of string u is denoted by |u| and |λ| = 0.
For two strings u = u1 . . . un and v = v1 . . . vm where ui, vj ∈ Σ, de�ne the
concatenation of the two strings as uv = u1 . . . unv1 . . . vm. For a string u, un

is recursively de�ned as uun−1 with u0 = λ. String concatenation is naturally
extended to sets of strings where S1S2 = {s1s2| s1 ∈ S1, s2 ∈ S2}. A string u
is a pre�x (respectively su�x) of another string v if and only if there exists a
string w ∈ Σ∗ such that v = uw (respectively v = wu). A set of strings S is
called pre�x-closed (respectively su�x-closed) if and only if for all v ∈ S, if u is
a pre�x (respectively su�x) of v, then u ∈ S.

A deterministic �nite automaton (DFA) A is a tuple (Σ,S, s0, δ, F), where
Σ is an alphabet, S is a �nite set of states, s0 is the initial state, δ : S ×
Σ → S is the transition function, and F ⊆ S is a set of accepting states. The
transition function δ is extended to strings of any length in the natural way.
A string u is accepted by A if and only if δ(s0, u) ∈ F . De�ne L(A) = {u |
u is accepted by A}. A language L ⊆ Σ∗ is regular if and only if there exists a
�nite automaton A such that L = L(A). The notation L denotes the complement
with respect to Σ∗ of the regular language L. Let |L| denote the number of states
of the minimal DFA that recognizes L and |A| denote the number of states in
the DFA A.
De�nition 1. (Three-Valued Deterministic Finite Automata) A 3-valued deter-
ministic �nite automaton (3DFA) C is a tuple (Σ,S, s0, δ, Acc,Rej,Dont), where
Σ, S, s0, and δ are as de�ned in a DFA. S is partitioned into three disjoint sets
Acc, Rej, and Dont. Acc is the set of accepting states, Rej is the set of rejecting
states, and Dont is the set of don't care states.

For a 3DFA C = (Σ,S, s0, δ, Acc,Rej,Dont), a string u is accepted if δ(s0, u) ∈
Acc, is rejected if δ(s0, u) ∈ Rej, and is a don't care string if δ(s0, u) ∈ Dont. Let
C+ denote the DFA (Σ,S, s0, δ, Acc∪Dont), where all don't care states become
accepting states, and C− denote the DFA (Σ,S, s0, δ, Acc), where all don't care
states become rejecting states. By de�nition, we have that L(C−) is the set of
accepted strings in C and L(C+) is the set of rejected strings in C.

A DFA A is consistent with a 3DFA C if and only if A accepts all strings that
C accepts, and rejects all strings that C rejects. It follows that A accepts strings
in L(C−) and rejects those in L(C+), or equivalently, L(C−) ⊆ L(A) ⊆ L(C+). A
minimal consistent DFA of C is a DFA A which is consistent with C and has the

L(A)L(C−) L(C+)

(a) A DFA A consistent with a 3DFA C

L1 L2L(A)

(b) A DFA A separating L1 and L2

Fig. 1. Consistent and Separating DFA's

least number of states among all DFA's consistent with C. Figure 1(a) illustrates
a DFA A consistent with a 3DFA C. In the �gure, the bounding box is the set
of all �nite strings Σ∗. The dark shaded area represents L(C−). The union of
the dark shaded area and the light shaded area represents L(C+). The DFA A
is consistent with C as it accepts all strings in L(C−) and rejects those not in
L(C+).

Given two disjoint regular languages L1 and L2, a separating DFA A for L1

and L2 satis�es L1 ⊆ L(A) and L(A) ∩ L2 = ∅. It follows that A accepts all
strings in L1 and rejects those in L2, or equivalently, L1 ⊆ L(A) ⊆ L2. We say
a DFA A separates L1 and L2 if and only if A is a separating DFA for L1 and
L2. A separating DFA is minimal if it has the least number of states among all
separating DFA's for L1 and L2. Figure 1(b) shows a separating DFA A for L1

and L2.

A 3DFA C is sound with respect to L1 and L2 if any DFA consistent with
C separates L1 and L2. When the context is clear, we abbreviate �sound with
respect to L1 and L2� simply as �sound�. Figure 2(a) illustrates the condition
when C is sound with respect to L1 and L2. Both L1 ⊆ L(C−) and L(C+) ⊆ L2

are true in this �gure. Any DFA consistent with C accepts strings in L(C−) (the
dark area) and possibly some strings in the light shaded area. Hence it accepts
all strings in L1 but none in L2, i.e., it separates L1 and L2. Therefore, C is
sound. Figure 2(c) illustrates the case that C is unsound. We can show that
either L1 6⊆ L(C−) or L(C+) 6⊆ L2 implies C is unsound. Assuming that we
have L1 6⊆ L(C−). It follows that there exists some string u ∈ L1 that satis�es
u /∈ L(C−). The DFA A that recognizes L(C−) (the dark area) is consistent with
C. However, A is not a separating DFA for L1 and L2 because it rejects u, a
string in L1. We can then conclude that C is unsound. The case that L(C+) 6⊆ L2

can be shown to be unsound by a similar argument.

