
Causal Dataflow Analysis for Concurrent
Programs

Azadeh Farzan P. Madhusudan
Department of Computer Science,

University of Illinois at Urbana-Champaign.
{afarzan,madhu}@cs.uiuc.edu

Abstract. We define a novel formulation of dataflow analysis for con-
current programs, where the flow of facts is along the causal dependencies
of events. We capture the control flow of concurrent programs using a
Petri net (called control net), and develop methods that solve the causal
dataflow analysis problem using efficient algorithms based on partially-
ordered unfoldings of Petri nets. We show that our causal dataflow defini-
tion is powerful enough to capture common dataflow analysis problems,
and present experimental results that show the efficacy of dataflow anal-
ysis using partial orders. For the subclass of distributive problems, we
prove that complexity of checking data flow is linear in the size of the
problem and in the unfolding of the control net.

1 Introduction

Advances in multicore technology and the wide use of languages that inher-
ently support threads, such as Java, foretell a future where concurrency will be
the norm. Despite their growing importance, little progress has been made in
static analysis of concurrent programs. For instance, there is no standard notion
of a control-flow graph for concurrent programs, while the analogous notion in
sequential programs has existed for a long time [?]. Consequently, dataflow anal-
ysis problems (arguably the simplest of analysis problems) have not been clearly
understood for programs with concurrency.

While it is certainly easy to formulate dataflow analysis for concurrent programs
using the global product state space of the individual threads, the usefulness of
doing so is questionable as algorithms working on the global state space will not
scale. Consequently, the literature in flow analysis for threaded programs con-
centrates on finding tractable problem definitions for dataflow analysis. A com-
mon approach has been to consider programs where the causal relation between
events is static and apparent from the structure of the code (such as fork-join
formalisms), making feasible an analysis that works by finding fixpoints on the
union of the individual sequential control flow graphs. These approaches are of-
ten highly restrictive (for example, they require programs to have no loops [?]
or at least to have no loops with concurrent fork-join constructs [?,?]), and
cannot model even simple shared-memory program models. In fact, a coherent

formulation of control-flow that can capture programs with dynamic concur-
rency (including those with shared memory) and a general definition of dataflow
analysis problems for these programs has not been formulated in the literature
(see the end of this section for details on related work).

The goals of this paper are (a) to develop a formal control-flow model for pro-
grams using Petri nets, (b) to propose a novel definition of dataflow analyses
based on causal flows in a program, (c) to develop algorithms for solving causal
flow analyses when the domain of flow facts is a finite set D by exploring the
partially-ordered runs of the program as opposed to its interleaved executions,
and (d) to provide provably efficient algorithms for the class of distributive CCD
problems, and support the claim with demonstrative experiments. The frame-
work we set forth in this paper is the first one we know that defines a formal
general definition of dataflow analysis for concurrent programs.

We first develop a Petri net model that captures the control flow in a concur-
rent program, and give a translation from programs to Petri nets that explicitly
abstracts data and captures the control flow in the program. These nets, called
control nets, support dynamic concurrency, and can model concurrent constructs
such as lock-synchronizations and shared variable accesses. In fact, we have re-
cently used the same model of control nets to model and check atomicity of code
blocks in concurrent programs [?]. We believe that the control net model is an
excellent candidate for capturing control flow in concurrent programs, and can
emerge as the robust analog of control-flow graphs for sequential programs.

The causal concurrent dataflow (CCD) framework is in the flavor of a meet-
over-all-paths formulation for sequential programs. We assume a set of dataflow
facts D and each statement of the program is associated with a flow transformer
that changes a subset of facts, killing some old facts and generating new facts.
However, we demand that the flow transformers respect the concurrency in the
program: we require that if two independent (concurrent) statements transform
two subsets of facts, D and D′, then the sets D and D′ must be disjoint. For
instance, if there are two local variable accesses in two different threads, these
statements are independent, and cannot change the same dataflow fact, which is
a very natural restriction. For example, if we are tracking uninitialized variables,
two assignments in two threads to local variables do affect the facts pertaining
to these variables, but do not modify the same fact. We present formulations of
most of the common dataflow analysis problems in our setting.

The structural restriction of requiring transformers to respect causality ensures
that dataflow facts can be inferred using partially ordered traces of the control
net. We define the dataflow analysis problem as a meet over partially ordered
traces that reach a node, rather than the traditional meet-over-paths definition.
The meet-over-traces definition is crucial as it preserves the concurrency in the

2

program, allowing us to exploit it to solve flow analysis using partial-order based
methods, which do not explore all interleavings of the program.

Our next step is to give a solution for the general causal dataflow analysis prob-
lem when the set of of facts D is finite by reducing the problem to a reachability
problem of a Petri net, akin to the classic approach of reducing meet-over-paths
to graph reachability for sequential recursive programs [?]. Finally, the reach-
ability/coverability problem is solved using an optimized partial-order unfold-
ing [?,?] based tool called PEP [?].

For the important subclass of distributive dataflow analysis problems, we develop
a more efficient algorithm for checking flows. If N is a control net of a program
and the size of its finite unfolding is n, then we show that any distributive CCD
problem over a domain D of facts results in an augmented net of size n|D| (and
hence in an algorithm working within similar bounds of time and space). This
is a very satisfactory result, since it proves that the causal definition does not
destroy the concurrency in the net (as that would result in a blow-up in n), and
that we are exploiting distributivity effectively (as we have a linear dependence
on |D|). The analogous result for sequential recursive programs also creates an
augmented graph of size n|D|, where n is the size of the control-flow graph.

Related Work. Although the majority of flow analysis research has been fo-
cused on sequential software [?,?,?,?], flow analysis for concurrent software has
also been studied to some extent. Existing methods for flow-sensitive analyses
have at least one of the following restrictions: (a) the programs handled have
simple static concurrency and can be handled precisely using the union of con-
trol flow graphs of individual programs, or (b) the analysis is sound but not
complete, and solves the dataflow problem using heuristic approximations.

A body of work on flow-sensitive analyses exists in which the model for the pro-
gram is essentially a collection of CFGs of individual threads (tasks, or compo-
nents) together with additional edges among the CFGs that model inter-thread
synchronization and communication [?,?,?]. These analyses are usually restricted
to a class of behaviors (such as detecting deadlocks) and their models do not
require considering the set of interleavings of the program. More general analy-
ses based on the above type of model include [?] which presents a unidirectional
bit-vector dataflow analysis framework based on abstract interpretation (where
the domain D is a singleton). This framework comes closest to ours in that it
explicitly defines a meet-over-paths definition of dataflow analysis, can express
a variety of dataflow analysis problems, and gives sound and complete algo-
rithms for solving them. However, it cannot handle dynamic synchronization
mechanisms (such as locks), and the restriction to having only one dataflow fact
is crucially (and cleverly) used, making multidimensional analysis impossible.
For example, this framework cannot handle the problem of solving uninitialized
variables. See also [?] for dataflow analysis that uses flow along causal edges but

3

disallows loops in programs and requires them to have static concurrency. The
works in [?,?] use the extension of the static single assignment form [?] for con-
current programs with emphasis on optimizing concurrent programs as opposed
to analyzing them.

In [?], concurrent models are used to represent interleavings of programs, but
the initial model is coarse and refined to obtain precision, and efficiency is gained
by sacrificing precision. Petri nets are used as control models for Ada programs
in [?], although the modeling is completely different form ours. In [?], the authors
combine reachability analysis with symbolic execution to prune the infeasible
paths in order to achieve more efficient results.

2 Preliminaries

A Simple Multithreaded Language. We base our formal development on the
language SML (Simple Multithreaded Language). Figure 1 presents the syntax
of SML. The number of threads in an SML program is fixed and preset. There
are two kinds of variables: local and global, respectively identified by the sets
LVar and GVar. All variables that appear at the definition list of the program
are global and shared among all threads. Any other variable that is used in a
thread is assumed to be local to the thread.

We assume that all variables are integers and are initialized to zero. We use
small letters (capital letters) to denote local (global, resp.) variables. Lock is a
global set of locks that the threads can use for synchronization purposes through
acquire and release primitives. The semantics of a program is the obvious one
and we do not define it formally.

P ::= defn thlist (program)
thlist ::= null | stmt || thlist (thread list)
defn ::= int Y | lock l | defn ; defn (variable declaration)
stmt ::= stmt ; stmt | x := e | skip

| while (b) { stmt } | acquire(l) | release(l)
| if (b) { stmt } else { stmt } (statement)

e ::= i | x | Y | e + e | e ∗ e | e/e (expression)
b ::= true | false | e op e | b ∨ b | ¬b (boolean expression)

op ∈ {<,≤, >,≥, =, ! =}
x ∈ LVar, Y ∈ GVar, i ∈ Integer, l ∈ Lock

Fig. 1. SML syntax

Petri Nets and Traces: We briefly define nets and traces, and refer a reader
unfamiliar with these concepts to Appendix A.1.

