
Compositional Bitvector Analysis for

Concurrent Programs with Nested Locks�

Azadeh Farzan and Zachary Kincaid

University of Toronto

Abstract. We propose a new technique to perform bitvector data flow
analysis for concurrent programs. Our algorithm works for concurrent
programs with nested locking synchronization. We show that this al-
gorithm computes precise solutions (meet over all paths) to bitvector
problems. Moreover, this algorithm is compositional: it first solves a lo-
cal (sequential) data flow problem, and then efficiently combines these
solutions leveraging reachability results on nested locks [6,7]. We have
implemented our algorithm on top of an existing sequential data flow
analysis tool, and demonstrate that the technique performs and scales
well.

1 Introduction

Writing concurrent software is difficult and error prone. In principle, static anal-
ysis offers an appealing way to mitigate this situation, but dealing with con-
currency remains a serious obstacle. Theory and practice of automatically and
statically determining dynamic behaviours of concurrent programs lag far be-
hind those for sequential programs. Enumerating all possible interleavings to
perform flow-sensitive analyses is infeasible. It is imperative to formulate com-
positional analysis techniques and proper behaviour abstractions to tame this
so-called interleaving explosion problem. We believe that the work presented in
this paper is a big step in this direction. We propose a compositional algorithm
to compute precise solutions for bitvector problems for a general and useful class
of concurrent programs.

Data flow analysis has proven to be a useful tool for debugging, maintain-
ing, verifying, optimizing, and testing sequential software. Bitvector analyses
(also known as the class of gen/kill problems) are a very useful subclass of data
flow analyses. Bitvector analyses have been very widely used in compiler opti-
mization. There are a number of applications for precise concurrent bitvector
analyses. To mention a few, reaching definitions analysis can be used for precise
slicing of concurrent programs with locks, which can be used as a debugging aid
for concurrent programs1. Both problems of race and atomicity violation detec-
tion can be formulated as variations of the reaching definitions analysis. Lighter
� See [5] for an extended version of this paper including proofs and further discussions.
1 Concurrent program slicing has been discussed previously [11], but to our knowledge

there is no method up until now that handles locks precisely.

R. Cousot and M. Martel (Eds.): SAS 2010, LNCS 6337, pp. 253–270, 2010.
� Springer-Verlag Berlin Heidelberg 2010

254 A. Farzan and Z. Kincaid

versions of information flow analyses may also be formulated as bitvector analy-
ses. Precision will substantially decrease the number false positives reported by
any of the above analyses.

There is an apparent lack of techniques to precisely and efficiently solve data
flow problems, and more specifically bitvector problems for concurrent programs
with dynamic synchronization primitives such as locks. The source of this diffi-
culty lies in the lack of a precise and efficient way to represent program paths.
Control flow graphs (CFG) are used to represent program paths for most static
analyses on sequential programs, but concurrent analogs to CFGs suffer major
disadvantages. Concurrent adaptations of CFGs mainly fall into two categories:
(1) Those obtained by taking the Cartesian product of CFGs for individual
threads, and removing inconsistent nodes. These product CFGs are far too large
(possibly even infinite) to be practical. (2) Those obtained by taking the union
of the CFGs for individual threads, adding inter-thread edges, and performing
a may-happen-in-parallel heuristic to get rid of infeasible paths. These union
CFGs may still have an abundance of infeasible paths and cannot be used for
precise analyses.

Bitvector problems have the interesting property that solving them precisely
is possible without analyzing whole program paths. The key observation is that,
in a forward may bitvector analysis, a fact f is true at a control location c
iff there exists a path to c on which f is generated and not subsequently killed;
what happens “before” f is generated is irrelevant. Therefore, bitvector problems
only require reasoning about partial paths starting at a generating transition.
For programs with only static synchronization (such co-begin/co-end), bitvector
problems can be solved with a combination of sequential reasoning and a light
concurrent predecessor analysis [9]. Under the concurrent program model in [9],
a fact f holds at a control location c if and only if the control location c′ at
which f is generated is an immediate concurrent predecessor of c. Therefore, it is
sufficient to only consider concurrent paths of length two to compute the precise
bitvector solution. Moreover, the concurrent predecessor analysis is very simple
for co-begin/coend synchronization.

Dynamic synchronization (which was not handled in [9]) reduces the number
of feasible concurrent paths in a program, but unfortunately makes their finite
representation more complex. This complicates data flow analyses, since a pre-
cise concurrent data flow analysis must compute the meet-over-all-feasible-paths
solution, and the analysis should only consider feasible paths (that are no longer
limited to paths of length two). Evidence of the degree of difficulty that dynamic
synchronization introduces is the fact that pairwise reachability (which can be
formulated as a bitvector problem) is undecidable for recursive programs with
locks. It is however decidable [7] if the locks are acquired in a nested manner
(i.e. locks are released in the reverse order that they were acquired). We use this
result to introduce sound and complete abstractions for the set of feasible con-
current paths, which are then used to compute the meet-over-all-feasible-paths
solution to the class of bitvector analyses.

Compositional Bitvector Analysis for Concurrent Programs 255

We propose a compositional (and therefore scalable) technique to precisely
solve bitvector analysis problems for concurrent programs with nested locks.
The analysis proceeds in three phases. In the first phase, we perform the sequen-
tial bitvector analysis for each thread individually. In the second phase, we use a
sequential data flow analysis to compute an abstract semantics for each thread
based on an abstract interpretation of sequential trace semantics. We then com-
bine the abstract semantics for each pair of threads to compute a second set
of data flow facts, namely those who reach concurrently. In the third phase, we
simply combine the results of the sequential and concurrent phases into a sound
and complete final solution for the problem. This procedure is quadratic in the
number of threads and exponential (in the worst case) in the number of shared
locks in the program; however, we do not expect to encounter even close to the
worst case in practice. In fact, in our experiments the running time follows a
growth pattern that almost matches that of sequential programs. Our approach
avoids the limitations typically imposed by concurrent adaptations of CFGs: it is
scalable and compositional, in contrast with the product CFG; and it is precise,
in contrast with union CFGs.