A 3DFA C is complete with respect to L1 and L2 if any separating DFA for
L1 and L2 is consistent with C. Again, when the context is clear, we abbreviate
�complete with respect to L1 and L2� as �complete�. Figure 2(b) shows the
situation when C is complete for L1 and L2. Any separating DFA for L1 and L2

accepts all strings in L1 but none in L2. Hence it accepts strings in L(C−) (the

L1 L2

L(C−)

L(C+)

(a) Soundness

L1 L2

L(C−)

L(C+)

(b) Completeness

u

v

L1

L(C+)

L(C−)

L2

(c) Unsoundness

v

uL1 L2

L(C−)

L(C+)

(d) Incompleteness

Fig. 2. Soundness and Completeness of a 3DFA C

dark area) and possibly those in the light shaded area, i.e., it is consistent with
C. Therefore, C is complete. Figure 2(d) illustrates the case that C is incomplete.
We can show that either L(C−) 6⊆ L1 or L2 6⊆ L(C+) implies C is incomplete.
Assuming that we have L(C−) 6⊆ L1. It follows that there exists some string
u ∈ L(C−) that satis�es u /∈ L1. The DFA A that recognizes L1 is a separating
DFA for L1 and L2. However, A is not consistent with C because A rejects u,
a string in L(C−). We can then conclude that C is incomplete. The case that
L2 6⊆ L(C+) can be shown to be incomplete by a similar argument.

Proposition 1. Let L1 and L2 be regular languages and C be a 3DFA. Then

1. C is sound if and only if L1 ⊆ L(C−) and L(C+) ⊆ L2;
2. C is complete if and only if L(C−) ⊆ L1 and L2 ⊆ L(C+).

3 Overview of Learning a Minimal Separating DFA

Given two disjoint regular languages L1 and L2, our task is to �nd a minimal
DFA A that separates L1 and L2, namely L1 ⊆ L(A) ⊆ L2. Our key idea is
to use a 3DFA as a succinct representation for the samples collected from L1

and L2. Exploiting the three possible acceptance outcomes of a 3DFA (accept,
reject, and don't care), we encode strings from L1 and L2 in a 3DFA C as follows.
All strings of L1 are accepted by C and all strings in L2 are rejected by C. The
remaining strings take C into don't care states. Observe that for any DFA A,

the following two conditions are equivalent: (1) A is consistent with C, which
means A accepts all accepted strings in C and rejects all rejected strings in C.
(2) A separates L1 and L2, which means A accepts all strings in L1 and rejects
all strings in L2.

It follows that DFA's consistent with C and those separating L1 and L2 in
fact coincide. We therefore reduce the problem of �nding the minimal separating
DFA for L1 and L2 to the problem of �nding the minimal DFA consistent with
the 3DFA C.

By Proposition 1, C is both sound and complete with respect to L1 and L2

because L1 = L(C−), the accepted strings in C, and L2 = L(C+), the rejected
strings in C.

Fig. 3. Learning a Minimal Separating DFA � Overview

Figure 3 depicts the �ow of our algorithm. The candidate generation step
is performed by the candidate generator, which produces a series of candidate
3DFA's Ci targeting the 3DFA C using an extension of L∗. The completeness
checking step examines whether Ci is complete with respect to L1 and L2. If Ci
is incomplete, a counterexample is returned to the candidate generator to re�ne
the next conjecture. Otherwise, Ci is complete, and the next step is to compute
a minimal DFA Ai consistent with Ci.

The following lemma characterizing the sizes of the minimal consistent DFA
Ai and minimal separating DFA's for L1 and L2:

Lemma 1. Let Â be a minimal separating DFA of L1 and L2, and Ai be a
minimal DFA consistent with Ci. If Ci is complete, then |Â| ≥ |Ai|.
Proof. By completeness, any separating DFA of L1 and L2 is consistent with Ci.
Hence the minimal separating DFA Â is a DFA consistent with Ci. Because Ai

is the minimal DFA consistent with Ci, we have |Â| ≥ |Ai| . ut
Finally, we check if Ai separates L1 and L2, i.e., L1 ⊆ L(Ai) and L(Ai) ⊆ L2.

