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Abstract. We study the prediction of runs that violate atomicity from a
single run, or from a regular or pushdown model of a concurrent program.
When prediction ignores all synchronization, we show predicting from a
single run or from a regular model is solvable in time O(n + ck) where n
is the length of the run, k is the number of threads, and c is a constant.

This is a significant improvement from the simple O(nk · 2k2
) algorithm

that results from building a global automaton and monitoring it. We
also show that, surprisingly, the problem is decidable for model-checking
recursive concurrent programs without synchronizations. Our results use
a novel notion of a profile: we extract profiles from each thread locally
and compositionally combine their effects to predict atomicity violations.

For threads synchronizing using a set of locks L, we show that prediction

from runs and regular models can be done in time O(nk · 2|L|·log k+k2
).

Notice that we are unable to remove the factor k from the exponent on n
in this case. However, we show that a faster algorithm is unlikely : more
precisely, we show that prediction for regular programs is unlikely to
be fixed-parameter tractable in the parameters (k, |L|) by proving it is
W [1]-hard. We also show, not surprisingly, that prediction of atomicity
violations on recursive models communicating using locks is undecidable.

1 Introduction

The new disruptive trend in microprocessor technology, that bodes a future
where there will be no significant speed-up of individual processors but only a
multitude of processor cores, poses a tremendous challenge to computer science.
Parallel computers will become ubiquitous and all software will have to exploit
the parallelism to gain performance. One of the most challenging aspects of this
overhauling of technology is that concurrent programs are very hard to write
and debug, making reliability and programmer productivity a huge concern.

Despite various efforts in computer science that strive to enable simple models
for concurrency such as transactional memory [23], stream-programming, actors
and MPI (message passing interface) paradigms [1, 13, 2], that escape the dread
of a wild shared-memory program, it is fairly clear that concurrent reactive
programs will be exhibit significant non-determinism in terms of interleaved
executions. A serious consequence of this is that software will become very hard
even to test against one particular input : given a program and an input, there
will be a myriad of interleaved executions, making testing extremely challenging.



The CHESS project at Microsoft research and IBM’s ConTest tool are efforts
that try to address this problem.

An extremely common generic concurrency bug is the violation of atomicity.
Intuitively, a programmer writing a procedure often wants non-interfered access
to certain data, enabling local reasoning of the procedure in terms of how it
affects the state. A programmer often puts together concurrency control mech-
anisms to ensure atomicity, often by taking locks on the data accessed. This is
extremely error-prone: errors occur if not all locks for accessed data are taken,
non-uniform ordering of locking can cause deadlocks, and naive ways of locking
can inhibit concurrency, which forces programmers to invent intricate ways to
achieve concurrency and correctness at the same time. Recent studies of concur-
rency errors [18] show that a majority of errors (69%) are atomicity violations.
This motivates the problems we consider in this paper: to study algorithms that
can help search the space of all interleavings for atomicity violations.

Assuming a program’s run is divided into transactions, where a transaction
is a block of code like a procedure that we expect the programmer intends to be
atomic, we would like to check for runs of the program that violate atomicity
with respect to these transaction boundaries. The notion of atomicity we study
is a standard notion called conflict-serializability— intuitively, a conflict serial-
izable run is a run that may involve interleaving of threads but is semantically
equivalent to a serial run where all transactions are executed in a sequential
non-interleaved fashion.

Given a run, the first problem of interest is to check whether it is serializable.
This problem is a monitoring problem and we have recently solved this problem
satisfactorily [8], showing that there is a deterministic monitoring algorithm that
uses space at most O(k2 + kv) (for a program with k threads and v global vari-
ables). The salient aspect of this algorithm is that the space used is independent
of the length of the observed run, making it extremely useful in practice.

In this paper, we study the harder problem of predicting atomicity violations.
Given a run r, we would like to predict other runs r′ which are not serializable.
This is an extremely interesting and useful problem to solve: for instance, if we
can test a program on an input and obtain one execution r, and use it to predict
non-serializable runs r′ efficiently, it would give us a very effective mechanism
to find concurrency violations without generating and testing all interleavings
in a brute-force manner.

Our prediction model is extremely simple and intuitive: given a run r, we
project the run r to each of the threads to get local runs r1, . . . , rk. We then
consider all runs that can be obtained by combining the runs r1 through rk in
any interleaved fashion to be predicted by the run r. Note that our notion of a
run does not include conditional checks made by the threads nor the actual data
written by the programs: this is intentional, as considering these aspects leads to
a very complex prediction model that is unlikely to be tractable. Our prediction
model is optimistic: we predict a larger class of runs than may be allowed by the
actual program, and hence any non-serializable execution that we infer must be
subject to testing to check feasibility of execution by the program.
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The problem of inferring whether any interleaved execution of k local runs
r1, . . . , rk leads to a violation of serializability is really a model-checking prob-
lem: for each thread Ti we are given a straight-line program executing ri, and
asked whether the concurrent program has a serializability violation. A natural
analog of this problem is that we are given a set of k program models (finite-
state transition systems or recursive transition systems) and asked whether any
interleaving of them results in a serializability violation. Program models can be
derived in various ways: for instance we can collect the projections of multiple
tests and build local transition systems and check whether we can predict a run
that violates atomicity. Program models may also be obtained statically from
programs using abstraction techniques.

This paper is devoted to the theoretical analysis of predicting atomicity from
straight-line programs (for predictions from tests), regular programs and recur-
sive programs.

Let us briefly consider the problem of inferring runs from straight-line. Then
it is clear that we can construct a global transition system that generates all
the interleavings of the program, and by intersecting this with a monitoring au-
tomaton for serializability, predict atomicity violations. However, this essentially
generates all the interleavings, which is precisely the problem we wish to avoid.
The goal of this paper is to study when this can be avoided.