In this paper we discuss the class of intraprocedural forward may bitvector
analyses for a concurrent program model with nested locking as our main con-
tribution. Nested locks are a common programming practice; for example Java
synchronized methods and blocks syntactically enforce this condition. Due to
lack of space, all further discussions on the generalization of this case have been
included in an extended version of this paper, which includes discussions on back-
ward and interprocedural analyses, as well as an extension to a parameterized
concurrent program model.

We have implemented our algorithm on top of the C language front-end
CIL [18], which performs the sequential data flow analyses required by our al-
gorithm. We show through experimentation that this technique scales well and
has running time close to that of sequential analysis in practice.

Related Work. Program flow analysis was originally developed for sequential
programs to enable compiler optimizations [1]. Although the majority of flow
analysis research has been focused on sequential software [19,15,20], flow analysis
for concurrent software has also been studied. Flow-insensitive analyses can be
directly adapted into the concurrent setting. Existing flow-sensitive analyses
[14,16,17,21] have at least one of the following two restrictions: (a) the programs
they handle have extremely simplistic concurrency/synchronization mechanisms
and can be handled precisely using the union of control flow graphs of individual
programs, or (b) the analysis is sound but not complete, and solves the data flow
problem using heuristic approximations.

RADAR [2] attempts to address some of the problems mentioned above, and
achieves scalability and more precision by using a race detection engine to kill the
data flow facts generated and propagated by the sequential analysis. RADAR’s
degree of precision and performance depends on how well the race detection
engine works. We believe that although RADAR is a good practical solution,

256 A. Farzan and Z. Kincaid

it does not attempt to solve the real problem at hand, nor does it provide any
insights for static analysis of concurrent programs.

Knoop et al [9] present a bitvector analysis framework which comes closest to
ours in that it can express a variety of data flow analysis problems, and gives
sound and complete algorithms for solving them. However, it cannot handle
dynamic synchronization mechanisms (such as locks). This approach has been
extended for the same restricted synchronization mechanism to handle proce-
dures in [3,4,22] and generalizations of bitvector problems in [10,22].

Foundational work on nested locks appears in [6,7]. Recently, analyses based
on this work have been developed, including [8] and [12]. Notably, the authors
of [8] detect violations of properties that can be expressed as phase automata,
which is a more general problem than bitvector analysis. However, their method
is not tailored to bitvector analysis, and is not practically viable when a “full”
solution (a solution for every fact and every control location) to the problem is
required, which is often the case.

2 Preliminaries

A concurrent program CP is a pair (T ,L) consisting of a finite set of threads T
and a finite set of locks L. We represent each thread T ∈ T as a control flow
automaton (CFA). CFAs are similar to a control flow graphs, except actions
are associated with edges (which we will call transitions) rather than nodes.
Formally, a CFA is a graph (NT , ΣT) with a unique entry node sT and a function
stmtT : ΣT → Stmt that maps transitions to program statements. We assume
no two threads have a common node (transition), and refer to the set of all nodes
(transitions) by N (Σ). In the following, we will often identify transitions with
their corresponding program statements. CFA statements execute atomically, so
in practice we split non-atomic statements prior to CFA construction.

For each lock l ∈ L, we distinguish two synchronization statements acq(l) and
rel(l) that acquire and release the lock l, respectively. Locks are the only means
of synchronization in our concurrent program model. For a finite path π through
thread T starting at sT , we let Lock-SetT (π) denote the set of locks held by T
after executing π2.

A local run of thread T is any finite path starting at its entry node; we refer
to the set of all such runs by RT . A run of CP is a sequence ρ = t1 . . . tn ∈ Σ�

of transitions such that:

i) ρ projected onto each thread T (denoted by ρT), is a local run of T
ii) There exists no point p along ρ at which two threads T, T ′ hold the same lock

(�T, T ′, p.T �= T ′ ∧ Lock-SetT ((t1· · · tp)T) ∩ Lock-SetT ′((t1· · · tp)T ′) �= ∅).

We use RCP to denote the set of all runs of CP (just R when there is no confusion
about CP). For a sequence ρ = t1 . . . tn ∈ Σ� and 1 ≤ r ≤ s ≤ n we use ρ[r] to
denote tr, ρ[r, s] to denote tr . . . ts, and |ρ| to denote n.

2 Formally, Lock-SetT (π) = {l ∈ L | ∃i.πT [i] = acq(l) ∧ �j > i s.t . πT [j] = rel(l)}.

Compositional Bitvector Analysis for Concurrent Programs 257

A program CP respects nested locking if for every thread T ∈ T and for ev-
ery local run π of T , π releases locks in the opposite order it acquires them.
That is, there exists no l, l′ such that π contains a contiguous subsequence
acq(l); acq(l′); rel(l) when projected onto the the acquire and release transitions
of l and l′3.

From this point on, whenever we refer to a concurrent program CP, we assume
that it respects nested locking. Restricting our attention to programs that respect
nested locking allows us to keep reasoning about run interleavings tractable. We
will make critical use of this assumption in the following.