If Ai is a separating DFA for L1 and L2, together with Lemma 1, we can conclude
that Ai is a minimal separating DFA for L1 and L2. Note that even if Ci is
unsound, it is still possible that a minimal consistent DFA of Ci separates L1

and L2. It follows that LSep may �nd a minimal separating DFA before the
candidate generator produces the sound and complete 3DFA.

If Ai is not a separating DFA for L1 and L2, we get a counterexample to
the soundness of Ci (will be described in the next section) and then send it to
the candidate generator to re�ne the next conjecture. Candidate generator is
guaranteed to converge to the sound and complete 3DFA, hence, our algorithm
is guaranteed to �nd the minimal separating DFA and terminate.

4 The LSep Algorithm

LSep is an active1 learning algorithm which computes a minimal separating DFA
for two disjoint regular languages L1 and L2. It assumes a teacher that answers
the following two types of queries:

� membership queries where the teacher returns true if the given string w
is in L1, false if w is in L2, and don't care otherwise, and

� containment queries where the teacher solves language containment prob-
lems of the following four types: (i) L1 ⊆ L(Ai), (ii) L(Ai) ⊆ L1, (iii)
L2 ⊆ L(Ai), and (iv) L(Ai) ⊆ L2. The teacher returns �YES� if the con-
tainment holds, and �NO� with a counterexample otherwise, where Ai is a
conjecture DFA.

As sketched in Section 3, the LSep algorithm performs the following steps to
�nd a minimal separating DFA A for the languages L1 and L2 iteratively.

Candidate Generation

λ b

λ − ?
b ? ?
ba − +
bab + +

a − ?
bb ? ?
baa − +
baba − ?
babb + +

Fig. 4. An Observation Table
and Its Corresponding 3DFA.
The square node denotes a
don't care state.

The candidate generation step is performed by
the candidate generator, which extends the ob-
servation table in L∗ [17] to allow entries with
don't cares. An observation table 〈S,E, T 〉 is a
triple of a pre�x-closed set S of strings, a set E
of distinguishing strings, and a function T from
(S ∪ SΣ) × E to {+,−, ?}; see Figure 4 for an
example. Let α ∈ S ∪SΣ and β ∈ E. The func-
tion T maps π = (α, β) to + if αβ ∈ L1; it maps
π to − if αβ ∈ L2; otherwise T maps π to ?. In
the observation table of Figure 4, the entry for
(ba, b) is + because the string bab ∈ L1

2.
The candidate generator constructs the ob-

servation table by posing membership queries.
It generates a 3DFA Ci based on the observation
table. If the 3DFA Ci is unsound or incomplete,
the candidate generator expands the observa-
tion table by extracting distinguishing strings

1 A learning algorithm is active if it can actively query the teacher to label samples;
otherwise, it is passive.

2 Here L1=(a∗b+a+b+)(a+b+a+b+)∗ and L2=a
∗(b∗a+)∗.

from counterexamples and then generates another conjecture 3DFA. Let n be
the size of the minimal sound and complete 3DFA and m be the length of the
longest counterexample returned by containment queries. The candidate gener-
ator is guaranteed to �nd a sound and complete 3DFA with O(n2 + n logm)
membership queries. Moreover, it generates at most n− 1 incorrect 3DFA's. We
refer the reader to [7] for details.

Completeness Checking

The LSep algorithm �nds the minimal DFA separating L1 and L2 by computing
the minimal DFA consistent with Ci. To make sure all separating DFA's for L1

and L2 are considered, the LSep algorithm checks whether Ci is complete.

By Proposition 1, checking completeness reduces to checking whether L(C−i) ⊆
L1 and L2 ⊆ L(C+i), which can be done by containment queries. LSep �rst builds
the DFA's C+i and C−i . It then submits the containment queries L(C−i) ⊆ L1 and
L2 ⊆ L(C+i). If either of these queries fails, a counterexample is sent to the
candidate generator to re�ne Ci. Note that several iterations between candidate
generation and completeness checking may be needed to �nd a complete 3DFA.

Finding a Minimal Consistent DFA

After the completeness checking, the next step is to compute a minimal DFA
consistent with Ci. We reduce the problem to the minimization problem of in-
completely speci�ed �nite state machines [15]. The LSep algorithm translates the
3DFA Ci into an incompletely speci�ed �nite state machineM. It then invokes
the algorithm in [15] to obtain a minimal �nite state machine Mi consistent
withM. Finally,Mi is converted to a DFA Ai.

Soundness Checking

After the minimal DFA Ai consistent with Ci is computed, LSep veri�es whether
Ai separates L1 and L2 by the containment queries L1 ⊆ L(Ai) and L(Ai) ⊆ L2.
There are three possible outcomes:

� L1 ⊆ L(Ai) ⊆ L2. Hence, Ai is in fact a separating DFA for L1 and L2. By
Lemma 1, Ai is a minimal separating DFA for L1 and L2.