Notice that the global state space is O(nk) in size where n is the size of the
program, and k is the number of threads. In practical applications, n is very
large (the length of the run) and k, though small, is not a constant, leading
to a very large state-space, making prediction almost impossible. Moreover, we
clearly cannot expect algorithms to work without an exponential dependence
on k (we can show that the problem is NP-complete). However, it would be
extremely beneficial if we can build algorithms where k does not occur in the
exponent on n. Hence, an algorithm that works in time O(n + ck) would work
much faster in practice. For instance, in the SOR benchmark (see [8]) for k = 3
threads, the length of a run is n = 97× 106 nodes, and nothing short of a linear
dependency on n can really work in practice.

Secondly, predicting runs gets harder when the synchronization mechanisms
have to be respected. In this paper, we consider two models: one where we
ignore any synchronization mechanism (which leads to faster but less accurate
predictions) and one where we consider synchronization using locks.

Our main contributions in this paper are the following:

– For prediction without considering of synchronization mechanisms, we show:
• Straight-line programs and regular programs over a fixed set of global

variables are solvable in time O(n+ ck) for a constant c (which depends
quadratically on the number of variables). This result is proved by giv-
ing a compositional algorithm that extracts relevant results from each
thread, using a novel notion called a profile, and combines the profiles
to check violations.

• Prediction of atomicity errors for recursive programs is (surprisingly)
decidable, and can be done in time O(n3 + ck).

3



– For prediction in programs that use lock synchronization over a lock-set L:
• Straight-line programs and regular programs over a fixed set of global

variables are solvable in time O(nk · 2|L|·log k+k2
). This is a global al-

gorithm that considers all interleavings, and hence k does occur in the
exponent on n. However, we show that removing the k from the expo-
nent is highly unlikely. More precisely, we show that it is unlikely that
there is an an algorithm that works in time O(poly(n) ·f(k, |L|)), for any
computable function f , by showing that the problem is W[1]-hard over
the parameters (k, |L|). W[1]-hard problems are studied in complexity
theory, and are believed not to be fixed-parameter tractable.

• Prediction of atomicity for recursive programs is (not surprisingly) un-
decidable.

Two aspects of our work are novel. First, the notion of profiles that we use
give the first sound and complete compositional mechanisms to prove atomicity
of programs without locks. Second, for programs with locks, our W[1]-hardness
lower bound shows that an efficient compositional mechanism is unlikely. Such
hardness results are not common in the verification literature (we know of no
such hardness result directly addressing model-checking of systems).

The paper is organized as follows. In Section 2 we first define schedules which
capture how programs access variables, then define the three classes of programs
we study, namely straight-line, regular, and recursive programs. We also define
the notion of conflict-serializability and its algorithmic equivalent in terms of
conflict-graphs. Section 3 is devoted to the study of finding atomicity viola-
tions in programs with no synchronization mechanisms while Section 4 studies
the problem for programs with lock synchronization. We end with concluding
remarks and future directions in Section 5.

Related Work: Atomicity is a new notion of correctness for concurrent pro-
grams. It has been suggested [10, 11, 25, 24, 26] that atomicity violations based
on serializability are effective in finding concurrency bugs. A recent and interest-
ing study of bug databases identifies atomicity violations to be the single major
cause for errors in a class of concurrent programs [18] Work in software verifica-
tion for atomicity errors are often based on the Lipton-transactional framework.
Lipton transactions are sufficient (but not necessary) thread-local conditions
that ensure serializability [17]. Flanagan and Qadeer developed a type system
for atomicity [10] based on Lipton transactions (which, being local, is also com-
positional). Model checking has also been used to check atomicity using Lipton’s
transactions [11, 14]. In [7], we had proposed a slightly different notion of atom-
icity called causal atomicity which can be checked using partial-order methods.

The run-time monitoring for atomicity violations is well-studied. Note that
here the problem is to simply observe a run and check whether that particu-
lar run is atomic (involves no prediction). In a recent paper [9], the authors
show monitoring algorithms that work with efficient space constraints to mon-
itor atomicity violations during testing. In another recent paper [8], we have
established a more sophisticated algorithm that uses bounded space to moni-
tor, and results in extremely efficient monitoring algorithms. The existence of
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a monitor also implies that if the global state-space of a concurrent program
can be modeled as a finite-state system, then the model-checking problem for
serializability is decidable.

The work in [21] defines access interleaving invariants that are certain pat-
terns of access interactions on variables, learns the intended specifications using
tests, and monitors runs to find errors. A variant of dynamic two-phase locking
algorithm [19] for detection of an serializability violation is used in the atomicity
monitoring tool developed in [26].

Turning to predictive analysis, there are two main streams of work that are
relevant. In papers [25, 24], Wang and Stoller study the prediction of runs that
violate serializability from a single run. Under the assumptions of deadlock-
freedom and nested locking, they show precise algorithms that can handle seri-
alizability violations involving at most two transactions. They also give heuristic
incomplete algorithms for checking arbitrary runs. In contrast, the algorithms
we present here do not make these assumptions, and are precise and complete.
Predicting alternate executions from a single run are also studied in a series
of papers by Rosu et al [22, 4]. While these tools can also predict runs that
can violate atomicity, their prediction model is tuned towards explicitly gener-
ating alternate runs, which can then be subject to atomicity analysis. In sharp
contrast, the results we present here search the space of alternate interleavings
efficiently, without enumerating them. However, the accuracy and feasibility of
prediction in the above papers are better as the algorithm involves looking at
the static structure of the programs and analyzing their control dependencies.

2 Modeling Runs of Concurrent Programs
A program consists of a set of threads that run concurrently. Each thread se-
quentially runs a series of transactions. A transaction is a sequence of actions;
each action can be a read or write to a (global) variable.