A Petri net is a triple N = (P, T, F), where P is a set of places, T (disjoint from
P) is a set of transitions, and F ⊆ (P × T) ∪ (T × P) is the flow relation.

4

For a transition t of a (Petri) net, let •t = {p ∈ P |(p, t) ∈ F} denote its set of
pre-conditions and t• = {p ∈ P |(t, p) ∈ F} its set of post-conditions. A marking
of the net is a subset M of positions of P .1 A marked net is a structure (N,M0),
where N is a net and M0 is an initial marking. A transition t is enabled at a
marking M if •t ⊆M . The transition relation is defined on the set of markings:
M

t−→M ′ if transition t is enabled at M and M ′ = (M \•t)∪ t•. Let ∗−→ denote
the reflexive and transitive closure of −→. A marking M ′ covers a marking M
if M ⊆M ′. A firing sequence is a finite sequence of transitions t1t2 . . . provided
we have a sequence of markings M0M1 . . . and for each i, Mi

ti+1−→ Mi+1. We
denote the set of firing sequences of (N,M0) as FS (N,M0). Given a marked net
(N,M0), N = (P, T, F), the independence relation of the net IN is defined as
(t, t′) ∈ I if the neighborhoods of t and t′ are disjoint, i.e. (•t∪t•)∩(•t′∪t′•) = ∅.
The dependence relation DN is defined as the complement of IN .

Definition 1. A trace of a marked net (N,M0) is a labeled poset Tr = (E ,�, λ)
where E is a finite or a countable set of events, � is a partial order on E, called
the causal order, and λ : E −→ T is a labeling function such that the following
hold:

– ∀e, e′ ∈ E , e≺· e′ ⇒ λ(e)DNλ(e′).2 Events that are immediately causally re-
lated must correspond to dependent transitions.

– ∀e, e′ ∈ E , λ(e)DNλ(e′)⇒ (e � e′ ∨ e′ � e). Any two events with dependent
labels must be causally related.

– If σ is a linearization of Tr then σ ∈ FS(N,M0).

For any event e in a trace (E ,�, λ), define ↓ e = {e′ ∈ E | e′ � e} and let
⇓ e = ↓ e \ {e}.

3 The Control Net of a Program

We model the flow of control in SML programs using Petri nets. We call this
model the control net of the program. The control net formally captures the
concurrency between threads using the concurrency constructs of a Petri net,
captures synchronizations between threads (e.g.. locks, accesses to global vari-
ables) using appropriate mechanisms in the Petri net, and formalizes the fact
that data is abstracted in a sound manner.

Due to lack of space, we skip details of the construction; we refer the reader to
Figure 4 in the Appendix that illustrates the mapping from programs to nets.
Transitions in the control net correspond to program statements, and places are

1 Petri nets can be more general, but in this paper we restrict to 1-safe Petri nets
where each place gets at most one token.

2 ≺· is the immediate causal relation defined as: e≺· e′ iff e ≺ e′ and there is no event
e′′ such that e ≺ e′′ ≺ e′.

5

used to control the flow, and to model the interdependencies and synchronization
primitives. Figure 2 illustrates a program and its control net.

There is a place l associated to each lock l which initially has a token in it. To
acquire a lock, this token has to be available which then is taken and put back
when the lock is released.

aquire(l)

release(l)

l

Y1

Y2

Y := 5

Y := 3

x := Y - 2

T T’

acquire(l);
Y := 5; x := Y - 2;
Y := 3;

release(l);

T ′T

Fig. 2. Sample Net Model

For each global variable Y, there are n
places Y1, . . . , Yn, one per thread. Every
time the thread Ti reads the variable Y
(Y appears in an expression), it takes the
token from the place Yi and puts it back
immediately. If Ti wants to write Y (Y is
on the left side of an assignment), it has
to take one token from each place Yj ,
1 ≤ j ≤ n and put them all back. This
ensures causality: two read operations of
the same variable by different threads
will be independent (as their neighbor-
hoods will be disjoint), but a read and a
write, or two writes are declared depen-
dent.

4 Causal Concurrent Dataflow Framework

We now formulate our framework for dataflow analysis of concurrent programs
based on causality, called the Causal Concurrent Dataflow (CCD) frame-
work.

A property space is a subset lattice (P(D),v,t,⊥) where D is a finite set of
dataflow facts, ⊥ ⊆ D, and where t and v can respectively be ∪ and ⊆, or ∩
and ⊇.

Intuitively, D is the set of dataflow facts of interest, ⊥ is the initial set of facts,
and t is the meet operation that will determine how we combine dataflow facts
along different paths reaching the same control point in a program. “May” analy-
sis is formulated using t = ∪, while “must” analysis uses the t = ∩ formulation.
The property space of an IFDS (interprocedural finite distributive subset) prob-
lem [?] for a sequential program (i.e. the subset lattice) is exactly the same
lattice as above.

For every transition t of the control net, we associate two subsets of D, Dt

and Dt. Intuitively, Dt is the set of dataflow facts relevant at t, while Dt ⊆
Dt is the subset of relevant facts that t may modify when it executes. The
transformation function associated with t, ft, maps every subset of Dt to a
subset of Dt, reflecting how the dataflow facts change when t is executed.

6

Definition 2. A causal concurrent dataflow (CCD) problem is a tuple (N,S,F ,D,D)
where:
– N = (P, T, F) is the control net model of a concurrent program,
– S = (P(D),@,t,⊥) is a property space,
– D = {Dt}t∈T and D = {Dt}t∈T , where each Dt ⊆ Dt ⊆ D.
– F is a set of functions {ft}t∈T : 2Dt → 2Dt such that:

(*) ∀t, t′ : (t, t′) ∈ IN ⇒
(
Dt ∩Dt′ = Dt ∩Dt′ = ∅

)
.

Recall that the independence relation IN of the net N is defined as (t, t′) ∈
IN ⇔ (•t ∪ t•) ∩ (•t′ ∪ t′•) = ∅.

We call a CCD problem distributive if all transformation functions in F are
distributive, that is ∀ft ∈ F , ∀X,Y ⊆ Dt : ft(X t Y) = ft(X) t ft(Y).

Remark 1. Condition (*) above is to be specially noted. It demands that for
any two concurrent events e and e′, e cannot change a dataflow fact that is
relevant to e′. Note that e and e′ are events in a trace such that Dλ(e) ∩Dλ(e′)

is non-empty, then they will be causally related.

4.1 Meet Over All Traces Solution

t1

t2 t3

t4

in(t1) = ∅
Dt1 = {d1, d2}

in(t2) = ∅
Dt2 = {d3} Dt3 = {d2, d4}

in(t3) = {d2}

Dt4 = {d1, d2, d3, d4}
in(t4) = {d1, d3, d4}

d1, d2d1, d2

d3 d4

Fig. 3. Flow of facts over a trace.

In a sequential run of a program,
every event t has at most one
predecessor t′. Therefore, the set
of dataflow facts that hold be-
fore the execution of t (let us
call this in(t)) is exactly the set
of dataflow facts that hold af-
ter the execution of t′ (out(t′)).
This is not the case for a trace (a
partially ordered run). Consider
the example in Figure 3. Assume t1 generates facts d1 and d2, t2 generates d3

and t3 kills d2 and generates d4. The corresponding Dt sets appear in the Figure.
Trying to evaluate the “in” set of t4, one can see three important scenarios here
that never happen in the case of a sequential run: (1) t4 inherits independent
facts d3 and d4 respectively from its immediate predecessors t2 and t3, (2) t4
inherits fact d1 from t1 which is not its immediate predecessor, and (3) t4 does
not inherit d2 from t1 because t3, which is a (causally) later event and the last
event to modify d2, kills d2.

This example demonstrates that in a trace the immediate causal predecessors do
not specify the “in” set of an event. The indicating event is actually the (causally)
last event that can change the dataflow facts (t3 for in(t4)). We formalize this
concept by defining the operator maxcd�(Tr), for a trace Tr = (E,�, λ) as
maxcd�(Tr) = max�({e |e ∈ E ∧ d ∈ Dλ(e)}). Note that this function is

7

undefined on the empty set, but well-defined on non-empty sets because all events
that affect a dataflow fact d are causally related due to (*) in Definition 2.

Remark 1 suggests that for each event e it suffices to only look at the facts that
are in the “out” set of events in ⇓ e (events that are causally before e), since
events that are concurrent with e will not change any fact that’s relevant to e.

Definition 3. For any trace Tr = (E,�, λ) of the control net and for each event
e ∈ E, we define the following dataflow sets:{

inTr (e) =
⋃
d∈Dλ(e)

(outTr (maxcd�(⇓ e)) ∩ {d}))
outTr (e) = fλ(e)(inTr (e) ∩Dλ(e))

where inTr (e) (respectively outTr (e)) indicates the set of dataflow facts that hold
before (respectively after) the execution of event e of trace Tr.