2.1 Locking Information

acq(l2);
acq(l1);

...
rel(l1);
a: ...

rel(l2);

acq(l1);
acq(l2);

...
rel(l2);
while (...) {

if (...) {
rel(l1);
acq(l1);

} else {
b: ... // gen "d"

}
}
c: ... // kill "d"

rel(l1);

Fig. 1. Locking information

Consider the example in Figure 1. We
would like to know whether the fact d
generated at the location b reaches the
location a (without being killed at loca-
tion c). If the thread on the right takes
the else branch in the first execution of
the loop, it will have to go through loca-
tion c and kill the fact d before the execu-
tion of the program can get to location a.
However, if the program takes the then
branch in the first iteration of the loop
and takes the else branch in the second
one, then execution can follow to a without having to kill d first. This exam-
ple shows that in general, the sorts of interleavings that we must consider in a
bitvector analysis can be quite complicated.

In [6] and [7], compositional reasoning approaches for programs that respect
nested locking were introduced, which are based on local locking information. We
quickly give an overview of this here. In the following, T ∈ T denotes a thread,
and ρ ∈ Σ�

T denotes a sequence of transitions of T (in practice, ρ will be a run
or a suffix of a run of T).

– Locks-HeldT (ρ, i) = {l ∈ L | ∀k ≥ i.l ∈ Lock-SetT (ρ[1, k])}: the set of locks
held continuously by T through ρ, starting no later than at position i.

– Locks-AcqT (ρ) = {l ∈ L | ∃k.ρ[k] = T :acq(l)}: the set of locks that are
acquired by T along ρ.

– fahT (ρ) (forward acquisition history): a partial function which maps each
lock l whose last acquire in ρ has no matching release, to the set of locks that
were acquired after the last acquisition of l (and is undefined otherwise)4.

– bahT (ρ, i) (backward acquisition history): a partial function which maps each
lock l that is held at ρ[i] and is released in ρ[i, |ρ|] to the set of locks that were
released before the first release of l in ρ[i, |ρ|] (and is undefined otherwise).

3 In the special case where l = l′, this condition implies that locks are not re-entrant.
4 Note that the domain of fahT (ρ) (denoted dom(fahT (ρ))) is exactly Lock-SetT (ρ).

258 A. Farzan and Z. Kincaid

We omit T subscripts for all of these functions when T is clear from the
context.

As observed in [6,7], a necessary and sufficient condition for pairwise reacha-
bility cannot be stated in terms of locksets (the “current” lock behaviour of each
thread). One needs to additionally consider the historical lock behaviour (fah
and bah) of each thread, which places ordering constraints on locking events.
This notion will be made more precise in Proposition 2; see [6,7] for more de-
tails. As an example of fah and bah, consider Figure 1. The run of the right
thread that starts at the beginning, enters the while loop, and takes the else
branch to end at b has forward acquisition history [l1 �→ {l2}]. If that run con-
tinues to loop, taking the then branch and then the else branch to end back at
b, that run has forwards acquisition history [l1 �→ {}]. The run of the left thread
that executes the entire code block has backwards acquisition history [l2 �→ {}]
at a and [l2 �→ {l1}; l1 �→ {}] between the acquire and release of l1.

2.2 Bitvector Data Flow Analysis

Let D be a finite set of data flow facts of interest. The goal of data flow analysis
is to replace the full semantics by an abstract version which is tailored to deal
with a specific problem. The abstract semantics is specified by a local semantic
functional �·�D : Σ → (℘(D) → ℘(D)) where for each transition t, �t�D denotes
the transfer function associated with t. �·�D gives abstract meaning to every
CFA transition (program statement) in terms of a transformation function from
a semi-lattice (℘(D),) (where is ∪ or ∩) into itself. We will drop D and
simply use �t� when D is clear from the context. We extend �·� from transitions
to transition sequences in the natural way: �ε� = id, and �tρ� = �ρ� ◦ �t�.

Bitvector problems can be characterized by the simplicity of their local se-
mantic functional �·�: for any transition t, there exist sets gen(t) and kill(t)
(⊆ D) such that �t�(D) = (D ∪ gen(t)) \ kill(t). Equivalently, for any t, �t� can
decomposed into |D| monotone functions �t�i : B → B, where B is the Boolean
lattice ({ff, tt},⇒).

Our goal is to compute the concurrent meet-over-paths (CMOP) value of
transition5 t of CP, defined as

CMOP [t] =
�

ρt∈RCP

�ρ�D(�D)

CMOP [t] is the optimal solution to the data flow problem. Note in particular
that only runs that respect the semantics of locking contribute to the solution.
This definition is not effective, however, since RCP may be infinite; the contri-
bution of this work is an efficient algorithm for computing CMOP [t].

5 For the CFA formulation of data flow analysis, data flow transformation functions
and solutions correspond to transitions rather than nodes.

Compositional Bitvector Analysis for Concurrent Programs 259

3 Concurrent Data Flow Framework

Fix a concurrent program CP with set of threads T , set of locks L, and a set of
data flow facts D with meet ∪ (bitvector problems that use ∩ for meet can be
solved using their dual problem). For a data flow fact d ∈ D, and for a transition
t, let �t�d denote �t�D projected onto d (defined by �t�d(p) = (p∨d ∈ gen(t))∧d /∈
kill(t)). Call a sequence π d-preserving if �π�d = id. In particular, the empty
sequence ε is d-preserving for any d ∈ D.

The following observation from [9] is the key to the efficient computation of
the interleaving effect. It pinpoints the specific nature of a semantic functional
for bitvector analysis, whose codomain only consists of constant functions and
the identity:

Lemma 1. [9] For a data flow fact d ∈ D, and a transition t of a concurrent
program CP, d ∈ CMOP [t] iff there exists a run t1· · · tnt ∈ RCP and there exists
k, (1 ≤ k ≤ n) such that �tk�d = consttt and for all m, (k < m ≤ n), we have
�tm�d = id.

Call such a run a d-generating run for t, and call tk the generating transition
of that run.

