
WRLA 2006

Partial Order Reduction for Rewriting
Semantics of Programming Languages

Azadeh Farzan and José Meseguer 1

Computer Science Department
University of Illinois at Urbana-Champaign

Urbana, USA

Abstract

Software model checkers are typically language-specific, require substantial devel-
opment efforts, and are hard to reuse for other languages. Adding partial order
reduction (POR) capabilities to such tools typically requires sophisticated changes
to the tool’s model checking algorithms. This paper proposes a new method to
make software model checkers language-independent and improving their perfor-
mance through POR. Getting the POR capabilities does not require making any
changes to the underlying model checking algorithms: for each language L, they
are instead achieved through a theory transformation RL 7→ RL+POR of L’s formal
semantics, rewrite theory RL. Under very minimal assumptions, this can be done
for any language L with relatively little effort. Our experiments with the JVM, a
Promela-like language and Maude indicate that significant state space reductions
and time speedups can be gained for tools generated this way.

Key words: Partial order reduction, model checking,
programming language semantics, rewriting logic, Maude.

1 Introduction

This paper proposes a new method to make software model checking tools
language-independent; and to substantially improve their performance using
partial order reduction (POR) (see, for example, [22,14,15,25,1,12,3,18]). The
key insight of POR is that the state space explosion caused by the many
interleaving computations of a concurrent program can be tamed using the
fact that many such computations are semantically equivalent, because they
are different descriptions of the same partial order of events. This means that
only a representative subset of all the interleaving computations has to be
model checked, without losing completeness: the model checking results are

1 Email: {afarzan,meseguer}@cs.uiuc.edu
This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

Farzan and Meseguer

the same as if all computations had been analyzed, but performance can thus
be greatly increased.

Although the theoretical foundations of POR are very general and can be
applied to many different languages, at present POR-enabled software model
checkers are typically language-specific: they typically only work for programs
in a particular language such as Java, C, Promela, and so on. One excep-
tion to this common situation is the Verisoft tool [15]. However, Verisoft is
applied in practice to a limited family of languages. The question this paper
raises and presents an affirmative answer to is: can POR-enabled software
model checking tools become language-independent in the strong sense of be-
ing generic, that is, being applicable not just to a few, but to an unlimited
class of languages satisfying some very basic abstract requirements?

This work is part of a broader research effort to develop a range of generic
software analysis tools based on formal semantic definitions of programming
languages [20,21]. The tools are generic (i.e., language-independent) because
their specialization to each particular language, say Java, is based on provid-
ing the generic tool with an executable formal semantics of the language in
question. We use rewriting logic [19] as a semantic framework, because the
distinction between equations and rules in a rewrite theory provides powerful
abstraction capabilities [21], and also because its high-performance Maude im-
plementation and tools [5,7] offer a good basis for developing efficient generic
tools that have competitive performance.

Within this larger research effort this paper gives an answer to the ques-
tion of how POR capabilities can likewise be made generic at the tool level.
The practical advantages of our approach come from the fact that the preva-
lent way of developing a software model checker for a specific programming
language is a labor-intensive process often requiring man-years of effort; and
that language-specific checkers are typically hard to reuse for other languages.
Furthermore, adding POR capabilities to a language-specific model checker
typically requires sophisticated changes to the tool’s model checking algo-
rithms. By contrast, our generic method can be specialized to any particular
language of choice in a few weeks, including the time of developing the for-
mal semantic definition of the chosen language (e.g., Java). In particular, the
specific task of adding the POR capabilities to the tool thus obtained can be
accomplished in a few hours.

Our method is based on a theory transformation RL 7→ RL+POR in which
the original rewrite theory RL specifying the semantics of the language L is
transformed into a stuttering equivalent rewrite theory RL+POR that accom-
plishes the desired partial order reduction when used for model checking a
given program. This theory transformation approach means that no changes
to the underlying model checker are needed to achieve the desired partial or-
der reduction, which is one of the reasons why developing a POR-enabled
LTL model checker for a language L using our method requires such little
effort. Besides its genericity and short development time, our method has two

2

Farzan and Meseguer

additional advantages:

1. Flexible Partial Order Heuristic Algorithm. The heuristic algorithm can
be specified using a few equations. Although our basic version of the heuristic
can in principle work for any programming language, additional optimizations,
based on specific knowledge of the given programming language or of the types
of programs to be verified, can make the POR reduction considerably more
efficient. The tool builder can easily customize the heuristic algorithm, which
compares favorably with having to change the source code of a model checker.

2. Flexible Dependence Relation. Although a basic dependence relation can
generally hold for a certain programming language, additional knowledge of
the types of programs that one needs to verify can result in removing some
dependencies; for example, Java supports shared memory in general, so we
have to assume that memory read/write pairs are generally interdependent;
but if the programs being verified do not use the shared memory at all, we
can remove this dependency for such programs. Having the dependence rela-
tion as an explicit parameter of the partial order reduction module not only
contributes to the generality of the method, but also gives the tool builder the
advantage of specializing it, based on the type of input programs.