� L1 * L(Ai). There is a string u ∈ L1 \ L(Ai). Moreover, we have L(Ai) ⊇
L(C−i) because Ai is consistent with Ci. Therefore, u ∈ L1 \ L(C−i). By
Proposition 1, u is a counterexample to the soundness of Ci. It is sent to the
candidate generator to re�ne the 3DFA in the next iteration.

� L(Ai) * L2. There is a string v ∈ L(Ai) \ L2. The string v is in fact a
counterexample to the soundness of Ci by an analogous argument. It is sent
to the candidate generator as well.

4.1 Correctness

The following theorem states the correctness of the LSep algorithm.

Theorem 1. The LSep algorithm terminates and outputs a minimal separating
DFA for L1 and L2.

Proof. The statement follows from the following observations:

1. Each iteration of the LSep algorithm terminates.

2. If the minimal consistent DFA (submitted to soundness checking) separates
L1 and L2, L

Sep terminates and returns a minimal separating DFA.

3. If the minimal consistent DFA does not separate L1 and L2, a counterexam-
ple to the soundness of Ci is sent to the candidate generator.

4. Because of 3, the candidate generator will eventually converge to the sound
and complete 3DFA C de�ned in Section 3. In this case, the minimal consis-
tent DFA is a minimal separating DFA for L1 and L2. Hence L

Sep terminates
when C is found.

ut

4.2 Complexity Analysis

We now estimate the number of queries used in the LSep algorithm. Lemma 2
states an upper bound on the size of the minimal sound and complete 3DFA
(a proof can be found in [7]). By Lemma 2, the query complexity of LSep is
established in Theorem 2.

Lemma 2. Let Bi be the minimal DFA accepting the regular language Li for
i = 1, 2. The size of the minimal 3DFA C that accepts all strings in L1 and
rejects all strings in L2 is smaller than |B1| × |B2|.

Theorem 2. Let Bi be the minimal DFA accepting the regular language Li for
i = 1, 2. The LSep algorithm uses at most O((|B1| × |B2|)2 + (|B1| × |B2|) logm)
membership queries and 4(|B1|×|B2|)−1 containment queries to learn a minimal
separating DFA for L1 and L2, where m is the length of the longest counterex-
ample returned by the teacher.

Proof. Let C be a minimal 3DFA that accepts all strings in L1 and rejects all
strings in L2. The candidate generator takes at most O(|C|2 + |C| logm) member-
ship queries and proposes at most |C| − 1 incorrect conjecture 3DFA's to LSep .
By Lemma 2, the size of C is smaller than |B1| × |B2|. It follows that the LSep

algorithm takes O((|B1| × |B2|)2 + (|B1| × |B2|) logm) membership queries and
4(|B1| × |B2|) − 1 containment queries (for each conjecture 3DFA, LSep uses at
most 2 containment queries to check completeness and 2 containment queries to
check soundness) to learn a minimal separating DFA in the worst case. ut

5 Automated Compositional Veri�cation

We discuss how to adapt LSep to the context of automated compositional veri�-
cation. The adapted version is referred to as �adapted LSep�. We �rst explain how
to reduce the problem of �nding a minimal assumption in assume-guarantee rea-
soning to the problem of �nding a minimal separating automaton. We then show
how adapted LSep handles the case in which the system violates the property
and introduce heuristics to improve the e�ciency of the adapted algorithm.

Finding a minimal assumption in assume-guarantee reasoning: Sup-
pose we want to use the following assume-guarantee rule to verify if the system
composed of two components M1 and M2 satis�es a property P :

L(M2) ⊆ L(A) L(M1) ∩ L(A) ⊆ L(P)
L(M1) ∩ L(M2) ⊆ L(P)

The second premise, L(M1) ∩ L(A) ⊆ L(P), in the rule can be rewritten as

L(A) ⊆ (L(M1) ∩ L(P))3. Therefore, the two premises can be summarized as

L(M2) ⊆ L(A) ⊆ L(M1) ∩ L(P)

This immediately translates the problem of �nding a minimal assumption in
assume-guarantee reasoning to the problem of �nding a minimal separating au-
tomaton of the two languages L(M2) and L(M1)∩L(P). Therefore, if the system
composed of M1 and M2 satis�es the property P , LSep can be used to �nd a
contextual assumption A that is needed by the assume-guarantee rule4.