(a) (b)

Fig. 2. A witness run (a) and a normal witness run (b) for definition f reaching 7

This lemma restricts the possible interference within a concurrent program: if
there is any interference, then the interference is due to a single statement within
a parallel component. By interference, we mean any possible behaviour by other
threads that may change the set of facts that hold in a program location; in the
realm of the gen/kill problems, this may be in the form of a fact that sequentially
holds getting killed, or a fact that does not sequentially hold getting generated.
Consider the program in Figure 2(a). In a reaching definitions analysis, only
transition f (of T ′) can generate the “definition at f reaches” fact. For any
witness trace and any fact d, we can pinpoint a single transition that generates
this fact (namely, the last occurrence of a generating transition on that trace).

260 A. Farzan and Z. Kincaid

This is not true for data flow analyses which are not bitvector analyses. For
example, in a null pointer dereference analysis, witnesses may contain a chain of
assignments, no single one of which is “responsible” for the pointer in question
being null, but combined they make the value of a pointer null. Our algorithm
critically takes advantage of the simplicity of bitvector problems to achieve both
efficiency and precision, and cannot be trivially generalized to handle all data
flow problems.

Based on Lemma 1 and the observation from [7] that runs can be projected
onto runs with fewer threads, we get the following:

Lemma 2. For a data flow fact d ∈ D, and for a transition t of thread T , there
exists a d-generating run for t if and only if one of the following holds:

– There exists a local d-generating run for t (that is, a d-generating run consist-
ing only of transitions from T). Call such a run a single-indexed d-generating
run.

– There exists a thread T ′ (T �= T ′) such that there is a d-generating run π for
t consisting only of transitions from T and T ′ and such that the generating
transition of π belongs to T ′. Call such a run a double-indexed d-generating
run.

Thus, to determine whether d ∈ CMOP [t] (i.e. fact d may be true at t), it is
sufficient to check whether there is a single- or double-indexed d-generating run
to t. Therefore, the precise solution to the concurrent bitvector analysis problem
can be computed by only reasoning about concurrent programs with one or two
threads, so long as we consider each pair of threads in the system. The existence
of a single-indexed d-generating run to t can be determined by a sequential
bitvector data flow analysis, which have been studied extensively.

Here, we discuss a compositional technique for enumerating the double-indexed
d-generating runs. In order to achieve compositionality, we (1) characterize
double-indexed d-generating runs in terms of two local runs, and (2) provide
a procedure to determine whether two local runs can be combined into a global
run. First, we define for each thread T , each transition t of T , and each data
flow fact d ∈ D:

– PRT [t]d = {〈π, σ〉 | πσt ∈ RT ∧ �σ� = id}
– GRT [t]d = {〈π, σ〉 | πσ ∈ RT ∧ �σ[1]� = consttt ∧ �σ[2, |σ| − 1]� = id

∧σ[|σ|] = t}

Intuitively, PRT [t]d and GRT ′ [t′]d correspond to sets of local runs of threads
T and T ′ which can be combined (interleaved in a lock-valid way) to create a
global d-generating run to t. For example, in Figure 2(a), the definition at line f
reaches the use at line 7 (in a reaching-definitions analysis) since the local runs
π1σ1 of T and π2σ2 of T ′ can be combined into the run πσ (demonstrated in the
center) to create a double-indexed generating run. The following proposition is
the key to our compositional approach:

Compositional Bitvector Analysis for Concurrent Programs 261

Proposition 1. Assume a concurrent program CP with two threads T1 and T2.
There exists a double-indexed d-generating run to transition t1 of thread T1 if and
only if there exists a transition t2 of thread T2 such that there exists 〈π1, σ1〉 ∈
PRT1 [t1]d and 〈π2, σ2〉 ∈ GRT2 [t2]d and a run πσ ∈ RCP such that πT1 = π1,
πT2 = π2, σT1 = σ1 and σT2 = σ2.

Since PR and GR are sets of local runs, they can be computed locally and
independently, and checked whether they can be interleaved in a second phase.
However, PRT [t]d and GRT [t]d are (in the general case) infinite sets, so we need
to find finite means to represent them. In fact, we do not need to know about
all such runs: the only thing that we need to know is whether there exists a
d-generating run in one thread, and a d-preserving run in the other thread that
can be combined into a lock-valid run to carry the fact d generated in one thread
to a particular control location in the other thread. Proposition 2, a simple
consequence of a theorem from [6], provides a means to represent these sets with
finite abstractions.

Proposition 2. Let CP be a concurrent program, and let T1, T2 be threads of
CP. Let π1σ1 be a local run of T1 and let π2σ2 be a local run of T2. Then there
exists a run πσ ∈ RCP with πT1 = π1, πT2 = π2, σT1 = σ1, and σT2 = σ2 if and
only if:

– Lock-Set(π1) ∩ Lock-Set(π2) = ∅
– fah(π1) and fah(π2) are consistent6

– Lock-Set (π1σ1) ∩ Lock-Set (π2σ2) = ∅.
– fah(π1σ1) and fah(π1σ2) are consistent
– bah(π1σ1, |π1|) and bah(π2σ2, |π2|) are consistent
– Locks-Acq(σ1) ∩ Locks-Held(π2σ2, |π2|) = ∅ and

Locks-Acq(σ2) ∩ Locks-Held(π1σ1, |π1|) = ∅.