Our generic theory transformation assumes a simple basic interface of func-
tionality in the language L. This allows a first phase of automatic transforma-
tion of the theory RL. But this can be followed by a second language-specific
customization phase supporting features 1–2 above. This can be easily accom-
plished by adding or customizing a few equations in this second phase, so that
detailed knowledge of L’s semantics can be used to optimize the reduction;
for example, by optimizing the heuristic algorithm and/or by defining a more
precise dependence relation using static analysis techniques.

Besides developing its theoretical foundations and establishing its correct-
ness, the practical usefulness of a generic method like the one we propose
should be evaluated experimentally. Therefore, we have developed a proto-
type tool in Maude that, given an original semantics of a language L specified
as a rewrite theory RL, performs the theory transformation RL 7→ RL+POR

and can be used to model check LTL properties of programs in L using Maude’s
generic LTL model checker. We have applied this prototype to the rewriting
semantics of the Java bytecode, a simple Promela-like language, and Maude;
and have evaluated the performance of our POR methods for these languages
using several benchmarks. The goal of this prototype and experimentation
is a proof-of-concept one. Therefore, we have not incorporated a number of
well-known optimizations that a mature tool should support. Nevertheless,
our experiments indicate that, even without such optimizations, substantial
gains in time and space can be obtained using our POR method.

The rest of the paper is organized as follows: Section 2 contains the back-
ground needed in Section 3, where we discuss the generic method in detail;
Section 4 presents the experimental results including the instantiation of the
method for the Java bytecode and for a Promela-like language, as well as

3

Farzan and Meseguer

presenting some performance figures; and Section 5 discusses related work,
conclusions, and future directions.

2 Preliminaries

2.1 Rewriting Logic Language Specification

The rewriting logic semantics of a programming language [20] combines and
extends both equational/denotational semantics based on semantic equations,
and structural operational semantics (SOS) based on semantic rules. Given a
programming language L, its rewriting logic semantics is defined as a rewrite
theory RL = (ΣL, EL, RL), with ΣL a signature specifying both the syntax of
L and of operations on auxiliary semantic entities like the store, environment,
and so on, with (ΣL, EL) an equational theory specifying the semantics of the
sequential features of L, and with RL a collection of (possibly conditional)
rewrite rules specifying the semantics of L’s concurrent features. Under the
assumption that RL is coherent [26], equations in EL (corresponding to exe-
cution of sequential features) are applied until reaching a canonical form, and
then rules in RL (corresponding to execution of concurrent features) are ap-
plied. This key distinction between equations and rules immediately gives the
advantage of reductions similar to those in [24]. The invisible states in [24]
are closely related to the reduction steps done by equations in EL. Only when
no more equations from EL apply to the state, does a rewrite with a rule in
RL take place. This makes any sequence of sequential instructions in a thread
to be executed as an atomic block, without any interleavings. Note that this
kind of state reduction is available at the level of the original semantics RL;
what is now further needed, which is the topic of this paper, is to achieve an
additional POR state space reduction by reducing the state explosion due to
the execution of concurrent features.

Specifying formally the semantics of a concurrent programming language
L in the Maude rewriting logic language not only yields a language interpreter
for free, but also, thanks to the generic analysis tools for rewriting logic speci-
fications that are provided as part of the Maude system [4], additional analysis
tools are also automatically provided for L, including a semi-decision proce-
dure to find failures of safety properties, and an LTL model checker. There
is already a substantial experience on the practical use of such language defi-
nitions and the associated analysis tools for real languages such as Java, the
JVM, and a substantial subset of OCaml [20,11,9].

2.2 Background on Partial Order Reduction

A finite transition system is a tuple (S, S0, T, AP, L), where S is a finite set of
states, S0 ⊆ S is the set of initial states, T is a finite set of transitions such
that α ∈ T is a partial function α : S → S, AP is a finite set of propositions
and L : S → 2AP is the labeling function. A transition α is enabled in a state

4

Farzan and Meseguer

S if α(s) is defined. Denote by enabled(s) the set of transitions enabled in s.
The main goal of partial order reductions is to find a subset of enabled tran-
sitions ample(s) ⊆ enabled(s) that is used to construct a reduced state space
that is behaviorally equivalent. Partial order reduction is based on several
observations about the nature of concurrent computations. The first observa-
tion is that concurrent transitions are often commutative, which is expressed
in terms of an independence relation, I ⊆ T×T , that is, a symmetric and anti-
reflexive relation which satisfies the following condition: for each (α, β) ∈ I,
and for each state s, if α, β ∈ enabled(s) then: (1) α ∈ enabled(β(s)) and
β ∈ enabled(α(s)), and (2) α(β(s)) = β(α(s)). Note that D = (T × T)\I is
the dependence relation. The second observation is that in many cases only
a few transitions can change the value of the propositions, which suggests
the concept of visibility; a transition α ∈ T is invisible if for each s ∈ S, if
s′ = α(s) then L(s) = L(s′).

There are several existing heuristics to compute ample(s). [2] gives a set
of four conditions that, if satisfied by ample(s), guarantee a correct reduction
of the given state transition system. In Section 3.3, we present a special case
of the conditions in [2] which are used in this paper.