In the above definition, maxcdi� (⇓ e)) may be undefined (if ⇓ e = ∅), in which
case we assume inTr (e) evaluates to the empty set.

We can now define the meet over all traces solution for a program Pr, as-
suming the T (N) denotes the set of all traces induced by the control net N .

Definition 4. The set of dataflow facts that hold before the execution of a tran-
sition t of a control net N is MOT (t) =

⊔
Tr∈T (N),e∈Tr ,λ(e)=t inTr (e).

The above formulation is the concurrent analog of the meet-over-all-paths formu-
lation for sequential programs. Instead of the above definition, we could formu-
late the problem as a meet-over-all-paths problem, where we take the meet over
facts accumulated along the sequential runs (interleavings) of the concurrent
program. However, due to the restriction (*) in Definition 2, we can show that
the dataflow facts accumulated at an event of a trace is precisely the same as that
accumulated using any of its linearizations. Consequently, for dataflow problems
that respect causality by satisfying the condition (*), the meet-over-all-paths
and the meet-over-traces formulations coincide. The latter formulation however
yields faster algorithms based on partial-order methods based on unfoldings to
solve the dataflow analysis problem. We refer the reader to the Appendix for a
detailed formulation and proof of these claims.

4.2 Formulation of Specific Problems in the CCD Framework

A wide variety of dataflow analysis problems can be formulated using the CCD
framework, including reaching definitions, uninitialized variables, live variables,
available expressions, copy constant propagation, very busy expressions, etc.
Some of these are backward flow analysis problems that can be formulated using
an adaptation of CCD for backward flows. Due to lack of space, we detail only
a couple of representative forward flow problems here; formulation of several
others, including formulation of backward flows can be found in the Appendix.

8

Reaching Definitions. The reaching definitions analysis determines: “For each
control point, which relevant assignments may have been made and not over-
written when program execution reaches that point along some path ”. The rel-
evant assignments are the assignments to variables that are referred to in that
control point. Given the control net N = (P, T, F) for a program Pr, define
Defs = {(v, t) | t ∈ T, v ∈ (GVar ∪ LVar), and v is assigned in t}. The prop-
erty space is (Defs,⊆,∪, ∅), where presence of (v, t) in Din(t′) means that the
definition of v at t may reach t′.

We haveDt = {(v, t′) | v is assigned in t}, andDt = {(v, t′) | v is assigned or accessed by t}.

For each transition t and each set S ⊆ Dt:
ft(S)(=

{
S if t is not an assignment
S − {(v, t′)|t′ ∈ T} ∪ {(v, t)} if t is of the form v := e

The construction of the control net ensures that two accesses of a variable v where
one of them is a write, are dependent (neighborhoods intersect). This guarantees
that the condition (*) of Definition 2 holds, i.e. our formulation of reaching-
definitions ensures that information is inherited only from causal predecessors.
Note that the above formulation is also distributive.

Available Expressions. The available expressions analysis determines: “For
a program point containing x := Exp(x1, . . . , xk) whether Exp has already been
computed and not later modified on all paths to this program point”.

z := x + Y

w := x + Y

x := 2 Y := 6

T T ′

e1

e2 e3

e4

In the standard (sequential) formulation of available expres-
sions analysis, dataflow facts are defined as pairs (t,Exp),
where Exp is computed at t. This formulation does not work
for the concurrent setting. To see why consider the trace on
the right where x is a local variable in T and Y is a global
variable. Events e2 and e3 are independent (concurrent), but
they both can change (kill) the dataflow fact associated with
x + Y, which is not in accordance with the condition (*) of
Definition 2. The natural remedy is to divide this fact into two facts, one for
x and another for Y. Let us call these two facts x + Y : x and x + Y : Y. The
fact x + Y : x (respectively x + Y : Y) starts to hold when the expression x + Y
is computed, and stops to hold when a definition to x (respectively Y) is seen.
The problem is that x + Y holds when x + Y : x holds and x + Y : Y holds, which
makes the framework non-distributive. Although we can solve non-distributive
problems in the CCD framework (see Appendix), distributive problems yield
faster algorithms (see Section 5).

The analysis can however be formulated as a distributive CCD problem by look-
ing at the dual problem; that is, for unavailability of expressions. The dataflow
fact x + Y indicates the expression being unavailable, and accordingly the pres-
ence of x + Y : x or x + Y : Y can make it hold. We are now in a distributive
framework. Assume EXP presents the set of all expressions appearing in the

9

program code, and define D = {exp : xi | exp ∈ EXP ∧ xi appears in exp}.
The property space is the subset lattice (D,⊆,∪,D), where presence of exp
in Din(t′) means that exp is unavailable at t. We have Dt = Dt = {exp :
x | x is assigned in t or exp appears in t}. For each transition t and each set
S ⊆ D:

ft(S) =

S t is not an assignment
S ∪ {exp′ : x | ∀exp′ ∈ EXP , x ∈ V (exp′)}
− {exp : y | y ∈ V (exp)} t is x := exp

where V (exp) denotes the set of variables that appear in exp.

5 Solving the the Distributive CCD Problem

In this section, we show how to solve a dataflow problem in the CCD framework.
The algorithm we present is based on augmenting a control net to a larger net
based on the dataflow analysis problem, and reduce the problem of checking
whether a dataflow fact holds at a control point to a reachability problem on
the augmented net. The augmented net is carefully constructed so as to not
destroy the concurrency present in the system (crucially exploiting the condition
(*) in Definition 2). Reachability on the augmented net is performed using net
unfoldings, which is a partial-order based approach that checks traces generated
by the net as opposed to checking s linear runs.

Due to space restrictions, we present only the solution for the distributive CCD
problems where the meet operator is union, and we prove tidy upper bounds
that compare the unfolding of the augmented net with respect to the size of
the unfolding of the original control net. See the Appendix for the more general
non-distributive CCD problems and for the backward flow problems.

In order to track the dataflow facts, we enrich the control net so that each
transition performs the transformation of facts as well. We introduce new places
which represent the dataflow facts. The key is then to model the transformation
functions, for which we use representation relation from [?].

Definition 5. The representation relation of f : 2D → 2D (D ⊆ D), Rf ⊆
(D ∪ {⊥})× (D ∪ {⊥}) is a binary relation defined as follows:

Rf = {(⊥,⊥)} ∪ {(⊥, d) | d ∈ f(∅)} ∪ {(d, d′) | d′ ∈ f({d}) ∧ d′ 6∈ f(∅)}

The relation Rf captures f faithfully in that we can show that f(X) = {d′ ∈
D | (d, d′) ∈ Rf , where d = ⊥ or d ∈ X}, for any X ⊆ D.

Given a CCD framework (N,S,F ,D,D) with control net N = (P, T, F), we
define the net representation for a function ft as below:

Definition 6. The net representation of ft is a Petri net Nft = (Pft , Tft , Fft)
defined as follows:

10

– The set of places is Pft = •t∪ t• ∪ {⊥m | m ∈ [1, n]} ∪
⋃
di∈Dt {pi, pi} where

a token in pi means the dataflow fact di holds, while a token in pi means
that di does not hold and n is the number of dataflow facts.

– Set of transitions Tf which contains exactly one transition per pair (di, dj) ∈
Rft is formally defined as:

Tft =
{
st(⊥,⊥)

}
∪
{
st(⊥,j)| (⊥, dj) ∈ Rft

}
∪
{
st(i,j)| (di, dj) ∈ Rft

}
Note that if Dt = ∅ then Tft =

{
st(⊥,⊥)

}
.

– The flow relation is defined as follows:
Fft =

⋃
s∈Tft

(⋃
p∈•t
{(p, s)} ∪

⋃
p∈t•
{(s, p)}

)
∪

⋃
dk∈Dt

{
(pk, s

t
(⊥,⊥)), (s

t
(⊥,⊥), pk)

}
∪

⋃
(⊥,dj)∈Rft

({
(⊥m, st(⊥,j)) | t ∈ Tm

}
∪
{

(st(⊥,j), pj)
}
∪

⋃
dk∈Dt

{
(pk, s

t
(⊥,j))

}
∪
⋃
k 6=j

{
(st(i,j), pk)

})

∪
⋃

(di,dj)∈Rft
i 6=j

({
(pi, st(i,j)), (s

t
(i,j), pj), (pj , s

t
(i,j)), (s

t
(i,j), pi)

})

∪
⋃

(di,di)∈Rft

({
(pi, st(i,i)), (s

t
(i,i), pi)

})
The idea is that each transition st(i,j) is a copy of transition t that, besides
simulating t, models one pair (di, dj) of the relation Rft , by taking a token out
of place pi (meanwhile, also checking that nothing else holds by taking tokens out
of each pk, k 6= i) and putting it in pj (also returning tokens all pk, k 6= j). Thus
if di holds (solely) before execution of t, dj will hold afterwards. The transitions
st⊥,j generate new dataflow facts, but consume the token ⊥m associated with the
thread. We will engineer the net to initially contain only one ⊥m marking (for
some thread m), and hence make sure that only one fact is generated from ⊥.