Observe that Proposition 2 states that one can check whether two local runs can
be interleaved into a global run by performing a few consistency checks on finite
representations of the local lock behaviour of the two runs. In other words, one
does not have to know what the runs are; one has to only know what the locking
information for the runs are. Therefore, we use this information as our finite
representation for the set of runs; more precisely, we use a quadruple consisting
of two forwards acquisition histories, a backwards acquisition history, and a set
of locks acquired to represent an abstract run7. Let P be the set of all such
abstract runs. We say that two run abstractions are compatible if they may be
interleaved (according to Proposition 2). We then define an abstraction function
α : Σ� × Σ� → P that computes the abstraction of a run:

α(〈π, σ〉) = 〈fah(π), fah(πσ), bah(πσ, |π|), Locks-Acq(σ)〉
6 Histories h and h′ are consistent iff �� ∈ dom(h), �′ ∈ dom(h′).� ∈ h′(�′) ∧ �′ ∈ h(�).
7 Note that for a run πσ, we can compute Lock-Set(π) as dom(fah(π)), Lock-Set(πσ)

as dom(fah(πσ)), and Locks-Held(πσ, |π|) as (dom(fah(π)) ∩ dom(fah(πσ))) \
Locks-Acq(σ).

262 A. Farzan and Z. Kincaid

For each transition t ∈ ΣT and data flow fact d, this abstraction function can be
applied to the sets PRT [t]d and GRT [t]d to yield the sets ̂PRT [t]d and ̂GRT [t]d,
respectively:

̂PRT [t]d = {α(〈π, σ〉) | 〈π, σ〉 ∈ PRT [t]d}
̂GRT [t]d = {α(〈π, σ〉) | 〈π, σ〉 ∈ GRT [t]d}

For example, the abstraction of the preserving run π1σ1 and the generating run
π2σ2 from Figure 2(a) are (in order):

〈[l1 �→ {}]
︸ ︷︷ ︸

fah(π1)

, [l1, �→ {l2}]
︸ ︷︷ ︸

fah(π1σ1)

, [l2 �→ {}]
︸ ︷︷ ︸

bah(π1σ1,|π1|)

, {l2}
︸︷︷︸

Locks-Acq(σ1)

〉

〈[l2 �→ {l1}]
︸ ︷︷ ︸

fah(π2)

, [l2 �→ {}]
︸ ︷︷ ︸

fah(π2σ2)

, [l2 �→ {}]
︸ ︷︷ ︸

bah(π2σ2,|π2|)

, {l2}
︸︷︷︸

Locks-Acq(σ2)

〉

The definitions of ̂PR and ̂GR, and Proposition 2 imply the following proposition:

Proposition 3. Assume a concurrent program CP with two threads T1 and T2.
There exists a double-indexed d-generating run to transition t1 of thread T1 if
and only if there exists a transition t2 of thread T2 such that there exists elements
of ̂PRT1 [t1]d and ̂GRT2 [t2]d which are compatible.

For a fact d and a transition t ∈ ΣT , the sets ̂PRT [t]d and ̂GRT [t]d are finite,
and therefore one can use Proposition 3 to provide a solution to the concurrent
bitvector problem, once ̂PRT [t]d and ̂GRT [t]d have been computed (we refer the
reader to an extended version of this paper [5] for the details of these computa-
tions). In the next section, we propose an optimization that provides the same
solution using a potentially much smaller subsets of these sets.

3.1 Normal Runs

The sets ̂PRT [t]d and ̂GRT [t]d may be large in practice, so we introduce the
concept of normal runs to replace ̂PRT [t]d and ̂GRT [t]d with smaller subsets
that are still sufficient for solving bitvector problems. Intuitively, normal runs
minimize the number of transitions between the generating transition and the
end of the (double-indexed) run. Consider the run in Figure 2(a): it is a witness
for definition at f reaching the use at 7, but it is not normal : Figure 2(b) pictures
a witness consisting of the same transitions (except h has been removed from the
end of σ2), which has a shorter σ component. Note that runs that are minimal
in this sense are indeed normal; the reverse, however, does not hold. We define
normal runs formally as follows:

Definition 1. Call a double-indexed d-generating run πσt (consisting of transi-
tions of threads T and T ′, where t is a transition of T) with generating transition
σ[1] (of thread T ′) normal if:

Compositional Bitvector Analysis for Concurrent Programs 263

– |σ| = 1 (that is, σ[1] is an immediate predecessor of t), or
– All of the following hold:

• The first T transition in σt is an acquire transition.
• The last T ′ transition in σ is a release transition.
• �i (1 ≤ i ≤ |σ|) such that after executing π(σ[1, i]), T frees all held locks.
• �i (1 < i ≤ |σ|) such that after executing π(σ[1, i]), T ′ frees all held

locks.

Note that if there are no locking operations in a run, then the generating tran-
sition is always an immediate predecessor of the t, since there are no synchro-
nization restriction to prevent this from happening. We show that it is sufficient
to consider only normal runs for our analysis, by proving that the existence of a
double-indexed d-generating run implies the existence of a normal double-index
d-generating run.

Lemma 3. Let t1· · · tn ∈ RT and let t′1· · · t′m ∈ RT ′ . If there is a run ρ = πσ
(ρ ∈ RCP) such that there exist 1 ≤ i ≤ n and 1 ≤ j ≤ m where:

πT = t1 . . . ti σT = ti+1 . . . tn
πT ′ = t′1 . . . t′j σT ′ = t′j+1 . . . t′m

Then, the following hold:

1. If t′j+1 is not an acquire transition, then ∃π′, σ′ such that π′σ′ ∈ RCP , and

π′
T = t1 . . . ti σ′

T = ti+1 . . . tn
π′

T ′ = t′1 . . . t′j+1 σ′
T ′ = t′j+2 . . . t′m

2. If t′m is not a release, then ∃σ′ such that πσ′ ∈ RCP is a valid run, and

π′
T = t1 . . . ti σ′

T = ti+1 . . . tn
π′

T ′ = t′1 . . . t′j σ′
T ′ = t′j+1 . . . t′m−1

Lemma 3 is a consequence of Lipton’s theory of reduction [13]. It is used to trim
the beginning of a d-preserving run if it does not start with an acquire (part 1)
and the end of a d-generating run if it does not end in a release (part 2). The
run in Figure 2(b) is obtained from the run in Figure 2(a) by an application of
Lemma 3.