We assume a finite set of thread identifiers T = {T1, T2, . . . , Tk}. We also
assume a finite set of entity names (or just entities) X = {x1, x2, . . . , xm} that
the threads can access. Let us fix X once and for all for this paper. Each thread
T ∈ T can perform actions from the set AT = {T :read(x), T :write(x) | x ∈ X}.
Define A =

⋃
T∈T AT .

Let us define for each thread T ∈ T , the extended alphabet ΣT = AT ∪
{T :B, T :C}. The events T :read(x) and T :write(x) correspond to thread T reading
and writing to entity x, T :B and T :C correspond to boundaries that begin and
end transactional blocks of code in thread T . Let Σ =

⋃
T∈T AT .

For any alphabet A, w ∈ A∗, let w[i] (where i ∈ [0, |w| − 1]) denote the i’th
element of w, and w[i, j] denote the substring from position i to position j (both
inclusive) in w. For w ∈ A∗ and B ⊆ A, let w|B denote the word w projected
to the letters in B. For a word w ⊆ Σ∗, w|T be a shorthand notation for w|ΣT

,
which denotes the actions that thread T partakes in.

The following defines the notion of observable behaviors on the global vari-
ables of a concurrent program, which we call a schedule.

Definition 1. A transaction tr of a thread T is a word in T :B A∗T T :C. Let
TranT denote the set of all transactions of thread T , and let Tran denote the set
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of all transactions. A schedule is a word σ ∈ Σ∗ such that for each T ∈ T , σ|T
is a prefix of Tran∗T . Let Sched denote the set of all schedules.

In other words, the actions of thread T are divided into a sequence of trans-
actions, where each transaction begins with T :B, is followed by a set of reads
and writes, and ends with T :C. Let Sched denote the set of all schedules.

When we refer to two particular events σ[i] and σ[j] in σ, we say they belong
to the same transaction if they belong to the same transaction block: i.e. if
there is some T such that σ[i], σ[j] ∈ AT , and there is no i′, i < i′ < j such
that σ[i′] = T :C. We will refer to the transaction blocks freely and associate
(arbitrary) names to them, using notations such as tr, tr1, tr′, etc.

Concurrent Programs

We now define the three classes of programs we will work with— straight-line,
regular, and recursive programs.

For a set of locks L, and thread T ∈ T , define the set of lock-actions of T as
ΠL,T = {T :acquire(l), T :release(l)| l ∈ L}. Let ΠL =

⋃
T∈T ΠL,T .

A word γ ∈ Π∗L is lock-valid if for every l ∈ L, γ|Π{l} is a prefix of[⋃
T∈T (T :acquire(l) T :release(l))

]∗.
We consider three frameworks based on the structure of code in the threads.

– A Straight-line program over L is a set Pr = {αT }T∈T where αT ∈
(T :B(AT ∪ΠL,T )∗T :C)∗ such that αT |ΠL,T is lock-valid.
The runs defined by Pr is given by:
Runs(Pr) = {w| w ∈ (Σ∪ΠL)∗, s.t. w|ΠL is lock-valid and w|ΣT

is a prefix of αT , for each T ∈
T }.

– A regular program over L is a set Pr = {AT }T∈T where each AT is
a finite transition system. AT = (QT , qTin ,→T ) where QT is a finite set of
states, qTin ∈ QT is the initial state, and →T⊆ QT × (ΣT ∪ ΠL,T ) × QT is
the transition relation. The language of AT , L(AT ), is the set of all words
w ∈ (AT ∪ΠL,T )∗ on which there is a path from qin on w. We require that
for any w ∈ L(AT ), w|ΠL,T

is lock-valid, and w|ΣT
is a prefix of Tran∗T .

The runs defined by Pr is given by:
Runs(Pr) = {w| w ∈ (Σ ∪ ΠL)∗, s.t. w|ΠL is lock-valid and for each T ∈
T , w|ΣT

∈ L(AT )}.
– A Recursive program over L is a set Pr = {PT }T∈T where each PT is

a pushdown transition system PT = (QT , qTin , Γ
T ,→T ) where QT is a finite

set of states, qTin ∈ QT is the initial state, ΓT is the stack alphabet, and
→T⊆ QT ×(ΣT ∪ΠL,T )×{push(d),pop(d), skip}d∈ΓT ×QT is the transition
relation. The language of PT , L(PT ) is the set of all words generated by PT
and is defined as usual. We again require that for any w ∈ L(PT ), w|ΠL,T

is
lock-valid, and w|ΣT

is a prefix of Tran∗T .
The runs defined by Pr is given by:Runs(Pr) = {w| w ∈ (Σ∪ΠL)∗, s.t. w|ΠL is lock-valid and for each T ∈
T , w|ΣT

∈ L(AT )}.
Finally, for any program Pr as above, the set of schedules defined by Pr is

defined as Sched(Pr) = Runs(Pr)|Σ .
A program without locks is a program Pr over the empty set of locks.
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Defining atomicity

We now define atomicity as the notion of conflict serializability. Define the de-
pendency relation D as a symmetric relation defined over the events in Σ, which
captures the dependency between (a) two events accessing the same entity, where
one of them is a write, and (b) any two events of the same thread, i.e.,

D = {(T1:a1, T2:a2) | T1 = T2 and a1, a2 ∈ A ∪ {B,C} or
∃x ∈ X such that (a1 = read(x) and a2 = write(x)) or

(a1 = write(x) and a2 = read(x)) or (a1 = write(x) and a2 = write(x))}

Definition 2 (Equivalence of schedules). The equivalence of schedules is
defined as the smallest equivalence relation ∼⊆ Sched × Sched such that: if
σ = ρabρ′, σ′ = ρbaρ′ ∈ Sched with (a, b) 6∈ D, then σ ∼ σ′.