The case when the system violates the property: The adapted LSep algo-
rithm handles the case that the system violates the property as follows:

1. A membership query on a string v returns true, false, or don't care in the
same way as the original LSep algorithm.

2. In addition, it returns fail if v is in both input languages. If fail is returned
by a query, the adapted LSep algorithm terminates and reports v as a witness
that the two languages are not disjoint, i.e., the property is violated.5

3. When a conjecture query returns a counterexample w, the adapted LSep

algorithm submits a membership query on w. If fail is not returned by the
query, the algorithm proceeds as usual.

The following lemma states the correctness of the adapted LSep algorithm (a
proof can be found in [7]):

Lemma 3. If L(M1)∩L(M2) * L(P), eventually the fail result will be returned
by a membership query.

3 It can be done using the following steps: L(M1)∩L(A) ⊆ L(P)⇔ (L(M1)∩L(A))∩
L(P) = ∅ ⇔ L(A) ∩ (L(M1) ∩ L(P)) = ∅ ⇔ L(A) ⊆ (L(M1) ∩ L(P)).

4 The reduction was �rst observed by Gupta et al. [14].
5 The facts that the system violates the property and the two input languages are

not disjoint are equivalent to each other, which can be proved as follows: L(M1) ∩
L(M2) * L(P)⇔ L(M1) ∩ L(M2) ∩ L(P) 6= ∅ ⇔ L(M2) ∩ (L(M1) ∩ L(P)) 6= ∅.

Heuristics for e�ciency: Minimizing a 3DFA is computationally expensive.
In the context of automated compositional veri�cation, we do not need to insist
on �nding a minimal solution. A heuristic algorithm that �nds a small assump-
tion with lower cost may be preferred. The adapted LSep algorithm uses the
following heuristic to build a �reduced� DFA consistent with a 3DFA.

We �rst use Paull and Unger's algorithm [15] to �nd the sets of �maximal�
compatible states6, which are the candidates for the states in the reduced DFA.
Consider an example shown in Figure 5. We have Q1 = {s0, s1}, Q2 = {s0, s2},
Q3 = {s0, s3, s4}.

C = (Σ,S, s0, δ, A,R,D)

Fig. 5. The 3DFA to be
reduced

We then choose the largest set from {Q1, Q2, Q3}
that contains s0 as the initial state of the reduced
DFA. Here we take Q3. The next state of Q3 after
reading symbol a is the largest set Q′ ∈ {Q1, Q2, Q3}
that satis�esQ′ ⊇ {s′ | s′ = δ(s, a), for all s ∈ Q3} =
{s0, s1}. Here we get Q1. Note that we can always
�nd a next state in the reduced DFA. This is because
the next states (in the 3DFA) of a set of compati-
ble states are also compatible states. Therefore, the
set of the next states (in the 3DFA) is either a set
of maximal compatible states or a subset of a set of
maximal compatible states. The next states of any
Q ∈ {Q1, Q2, Q3} can be found using the same pro-
cedure. The procedure terminates after the transition
function of the reduced DFA is completely speci�ed.
The state Q is an accepting state in the reduced DFA
if there exists a state s ∈ Q such that s is an accepting state in the 3DFA, other-
wise it is a rejecting state in the reduced DFA. Formally, we de�ne the reduced
DFA (Σ, Ŝ, ŝ0, δ̂, F̂) as follows, let Q be the sets of maximal compatible states:

� Ŝ ⊆ Q; ŝ0 = Q ∈ Q, where Q is the largest set that contains s0;
� δ̂(ŝ, a) = ŝ′, where ŝ′ is the largest set Q ∈ Q such that Q ⊇ {s′ | s′ =
δ(s, a), for all s ∈ ŝ};

� ŝ ∈ F̂ if there exists a state s ∈ ŝ such that s ∈ A, where A is the set of
accepting states in the 3DFA.

According to our experimental results, although the adapted algorithm is
not guaranteed to provide an optimal solution, it usually produces a satisfactory
one and is much faster than the original version. Besides, since we do not insist
on minimality, we also skip completeness checking in the adapted version. Com-
pleteness checking takes a lot of time because the two DFA's C+

i and C−i can
be large and several iteration between candidate generation and completeness
checking may be needed to �nd a complete 3DFA.

6 Two states are incompatible if there exists some string that leads one of them to an
accepting state and leads the other to a rejecting state. Otherwise, the two states are
compatible. The states in a set of compatible states are pairwise compatible. A set of
compatible states Q is maximal if there exists no other set of compatible states Q′

such that Q′ ⊃ Q.

6 Experiments

We evaluated LSep and its adapted version by two sets of experiments. First, we
compared the LSep algorithm with the algorithm of Gupta et al. [14] and that
of Grinchtein et al. [13] on a large set of randomly-generated sample problems.
Second, we evaluated the adapted LSep algorithm and compared it with other
automated compositional veri�cation algorithms on the LTSA benchmarks [9]. A
more detailed description of the settings of our experiments can be found in [7].