For every t, transitions st(i,j) are in conflict since they have •t as common pre-
decessors. This means that only one of them can execute at a time, generating
a single fact. If we assume that initially nothing holds (i.e., initial tokens are in
every pis and no initial tokens in any of pis), then since each transition consumes
one token and generates a new token, the following invariant always holds for the
system: “At any reachable marking of the augmented net, exactly one position
pi corresponding to some dataflow fact di holds”. We use this observation later
to argue the complexity of our analysis.
Definition 7. The augmented marked net NS,F of a CCD problem (N,S,F)
is defined as

⋃
f∈F Nf where the union of two nets N1 = (P1, T1, F1) and N2 =

(P2, T2, F2) is defined as N1∪N2 = (P1∪P2, T1∪T2, F1∪F2). It is assumed that
Nf s have disjoint set of transitions, and only the common places are identified
in the union. Furthermore we add a new position p∗, make each p̄i initial, and
also introduce n initial transitions t∗m, one for each thread, that removes p∗ and
puts a token in ⊥m and a token in the initial positions of each thread.

11

The above construction only works when ⊥ = ∅. When ⊥ = D0, for some D0 ⊆
D, we will introduce a new initial set of events (all in conflict) that introduce
nondeterministically a token in some pi ∈ D0 and remove p̄i.

See Appendix, for an example of a program with the representation relation
functions and the augmented net constructed based on those relation.

The problem of computing the MOT solution can be reduced to a coverability
problem on the augmented net. To be more precise, fact di may hold before the
execution of transition t of the control net if and only if {pi} ∪ •t is coverable
from the initial marking of the control net.

Theorem 1. A dataflow fact di holds before the execution of a transition t in
the control net N of a program if and only if di ∈ Dt and the marking {pi} ∪ •t
(•t computed in N) is coverable from the initial marking in the augmented net
NS,F constructed according to Definition 7.

Checking coverability: While there are many tools that can check reachabil-
ity/coverability properties of Petri nets, tools that use unfolding techniques [?,?]
of nets are particularly effective, as they explore the state space using partially
ordered unfoldings and give automatic reduction in state-space (akin to partial-
order reduction for model checking of concurrent systems). We assume the reader
is familiar with net unfoldings and refer to [?] for details.

Complexity of distributive CCD: In algorithms for Petri nets using finite
unfoldings, the algorithm essentially produces a finite unfolding of the net, from
which reachability/coverability properties can be extracted in linear time. Hence
the unfolding of the control net roughly corresponds to the complexity of check-
ing reachability; though this can be exponential in the net, it is tractable in
practical applications.

We base the complexity of our algorithm on the size of the unfolding of the
control net. Intuitively, since the construction of the augmented net ensures
that in each reachable marking at most one dataflow fact holds, it follows that
for each reachable marking of the original control net, there are at most |D|
reachable markings in the augmented net. Since the unfolding of a net is at
most the number of reachable local configurations, the size of the unfolding of the
augmented net is only a factor of |D| larger than the unfolding of the control net.
This argues the efficacy of our approach in preserving the concurrency inherent
in the control net and in exploiting distributivity to its fullest extent.

Theorem 2. Let (N,S,F) be a distributive CCD problem, with S = (√(D),⊆

,∪,⊥). Let n be the size of the unfolding of N . Then the size of the unfolding of
the augmented net NS,F (and hence the complexity of checking whether a fact
holds at a control point) is at most O(n|D|).

12

6 Experiments

We have applied the techniques from Section 5 to perform several dataflow anal-
yses for concurrent programs. Unfortunately, there is no standard benchmark for
concurrent dataflow programs. We have however experimented our algorithms
with sample programs for the primary dataflow analysis problems, and studied
performance when the number of threads is increased.

The motive of the experiments is to exhibit in practice the advantages of con-
current dataflow that exploit the causal framework set forth in this paper. While
the practical efficacy of our approach on large programs is still not validated,
we believe that setting up a general framework with well-defined problems that
permit reasonable algorithms is a first step towards full-scale flow analysis. Al-
gorithms that work on large code may have to implement approximations and
heuristics, and we believe that the framwork herein will serve as a standard for
correctness.

In many of our examples, there is an exponential increase in the set of reachable
states as one increases the number of threads, but the partial order methods
inherent to these techniques substantially alleviate the problem. We use the
Pep tool [?] to check the coverability property on the augmented net to answer
the relevant coverability queries.

For each example, we have included the sizes of the unfolding for the program’s
control net and of the augmented net. The construction time refers to the time
to build the unfolding, and the checking time refers to the time for a single fact
checking. Note the huge differences between the two times in some cases, and
also note that the unfolding is only built once and is then used to answer several
coverability queries. All experiments were performed on a Linux machine with
a 1.7GHz processor and 1GB of memory. The numbers are all in seconds (with
a precision of 0.01 seconds).

Uninitialized Variables. This set of examples contains a collection of n threads
with n global variables X0, . . . , Xn. One uninitialized variable X0 in one thread can
consequently make all Xis uninitialized. Concurrency results in many possible
interleavings in this example, a few of which can make a certain variable Xj

uninitialized.

T T’

acquire(l); acquire(l)
Y := 1; x := Y + 1;
Y := 2; release(l)

release(l);

Reaching Definitions. This example set demon-
strates how our method can successfully handle syn-
chronization mechanisms. There are two types of
threads: (1) those which perform two consequent
writes to a global variable Y, and (2) those which
perform a read of Y. There are two variations of this example: (1) where none of
the accesses is protected by a lock, which we call RD, and (2) where the read,
and the two writes combined are protected by the same lock, which we call RDL
(the code on the right). The main difference between the two versions is that

13

Example |D| #Threads Unfolding Unfolding Time Time
Control Net Augmented Net Checking (sec) Construction(sec)

UV(10) 11 11 906 4090 < 0.01 <0.01
UV(20) 21 21 3311 16950 < 0.01 0.70
UV(60) 61 61 40859 156390 0.01 60.11

RD(3) 4 6 410 1904 < 0.01 0.03
RD(4) 5 8 1545 9289 0.01 1.5
RD(5) 6 10 5596 41186 0.01 133.16

RDL(3) 6 4 334 1228 < 0.01 0.01
RDL(4) 8 5 839 3791 < 0.01 29
RDL(5) 10 6 2024 10834 < 0.01 5.35
RDL(6) 12 7 4745 29333 0.01 121.00

AE(50) 2 50 250 650 < 0.01 < 0.01
AE(150) 2 150 750 1950 < 0.01 0.34
AE(350) 2 350 1750 4550 < 0.01 4.10

Table 1. Programs and Performances

Y := 1 will reach the read in the lock-free version, but cannot reach it in the
presence of the locks. In a setting with one copy of T ′ and n copies of T , there
are 2n definitions where only n of them can reach the line x := Y + 1 of T ′.

Available Expressions. The example set AE shows how the unfolding method
can fully benefit from concurrency. The threads here do not have any dependen-
cies. Each thread defines the same expression X + Y twice, and therefore, the
expression is always available for the second instruction of each thread. Table 1
shows that in the case of zero dependencies, the size of the unfolding grows lin-
early with the number of threads (especially since new threads do not introduce
new dataflow facts).

7 Conclusions
Several future directions are interesting. The first direction is to engineer local
or compositional methods to solve the CCD problems and deploy them on large
real world programs. This would have to handle (approximately) complex data
such as pointers and objects. Studying a framework based on computing minimal
fixpoints for concurrent programs would be interesting. Extending our approach
to decide flow problems with infinite domains of finite height is challenging as
well (they can be handled in the sequential setting [?]).

References

1. Hecht, M.: Flow Analysis of Computer Programs. Elsevier Science Inc. (1977)
2. Stoltz, E., Wolfe, M.: Sparse data-flow analysis for dag parallel programs (1994)
3. Lee, J., Midkiff, S.P., Padua, D.A.: Concurrent static single assignment form and

constant propagation for explicitly parallel programs. In: Languages and Compilers
for Parallel Computing. (1997) 114–130

14

4. Lee, J., Padua, D.A., Midkiff, S.P.: Basic compiler algorithms for parallel programs.
In: Principles Practice of Parallel Programming. (1999) 1–12

5. Farzan, A., Madhusudan, P.: Causal atomicity. In: CAV. LNCS 4144 (2006) 315
– 328

6. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: POPL. (1995) 49–61

7. McMillan, K.: A technique of state space search based on unfolding. Formal
Methods in System Design 6(1) (1995) 45–65

8. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding
algorithm. Formal Methods in System Design 20 (2002) 285–310

9. Grahlmann, B.: The PEP tool. In: CAV. (1997) 440–443
10. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: principles, techniques, and tools.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1986)
11. Nielson, F., Nielson, H.: Type and effect systems. In: Correct System Design.