3 Partial Order Reduction for Language Definitions

3.1 Some Assumptions

In order to devise a general partial order reduction module for semantic def-
initions of concurrent programming languages, we have to make some basic
assumptions about these semantic definitions. These assumptions are quite
reasonable and do not limit in practice the class of semantic definitions that we
can deal with. They simply specify a standard interface between the semantic
definition module and the partial order reduction module. We can enumerate
these assumptions as follows: (1) In each program there are entities equiva-
lent to threads which can be uniquely identified by a thread identifier. The
computation is performed as the combination of local computations inside
individual threads, and communication between these threads through any
possible discipline such as shared memory, synchronous or asynchronous mes-
sage passing, and so on. (2) In any computation step (transition) a single
thread is always involved. In other words, threads are the entities that carry
out the computations in the system.

3.2 The Theory Transformation

The rewrite theoryRL = (ΣL, EL, RL) specifying the semantics of a concurrent
programming language L is transformed in two steps into the semantically
equivalent theory RL+POR = (ΣL+POR, EL+POR, RL+POR) that is equipped
with partial order reduction capabilities.

5

Farzan and Meseguer

The Marked-State Theory.

The objective of the first step of this transformation is to change the orig-
inal theory RL in order to facilitate the addition of the partial order module.
In the transformed theory R̂L = (Σ̂L, ÊL, R̂L): (1) the rewrite rules of RL are
changed syntactically to only allow one-step rewrites, and (2) the structure of
the states of R is enriched to allow a specific thread to be marked as enabled.
Rewrite rules are then modified to only allow the threads that are marked
enabled to make a transition. This way, when the POR heuristic decides on
an ample set, the corresponding threads can be marked as enabled, and this
causes only the ample transitions to be explored next. Here we give a detailed
construction of R̂L and show that RL and R̂L are one-step bisimilar.

We assume that RL is coherent [26] and that all rules in RL are of the
form l(u(t)) −→ r(u′(t)) where terms l and r are of sort State, and where
the subterms u(t) and u′(t) are thread expressions of sort Thread, and t is
variable ranging over thread identifiers of sort Tid. Note that based on the
assumptions we made (see Section 3.1), there is going to be exactly one such
thread expression u(t) on either side of a rule. We also assume that the
equations in EL are thread-preserving, that is, in any two state expressions
equated by EL both must have the same number of thread expressions and
there is a bijective correspondence between such thread expressions preserving
their thread identifiers.

We define Σ̂L by adding fresh new sorts: MState and MThread. A new
constructor enabled : Thread Bool −→ MThread is introduced for the sort
MThread to instrument threads with this additional flag that allow us to mark
them as enabled or not for the next execution step. The use of the sort Thread
in all state constructors is everywhere replaced by the sort MThread. We also
add two unary operators { }, [] : State −→ MState. The equations in ÊL are
systematically derived from those in EL by replacing in each equation in EL

each occurrence of a thread expression u(t) by the expression enabled(u(t), bt),
where bt is a fresh new variable of sort Bool depending on t. For every rewrite
rule l(u(t)) → r(u′(t)) if C in RL, the corresponding rewrite rule in R̂L is then

of the form {Ct(l(enabled(u(t), true))} → [Ct(r(enabled(u′(t), true)))] if Ĉ,
where Ct(.) is the context expression for the application of the rule in case r

does not rewrite the entire state but only a state fragment 2 , and where Ĉ is
the conjunction of equations obtained from C by changing each equation in
C containing thread expressions as done in the definition of ÊL, and leaving
all other equations untouched. Note that the use of the operators { }, [] in

the rules in R̂L means that in R̂L only one-step rewrites are possible, since the
operator [] in the right-hand side blocks the application of any further rules.

As an example of the above transformation, consider the following rewrite

2 If the rule r rewrites the global state of the computation, the context Ct(.) is empty,
i.e. Ct(l(u)) = l(u). We do however allow language specifications in which a rule r can be
local to some fragment of the state. In this second case, it is important to make explicit a
pattern Ct(.) for the context in which the rule is applied.

6

Farzan and Meseguer

rule specifying the semantics of the monitorenter instruction of Java byte-
code:

rl < T: JavaThread | callStack:([PC, monitorenter, Pgm, ..., (REF(K) #
OperandStack), ...] CallStack), ... > < O : JavaObject | Addr: K,
..., Lock: Lock(OIL, NoThread, 0) > => < T: JavaThread | callStack:
([PC + 2, Pgm(PC + 2), Pgm, ..., OperandStack, ...] CallStack),
... > < O: JavaObject | Addr: K, ..., Lock: Lock(OIL, T, 1) > .

the transformed rewrite rule has the following form:

rl { enabled(< T:JavaThread | callStack:([PC, monitorenter, Pgm, ...,
(REF(K) # OperandStack), ...] CallStack), ... >, true) < O:JavaObject
| Addr:K, ..., Lock:Lock(OIL, NoThread, 0) > Ct } => [enabled(
< T: JavaThread | callStack: ([PC + 2, Pgm(PC + 2), Pgm, ...,
OperandStack, ...] CallStack), ... >, true) < O: JavaObject |
Addr: K, ..., Lock: Lock(OIL, T, 1) >] .

The key point about the transformation RL 7→ R̂L is then:

Proposition 3.1 The surjective projection π mapping terms of sort MState
to terms of sort State defined by: (1) erasing the operators { }, [], and (2)
erasing the enabled operators, the corresponding flags and the context expres-
sion defines a one-step bisimulation between the corresponding rewrite theo-
ries.