It is easy to see that the above notion is well-defined. Two schedules are
considered equivalent if we can derive one schedule from the other by iteratively
swapping consecutive independent actions in the schedule.

We call a schedule σ serial if all the transactions in it occur sequentially:
formally, for every i, if σ[i] = T :a where T ∈ T and a ∈ A, then there is some
j < i such that T [i] = T :B and every j < j′ < i is such that σ[j′] ∈ AT . In
other words, the schedule is made up of a sequence of complete transactions
from different threads, interleaved at boundaries only.

T1:!

T1:read(x)

T1:write(y)

T2:!

T2:read(z)

T1:write(z)

T2:write(x)

T2:!

T1:!

T1:!

T1:read(x)

T1:write(y)

T2:!

T2:read(z)

T1:write(z)

T2:!

T1:!

T2:read(x)

Fig. 1. Serializable and non-serializable runs.

Definition 3. A schedule is serializable if it has an equivalent serial schedule.
That is, σ is a serializable schedule if there a serial schedule σ′ such that σ ∼ σ′.

Example 1. Figure 1 contains two schedules. The one on the left is not serial-
izable. The pair of dependent events (T1:read(x), T2:write(x)) indicate that T2

has to be executed after T1 in a serial run, while the pair of dependent events
(T2:read(z), T1:write(z)) impose the opposite order. Therefore, no equivalent se-
rial run can exist. The schedule on the right is serializable since in an equivalent
serial run exists that runs T1 followed by T2.
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The conflict-graph characterization: For any schedule σ, let us give names
to transactions in σ, say tr1, . . . , trn. The conflict-graph of σ is the graph CG(σ) =
(V,E) where V = {tr1, . . . , trn} and E contains an edge from tr to tr′ iff there
is some event a in transaction tr and some action a′ in transaction tr′ such that
(1) the a-event occurs before a′ in σ, and (2) aDa′.

Note that transactions of the same thread are always ordered in the order
they occur (since all actions of a thread are dependent on each other).

Lemma 1. [3, 19, ?,8] A schedule σ is atomic iff the conflict graph associated
with σ is acyclic.

If the conflict graph is acyclic, then it can be viewed as a partial order, and
it is clear that any linearization of the partial order will define a serial schedule
equivalent to σ. If the conflict-graph has a cycle, then it is easy to show that the
cyclic dependency rules out serialization.

The above characterization yields a simple algorithm for serializability:

Proposition 1. The problem of checking whether a singe schedule σ is atomic
is decidable in polynomial time.

3 Model Checking Atomicity for Concurrent Programs
without synchronizations

In this section, we present model-checking algorithms for checking atomicity of
finite-state concurrent programs (straight-line, regular, and recursive programs).

Let us first show that if the program has a non-serializable run, then it has a
non-serializable run of a particular form. A run σ is said to be normal if there is
a thread Ti such that σ = ui ·Ti:B · vi ·w1 ·w2 · · ·wi−1 ·wi+1 · · ·wk · v′i ·Ti:C ·u′i,
where wj = σ|ΣTj

(for every j), ui ·Ti:B ·vi ·v′i ·Ti:C ·u′i = σ|ΣTi
, and vi ·v′i ∈ A∗Ti

.
In other words, a run is normal if it executes a thread from the beginning up to
the middle of a transaction in that thread, executes other threads serially and
completely, and then finishes the incomplete thread.

The following observation will prove useful throughout this section (see Ap-
pendix for a proof):

Lemma 2. If a program with no locks (L = ∅) has a non-serializable run, then
it has a non-serializable normal run.

Schedule Graph

For a schedule σ of a program P , define its schedule graph as the labeled directed
graph Gσ = (V,E) where:

– V = {vi,j}1≤i≤k,1≤j≤|σ|Ti
; i.e. a node vi,j for jth event of thread Ti.

– E contains the set of edges {(vi,j , vi,j′), (vi,j′ , vi,j)| j < j′, ( 6 ∃l : j <
l < j′ ∧ σTi

[l] = Ti:B)}, i.e. there is an edge between every two nodes
corresponding to events of the same transaction. Let us call these blue edges.
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– There are edges (vi,j , vi′,j′) and (vi′,j′ , vi,j) in E if i 6= j and (σ|Ti
[j], σ|Ti′ [j

′]) ∈
D. I.e., for every pair of dependent events in two (different) threads, we throw
in directed edges connecting them. Let us call these types of edge red edges.

– E contains the set of edges {(vi,j , vi,j′)| j < j′, (∃l : j < l < j′∧σTi [l] = B)},
implying that there is an edge between every two nodes corresponding to
events of different transactions in the same thread, in the direction of their
execution. Let us call these green edges.

We can now show:

Lemma 3. A program P with no locks has a non-serializable run if and only if it
has a schedule σ such that Gσ has a cycle that satisfies the following conditions:

– it contains at least one blue edge (vi,j , vi,j′) such that j < j′ , and
– it contains at least one red edge, and
– it contains at most one edge in each thread (for every i, at most one edge of

the form (vi,j , vi,j′)).

Intuitively, such a cycle corresponds to the cycle generated in the conflict
graph by a normal non-serializable run, where we start with the thread con-
taining a blue edge (vi,j , vi,j′), execute it till we reach vi,j ; this is possible since
j < k. Then, we know the next edge has to be a red edge, since there is at most
one edge of each thread in the cycle (green and blue edges would belong to the
same thread). The red edge (vi,j , vi′,j′′) will take us to a thread Ti′ which will be
executed serially. We follow the cycle and execute the threads in the order that
they appear in the cycle (each thread at most once) completely and serially, and
finally finish the thread we started with. All threads that are not executed yet
(since they did not appear in the cycle) will be executed serially in any order to
finish the run.