(1999) 114–136
12. Muchnick, S.S.: Advanced Compiler Design and Imlementation. Morgan Kaufmann

(1997)
13. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their

application to interprocedural dataflow analysis. Sci. Comput. Program. 58(1-2)
(2005) 206–263

14. Masticola, S.P., Ryder, B.G.: Non-concurrency analysis. In: PPOPP. (1993) 129–
138

15. Naumovich, G., Avrunin, G.S.: A conservative data flow algorithm for detecting
all pairs of statements that may happen in parallel. In: SIGSOFT/FSE-6. (98)
24–34

16. Salcianu, A., Rinard, M.: Pointer and escape analysis for multithreaded programs.
In: PPoPP, ACM Press (2001) 12–23

17. Knoop, J., Steffen, B., Vollmer, J.: Parallelism for free: Efficient and optimal
bitvector analyses for parallel programs. TOPLAS 18(3) (1996) 268–299

18. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4) (1991) 451–490

19. Dwyer, M., Clarke, L., Cobleigh, J., Naumovich, G.: Flow analysis for verifying
properties of concurrent software systems (2004)

20. Dwyer, M.B., Clarke, L.A.: A compact petri net representation and its implications
for analysis. IEEE Trans. Softw. Eng. 22(11) (1996) 794–811

21. Chamillard, A.T., Clarke, L.A.: Improving the accuracy of petri net-based analysis
of concurrent programs. In: ISSTA, New York, NY, USA (1996) 24–38

22. Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific Publishing Co.
(1995)

15

A Extra Material For Section 2

A.1 Petri Nets and Traces

Definition 8. A Petri net is a triple N = (P, T, F), where P is a set of places,
T (disjoint from P) is a set of transitions, and F ⊆ (P × T) ∪ (T × P) is the
flow relation.

For a transition t of a (Petri) net, let •t = {p ∈ P |(p, t) ∈ F} denote its set of
pre-conditions and t• = {p ∈ P |(t, p) ∈ F} its set of post-conditions.

A marking of the net is a subset M of positions of P .3 A marked net is a
structure (N, Init), where N is a net and Init is an initial marking. A transition
t is enabled at a marking M if •t ⊆M . The transition relation is defined on the
set of markings: M t−→M ′ if transition t is enabled at M and M ′ = (M \•t)∪t•.
Let ∗−→ denote the reflexive and transitive closure of −→. A marking M ′ covers
a marking M if M ⊆M ′.

A firing sequence is a finite or infinite sequence of transitions t1t2 . . . provided
we have a sequence of markings M0M1 . . . such that M0 = Init and for each i,
Mi

ti+1−→Mi+1. We denote the set of firing sequences of (N, Init) as FS (N, Init). A
firing sequence can be viewed as a sequential execution of the Petri net. However,
we are interested in the partially-ordered runs that the Petri net exhibits; we
will define these using Mazurkiewicz traces.

Traces: A trace alphabet is a pair (Σ, I) where Σ is a finite alphabet of actions
and I ⊆ Σ ×Σ is an irreflexive and symmetric relation over Σ called the inde-
pendence relation. The induced relation D = (Σ×Σ)\I (which is symmetric and
reflexive) is called the dependence relation. A Mazurkiewicz trace is a behavior
that describes a partially-ordered execution of events in Σ (when I = ∅, it is
simply a word).

Definition 9. [?] A (Mazurkiewicz) trace over the trace alphabet (Σ, I) is a
Σ-labeled poset t = (E ,�, λ) where E is a finite or a countable set of events, �
is a partial order on E, called the causal order, and λ : E −→ Σ is a labeling
function such that the following hold:

3 Petri nets can be more general, but in this paper we restrict to 1-safe Petri nets
where each place gets at most one token.

16

– ∀e ∈ E, ↓ e is finite. Here, ↓ e = {e′ ∈ E | e′ � e}.
So we demand that there are only finitely many events causally before e.

– ∀e, e′ ∈ E , e≺· e′ ⇒ λ(e)Dλ(e′).4 Events that are immediately causally related
must correspond to dependent actions.

– ∀e, e′ ∈ E , λ(e)Dλ(e′) ⇒ (e � e′ ∨ e′ � e). Any two events with dependent
labels must be causally related.

T (Σ, I) denotes the set of all traces over (Σ, I). We identify traces that are
isomorphic.

A linearization of a trace t = (E ,�, λ) is a linearization of its events that respects
the partial order; in other words, it is a word structure (E ,�′, λ) where �′ is a
linear order with � ⊆ �′.

Let us define an equivalence on words over Σ: σ ∼ σ′ if and only if for every pair
of letters a, b ∈ Σ, with aDb, σ ↓ {a, b} = σ′ ↓ {a, b}, where ↓ is the projection
operator that drops all symbols not belonging to the second argument. Then, σ
and σ′ are linearizations of the same trace iff σ ∼ σ′. We denote the equivalence
class that σ belongs to as [σ].

Let (Σ, I) be a trace alphabet and ∼ be the associated relation. Let us now
formally associate the (unique) trace that corresponds to a word σ over Σ.

A finite word σa is said to be prime if for every σ′ ∼ σa, σ′ is of the form σ′′a
(i.e. all words equivalent to σa end with a).

Let σ be a finite or infinite word over Σ. The trace associated with σ, Tr(σ) =
(E ,�, λ) is defined as:

– E = {[σ′] | σ′ is prime ,∃σ′′ ∼ σ, σ′ is a prefix of σ′′},
– [σ] � [σ′] if there exists σ1 ∈ [σ], σ′1 ∈ [σ′] such that σ1 is a prefix of σ′1,
– λ([σ′a]) = a for each [σ′a] ∈ E .

It is easy to see that Tr(σ) is a trace, and σ is a linearization of it.

Traces of a Petri net: Let us now define the set of traces generated by a Petri
net. Given a marked net (N, Init), N = (P, T, F), we consider the trace alphabet
(Σ, I) where Σ = T , and (t, t′) ∈ I if and only if the neighborhoods of t and t′

are disjoint, i.e. (•t ∪ t•) ∩ (•t′ ∪ t′•) = ∅.

Now the traces generated by the net is is defined as TInit(N) = {Tr(σ) | σ ∈
FS (N, Init)}. Note that a single trace represents several sequential runs, namely
4 ≺· is the immediate causal relation defined as: e≺· e′ iff e ≺ e′ and there is no event

e′′ such that e ≺ e′′ ≺ e′.

17

all its linearizations. We will omit N and Init wherever they can be inferred from
the context.

B Extra Material For Section 3

S:stmt ; S’:stmt while (e) { S } acquire(l) / release(l)

.... .
.

N(S′).... .
.

N(S)

e = true e = false

tx.... .
.

N(S) l

tx

l

tx

acquire(l)

release(l)

reading global variable Y writing global variable Y if (e) {S} else {S’}

tx

pin

x := Y

Ti

Yi

Y1 Yn

tx

pin

Y := x

pin

.... .
.

.... .
.

b = true b = false

N(S) N(S′)

Fig. 4. Control Net Construction

C Extra Material For Section 4

C.1 The Global Meet Over All Paths Solution

A run of the program σ is a linearization of some trace depicted by the control
net of the program. For each event e appearing in σ, let preσ(e) (respectively
postσ(e)) be the event happening immediately before (respectively after) e in σ.
For the first event e0 of each run, we assume pre(e0) = ⊥ and we also assume
that outσ(⊥) = ⊥.

18

Definition 10. For each run σ of the program and for each event e appearing
in σ, we define the following two sets of dataflow facts:{

inσ(e) = outσ(preσ(e))
outσ(e) = fλ(e)(inσ(e))

where inσ (respectively outσ) is the set of dataflow facts which hold before (re-
spectively after) execution of event e in the run σ.

Let R denote the set of all runs of the program Based on the definition of dataflow
sets for a single run, we can define the meet over all paths solution:

Definition 11. The set of all dataflow facts that hold before the execution of a
transition t of a Petri net is MOP(t) =

⊔
σ∈R,e∈σ,λ(e)=t inσ(e)|Dt where we have

inσ(e)|Dt = inσ(e) ∩Dt.

The restriction of the set inσ(e) to Dt ensures that only information relevant
to an event can reach the event. If statement s of thread T is scheduled right
after statement s′ of thread T ′ in a run, but T and T ′ do not interact in any
way, information from s′ should not reach s merely because s′ = pre(s) in that
particular run.

The Relation between MOP and MOT solutions

The following theorem shows that the two definitions MOP and MOT are equiv-
alent.

Theorem 3. For every CCD problem, we have ∀t ∈ T,MOT (t) = MOP(t).