6.1 Experiment 1

Avg. DFA Size 13 21 32 42 54 70 86 102 124
(i,j) (4,4) (5,4) (6,4) (7,4) (8,4) (9,4) (10,4) (11,4) (12,4)

Algorithms Average execution time

LSep 0.04 0.16 0.4 0.84 1.54 2.5 4.3 6.8 10.9
Gupta [14] 6.6 58.7 266.7 431.5 1308.8 >4000 >4000 >4000 >4000
Grinchtein [13] 51.8 139 255.6 514.7 >4000 >4000 >4000 >4000 >4000

Avg. DFA Size 16 24 36 48 63 80 99 119 142
(i,j) (4,8) (5,8) (6,8) (7,8) (8,8) (9,8) (10,8) (11,8) (12,8)

Algorithms Average execution time

LSep 0.15 0.44 0.96 2.1 3.7 6.4 11 17.8 26.9
Gupta [14] 96.2 625.9 972.3 >4000 >4000 >4000 >4000 >4000 >4000
Grinchtein [13] 813.4 >4000 >4000 >4000 >4000 >4000 >4000 >4000 >4000

Unit: Second

Table 1. Comparison of the Three Algorithms. The row �Avg. DFA Size� is the average
size of the two input DFA's B1 and B2 in a sample problem. Each column is the average
result of 100 sample problems. The row �(i,j)� is the parameters of the sample generator.

We �rst describe the sample generator. Each sample problem has two DFA's
B1 and B2 such that L(B1) ⊆ L(B2). The sample generator has two input pa-
rameters i and j. It �rst randomly generates7 two DFA's A1 and A2 such that
|A1| = |A2| = i. Both use the same alphabet, which is of size j. Then the
sample generator builds the DFA B1 by constructing the minimal DFA that
recognizes L(A1)∩L(A2) and B2 by constructing the minimal DFA that recog-
nizes L(A1) ∪ L(A2). The sample generator has two important properties: (1)
the di�erence between |B1| and |B2| is small; (2) there exists a (relatively) small
separating DFA for B1 and B2.

We used eighteen di�erent input parameters (i = 4 ∼ 12, j = 4, 8). For each
pair (i, j), we randomly generated a set of 100 di�erent sample problems (we
eliminated duplications). The average sizes of input DFA's ranging from 13 to
142. We also dropped trivial cases (|B1| = 1 or |B2| = 1). Table 1 shows the
results. We set a timeout of 4000 seconds (for each set of 100 sample problems).

7 For each state s in A1 (respectively A2) and for each symbol a, a destination state
s′ in A1 (respectively A2) is picked at random and a transition δ(s, a) = s′ is
established. Each state has a 50% chance of being selected as a �nal state.

If the algorithm did not solve any problem in a set of 100 problems within the
timeout period, we mark it as >4000. The time spent on failed tasks is included
in the total processing time.

6.2 Experiment 2

LSep Cobleigh Gupta Problem
MO

Time |A| Time |A| Time |A| Size

1-2 0.1 3 170 74 32 3 45, 80 0.08

1-3 0.4 3 - - 109 3 82, 848 0.7
1-4 1.6 3 - - 219 3 138, 4046 4.2
2-2 508 7 89 52 - - 39, 89 0.08

2-3 - - 1010 93 - - 423, 142 0.7
2-4 - - 7063 152 - - 2022, 210 4
3-2 1.9 3 51 57 140 3 39, 100 0.09

3-3 13 3 601 110 551 3 423, 164 0.8
3-4 55 3 4916 189 1639 3 2022, 69 4.2
4-2 5.8 3 21 35 90 3 39, 87 0.09

4-3 20.8 3 1109 103 433 3 423, 140 0.75

4-4 44.9 3 6390 156 793 3 2022, 208 4.1
5-2 940 64 998 127 - - 45, 133 0.08

7-2 362 39 48 46 - - 39, 104 0.09

7-3 - - 405 76 - - 423, 168 0.9
7-4 - - 3236 123 - - 2022, 256 4.1
9-2 1345 52 4448 240 - - 45, 251 0.09

10-2 6442 18 - - 196 3 151, 309 0.8
10-3 5347 22 - - 601 3 327, 3369 6.1
10-4 - - - - 1214 3 658, 16680 33
11-2 6533 82 - - - - 151, 515 0.8
12-2 36 4 1654 162 - - 151, 273 0.8
12-3 133 4 - - - - 327, 2808 6.6
12-4 450 4 - - - - 658, 13348 33