The crucial observation (of Lemmas 2 and 3) is that there are really at most
two events in each thread that contribute to evidencing the cycle in the conflict
graph, and hence witnessing non-serializability. Intuitively, for each thread T in
the cycle, we pick can pick two events inT and outT , that cause respectively
the incoming edge from the previous thread and the outgoing edge to the next
thread in the cycle. This observation leads us to the following notion of profiles:

Definition 4 (Profile). Let σT ⊆ Σ∗T be a local schedule. A profile for σT is a
(bounded-length) word π that is of one of the following forms:

– π = T :B T :a T :C, where T :a occurs in σT , or
– π = T :B T :a T :b T :C , provided there are two indices i and j such that i < j,
σT [i] = T :a, σT [j] = T :b, and moreover there is no i′ with i < i′ < j and
σT [i′] = T :C. In other words, T :a and T :b occur as events in σt in that order,
and belong to the same transaction.

– π = T :B T :a T :C T :B T :b T :C, provided there are two indices i and j such
that i < j, σT [i] = T :a, σT [j] = T :b, and moreover there is an i′ with
i < i′ < j and σT [i′] = T :C. In other words, T :a and T :b occur as events in
σt in that order, and belong to different transactions.
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The idea of a profile is that it picks one or two events from a thread’s ex-
ecution, along with the information as to whether the two events occurred in
the same transaction or in different transactions. It turns out that profiles are
enough to witness non-serializability.

Lemma 4. A program P (straight-line, regular, or recursive) has a non-serializable
run if and only if there exists words a set 〈πT 〉T∈T , where each πT is a profile
of σ|T , such that the straight line program defined by these profiles has a non-
serializable run.

The above lemma is very important, as it says that no matter how long or
complex a thread is, we can summarize it using short profiles and check the
profiles for non-serializability. This will form the key technical idea in proving
the upper bounds in this section. Also, the complexity of checking a straight-line
program made of profiles is in polynomial time:

Lemma 5. The problem of checking whether a set of profiles {π1, . . . , πk} in-
duces a non-serializable run can be checked in time polynomial in k.

3.1 Straight-line and Regular Programs

We discuss now the problem of checking whether a straight-line or regular pro-
gram has a non-serializable schedule. We show that, by using profiles, we can
solve this problem in O(n+ck) time where n is the maximum size of the program
for any thread, k is the number of threads, and c is a constant.

Suppose that a regular program Pr consists of threads T1, . . . , Tk. The idea
is to replace each thread Ti by a set of profiles Pi, and then check whether the
collection of profiles P1, . . . ,Pk induces a non-serializable run. By Lemma 4,
Pr has a non-serializable run if and only if the collection of profiles P1, . . . ,Pk

induces a non-serializable run.
For each thread Ti, the set of profiles Pi can be computed from Ti in O(n)

time. Assuming that Ti is presented by a finite transition system of size n, one
can establish in time linear in n whether a profile π is a profile of Ti. Since there
are at most m2 possible profiles (where m is the number of global variables), one
can compute all profiles of Ti in time O(m2n).

Since by Lemma 5 each choice of (π1, . . . , πk) ∈ P1×· · ·×Pk can be checked
for non-serializability in time polynomial in k, and there are at most (m2)k such
choices, the collection of profiles P1, . . . ,Pk can be checked in O

(
(m2)k

)
for

non-serializability. Since we assume that m (the number of global variables) is a
constant, we have the following result:

Theorem 1. Given a straight-line or regular program Pr, one can check in time
O(n+ ck) whether Pr has a non-serializable run, where n is the maximum size
of a thread, k is the number of threads, and c is a constant.

We can show that, in general, an exponential dependence on the input is
unlikely to be avoidable (proof in Appendix):
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Theorem 2. The problem of checking non-serializability of straight-line pro-
grams and regular programs, without locks, are both NP-complete.

The hardness result follows a reduction from the Hamiltonian cycle problem
which is famously NP-complete. The problem is in NP because one can guess a
profile πi for each thread Ti and check (i) if the set of profiles π1, . . . , πk induce
some non-serializable run (which can be done in polynomial time by Lemma
5), and (ii) if each profile πi is a profile that an be generated by the transition
system of thread Ti.

3.2 Recursive Programs

In this section, we discuss the effect of the presence of recursion in the code
on the serializability checking problem. Note that even reachability of a global
state is undecidable for concurrent recursive programs, and, since serializability
is a fairly complex global property, even the decidability of serializability is not
obvious.

We show, surprisingly, that checking serializability for recursive programs
without locks is indeed decidable and in time O(n3 + ck). Again, the notion of
profiles come to the rescue, as they avoid searching the global state-space.

By Lemma 4, the witness for non-serializability need only contain a profile
of each thread; Therefore, we can, similar to the regular program case, extract
the profiles of each thread, and combine the profiles (which are straight-line
programs) to check for non-serializability.

Extracting profiles from non-recursive threads is a rather straightforward
task. For recursive programs, this is slightly more involved. Recall that each
thread T is modeled as a pushdown automaton (PDA) PT . We show that for any
PDA P , we can efficiently construct an NFA (nondeterministic finite automaton)
N , such that the set of profiles of P and N are the same. Therefore, we can
replace the PDA model (the recursive code) of a thread by regular program,
effectively removing recursion, and reduce serializability of recursive programs
to that of regular programs.

Lemma 6. For a PDA P , we can construct, in O(|P |3)-time, an NFA which is
linear in |P | and which accepts the set of all profiles of schedules of P .

The result below follows from our result on checking serializability of regular
programs.

Theorem 3. Given a recursive program Pr, the problem of checking whether it
generates a non-serializable schedule, is solvable in time O(n3 + ck), where n is
size of the program, k is the number of threads, and c is a constant.