That is, if we have a one-step rewrite u → v with R̂L, then we have also
a corresponding one-step rewrite π(u) → π(v) with RL; and conversely, if
we have a one-step rewrite u′ → v′ with RL, then we can find u ∈ π−1(u′)

v ∈ π−1(v′) such that we have a one-step rewrite u → v with R̂L (see [10] for
proof).

The Partial Order Reduction Theory.

In the second step, the theory R̂L = (Σ̂L, ÊL, R̂L) is transformed into

RL+POR = (ΣL+POR, EL+POR, RL+POR) which adds to R̂L the partial order
reduction module. Components of the transformed theory are defined based
on the components of R̂L as follows:

• ΣL+POR = Σ̂L ∪ ΣPOR ∪ ΣAUX , that is, the signature Σ̂L is extended with
the signature ΣPOR of operators used in implementing the partial order
heuristic algorithm, plus the signature of auxiliary operators ΣAUX that are
used for implementation purposes.

• EL+POR = ÊL∪EPOR∪EAUX , that is, the set of equations ÊL are extended
with the equations EPOR which specify the partial order heuristic algorithm,
plus the equations EAUX which define the auxiliary operators.

• RL+POR = R̂L∪{rstep}. In the case of the rewrite rules, only one new rewrite
rule is added. We label this rule as step. It is the only rule applicable to the
new state, and therefore the only rule which will determine the transitions
of the system at a given state.

7

Farzan and Meseguer

The New State.

There is a new fresh sort PState, as part of ΣPOR, representing the new
state of the system. A new sort StateInfoSet also belongs to ΣPOR, capturing
all the information necessary for the reduction algorithm (see Section 3.3). A
new constructor operator { | } : MState StateInfoSet −→ PState is introduced
for the new state. Therefore, a state in RPOR is a pair {s|I}, where s is a

state in R̂L, and I is a term containing information necessary for the reduction
algorithm.

The New Rule (step).

A single new conditional rule rstep in RL+POR simulates one step rewrites
of the original system:

step : {s|I} → [s′|I] if s → s′ ∧ s 6= s′

where s and s′ are variables of sort MState, and the operators { | } and [|] are
state constructors for the sort PState and are frozen operators [4], that is, no
rewriting is allowed below these operators. I is a variable of sort StateInfoSet.
By using this single rewrite rule, only one rewrite at a time can happen, which
changes the given state to one of its successor states. Since the resulting state
is in [|] format, no rewrite rule is applicable to it anymore, until it is changed
to the { | } format. This is the point at which the partial order heuristic
algorithm is applied, using an equation that completes the effect of the above
rule:

[s | I] = {state(MarkAmples(s, I)) | stateInfo(MarkAmples(s, I))}. (∗)

The partial order reduction is applied at state s, using the information in I,
by means of a single operation MarkAmples. This operation takes a pair of
elements of sorts MState and StateInfoSet as an input, and returns a pair of the
same sort. The MarkAmples operation computes the ample set for the current
state and returns the state with the ample transitions marked as specified by
the POR algorithm. It also returns an updated version of StateInfoSet (see
the POR algorithm part of Section 3.3). In the next section, we discuss in
detail how the MarkAmples operations is specified.

3.3 The Partial Order Reduction Module

This module performs two main tasks: (1) extracting the set of enabled tran-
sitions at a given state, and (2) finding an ample subset of these transitions.

First, we have to define a transition in this context. Having the rewriting
semantics (ΣL, EL, RL) of a concurrent programming language L, one can view
the initial state of the system (a program and its inputs) as a ΣL-term t being
rewritten by the equations EL and the rewrite rules RL of the specification.

8

Farzan and Meseguer

In a state transition system, a given state s has a set of immediate succes-
sor states {s1, s2, . . . , sk}, and each pair (s, si) is an enabled transition from
state s. In the rewriting semantics, state s is a term, and the set of enabled
transitions leading to successor states can be represented as a set of pairs
(ri, pj), where ri ∈ RL and pj is a position in term s. In other words, if a
certain rule ri : l(u) → r(v) is enabled at a position pj in term s, then we
have a transition from s to its successor s[l(u)\r(v)].

In general a position p can be any position in the term tree. However, in
our special case of semantics of concurrent programming languages together
with the general assumptions discussed in Section 3.1, a thread identifier will
uniquely specify a position, since we have assumed that a single thread is
involved in each rewrite. Therefore, a pair (ti, rj) consisting of a thread iden-
tifier ti together with an applicable rule rj uniquely characterizes a transition.
This gives us a considerable practical advantage; because when the algorithm
decides on an ample subset of the transitions, it suffices to mark the corre-
sponding threads as enabled (see Section 3.1), which makes it unnecessary
for all the unmarked threads (transitions) to be explored. Note that in the
transformed theory, although the only rule applied to the state of the system
is the rule step, in fact an application of step always simulates some rewrite
rule ri from the original system, and it is that rule that we consider in the
above pair.

3.3.1 Extracting Enabled Transitions

As discussed above, a transition is a pair (ti, ri) of a thread identifier and a
rewrite rule. We can add a third component Ik to this tuple, which includes
all the information about context (i.e., names of variables, functions, locks,
...). This information can later help resolving some dependencies between the
transitions, which may result in fewer dependencies and possibly in a better
reduction.