C.2 Proof of Theorem 3

Lemma 1. For every trace Tr of the control net of a program, and for ev-
ery event e ∈ Tr, and for every linearization σ of the trace Tr, inTr (e) =
inσ(e)|Dλ(e)

.

Proof. (sketch)

19

(a) d ∈ inTr (e)⇒ d ∈ inσ(e)|Dλ(e).
Since inTr (e) ⊆ Dλ(e) by Definition 3, it suffices to show that inTr (e) ⊆
inσ(e), for all σ. We prove this by induction using the relation E. The base
case clearly holds for an empty trace. Assume that for trace Tr ′ such that
Tr ′ C Tr , the above statement holds. We prove then that it holds for Tr .
d ∈ inTr (e) implies (by Definition 3) that there exists an event e′ = maxd�(⇓
e) such that d ∈ outTr (e′).
Consider any linearization σ of Tr . Consider the prefix of σ ending in e′, and
call it σ′. Consider the corresponding trace of σ′, Tr(σ′). Clearly, Tr(σ′) C
Tr . Therefore, by induction and the fact that d ∈ outTr (e′), we have d ∈
outσ

′
(e′), or equivalently (since σ′ is a prefix of σ) d ∈ outσ(e′). We argue

that there are no events in σ\σ′ that can cancel d. Assume there is such
an event e′′. Since e′′ changes d it has to be causally related to e′. Since e′′

appears later than e′ in σ, the only option is that e′ � e′′. But this is in
contradiction with e′ = maxd�(↓ e), therefore such event e′′ cannot exist. If
no event in σ\σ′ cancels d, then d propagates to e and therefore we have
d ∈ inσ(e).

(b) d ∈ inσ(e)|Dλ(e)
⇒ d ∈ inTr(σ)(e).

We prove this by induction on length of σ. The base case clearly holds for the
empty string and the corresponding empty trace. Assume d ∈ inσ(e)|Dλ(e)

for some linearization σ (ending in e) of trace Tr . This means that d ∈ Dλ(e)

and also, d ∈ outσ(pre(e)). There are two possibilities:
(i) pre(e) generates d, and therefore d ∈ Dλ(pre(e)). By assumption (*) in

Definition 2, λ(pre(e)) and λ(e) should be dependent transitions and
therefore pre(e) � e in the Tr . By reasoning similar to the one given in
(a) part, we can deduce that there is no event e′ that can change the fact
d and pre(e) � e′ � e, and pre(e) = maxd�(↓ e). Therefore by Definition
3, d ∈ inTr (e), since d ∈ Dλ(e).

(ii) pre(e) is just passing d along without changing it, and therefore d ∈
inσ(pre(e)). Then we just keep going back in σ until we reach an event
e′ such that e′ generates d for the first time. Since e′ generates d, we
have d ∈ Dλ(e′) and by reasoning similar to the (i) case, we have e′ � e
in Tr and there is no e′′ such that e′′ changes d and e′ � e′′ � e, and
therefore e′ = maxd�(↓ e), and d ∈ inTr (e).

The above lemma leads to the proof of Theorem 3:

Proof. (sketch)

(a) d ∈ MOT (t)⇒ d ∈ MOP(t):
d ∈ MOT (t) implies that there is a trace Tr and an event e ∈ Tr , λ(e) = t
such that d ∈ inTr (e). Since d ∈ inTr (e), for all linearizations σ of Tr , we
have d ∈ inσ(e)|Dλ(e)

by Lemma 1.

20

(b) d ∈ MOP(t)⇒ d ∈ MOT (t):
d ∈ MOP(t) implies that there is a run σ and an event e ∈ σ where λ(e) = t
such that d ∈ inσ(e)|Dλ(e)

. Consider the corresponding trace of σ, Tr(σ);
clearly, Tr(σ) is a valid trace of the program. By Lemma 1, we know that
d ∈ inTr(σ)(e), and therefore d ∈ MOT (t).

C.3 Backward Flow Analysis

In the presence of concurrency, backward flow analysis cannot be handled as a
trivial dual of the forward analysis, as it is handled in the sequential case. The
main reason for this, is that in contrast to the sequential case, not every position
in the control net is reachable; presence of synchronization mechanisms such as
locks can make certain positions unreachable.

Consider a class of CCD problems in which the transformation functions in F
are interpreted backward, meaning that based on the facts that hold after the
execution of a transition t, they return the facts that hold before the execution
of t. To distinguish backward case form the forward case, we call these problems
bCCD (backward Causal Concurrent Dataflow) problems. Here, we discuss the
general MOT solution for bCCD problems.

Definition 12. bTr is a backward trace of a control net N if and only if there is
a finite trace Tr = (E ,�, λ) of N and bTr = (E ,�, λ) where e1 � e2 ⇔ e2 � e1.

It is easy to see that bTr is a trace if Tr is a trace. Now, using the backward trace
bTr and the trace solution of Definition 10, we can define the set of dataflow
facts that hold before/after each event e in a trace Tr .

Definition 13. For a bCCD problem (N,S,F) and for a trace Tr = (E ,�, λ) of
the control net and for each event e ∈ E, we define the following set of dataflow
facts: {

outTr (e) = inbTr (e)
inTr (e) = fλ(e)(outTr (e))

where inbTr (e) is defined according to Definition 3, assuming all the maximal
events of Tr (minimal events of bTr) have an initial value of ⊥.

21

Uninitialized Variables. The uninitialized variables analysis determines:

For each relevant program point, which variables may be read before
having previously been initialized when the program execution reaches
that point.

Given the control net N = (P, T, F) for a program Pr, define Vars = GVar ∪
LVar . Formulation of uninitialized variables analysis in the CCD framework is
as follows:

– The property space is (Vars,⊇,∩,Vars), where presence of v in Din(t′)
means that v may be uninitialized at t′. Note that at the beginning, ev-
erything is uninitialized.

– For each transition t and each set S ⊆ Vars:

ft(S)(=

 skip t is not an assignment
S − {v} t is v := e(v1, . . . vn)∧ 6 ∃i : vi ∈ S
S ∪ {v} t is v := e(v1, . . . vn) ∧ ∃i : vi ∈ S

which makes Dt = {v | v is written in t}.

In this problem, one starts with all variables being uninitialized. If t is an as-
signment v := e(v1, . . . vn) with some uninitialized argument vi then v is added
to the set of uninitialized variables, otherwise, v is removed from that set. Any
transition t′ that can affect the status of vi must contain an assignment to it.
This creates a similar setting to that of the reaching definitions problem since
a write to vi and a read of vi (in t) are always ordered in any trace. Therefore,
again considering the flow of facts along the causal edges suffices. Note that
the transformation functions are not monotonic in this case, and this is not a
bit-vector problem, but since the information flows through the causal edges,
it belongs to the CCD framework. Moreover, the transformation functions are
distributive.

Live Variables A variable v is live at the exit point a definition to v if there
is path from that point to a use of v which does not contain any definitions to
v. The live variables analysis determines:

For each definition of a variable v, wether v is live at the exit point of
this definition.

Note that this is a variant of the standard textbook definition of live variables
analysis, since the standard definition evaluates the liveness of a variable at any

22

program point, not just the relevant ones (the definitions points). We argue that
the above version is more sensible for concurrent programs since, if a thread T
does not access global variable v at all, then information on liveness of v should
not be relevant to an instruction in thread T .

Given the control net N = (P, T, F) for a program Pr, define Vars = GVar ∪
LVar . The live variables problem can then be summarized as:

– The property space is (Vars,⊆,∪, ∅), where presence of v in Dout(t′) means
that v is live at the exit from t′.

– For each transition t and each set S ⊆ Vars:

ft(S)(=

 skip t is not an assignment
S − {v} t is an assignment to v
S ∪ {v} v is a used but not defined in t

which makes Dt = {v | v is accessed in t}.

As argued in the previous cases, since variables liveness is changed by definitions
and uses of the variable and the control net imposes all the definitions and uses
to be causally related, our notion of information flowing through causal edges
holds for this problem.

Copy Constant Propagation Copy constant propagation analysis determines:

For a program point with a use of a variable v, whether or not v has a
constant value whenever execution reaches that point.

Copy constant propagation analysis is a subproblem of the above definition in
which only assignments of the form v := C for C being an integer constant are
taken into account for the computation of the constants. Any other form of
assignment to a variable v is assumed to generate a non-constant (>) value.

Given the control net N = (P, T, F) for a program Pr, define Vars = GVar ∪
LVar . Also, assume Z is set of all the constants appearing in the program code
(which is finite assuming the code is finite) plus > which intuitively represents
non-constant. Consider the partial order v on Z defined as follows:

∀z ∈ Z : z v >
∀z, z′ ∈ Z : z v z′ ⇔ z = z′

which naturally requires z t z′ = > ⇔ z 6= z′. A function σ : Vars → Z is called
a substitution. Let Σ be set of all possible substitutions for Vars over Z.