4 Programs with lock synchronization

In this section, we consider programs that synchronize using locks. We establish
two simple results: first, we show that the problem of checking straight-line and
regular programs with locks is solvable in time O(nk ·2|L|·log k), and, second, that
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the problem of checking recursive programs with locks is undecidable. Note that
the complexity bounds we prove for straight-line programs and regular programs
are not of the form O(poly(n) · 2|L|·log k · f(k)), i.e., we do not remove k from
the exponent on n, as we did for checking atomicity of programs without locks
by extracting profiles locally and combining them. However, for programs with
locks, a notion of summarizing a thread using a finite amount of information
that is independent of n seems hard. In fact, we believe that no such scheme
exists. More precisely, we show that the problem of checking atomicity in regular
programs with locks is unlikely to be fixed-parameter tractable (i.e., it is unlikely
that there is an algorithm that works in time O(poly(n) · f(k, |L|)) for any
computable function f) by showing that the problem is W[1]-hard.

Given a straight-line or regular program with locks, we can construct the
product machine that generates all global runs. This machine will be of size
O(nk · 2|L|·log k), as its state-space will track individual states of each thread,
and in addition will keep track for each lock, the thread that holds it. We can
now intersect this with a monitoring automaton for non-serializability (see [8]),
which is of size O(2k

2+k|V |). It is easy to see that the language of the resulting
automaton is empty if and only if the program has a serializability violation. We
therefore have proven the following theorem.

Theorem 4. The problem of checking whether a straight-line program or a reg-
ular program with locks has serializability violations is decidable in time O(nk ·
2|L|·log k+k

2
).

Let us now consider recursive programs with locks. It is known that the
global reachability problem for two recursive machines communicating via syn-
chronous messages is undecidable [20]. Moreover, it is known (see Kahlon et
al [15]) that synchronous messages can be simulated using locks, and hence the
global reachability problem for two recursive machines synchronizing using locks
is undecidable. It is not hard to reduce this problem to checking serializabil-
ity of a recursive program: intuitively, we augment the machines to execute a
non-serializable run when they reach their respective goal states. Hence:

Theorem 5. The problem of checking whether a recursive program with locks
has serializability violations is undecidable.

4.1 A lower bound on checking atomicity of lock synchronized
regular programs

In the setting of programs where all synchronization was ignored, we showed
that predicting atomicity errors can be done in time O(poly(n) · ck). As we
argued, this is a much better algorithm than the naive algorithms that work
in time O(nk) as typically n is much larger than k. In the setting of programs
that synchronize using locks, we showed only an algorithm that runs in time
O(nk · 2|L|. log k). A natural question is to ask whether this problem can also be
solved in time O(poly(n) · 2|L|·log k · f(k)). We now show that this is unlikely: in
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fact, we show that the problem is unlikely to be fixed-parameter tractable (over
the parameter k) by showing it is W [1]-hard.

Consider a problem X in which to each instance i we associate in addition
to its size n a second a parameter k ∈ N. Then the problem X is said to be
fixed-parameter tractable with respect to k if there is an algorithm that decides
X in time O(nc · f(k)), where f is an arbitrary function (we will assume f is
computable) and c is a constant.

Fixed-parameter tractability is a mature area of computational complexity
theory; we refer the reader to the textbooks [5, 12]. For instance, finding a vertex
cover of a graph G with k sets is an NP-complete problem, but is fixed-parameter
tractable when the parameter is k (in fact, solvable in time O(2k · |G|)). Also,
there is a hierarchy of classes of problems, called the W -hierarchy, for which no
fixed-parameter tractable algorithms are known, and it is believed that problems
complete for these classes are not fixed-parameter tractable. For instance, finding
an independent set of size k in a graph G, where k is the parameter, is known
to be W [1]-hard and hence not believed to be fixed-parameter tractable.

In this section, we will show that the problem of checking whether a regular
program with locks has an atomicity violation, where the parameters are the
number of threads in the program and the number of locks, is W[1]-hard.

We show hardness by reducing the problem of finite state automata intersec-
tion given below, which is known to be W[1]-hard, to our problem:

Finite State Automata Intersection
Instance: A set of k deterministic finite-state automata A1, . . . Ak over

a common alphabet Σ (Σ is not fixed).
Parameters: k,m
Question: Is there a string w ∈ L(A1)∩L(A2)∩. . . L(Ak) with |w| ≥ m?

Given an instance of this problem 〈A1, . . . , Ak〉, we will construct finite-state
automata B1, . . . Bk over a set of locks L and variables V such that they have a
serializability violation if and only if the intersection of A1, . . . , Ak is nonempty.
Furthermore, and most importantly, |L| = O(k · |Σ|), V = {x}, a single variable,
and each Bi will be of size O(|Ai| ·m). Note that the parameters never occur in
the exponent in the complexity of any of these sizes. Hence, an FPT algorithm
for serializability of regular programs with locks will imply that the finite-state
intersection problem is fixed-parameter tractable, which is unlikely as it is W [1]-
hard.

The construction proceeds in two phases. First, we will construct automata
C1, . . . , Ck that communicate using pairwise rendezvous, and show that they
exhibit a serializability violation if and only if the intersection of A1, . . . , Ak is
nonempty. Then we will show that the pairwise rendezvous mechanism can be
simulated using locks. Intuitively, the automaton C1 guesses a letter and com-
municates it to all other processes by relay messaging. All automata update
their state, each Ci simulating automaton Ai. C1 ensures that at least m letters
have been guesses, and then sends a message asking whether all other processes
have reached their final states. If they all respond that they have, C1 and C2
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perform a sequence of accesses to a single variable x that results in a serializabil-
ity violation. Finally, we show that we can simulate the pairwise rendezvous of
communication using only lock-synchronization (using a mechanism in Kahlon
et al [15], and build automata B1, . . . , Bk such that they exhibit a serializabil-
ity violation if and only if the intersection of the languages of A1, . . . , Ak has a
string longer than m. This leads us to the following theorem (see the Appendix
for a more detailed proof):

Theorem 6. The following problem:

Serializability of Regular Programs
Instance: A regular program B1, . . . Bk with lock synchronization over

a set of locks L and over a single global variable x.
Parameter: k, |L|
Question: Is the program atomic?

is W [1]-hard. ut

The above shows that it is unlikely that there is an algorithm that can solve
atomicity of regular programs in time O (poly(n) · f(k, |L|)). The question as to
whether the problem of checking serializability violations of straight-line pro-
grams is also W [1]-hard is open.