At a given state s, we have to find all pairs (ti, rj : l(u) → r(v)) where the
rewrite rule rj is enabled for the term s at the position associated with the
thread ti. In other words, we have to go over all the rewrite rules rj ∈ RL and
find all the positions at which rj can be applied to the term s. To do this, we
generate a new set of equations, based on the rewrite rules in RL, with exactly
one equation per rule in the following manner. Let us assume that a rewrite
rule r ∈ R̂L is of the following general form:

r : {l(u(t))} => [r(u′(t))] if C

where u(t) and u′(t) are subterms of sort Thread, t is a variable of sort Tid,
and C is the rule’s condition. The corresponding equation for r is then:

〈Te, l(u(t))〉 = 〈Te ∪ {< t, r, I >}, l(u(t))〉 if C ∧ Te ∪ {< t, r, I >} 6= Te

where Te is a set that accumulates enabled transitions. Note that rewrite rules

9

Farzan and Meseguer

in R̂L are already modified to capture the context in which the corresponding
original rule of RL would have been applied. Starting from the pair < ∅, ts >,
by applying all equations of the above form, we will converge to the pair
< Te, ts >, where Te is the set of all enabled transitions.

Since the context information I depends on the specific programming lan-
guage L and on the way the semantics of L is defined, the I component has
to be left as a null constant when these equations are generated automatically
based on the rules. However, a tool builder familiar with the language seman-
tics can customize these equations to include whatever context information
may be useful later. In our experience with several rewriting semantics for
different programming languages, there are relatively few rewrite rules in the
semantic definitions (that is, EL is much bigger than RL), so this process is
rather quick and easy.

3.3.2 Computing the Ample Set

Dependence Relation.

The Definition of a dependence relation between the transitions is required
for computing the ample sets. The dependence relation is represented by the
operator Dependence: Transition Transition −→ Bool. Clearly, the depen-
dence relation is different for different programming languages. Some com-
mon dependence properties can be shared by many programming languages,
such as: “all the transitions in a single thread are interdependent”, which is
expressed by the following equation:

Dependence(< t, r, I >, < t, r′, I ′ >) = true

where t is a variable ranging over thread identifiers, r and r′ are variables
ranging over rule names, and I and I ′ are variables ranging over context
information.

In order to have the best possible reduction, the language specifier/tool
builder should supply the definition of the dependence relation for the given
language as a set of additional equations. The dependence relation can often
be defined through a few equations, even for complicated languages. See
Section 4 for the definition of the dependence relation for the Java bytecode.
Note that, in general, since the dependence relation is defined by a set of
equations (that can potentially be conditional) we can naturally support the
case of conditional dependence as in [6,17].

The Heuristic Algorithm.

Since the core of the heuristic algorithm can be specified using a few equa-
tions, we have specified two different heuristics. Many additional optimiza-
tions for these heuristics and also other heuristics can likewise be specified
with little effort (see Section 5), but they are beyond the scope of this work.
Figure 1 shows both algorithms. Functions C ′

1, C2, and C3 check the three

10

Farzan and Meseguer

Te,s: enabled transitions in state s.
µcD,S

: transitive closure of the dependence rela-
tion.
S: set of transitions.
P : set of predicates of the LTL formula to be
model checked.

1 Take a transition t from Te,s.
2 Let Ta = tr(t).
3 If C ′

1(Ta) and C2(Ta, P) and C3(Ta).
4 then

mark thread of t as ample.
quit.

5 else
go to step 1.

6 Mark all threads as ample.

1 Take a transition t from Te,s.
2 Let Ta = tr(t).
3 Let S = µcD,Te,s

(Ta).

4 If C ′
1(S) and C2(S, P) and C3(S).

5 then
mark thread of t as ample.
quit.

6 else
go to step 1.

7 Mark all threads as ample.

Fig. 1. Two Partial Order Reduction Heuristics.

conditions discussed in the next section, returning true or false. These pro-
cedures are called at each state (see Section 2) to compute the ample set at
that state. The algorithm on the left is a simpler version, which only considers
ample sets including transitions of a single thread. The algorithm on the right
extends the former to consider ample sets that can include transitions of more
than one thread, which can result in a better reduction. If we have n threads,
and at some point no single thread can be a candidate for ample, we may be
able to find a subset of threads that can satisfy the conditions as a whole. To
do so, we use the transitive closure of the dependence relation D defined on
the set T of transitions as follows:

D : T 2 → {true, false} S, T, U ⊆ T , t ∈ T

tr : T → P(T) tr(t) = {t} ∪ {t′|thread(t) = thread(t′)}

cD,S : P(T) → P(T) cD,S(T) = T ∪ U = {t′ ∈ S|∃t ∈ T, D(t, t′) = true}

∪
⋃

t∈U tr(t)

µcD,S
: P(T) → P(T) µcD,S

(T) =
⋃∞

n=1 cn
D,S(T)

where cD,S(T) computes all the transitions of S which are immediately depen-
dent on transitions in T . Since S is a finite set of transitions, cD,S is monotonic;
if we reapply cD,S repeatedly, we eventually reach a set T (a fixpoint) where
cD,S(T) = T . The function µcD,S

represents this fixpoint. The set µcD,Te
(t) is

a good candidate for an ample set, since we know that at least no transition
outside the set µcD,Te

(t) is dependent on anything inside it. A good method
to find the best ample set is to sort the sets µcD,Te

(t), for all t ∈ Te based on

11

Farzan and Meseguer

their cardinality, and then start checking the conditions, beginning with the
smallest one. This way, if we verify all the conditions for a candidate set, we
are sure that it is the smallest possible ample set, and we are done.