Lemma 4. If there is a runπσ of concurrent program CP (consisting of two threads
T and T ′) such that πT = t1 . . . ti, σT = ti+1 . . . tn, πT ′ = t′1 . . . t′j and σT ′ =
t′j+1 . . . t′m, and if there exists k (j < k ≤ m) such that Lock-SetT ′(t′1 . . . t′k) = ∅,
then there exists a run π′σ′ of CP where

π′
T = t1 . . . ti σ′

T = ti+1 . . . tn
π′

T ′ = t′1 . . . t′k σ′
T ′ = t′k+1 . . . t′m

Similarly, if there exists k (j ≤ k ≤ m − 1) such that Lock-SetT ′(t′1 . . . t′k) = ∅,
then there exists a run πσ′ where σ′

T = σT and σ′
T ′ = ti+1 . . . tk.

264 A. Farzan and Z. Kincaid

Lemma 4 is a consequence of Proposition 2. It
is used to trim the beginning of d-preserving
runs and the end of d-generating runs. The fig-
ure to the right illustrates the application of
this lemma: thread T ′ holds no locks after exe-
cuting g, so transitions h, i, and j need not be
executed. The witness pictured for definition f
reaching 7 corresponds to the normal witness
obtained by removing the dotted box.

The following Proposition, which is a conse-
quence of Lemmas 3 and 4, implies that it is
sufficient to only consider normal runs for the
analysis. Therefore, we can ignore runs that are
not normal without sacrificing soundness.

Proposition 4. If there exists a double-indexed d-generating run of concurrent
program CP leading to a transition t, then there exists a normal double-indexed
d-generating run of CP leading to t.

Therefore, for any transition t and data flow fact d, we define normal versions
(subsets of these sets which contain only normal runs) of ̂PRT [t]d and ̂GRT [t]d
as follows:

– N̂PRT [t]d = {α(〈π, σ〉) | 〈π, σ〉 ∈ PRT [t]d ∧ (|σ| = 0∨
(�k.Lock-Set(π(σ[1, k])) = ∅ ∧ σ[1]is an acquire))}

– N̂GRT [t]d = {α(〈π, σ〉) | 〈π, σ〉 ∈ GRT [t]d
∧(|σ| = 1 ∨ �k.Lock-Set(π(σ[1, k])) = ∅)}

N̂PRT [t]d (N̂GRT [t]d) is a finite representation of sets of normal d-preserving
(generating) runs. In order to compute solutions for every data flow fact in D

simultaneously, we extend N̂PRT [t]d and N̂GRT [t]d to sets of data flow facts.
We define N̂PRT [t] to be a partial function that maps each abstract run ρ̂ to the
set of facts d for which there is a d-preserving run whose abstraction is ρ̂, and
is undefined if there is no concrete run to t whose abstraction is ρ̂. N̂GRT [t] is
defined analogously. We refer the reader to an extended version of this paper [5]
for more detailed information on N̂PR and N̂GR.

4 The Analysis

Here, we summarize the results presented in previous sections into a procedure
for the bitvector analysis of concurrent programs. The procedure is outlined in
Algorithm 1. Data flow facts reaching a transition t are computed in two different
groups as per Lemma 2: facts with single-indexed generating runs and facts with
double-indexed generating runs.

Compositional Bitvector Analysis for Concurrent Programs 265

Algorithm 1. Concurrent Bitvector Analysis
1: Compute Summaries and Helper Sets // see Algorithm 2
2: for each T ∈ T do
3: Compute MFPT // Single-indexed facts
4: for each t ∈ ΣT do
5: Compute NDIFT [t] // (Normal) double-indexed facts
6: CMOPT [t] := MFPT [t] ∪ NDIFT [t]
7: end for
8: end for

On line 6, the facts from single- and double-indexed generating runs are com-
bined into the solution of the concurrent bitvector analysis. Facts from single-
indexed generating runs can be computed efficiently using well-known (maximum
fixed point) sequential data flow analysis techniques. It remains to show how to
to efficiently compute facts from double-indexed generating runs using the sum-
maries and helper sets which are computed at the beginning of the analysis.

A naive way to compute NDIF would involve iterating over all pairs of tran-
sitions from different threads to find compatible elements of N̂PR and N̂GR.
This would create an |Σ|2 factor in our algorithm, which can be quite large.
We avoid this by computing thread summaries for each thread T . The sum-
mary, NGenT , combines information about each transition in T that is relevant
for NDIF computation for other threads. More precisely, NGenT is a function
that maps each run abstraction p to the set of facts for which there is a generat-
ing run whose abstraction is p. Intuitively, NGenT groups together transitions
that have similar locking information so that they can be processed at once. This
speeds up our analysis significantly in practice.

Algorithm 2. Computing Summaries
1: for each T ∈ T do
2: Compute N̂GRT // Normal generating runs

3: NGenT := λρ̂.
⋃

{N̂GRT [t](ρ̂) | t ∈ ΣT ∧ ρ̂ ∈ dom(N̂GRT [t])}
4: Compute N̂PRT // Normal preserving runs
5: end for

The essential procedure for finding facts in NDIFT [t] is to: 1) find compatible
(abstract) runs ρ̂ ∈ dom(N̂PRT [t]) and ρ̂′ ∈ dom(NGen′

T), and 2) add facts
that are both preserved by ρ̂ and generated by ρ̂′. This procedure is elaborated
in Algorithm 3.