The live variables problem can then be summarized as:

23

– The property space is (Σ,v,t,⊥), where presence of (v, c) in Din(t′) means
that v has a constant value of c at t′. Operations v,t are defined as follows:

∀σ ∈ Σ : ⊥ v σ
∀σ, σ′ ∈ Σ : σ v σ′ ⇔ ∀v ∈ Vars : σ(v) v σ′(v)
∀σ ∈ Σ : ⊥ t σ = σ

∀σ, σ′ ∈ Σ : ∀v ∈ Vars : (σ t σ′)(v) = σ(v) t σ′(v)

– For each transition t and each set S ⊆ D:

ft(σ)(=

 skip t is not an assignment
σ[v ← c] t is v := c
σ[v ← >] t is any other assignment

As argued in the previous, since variables use points are causally related to
the assignment statements that indicate the value of constants, our notion of
information flowing through causal edges holds for this problem.

Very Busy Expressions An expression is very busy at the exit from a tran-
sition computing it if, on all paths starting from this transition the expression
in used before any of the variables in it is redefined. The very busy expression
analysis determines:

For a assignment point x := exp wether exp is a very busy expression.

Similar to the available expressions framework, we look at the dual problem,
and the question whether exp is not very busy. The dataflow fact (t, exp) : xi
means that An expression mathttexp(x1, . . . , xn) is not very busy at the exit
point from an assignment if, there is xi that is redefined before it is used (the
use refers to the later appearance of same expression exp).

– The property space is the subset lattice (D,⊆,∪,), where presence of exp : x
(for all x) in Din(t′) means that exp is unavailable at t.

– For each transition t and each set S ⊆ EXP :

ft(S)(=

 skip t is not an assignment
S −{exp : x} t is x := exp′

S ∪{exp : x | x ∈ exp} t is v := exp

D Extra Material For Section 5

24

T T’

Y := 5; ||
Y := 3; x := Y - 2;

Example: Consider the reaching definitions prob-
lem (which is distributive) for the program on the
right and assume we are interested in the global
variable Y. Figure 6(a) illustrates the control net
of the program. There are two definitions of Y at t1 and t2, therefore D =
{(Y, t1), (Y, t2)}. ft′1 is the skip function. The representation relation for func-
tions ft1 and ft2 are as in Figure 5.

⊥ (Y, t1)

(Y, t1)

(Y, t2)

(Y, t2)⊥

⊥ (Y, t1)

(Y, t1)

(Y, t2)

(Y, t2)⊥

Rft1
Rft2

Fig. 5. Representation relation.

Figures 6(b,c) present the net represen-
tations of the above relations, consider-
ing that initially ⊥ holds. Figure 6(d)
shows the union of the three nets in Fig-
ures 6(a,b,c) which is the augmented
net of program for the reaching defini-
tions problem.

Y1
Y2

Y := 5

Y := 3

x := Y - 2

T T ′

t1

t2

t′1

p1

p2

p3

p′
1

p′
2

(Y, t1) (Y, t2)

p1

p2

Y1 Y2

st1
(⊥,(Y ,t1))

(Y, t2)(Y, t1)

st1
(⊥,⊥)

(a) Control Net of the Program (b) Net Representation of Rft1

(Y, t1) (Y, t2)

p1

p2

Y1 Y2

st2
(⊥,(Y ,t2))

(Y, t2)(Y, t1)

st2
(⊥,⊥)

Y1

Y2

Y := 5

Y := 3

x := Y - 2

T T ′

t1

t2

t′1

p1

p2

p3

p′
1

p′
2

(Y, t1)

(Y, t2)

st1
(⊥,(Y ,t1))

st2
(⊥,(Y ,t2))

(Y, t1)

(Y, t2)

(c) Net Representation of Rft2
(d) Augmented Net of the Program

Fig. 6. Augmented Control Net.

25

Example: Consider the example from Figure 6. In the augmented net {p⊥} ∪
•t1 = {p⊥, p1, pY1 , pY2} is coverable. which means ⊥ holds before the execution of
t1. Similarly, {p(Y,t1)}∪•t2 = {p(Y,t1), p2, pY1 , pY2} which means (Y, t1) holds before
the execution of t2. It is also easy to see that {p(Y,t1)}∪•t1 = {p(Y,t1), p1, pY1 , pY2}
is not coverable (to have a token in p(Y,t1), a token from p1 must be consumed)
and therefore (Y, t1) does not hold before execution of t1.

D.1 Proof of Theorem 1

Proof. (sketch)

(a) di ∈ MOT (t)⇒
(
di ∈ Dt ∧ {pi ∪ •t is coverable in NS,F

)
:

di ∈ MOT (t) implies di ∈ Dt by definition. We only have to show that di ∈
MOT (t) implies that {pi∪•t is coverable in NS,F . di ∈ MOT (t) implies that
there is a trace Tr , and an event e ∈ Tr such that λ(e) = t and di ∈ inTr (e).
This trace Tr corresponds to configuration C of the control net. Clearly,
↓ e ⊆ C. Based on configuration ↓ e\{e}, we construct a configuration C ′

of the augmented net such that {pi ∪ •t ⊆ C ′•, which will then mean that
{pi ∪ •t is coverable. We present the construction by induction on the size of
configuration ↓ e ⊆ C, using the subset relation.
Since di ∈ inTr (e), there is an event e′ = maxdi� (↓ e), and e′ ∈ ↓ e. Since the
transformation functions are distributive, there is a single fact dj ∈ inTr (e′)
such that (dj , di) ∈ Rfλ(e′) ; basically, di is generated as the result of dj
holding before execution of e′ (Note that dj could be ⊥).
Since dj ∈ inTr (e′) and ↓ e′ ⊂ ↓ e, inductively, we can build the configuration
C in the unfolding of the augmented net that corresponds to ↓ e′\{e′}, and
{pj} ∪ •λ(e′) ⊆ C•.
We extend C to get C ′ as follows: first, we add event corresponding to transi-
tion sλ(e′)

(j,i) to C. This transition is enabled because all its predecessor events

(pj and •λ(e′)) are enabled. Since {pj} ⊆ C
•
, we have {pi} ⊆ (C∪{sλ(e′)

(j,i) })
•.

Note that at this moment pi has a token, and according to Proposition 1,
none of the other pks can contain a token, and as all the pks, k 6= i have
tokens in them.
Then, we add events corresponding to the events f in ↓ e\{e} − ↓ e′ in the
same order that one would expand the configuration ↓ e′ to ↓ e\{e}; which
is an order in which they become enabled. For each f , we add a copy of
sλf(⊥,⊥). These copies are enabled since •λ(f) is enabled as a result of f being
enabled in the unfolding of the control net, and all the pks (k 6= i) have
tokens in them. Note that since none of such events f can further change di,
then di 6∈ Dλ(f) and therefore, the (⊥,⊥) transition of none of these requires

26

a token in pi. In summary, after we generate di by the corresponding event
of e′, we just keep it by executing the rest of the events as skips for di.
We have, {pi} ∈ C ′•. We also have •t ⊆ C ′• (t = λ(e)), since this is the
case in the unfolding of the control net, and each sλf(⊥,⊥) that we have add
behaves exactly the same as the corresponding λf by the definition of the
augmented net.

(b)
(
di ∈ Dt ∧ {pi ∪ •t is coverable in NS,F

)
⇒ di ∈ MOT (t) :

The argument is very similar to the reverse of the argument in part (a) and
therefore we skip it for the moment.

Y1
Y2

Y := 5

Y := 3 x := Y - 2

T T ′

t1

t2

t′1

p1

p2

p3

p′
1

p′
2

p′
3

C == true C == false

t′2

t′3

Y1

Y2

p1

p2

p3

p′
1

p′
2

p′
3

p′
1

Y2

Y1

Y1

Y2

Y2
p′
1Y2

p3 Y1
Y2 p′

1Y2

p′
1Y2

Y1

e1/t1

e2/t2

e3/t2

e4/t′1
e5/t′2

e6/t′3
e7/t′3

e8/t′3

e9/t′3 e4/t′1

p′
2

...

...

...

(a) Control Net of a Program. (b) Unfolding of The Control Net in (a).

Fig. 7. Control Net Construction

D.2 Net Unfoldings

Consider the control net in Figure 7(a). Places and transitions have unique
labels, and the initial marking is {p1, p

′
1, Y1, Y2}. To build the unfolding of this

net (Figure 7(b)), we start by the set of places in the initial marking. At each
step, a copy of transition t, for which the set of places in •t are available, is added

27

to the unfolding, and the set set of places in t• are as a result added. We call
these copies events. These events are labeled by their corresponding transitions.
Note for each place p in t•, a new place is added to the unfolding even if p already
existed. For example, transition t1 can be added after the initial marking, and
the places p2, Y1, Y2 are added after that, although Y1 and Y2 already existed
as part of the initial marking. The only constraint for adding a transition t is
that the set of places in •t should all be concurrent; that is not causally related
and not in conflict. Also, the same set of places cannot be used more than once
to generate the same transition. This way, the unfolding for the control net in
Figure 7(a) is infinite, part of which is illustrated in Figure 7(b).