3.3.3 Checking The Conditions.

The most involved part of the partial order reduction algorithm is checking
the conditions in [2]. Conditions C2 and C3 are exactly the same as in [2].
Condition C ′1 is a stronger version (see [10]) of condition C1 from [2] (since
the original C1 from the POR theory is not locally verifiable) and very similar
to the variation of it in the heuristic proposed in [2]. Since the algorithm
always works on nonempty sets, we are left to check three out of the four
conditions. Here, we describe how the conditions are checked for a candidate
set of transitions (ample set). The special case of a single transition as a
candidate (as in [2]) follows from this easily.

Te represents the set of all enabled transitions in the current state. Note
that, as argued before, the notions of transition and of enabled thread are
equivalent in our framework, so we often switch between the two.

C′1: if transition set T ⊂ Te is a an ample set, then no thread in
Te − T should have a transition in the future that is dependent on t.

To compute future transitions of a thread ti ∈ Te − T , a conservative
flow-insensitive context-insensitive static analysis of the code is performed.
This kind of static analysis can be done locally, and is different for different
programming languages. Therefore, the language specifier/tool builder needs
to provide it. In the definition of the algorithm we assume that there is an
operation ThreadTransitions which takes the thread identifier and the current
state of the system and returns all the future transitions of the thread in the
form of a set of tuples (transition format) through a purely static analysis of
the code of the input program which usually offers an overestimation of the
actual set. Having the future transitions of all the threads in Te−T , condition
C ′1 can then be easily checked by using the dependence relation. To see that
C ′1 implies C1 in [2], see [10].

C2: ample transitions should be invisible if the state is not fully
expanded.

This condition is the simplest of the three to verify. The set of propositions
used in the desired property is given as an input. The check just has to go
over this set, element by element, and check whether each proposition has
the same truth value in state s and in its successor state with respect to all
transitions in the ample candidate set.

12

Farzan and Meseguer

C3: Cycle-closeness Condition.

This condition ensures that no transition is enabled over a cycle in the
state transition graph and is never taken in the ample set. This condition can
be easily checked when the partial order reduction algorithm is embedded in
a model checker, since the stack of states being explored is available. In our
case, we use exactly the same method, but we simulate part of that stack as
part of the state. The second component of the new system state, StateInfoSet
takes care of this. Whenever in a state s there is a transition t outside the
ample set, the pair (t, s) will be stored in the StateInfoSet component. As
soon as a transition is taken in some future step, the pair is removed from the
StateInfoSet. If a pair (t, s) is still there when we revisit s, we know that we
are closing a cycle, so we must take the transition.

3.4 Correctness of the Theory Transformation

The correctness of our theory transformation can be now stated as the follow-
ing theorem, whose proof is sketched in [10]:

Theorem 3.2 Assuming that a set AP of atomic state predicates has already
been added to RL by means of a set of equational definitions, the Kripke struc-
tures associated to the rewrite theories RL (with State as its sort of states)
and to RL+POR (with PorState as its sort of states) are stuttering bisimilar.

4 Applications of the Method and Experiments

We have implemented the theory transformation for our generic POR reduc-
tion method in a Maude [4] prototype and have used it to build POR units for
Java bytecode and for a Promela-like language. In this section we illustrate
how the method was used to build the POR unit for Java bytecode, which
has been added to JavaFAN [11], a tool to formally analyze Java programs
based on a rewriting semantics of both Java source code and bytecode. We
also present some performance figures for both the JVM and the Promela-like
language to show that the generic partial order module can result in drastic
reductions in the state space of programs in the above languages.

4.1 The JVM POR Unit

By briefly discussing this example, we illustrate how the language-dependent
parts are defined in Maude for the Java bytecode semantics to give a better
understanding of these parts, and also to show that they can be specified by
the tool builder with relatively little effort and in a program-independent way.

Extracting Transitions.
There are 16 equations, corresponding to the 16 rewrite rules in the se-

mantics of the Java bytecode, which extract all the enabled transitions from
a given state. Here is an example of one of these equations:

13

Farzan and Meseguer

ceq << S, < T: JavaThread | callStack:([PC, monitorenter, .., (REF(K) #
OperandStack), ...] CallStack), .. > < O:JavaObject|Addr:K, ..,
Lock:Lock(OIL, NoThread, 0) > Ct >> = << S {’MONITORENTER, T, noInfo},
< T: JavaThread | callStack: ([PC, monitorenter, ..., OperandStack, ...]
CallStack), Status: scheduled, ... > < O: JavaObject | Addr: K, ..., Lock:
Lock(OIL, NoThread, 0) > Ct >> if S {’MONITORENTER, T, noInfo} =/= S .

where S is the enabled transitions set. The equation says that if in the current
state (containing a thread T , an object O, and a context Ct which captures the
rest of the JVM state that is a multiset), T is ready to execute a monitorenter

(lock) instruction, and O is not locked by any other thread, it means that the
tuple {’MONITORENTER, T, noInfo} is an enabled transition, and it is added to the set
S if it is not already in it.