The above reduction from automata intersection to atomicity has the prop-
erty that the state-space of the machines and the lock-set are only linear in k; this
has further implications. In [16], it was shown that the intersection of k finite-
state automata, each of size n, is unlikely to be solvable in time O

(
n(k/f(k))+d

)
where f = o(k) and d > 0 is a constant (i.e. reducing the exponent from k to a
function sublinear in k). The authors show that if this were true, then problems
solvable in nondeterministic time t would have been solvable in subexponential
deterministic time. This unlikelihood combined with our reduction (simplified
not to count the number of letters in the word) implies that it is unlikely to
find algorithms for atomicity that work in time O

(
n(k/f(k))+d

)
as well. That is,

not only is k unavoidable in the exponent on n, a sub-linear exponent is also
unlikely.

5 Conclusion and Future Work

We have established fundamental algorithms for predicting atomicity violations
from straight-line programs, regular programs, and recursive programs. We have
studied two prediction models: one which ignores any synchronization of the
threads, and the other that considers lock-based synchronization. Our main re-
sults are that the problem is tractable, and solvable without exploring all in-
terleavings, for the case when synchronizations are ignored. We believe that the
notion of profiles set forth in this paper, which compositionally solve the serial-
izability model-checking problem, will be very useful in practical tools. For syn-
chronization using locks, we showed that such an efficient compositional scheme
is unlikely, by proving a W[1]-hardness lower bound for regular programs.
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There are several future directions worthy of pursuit. First, we are implement-
ing prediction tools for atomicity violations in large programs, and preliminary
results show that more restrictions (such as limiting violations to involve only
two threads) are needed to make algorithms practical. Second, we do not know
whether prediction of atomicity violations of straight-line programs with locks
is also W[1]-hard; establishing this will give a strong argument to use prediction
models that ignore synchronizations. Finally, the recent study of nested locking
holds promise, as global reachability of concurrent programs synchronizing via
nested locks admits a compositional algorithm [15]. We would like to investigate
whether atomicity prediction can also benefit if threads use nested locking.
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A Appendix

A.1 Proof of Lemma 2

Proof. Assume σ is a non-serializable run. Consider the conflict graph associated
with σ, which must have a cycle. Let the cycle involve transactions tr0, . . . trl
in that order (rename them to match the indices) of threads T0, . . . , Tl. In the
construction of the conflict graph for σ, assume without loss of generality, that
the first edge in the cycle to be thrown in was from tr0 to tr1, and let tr0[j]
be an event in tr [0] that caused the edge. Let |tr0| = m. Note that there must
be another event tr0[j′], j < j′ < m, that causes the incoming edge from trn to
tr0. Now, it is easy to see that the following schedule is a normal schedule that
is non-serializable: execute thread T0 until tr0[j], then in the order of the cycle,
execute threads T1, . . . , Tl completely and serially, and then go back and finish
the execution of T0; any thread which is not executed meanwhile can be executed
completely and serially next. Note that this schedule need not be equivalent to
the schedule σ; it just uses a cycle that σ causes in its conflict graph as a clue
to construct a normal non-serializable run.

A.2 Proof of Lemma 5

A set of profiles P = {π1, . . . , πk} can be viewed as a straight-line program in
which there are one or two transactions per thread. We show that one can check
for the existence of cycles that satisfy the conditions of Lemma 3 in polynomial
time in k. Each profile πi consists of (at most) two events ei1 and ei2 (in that
order). Therefore, the schedule graph GP has at most 2k nodes. We use the
following depth-first-search algorithm to look for a cycle that may start from
ei1; by Lemma 3, if there is cycle then at least one of the ei1s is part of it. We
remove the (blue) edge between ei1 and ei2 and through a modified depth-first
search algorithm check whether ei2 is reachable; if so, together with the blue edge
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a cycle is found. If the graph only contained blue and red edges, any cycle found
this way, would derive a non-serializable run. However, the existence of green
edges causes some of the cycles found through a simple DFS infeasible. This is
because such cycle may not correspond to a feasible non-serializable run as it
tries to order two events connected with a green edge in the opposite direction.

A slight modification of the DFS algorithm can fix this problem. This problem
occurs if a cycle enters a profile πj first through an edge connected to ej2 and
then later on enters it again through an edge connected to ej1. We modify the
DFS algorithm such that once it enters an event ej2 (which is at the end of a
directed green edge), it marks the event ej1 (with a special marking different from
the mark as visited of the DFS) not to be explored in the future of the current
path. If the search fails on the current path, on the way back it unmarks ej1 so
that it can be explored on other paths which do not have ej2 in their history.
Note that the special marking that we added to take care of green edges is not
permanent (is removed on the way back) whereas the DFS markings (as visited)
are permanent.

A.3 Proof of Lemma 6

Let us explain how profiles are derived from PDAs. Let A = (Q,Σ, Γ, δ, q0, F )
be a PDA in which Q is the set of states, Σ the input alphabet and Γ the stack
alphabet, δ the transition function, q0 ∈ Q the starting state and F ⊆ Q the
set of final states. The transition function δ maps a triple (q, a, γ) ∈ Q×Σ × Γ
into a set of pairs (q′, s) where q′ ∈ Q and s ∈ Γ ∗. A transition from (q, a, γ)
into (q′, s) corresponds to being in state q, observing symbols a on the input,
observing γ on the top of the stack, and moving to state q′ while popping γ from
the stack and pushing the string s ∈ Γ ∗ onto the stack.