An interesting property of the net unfoldings is that, it contains (exactly) the
set of all reachable markings of the original net [?,?]. Therefore, all the queries
of coverability/reachability can be answered on the unfolding instead of the net
itself.

Another interesting property of net unfoldings is that if the original Petri net is
1-safe5, then there exists a finite prefix of the unfolding of the net which contains
all the reachable markings of the original net [?,?]. It is also shown in [?] that
this finite prefix has size O(n) where n is the number of reachable markings of
the original net. In Figure 7(b), the unshaded area contains the finite prefix of
the unfolding of the net in Figure 7(a). The double-lined squares indicate the
so-called cut-off events which mark the boundaries of the finite prefix.

D.3 Proof of Theorem 2

Proof. (sketch) In the proof of Theorem 1, we show how each configuration of the
unfolding of the augmented net, UN is mapped to a configuration of the UN if one
ignores the places related to the dataflow facts. On the other hand, Proposition
1 states that at each moment at most one dataflow fact can hold and therefore
at most one of the pis has a token in it and the rest are empty (symmetrically, at
most on of the pis is empty and the rest have a token in them). Therefore, there
are at most |D| (where ⊥ is included in D) distinct configurations in UN for each
configuration of UN ; more precisely, one for each of the |D| facts holding.

For this proof we heavily rely on the notions and definitions from [?]. Consider
the Algorithm 3.6 of [?] which constructs the finite unfolding. We assume the
both unfoldings are constructed using the total adequate order ≺F from [?].

5 A Petri net is 1-safe if no place can contain more than one token in it. Control nets
are by definition 1-safe.

28

Assuming � is the total order 6 on the set of transitions of control net, we can
extend it to the set of transitions of the augmented net to get �a such that
t � t′ in the control net imples st(i,j) �

a st
′

(k,l), ∀i, j, k, l, also st(i,j) �
a st(k,l) if

(i, j) < (k, l) where < is a standard lexicographical order.

The fact that ≺F is a total order implies there is exactly one (non-cut-off) event e
such that Mark(↓ e) is a specific value, or in other words, for any two non-cut-off
events e and e′, we have Mark(↓ e) 6= Mark(↓ e′).

One important observation is that for any (non-cut-off) event a in UN , Mark(↓ a)−
PD (where PD is the set of places for dataflow facts) is a reachable marking of
the control net and consequently that of UN . Therefore, there is an event e in
UN such that Mark(↓ e) = Mark(↓ a)− PD.

Now recall that at each moment only one dataflow fact can hold in the augmented
net. This means for each events e in UN , there are at most |D| events a in UN
such that Mark(↓ e) = Mark(↓ a) − PD. This implies that the number of non-
cut-off events in UN is less than or equal to the number of cut-off events in UN
times |D|. This implies the claim of the theorem that |UN | = O(|D| × |UN |).

Proposition 1. The above construction of the augmented net ensures that at
each moment at most one dataflow fact holds. In other words, at most one of
the pis has a token in it.

D.4 Augmented Net for Non-distributive Problems

In the case of non-distributive frameworks, the singletons are not sufficient for
modeling the transformation functions. Therefore, the transformation functions
have to be defined for all elements of 2Dt for each function ft.

Definition 14. Representation relation of a non-distributive f : 2D → 2D (D ⊆
D), Rf ⊆ 2D × 2D is a binary relation defined as follows:

Rndf = {(S, S′) | S, S′ ⊆ D ∧ f(S) = S′} ∪ {(∅, ∅)}

6 Note that since control net is by definition a 1-safe Petri net, a total order always
exists, while for an arbitrary net finding such a total order is still an open problem
[?].

29

Given an CCD problem with the property space (D,@,t,⊥) where D = {d1, . . . , dm}
and with control net N = (P, T, F), we define the net representation for the set
of transformation functions {ft}t∈T :

Definition 15. Net representation of ft is a Petri net Nft = (Pft , Tft , Fft)
defined as follows:

– The set of places is defined as Pft =
⋃
di∈Dt {pi, pi} where a token in place

pi means the dataflow fact di holds, while a token in pi means that di does
not hold.

– The set of transitions Tf , which contains exactly one transition per pair
(d, d′) ∈ Rft , is defined as:

Tft =
{
st(∅,∅)

}
∪
{
st(S,S′)| (S, S) ∈ Rndft

}
– The flow relation is defined as follows:

Fft =
⋃
k

{
(pk, s

t
(∅,∅)), (s

t
(∅,∅), pk)

}
∪
⋃
s∈Tft

(⋃
p∈•t
{(p, s)} ∪

⋃
p∈t•
{(s, p)}

)

∪
⋃

(S,S′)∈Rndft

(⋃
di∈S

{
(pi, st(S,S′))

}
∪

⋃
dj∈Dt−S

{
(pj , s

t
(S,S′))

}
∪

⋃
di∈S′

{
(st(S,S′), pi)

}
∪

⋃
dj∈Dt−S′

{
(st(S,S′), pj)

})

Definition of the augmented net remains the same as Definition 7 by replacing
⊥ with ∅. Similar to the distributive case, a fact di holds at the entry point
of a transition t if and only if •t ∪ {pi} is coverable from the initial marking,
and Theorem 1 states the correctness of the approach. Also, similar reasoning
as Theorem 2 can show that the time/space complexity bound on the size of the
unfolding in this case is 2|D| × |UN | where UN is the unfolding of the program
control net.

D.5 Augmented Net for Backward Flow Problems

Here, we present the construction of augmented net for the backward flow only
for the distributive framework. In the backward flow problems, the transfor-
mation functions are interpreted in the reverse direction, in the sense that

30

Din(e) = fλ(e)(Dout(e)) as opposed to Dout(e) = fλ(e)(Din(e)). We work with
the inverse of these functions (that are not necessarily functions) for the con-
struction of the augmented net. It is easy to see that for each ft, R−1

ft
(for Rft

defined as in Definition 5) models the relation f−1
t .

The backward analysis is more tricky than the forward case. Assume we want
to check whether d ∈ Dout(t). By Definition 13, d holds at this point because
there is a trace Tr (let us call this the witness trace for d) with events e, e′ such
that e � e′ and e′ generates d and no event e′′ (e � e′′ � e′) changes d.

The first step is to make sure that t is reachable; if t is not reachable, there is
no interest in dataflow facts that may reach it7. After checking reachability of
t, the next step is to indicate that we intend to check wether d holds at the exit
from t; since different facts may have different witness traces.

Definition 16. A (t, di)-monitoring net N(t,di) for a transition t of a program
control net N and a dataflow fact di ∈ Dt = {d1, . . . , dm}, is a small Petri net
with one transition tdi , and one place p∗i such that •tdi = •t ∪ {p1, . . . , pm} and
t•di = t• ∪ {p∗i , pi} ∪

⋃
k 6=i{dk}.

The purpose of a (t, di)-monitor is to indicate (by putting a token in place p∗i
which is initially empty) that di is the fact to be checked to be in Dout(t). tdi is
a special copy of t that is enabled when t is enabled and no dataflow fact holds.
It then assumes di holds by putting a token in pi.

The main difference between the backward case and the forward case (introduced
earlier) is that, in the backward analysis, the augmented net is specialized to
check for a specific fact at a specific point.

Definition 17. The augmented net of a backward CCD problem (N,S,F) to
check for a data flow fact d to hold at the exit from transition t, is defined as
N ∪

⋃
f∈F Nf−1 ∪ N(t,d) where the union of two nets N1 = (P1, T1, F1) and

N2 = (P2, T2, F2) is defined as N1 ∪ N2 = (P1 ∪ P2, T1 ∪ T2, F1 ∪ F2) with the
exception of identifying each transition t of N with transitions st(⊥,⊥) of Nis. It
is assumed that Nf s have disjoint set of transitions, and only the common places
are identified in the union.

Note that although the above definition of the augmented net for the backward
case is specific to a fact d and a transition t, one can always generalize it by
adding (by union) all the (t, di)-monitors such that di ∈ Dt.

7 Note that in the concurrent setting, in contrast to the sequential case, some transi-
tions may not be reachable.

31

Theorem 4. A dataflow fact di holds at the exit from a transition t in the
control net N of a program if and only if di ∈ Dt and the marking {p∗i } ∪
{p1, . . . , pm} (for Dt = {d1, . . . , dm}) is coverable from the initial marking in
the augmented net constructed according to Definition 17.

Proof. We skip this proof since it is tedious and the ideas behind it are more or
less the same as those offered in the proof of Theorem 1.

32