Dependence Relation.

The dependence relation for Java bytecode is defined based on the following
facts: (1) two accesses to the same location are dependent if at least one of
them is a write. This is defined through a few equations to cover the access
to the instance fields as well as static fields; (2) two lock operations accessing
the same lock are dependent. This is defined through a few equations to
cover synchronized method calls, the monitorenter instruction, as well as
the notifyAll built-in method of Java.
As an example of equations defining the dependence relation we have:

eq Dependence({T, ’PutField, I}, {T’, ’GetField, I’}) = true .
eq Dependence({T, ’InvokeStatic, C}, {T’, ’InvokeStatic, C) = true .

which specify that a read and a write to an instance field (first line) are
always dependent, and (second line) two synchronized static method calls are
dependent if they are locking the same class, C.

Thread Transitions.

As mentioned at the end of Section 3.3, to check condition C ′1, the op-
eration ThreadTransitions, which conservatively computes the set of future
transitions of a thread, has to be specified by the user. In the case of Java
bytecode the idea is to start from the current point in ti and add all the
future instructions (transition steps) of the current method executing, and
upon a method call, add in all the instructions (transitions) of the code of
that method as well (avoiding repetition). This is conservative, in the sense
that in the cases where more than one method can be the potential resolution
of a call site, all of them are considered, and also in transitions such as read-
ing/writing a field of an object where the object cannot be resolved until the
point of execution, conservatively all possible objects will be considered.

14

Farzan and Meseguer

4.2 Experiments

Table 1 presents the reduction comparison of sieve of eratosthenes modeled
in Promela language and Maude. The first column shows the result for the
Promela program model checked with SPIN. The second column contains the
result for the same model written in Maude language together with our POR
unit. The third column shows the result of the same Promela program when
it is model checked using the semantics of Promela together with our POR
unit in Maude. The overhead of interpreting Promela in this case results in a
larger number of states.

Promela–SPIN Maude–Ours Promela–Ours

No Reduction States 703 130 61,842

Time 0.4s 0.2s 41s

Reduction States 114 26 174

Time 0.06s 0.01s 0.3s

Table 1
Time and Space Reduction Comparisons.

Table 2 shows the results of time/space reduction for a deadlock-free
version of dining philosophers with different number of philosophers in the
Promela-like language. Entries left empty indicate that we could not model
check the example on our platform, a PC running Linux with a 2.4GHz pro-
cessor and 4GB of memory.

Table 3 illustrates a dining philosophers program (5 philosophers) model

Program Reduction Time States

DP(5) No 25.1s 56,212

Yes 7.3s 3,033

DP(6) No 146.2.0s 623,644

Yes 30.0s 22,822

DP(7) No — —

Yes 5m 168,565

DP(8) No — —

Yes 66m 1,412,908

Table 2
Dining Philosophers.

15

Farzan and Meseguer

checked in JavaFAN, where two versions of the dependency relation are com-
pared. In the “basic” version, the dependency relation is the general version
(presented in Section 4) that holds for all Java programs. The “NotShared”
version lifts the dependencies of read/write memory accesses, since we know
that the dining philosophers code does not use any shared memory and works
merely based on locks. As shown in Table 3, a simple change like this (which
means commenting out a few equations in the definition of the dependency
relation) can result in a considerably better performance.

Test Basic(t) Basic(n) NotShared(t) NotShared(n)

Dining Philosophers 7m 6991 41s 2690

Table 3
Changing Dependency Relation.

Table 4 shows the state reduction obtained when the partial order reduc-
tion module is used. The JavaFAN tool reduces the number of states substan-
tially by itself, since it uses the rewrite rules to model only the concurrent parts
of Java (see [11] for details). But, the partial order reduction can still add a
substantial reduction to that. PL is a two stage pipeline, DP is a deadlock-free
version of the dining philosophers, RA is NASA’s remote agent benchmark,
and SE is a distributed sieve of Eratosthenes. All programs in these exper-
iments, as well as the semantic definitions of the JVM and the Promela-like
language and their POR-transformations by our method are available in [8].

Test States (w POR) States(wo POR)

PL 6612 18074

DP(5) 6991 16248

RA 24 33

SE 186 247

Table 4
Partial Order Reduction Results.

5 Related Work and Conclusions

Related Work.

There are two well-known approaches to attack the state-explosion problem
while model checking. The first approach consists of partial order methods
introduced by Peled in [22]. The generic method proposed in this paper fits
within this approach. Several different variations [14,15,25,1,12,3,18] of the
POR approach have been introduced since.

16

Farzan and Meseguer

A first class of POR methods —including the stubborn sets method of [25],
the persistent sets method of [16], and the ample sets method of [23]— are
based on modifying the search algorithm and applying the reduction dynam-
ically. [12] takes the matter even further, and dynamically tracks the inter-
actions between threads based on initially exploring an arbitrary interleaving
of them. Details of the reduction heuristic are orthogonal to our method;
although we propose two different heuristics in this paper, many other heuris-
tics can be implemented with little effort. A second class of POR methods
such as the one in [18] use a static approach in which all partial order reduc-
tion information is computed statically, and then an already reduced model is
generated to be model checked.