It remains to show how to compute N̂PR and N̂GR. Both of these sets
can be computed by a sequential data flow analysis. This analysis is based on an
abstract interpretation of sequential trace semantics suggested by the abstraction
function α. Best abstract transformers can derived from the definition α; more
detailed information can be found in the extended version of this paper.

266 A. Farzan and Z. Kincaid

Algorithm 3. Compute NDIF (concurrent facts from non-predecessors)
Input: Thread T , transition t ∈ ΣT

Output: NDIFT [t].
1: NDIFT [t] := ∅
2: for each T ′ �= T in T do

3: for each ρ̂ ∈ dom(N̂PRT [t]) do

4: NDIFT [t] := NDIFT [t] ∪ {NGenT ′ [ρ̂′] ∩ N̂PRT [t](ρ̂) | compatible(ρ̂, ρ̂′)}
5: end for
6: end for
7: return NDIFT [t]

Complexity Analysis. The best known upper bound on the time complexity
of our algorithm is quadratic in the number of threads, quadratic in the size
of the domain, linear in the number of transitions in each thread, and double
exponential in the number of locks. We stress that this is a worst-case bound, and
we expect our algorithm to perform considerably better in practice. Programmers
tend to follow certain disciplines when using locks, which decreases the double
exponential factor in our algorithm. For example, allowing only constant-depth
nesting of locks reduces the factor to single exponential. In practice, locksets,
nesting depths, and consequently acquisition history sizes are very small (even if
the number of locks in the program is not very small); and the complexity of our
algorithm depends on the average size of acquisition histories, and not directly
on the number of locks. Our experimental results in Section 5 confirm that our
algorithm does indeed perform very well on real programs.

5 A Case Study

We implemented the intraprocedural version of our algorithm and evaluated its
performance on a nontrivial concurrent program. Our experiments indicate that
our algorithm scales well in practice; in particular, its performance appears to be
only weakly dependent on the number of threads. This is remarkable, considering
the program analysis community’s historical difficulties with multithreaded code.

The algorithm is implemented in OCaml, and is applicable to C programs
using the pthreads library for thread operations. We use the CIL program analysis
infrastructure for parsing, CFG construction, and sequential data flow analysis.
The algorithm is parameterized by a module that specifies the gen/kill sets
for each instruction, so lifting sequential bitvector analyses to handle threads
and locking is completely automatic. We implemented a reaching definitions
analysis module and instantiated our concurrent bitvector analysis with it; this
concurrent reaching definitions analysis was the subject of our evaluation.

We evaluated the performance of our algorithm on FUSE, a Unix kernel mod-
ule and library that allows filesystems to be implemented in userspace programs.
FUSE exposes parts of the kernel that are relevant to filesystems to userspace
programs, essentially acting as a bridge between userspace and kernelspace. We
analyzed the userspace portion.

Compositional Bitvector Analysis for Concurrent Programs 267

Table 1. Experimental Results for FUSE

Test |T | |N | |Σ| |D| |L| Time

5 avg 5 2568.1 3037.9 208.9 1.0 1.0
5 med 5 405.0 453.0 62.0 1.0 0.1
10 avg 10 4921.9 5820.1 401.6 1.3 1.8
10 med 10 988.5 1105.0 155.5 1.0 0.1
50 avg 50 24986.3 29546.0 2047.0 3.1 10.7
50 med 50 22628.5 26607.0 2022.5 3.0 4.6
200a 200 79985 94120 6861 6 36.4
200b 200 119905 142248 9515 4 116.5
full 425 218284 258219 17760 6 347.8

Since our implementation currently supports only intraprocedural analyses,
we inlined all of the procedures defined within FUSE and ignored calls to library
procedures that did not acquire or release locks. We did a type-based must-alias
analysis to create a finite version of the set of locks and shared variables. Some
procedures in the program had the (implicit) precondition that callers must hold
a particular lock or set of locks at each call site; these 35 procedures could not
be considered to be threads because they did not respect nested locking when
considered independently. Each of the remaining 425 procedures was considered
to be a distinct thread in our analysis. We divided these procedures into groups
of 5 procedures, and analyzed each of those separately (that is, we analyzed the
program consisting of procedures 1-5, 6-10, 11-15, etc). We repeated this process
with groups of 10, 50, 100, 200, and also analyzed the entire program. We present
mean and median statistics for the groups of 5, 10, 50, and 100 procedures. The
experiments were conducted on a 3.16 GHz Linux machine with 4GB of memory.

Table 1 presents the results of our experiments. The |T |, |N |, |Σ|, |D|, |L|,
and Time columns indicate number of threads, number of CFA nodes, number
of CFA transitions, number of data flow facts, number of locks, and running
time (in seconds), respectively. As a result of the inlining step, there was a very
large size gap between the smallest and the largest procedures that we analyzed,
which we believe accounts for the discrepancy between the mean and median
statistics.

Our thread summarization technique is a very effective optimization in prac-
tice. As an example, for a scenario with 123 threads, and a CFA size of approxi-
mately 200K (sum of the number of nodes and transitions), the analysis time is
50 seconds with summarization, while it is 930 seconds without summarization
– about 20 times slower.

In Figure 3(a), we observe that the running time of our algorithm appears
to grow quadratically in the number of threads in the program. However, the
dispersion is quite high, which suggests that the running time has a weak re-
lationship with the number of threads in the program. Indeed, the apparent
quadratic relationship can be explained by the fact that the points that contain
more threads also contain more total CFA transitions. Figure 3(b) shows the

268 A. Farzan and Z. Kincaid

running time of our algorithm as a function of total number of CFA transitions
in the program, which is a much tighter fit.