LSep Cobleigh Gupta Problem
MO

Time |A| Time |A| Time |A| Size

15-2 1477 88 - - 5992 3 151, 309 0.8
15-3 5840 5 - - 4006 3 327, 3369 5.9
15-4 - - - - 6880 3 658, 16680 33
19-2 5.8 3 - - 266 3 234, 544 0.3
19-3 13 3 - - 1392 3 962, 5467 2.9
19-4 69 3 - - 7636 3 2746, 52852 35
21-3 45 3 - - 4558 3 962, 5394 2.9
21-4 718 3 - - 3839 3 2746, 51225 34.8

22-2 0.6 3 8 25 12 3 900, 30 0.3
22-3 2.3 3 1242 193 54 3 7083, 264 4.6
22-4 11 3 - - 170 3 30936, 2190 33
23-2 92 9 8.9 37 - - 50, 40 0.1
24-2 1.2 6 0.2 12 1.2 3 13, 14 0.01

24-3 5.1 6 0.33 12 - - 48, 14 0.02

24-4 18 6 0.63 12 - - 157, 14 0.1
25-2 1156 5 3050 257 - - 41, 260 0.1
26-2 512 38 239 121 - - 65, 123 0.1
27-2 848 46 830 193 - - 41, 204 0.1
28-2 755 46 757 185 - - 41, 188 0.1
29-2 926 21 891 193 - - 41, 195 0.1

30-2 1083 24 986 193 - - 41, 195 0.1
31-2 204 5 274 121 4975 3 65, 165 0.1
32-2 9.9 3 646 193 121 3 41, 261 0.1
32-3 44 3 - - - - 1178, 4806 2.6
32-4 886 3 - - - - 289, 117511 382

Table 2. Experimental Results on the LTSA Benchmarks. The �LSep� column is the
result of the adapted LSep algorithm. �Time� is the execution time in seconds and |A| is
the size of the contextual assumption found by the algorithm. �Cobleigh� and �Gupta�
give results from [10] and [14], respectively. We highlight in bold font the best results.
The column �Problem Size� is the pair (|M2|, |M1|×|P |), where |M2| is the size of the
DFA M2 and |M1|×|P | is the size of the product of the two DFA's M1 and P . The
column �MO� is the execution time for monolithic veri�cation. The symbol �-� indicates
that the algorithm did not �nish within the timeout period. For each row, we use n-m
to denote benchmark problem n with m components.

We evaluated the adapted LSep algorithm on the LTSA benchmarks [9].
We compared the adapted LSep algorithm with the algorithms of Gupta et al.,
Grinchtein et al., and Cobleigh et al. [10]. We implemented all of those algo-
rithms, including the heuristic algorithm for minimizing a 3DFA. We did not
consider optimization techniques such as alphabet re�nement [6, 12]. This is fair
because such techniques can also be easily adapted to LSep . The experimental
results are shown in Table 2. The sizes of components are slightly di�erent from
the original version because we determinized them. We think the size after de-
terminization can better re�ect the di�cultly of a benchmark problem. We used

the decomposition suggested by the benchmarks to build components M1 and
M2. Furthermore, we swapped M1 and M2; in [9], they check L(M1) ⊆ L(A)
and L(M2)∩L(A) ⊆ L(P) in the experiments. We swapped them because in the
original arrangement, a large portion of the cases have an assumption of size 1.
We set a timeout of 10000 seconds. Actually we checked all the 89 LTSA bench-
mark problems (of 2 ,3, and 4 components). In the table we do not list results
with minimal contextual assumption of size 1 (10 cases) and those in which no
algorithms �nished within the timeout period (30 cases). In addition, we do not
list the result of Grinchtein et al. because of the space limitation. In this set of
experiments, it cannot solve most of the problems within the timeout period (84
cases). Even if it solved the problem (5 cases), it is slower than others.

The adapted LSep algorithm performs better than all the other algorithms in
30 among the 49 problems. The algorithm of Cobleigh et al. wins 14 problems.
However, in 8 of the 14 cases (23-2, 24-2, 24-3, 24-4, 26-2, 27-2, 29-2, 30-2),
their algorithm �nds an assumption with size almost the same as |M1×P |. In
those cases, there is no hope of defeating monolithic veri�cation. In contrast,
our algorithm scales better than monolithic veri�cation in several problem sets.
For example, in 1-m, 19-m, 22-m, and 32-m, the execution time of the adapted
LSep algorithm grows much slower than monolithic veri�cation. In 1-m and 22-
m, we can see that the adapted LSep algorithm takes more execution time than
monolithic veri�cation when the number of components is 2, but its performance
surpasses monolithic veri�cation when the number of components becomes 4.