From A, construct a PDA B by adding an ε-transition for every transition in
A, i.e. whenever (q′, s) ∈ δ(q, a, γ), we extend δ(q, ε, γ) to include (q′, s) as well.
Clearly, we have

L(B) = {w | ∃u ∈ L(A) such that w is a subsequence of u}.

Now, let P = {w | w is a profile } be the set of words over Σ that corresponds
to all possible profiles, i.e.

P = {T :a | T :a is an action} ∪
{T :a T :b | T :a and T :b are actions } ∪
{T :a T :C T :B T :b | T :a and T :b are actions}

P is regular and in fact accepted by a DFA, which we call C. We construct C
such that automata states are prefixes of all profiles; for each profile π, we have
a final state qπ in C.

It’s clear that L(B)∩L(C) is the set of profiles of all transactions generated
by A. The problem is that the intersection of a context-free language and a
regular one is in general a context-free language (not a regular one), and therefore
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there is no way of directly constructing an DFA that recognizes this language
L(B) ∩ L(C) although we know it is regular.

Instead, we construct an NFA accepting all reachable configurations of L(B)∩
L(C). From this, we enumerate the exact states that are reachable; if a configu-
ration with profile π is reachable then π belongs to L(B)∩L(C). Results from [6]
support the fact that the above can be done in polynomial time using symbolic
techniques, since the NFA accepting all reachable configurations of L(B)∩L(C)
can be constructed in time O(n3) where n is the size of the PDA A.

A.4 Proof of Theorem 2

Membership in Np follows from the argument and nondeterministic algorithm
in the text. We actually show the hardness result for a restricted form of regular
programs in which each thread nondeterministic choice among a set of transac-
tions to execute next. We show Np-hardness by reducing the problem of finding
a hamiltonian cycle in a graph to the problem of checking whether a program
(with no locks) has an non-serializable run.

Consider a graph G = (V,E), the goal is to check whether G contains a
hamiltonian cycle.

For graph G = (V,E) with V = {v1, . . . , vn}, the program PG associated
with G is defined as follows:

– P consists of a set of n threads {T1, . . . , Tn} each running a single transaction
in parallel, one per each node vi.

– Define the set of entities to be X = {xi,j | 1 ≤ i, j ≤ n}.
– Each thread Ti associated with node vi (2 ≤ i ≤ n) executes the following

piece of code: ⋃
1≤k≤n

⋃
(vi,vj)∈E

{write(xk,i); write(xk+1,j)}

where n+ 1 = 1. There is a special case for thread T1 which executes:⋃
1≤k≤n

⋃
(v1,vj)∈E

{write(xk+1,j); write(xk,1)}

in which the order of the two writes is changed. Note that all these pairs of
writes are in conflict with each other (as the branching model suggests) and
the thread Ti will end up executing only one of them.

We can show that G contains a Hamiltonian cycle if and only if PG has a non-
serializable run.

A.5 Proof of W[1]-hardness (Theorem 6)

Proof sketch:
The construction proceeds in two phases. First, we will construct automata
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C1, . . . , Ck that communicate using pairwise rendezvous, and show that they
exhibit a serializability violation iff the intersection of A1, . . . , Ak is nonempty.
Then we will show that pairwise rendezvous mechanism can be simulated using
locks.

The automaton C1 keeps track of the state of Ai and a number j ∈ [0,m], and
works in phases, incrementing j and updating the state when changing phases.
In each phase, it guesses (using nondeterminism) a letter a ∈ Σ, and sends the
message “a” to C2; C2 will receive the message, record a, and relay the message
to C3. In this way, the chosen letter is communicated by relay to all automata.
Finally, Ck records it message and sends an acknowledgement message “ack”
to C1. All automata move on the letter they recorded, update their state-space
according to the message (each Ci simulates the automaton Ai) and increments
their j-value to proceed to the next phase. After C1 communicates at least m
messages, i.e. when its j value reaches m, it stops counting and can continue
guessing letters and sending messages. Nondeterministically, C1 can also decide
that it has generated enough letters, and provided j = m and it is in a final
state of A1, it sends a message “check” to C2. C2, receiving this message, checks
whether it too has reached a final state of A2, and if so, relays the message to C3

and goes to a special state r2. Each automaton Ci does a similar job: relaying
the message if it is in a final state and goes to a special state ri, and if it is
not in a final state, it grinds to a halt. Finally, Ck sends the “check” message
back to C1, and C1 receiving this, goes to a special state r1. Note that at this
point, each automaton Ci is in state ri. At r1, C1 executes two write-accesses
to variable x and C2 executes one write access to x. Note that if r1 is reached
by C1, then C2 will be in state r2, and the three writes they do will constitute
a serializability violation. Hence, if there is a common string accepted by all
automata A1, . . . , Ak, there will be a serializability violation, and if not, there
will be at most one access (by C2 to x) along any run, and hence no serializability
violation. Note that the size of Ci is O(|Ai|.k.m).

Finally, let us construct automata B1, . . . Bk that communicate using only
locks, from C1, . . . Ck. For this step, we use a mechanism due to Kahlon et
al [15], of simulating pairwise rendezvous using lock synchronizations. In this
mechanism, we have, for each pair of automata indices i and i + 1, and every
message m, three locks. This simulation does not ensure local reachability: for
example, in the presence of lock synchronization only, it is easy to see that any
single process can reach any state just by running by itself, as other processes
cannot help it reach any new states. However, this mechanism does ensure that
if all processes reach a global state, then they must have been reachable in the
original automata communicating using messages as well. We refer the reader to
Section 11 of [15] for details. Notice that the number of locks is O(k.Σ). ut
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