(a)

(b)

(c)

Fig. 3. Running time

Figure 3(c) shows the running
time of our algorithm as a func-
tion of the product of the num-
ber of CFA transitions and the
domain size of the program. This
relationship is interesting because
the time complexity of sequential
bitvector analysis is O(|Σ| · |D|).
Our results indicate that there is
a linear relationship between the
running time of our algorithm and
the product of the number of CFA
transitions and domain size of the
program, which suggests that our
algorithm’s running time is pro-
portional to |Σ| · |D| in practice.

Our empirical analysis is not
completely rigorous. In particu-
lar, our data points are not in-
dependent and our treatment of
memory locations is not conser-
vative. However, we believe that
the results obtained are promis-
ing and suggest that the algorithm
can be used as the basis for fur-
ther work on data flow analysis
for concurrent programs.

6 Application and Future Work

We discussed a number of very important applications of bitvector analysis in
Section 1. One of the most exciting applications of our precise bitvector frame-
work (in our opinion) is our ongoing work on studying more suitable abstractions
for concurrent programs. Intuitively, by computing the solution to reaching-
definitions analysis for a concurrent program, we can collect information about
how program threads interact. We are currently working on using this informa-
tion to construct abstractions to be used for more powerful concurrent program
analyses, such as computing state invariants for concurrent libraries. The preci-
sion offered by our concurrent bitvector analysis approach is quite important in
this domain, because it affects both the precision of the invariants that can be
computed, and the efficiency of their computation.

Compositional Bitvector Analysis for Concurrent Programs 269

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: principles, techniques, and tools.
Addison-Wesley Longman Publishing Co., Inc., Amsterdam (1986)

2. Chugh, R., Voung, J., Jhala, R., Lerner, S.: Dataflow analysis for concurrent pro-
grams using datarace detection. In: PLDI, pp. 316–326 (2008)

3. Esparza, J., Knoop, J.: An automata-theoretic approach to interprocedural data-
flow analysis. In: Thomas, W. (ed.) FOSSACS 1999. LNCS, vol. 1578, pp. 14–30.
Springer, Heidelberg (1999)

4. Esparza, J., Podelski, A.: Efficient algorithms for pre* and post* on interprocedural
parallel flow graphs. In: POPL, pp. 1–11 (2000)

5. Farzan, A., Kincaid, Z.: Compositional bitvector analysis for concurrent programs
with nested locks.Technical report, University of Toronto (2010),
http://www.cs.toronto.edu/~zkincaid/pub/cbva.pdf

6. Kahlon, V., Gupta, A.: On the analysis of interacting pushdown systems. In: POPL,
pp. 303–314 (2007)

7. Kahlon, V., Ivancic, F., Gupta, A.: Reasoning about threads communicating via
locks. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
505–518. Springer, Heidelberg (2005)

8. Kidd, N., Lammich, P., Touili, T., Reps, T.: A decision procedure for detecting
atomicity violations for communicating processes with locks. In: Păsăreanu, C.S.
(ed.) SPIN 2009. LNCS, vol. 5578, pp. 125–142. Springer, Heidelberg (2009)

9. Knoop, J., Steffen, B., Vollmer, J.: Parallelism for free: Efficient and optimal bitvec-
tor analyses for parallel programs. TOPLAS 18(3), 268–299 (1996)

10. Knoop, J.: Parallel constant propagation. In: Pritchard, D., Reeve, J.S. (eds.) Euro-
Par 1998. LNCS, vol. 1470, pp. 445–455. Springer, Heidelberg (1998)

11. Krinke, J.: Static slicing of threaded programs. SIGPLAN Not. 33(7), 35–42 (1998)

12. Lammich, P., Müller-Olm, M.: Conflict analysis of programs with procedures, dy-
namic thread creation, and monitors. In: Alpuente, M., Vidal, G. (eds.) SAS 2008.
LNCS, vol. 5079, pp. 205–220. Springer, Heidelberg (2008)

13. Lipton, R.J.: Reduction: a method of proving properties of parallel programs. ACM
Commun. 18(12), 717–721 (1975)

14. Masticola, S.P., Ryder, B.G.: Non-concurrency analysis. In: PPOPP, New York,
NY, USA, pp. 129–138 (1993)

15. Muchnick, S.S.: Advanced Compiler Design and Imlementation. Morgan Kauf-
mann, San Francisco (1997)

16. Naumovich, G., Avrunin, G.S.: A conservative data flow algorithm for detecting
all pairs of statements that happen in parallel. In: FSE, pp. 24–34 (1998)

17. Naumovich, G., Avrunin, G.S., Clarke, L.A.: An efficient algorithm for comput-
ing mhp information for concurrent java programs. In: ESEC/FSE-7, pp. 338–354
(1999)

18. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: Cil: Intermediate language
and tools for analysis and transformation of c programs. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002)

19. Nielson, F., Nielson, H.: Type and effect systems. In: Correct System Design, pp.
114–136 (1999)

http://www.cs.toronto.edu/~zkincaid/pub/cbva.pdf

270 A. Farzan and Z. Kincaid

20. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their
application to interprocedural dataflow analysis. Sci. Comput. Program. 58(1-2),
206–263 (2005)

21. Salcianu, A., Rinard, M.: Pointer and escape analysis for multithreaded programs.
In: PPoPP (2001)

22. Seidl, H., Steffen, B.: Constraint-based inter-procedural analysis of parallel pro-
grams. In: Smolka, G. (ed.) ESOP 2000. LNCS, vol. 1782, pp. 351–365. Springer,
Heidelberg (2000)

	Compositional Bitvector Analysis for Concurrent Programs with Nested Locks
	Introduction
	Preliminaries
	Locking Information
	Bitvector Data Flow Analysis

	Concurrent Data Flow Framework
	Normal Runs

	The Analysis
	A Case Study
	Application and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