7 Discussion and Further Work

The algorithm of Gupta et al. is passive, using only containment queries (which
is slightly more general than equivalence queries). From a lower bound result
by Angluin [3] on learning with equivalence queries, the query complexity of
the algorithm of Gupta et al. can be shown to be exponential in the sizes of
the minimal DFA's of the two input languages. Moreover, the data structures
that they use to represent the samples are essentially trees, which may grow
exponentially. These explain why their algorithm does not perform well in the
experiments.

The algorithm of Grinchtein et al. [13] is an improved version of an earlier
algorithm of Pena and Oliveira [16], which is active. However, according to our
experiments, this improved active algorithm is outperformed by the purely pas-
sive learning algorithm of Gupta et al. in most cases. The main reason for the
ine�ciency of this particular active learning algorithm seems to be that the mem-
bership queries introduce a lot of redundant samples, even though they reduce
the number of iterations required. The redundant samples substantially increase
the running time of the exponential procedure of computing the minimal DFA.
In contrast, our active algorithm LSep indeed performs better than the passive
algorithm of Gupta et al.

The better performance of LSep can be attributed to the facts that the algo-
rithm utilizes membership queries to accelerate learning and has a more compact

representation of the samples (a 3DFA) collected from the queries. For further
work, it will be interesting to adapt LSep for other applications, such as inferring
network invariants of parameterized systems and to evaluate the performance of
the resulting solutions. Given that LSep is a better learning algorithm, we hope
that other applications will also bene�t from it.

References

1. R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional veri�cation by
learning assumptions. In CAV 2005, LNCS 3576, pages 548�562. Springer, 2005.

2. D. Angluin. Learning regular sets from queries and counterexamples. Information

and Computation, 75(2):87�106, 1987.
3. D. Angluin. Negative results for equivalence queries. Machine Learning, 5(2):121�

150, 1990.
4. H. Barringer, D. Giannakopoulou, and C.S. P s reanu. Proof rules for automated

compositional veri�cation through learning. In SAVCBS 2003, pages 14�21, 2003.
5. S. Chaki, E.M. Clarke, N. Sinha, and P. Thati. Dynamic component substitutabil-

ity analysis. In FME 2005, LNCS 3582, pages 512�528. Springer, 2005.
6. S. Chaki and O. Strichman. Optimized L*-based assume-guarantee reasoning. In

TACAS 2007, LNCS 4424, pages 276�291. Springer, 2007.
7. Y.-F. Chen, A. Farzan, E.M. Clarke, Y.-K. Tsay, and B.-Y. Wang. Learning min-

imal separating DFA's for compositional veri�cation. Technical Report CMU-CS-
09-101, Carnegie Mellon Univeristy, 2009.

8. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT Press,
1999.

9. J.M. Cobleigh, G.S. Avrunin, and L.A. Clarke. Breaking up is hard to do: An eval-
uation of automated assume-guarantee reasoning. ACM Transactions on Software

Engineering and Methodology, 7(2):1�52, 2008.
10. J.M. Cobleigh, D. Giannakopoulou, and C.S. P s reanu. Learning assumptions for

compositional veri�cation. In TACAS 2003, LNCS 2619, pages 331�346. Springer.
11. A. Farzan, Y.-F. Chen, E.M. Clarke, Y.-K. Tsay, and B.-Y. Wang. Extending

automated compositional veri�cation to the full class of omega-regular languages.
In TACAS 2008, LNCS 4693, pages 2�17. Springer, 2008.

12. M. Gheorghiu, D. Giannakopoulou, and C.S. P s reanu. Re�ning interface alpha-
bets for compositional veri�cation. In TACAS 2007, LNCS 4424, pages 292�307.
Springer, 2007.

13. O. Grinchtein, M. Leucker, and N. Piterman. Inferring network invariants auto-
matically. In IJCAR 2006, LNAI 4130, pages 483�497. Springer, 2006.

14. A. Gupta, K.L. McMillan, and Z. Fu. Automated assumption generation for com-
positional veri�cation. In CAV 2007, LNCS 4590, pages 420�432. Springer, 2007.

15. M.C. Paull and S.H. Unger. Minimizing the number of states in incompletely
speci�ed sequential switching functions. IRE Transitions on Electronic Computers,
EC-8:356�366, 1959.

16. J.M. Pena and A.L. Oliveira. A new algorithm for the reduction of incompletely
speci�ed �nite state machines. In ICCAD 1998, pages 482�489. ACM Press, 1998.

17. R.L. Rivest and R.E. Schapire. Inference of �nite automata using homing se-
quences. Information and Computation, 103(2):299�347, 1993.

18. N. Sinha and E.M. Clarke. SAT-based compositional veri�cation using lazy learn-
ing. In CAV 2007, LNCS 4590, pages 39�54. Springer, 2007.