In the dynamic methods, one has to alter the existing model checker to
include the reduction, while static methods suffer from the fact that only a
limited amount of information is available at compile time. We believe that our
method addresses both problems: it can work with an existing model checker,
so it has the advantages of the static methods, but it applies the reduction
dynamically and therefore can benefit from the runtime information.

It seems fair to say that current POR-enabled model checkers are mostly
language-specific, or, by using for example a static approach such as [18],
achieve only a limited “genericity by translation into a common intermedi-
ate language”. Tools such as Verisoft [15] that can monitor and control the
execution of programs in different languages for model checking purposes are
in practice applied to a limited family of languages and cannot benefit from
any optimizations that can potentially be introduced using some sort of static
analysis of the program, which is not the case in our method. To the best of
our knowledge this work represents the first attempt to develop LTL model
checkers with POR capabilities for concurrent languages in a generic way using
their semantic definitions.

Besides the POR methods, a second state space reduction approach, which
could be called transaction-based, consists of more recent techniques that con-
sider various kinds of exclusive access predicates for shared variables specifying
some synchronization disciplines [24,13,6]. These predicates can be used to
reduce the search space during the state space explorations. The POR tech-
niques (including the method proposed in this paper) are complementary to
these other methods. We discussed how our method exploits some ideas from
[24] in Section 2.1. We strongly believe that the reductions in [13] can be
achieved using a very similar method to that presented in this paper (see
below for more details).

Conclusions.

We have presented a general method to make software model checkers
with POR capabilities language-independent, so that they can be specialized
to any programming language L of interest. Our method is based on a theory
transformation of the rewriting logic formal semantics of the given language.

17

Farzan and Meseguer

The language specialization can be done semi-automatically and with rela-
tively little effort by a tool builder. Language-specific optimizations can also
be added, because the heuristic algorithm and the dependence relation are ex-
plicit parameters of the theory transformation. Since all POR computations
are performed in the transformed theory itself, the method does not require
any modifications to the underlying LTL model checker. Our experience eval-
uating this method in practice for the JVM, a Promela-like language, and
Maude, indicates that significant state space reductions and time speedups
can be gained.

Our method is also generic at the semantic framework level: we have de-
veloped it in detail within rewriting logic, but the same idea can be applied
within other frameworks, for example SOS. In any such framework, the se-
mantics of L will have a specification SL. We then would obtain the POR
capabilities by a suitable theory transformation SL 7→ SL+POR.

The current prototype implementation of our method does not support
various well-known optimization strategies, but many of these can be incor-
porated into our framework in a straightforward way. These strategies are
often based on assumptions about the structure of the programming language
under consideration. Therefore, they belong to the second, language-specific
customization phase of our theory transformation, although in some cases
they can be applied to entire families of languages. For example, a reduction
strategy proposed in [6] for concurrent object oriented software is detecting
heap objects that are thread-local to sharpen the dependence relation. All
the static/dynamic analysis in [6] that leads to detecting the thread local-
ity is possible in our framework, since we have both the static and dynamic
information available. A more extensive experimentation with a broader set
of language instantiations and incorporating the above optimizations should
be performed in the future. Furthermore, the mechanical verification of the
correctness of our theory transformation along the lines of the proof sketched
in [10] should be investigated.

Another interesting direction for future work is extending our generic
method beyond POR to also support what we have called “transaction-based
reductions” in Section 1. Such reductions are complementary to those ob-
tained by POR methods. We conjecture that a similar theory transformation
would allow us to achieve transaction-based reductions in a generic way. The
equation (*) in Section 3.2 works as a nondeterministic scheduler which in
the present method schedules all the threads belonging to the ample set for
the next step. In a transaction-based method the role currently played by
the MarkAmples operation could instead schedule a single thread t, provided
t is inside a transaction, and the component I could then be used for the
instrumentation predicates.

18

Farzan and Meseguer

References

[1] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani.
Partial order reduction in symbolic state exploration. In CAV, pages 340 – 351,
1997.

[2] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
2000.

[3] E.M. Clarke, O. Grumberg, M. Minea, and D. Peled. State space reduction
using partial order techniques. Journal of STTT, 2:279 – 287, 1999.

[4] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
C. Talcott. Maude 2.0 Manual, 2003. http://maude.cs.uiuc.edu/manual.

[5] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Mart́ı-Oliet, José Meseguer, and José Quesada. Maude: specification and
programming in rewriting logic. Theoretical Computer Science, 285:187–243,
2002.

[6] M. Dwyer, J. Hatcliff, and V. Prasad. Exploiting object escape and locking
information in partial order reductions for concurrent object-oriented programs.
Formal Methods in System Design Journal, 25:199–240, 2004.

[7] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model
checker and its implementation. In SPIN’03, LNCS, pages 230 – 234, 2003.

[8] A. Farzan. Specifications and examples. http://maude.cs.uiuc.edu/POR/.

[9] A. Farzan, F. Chen, J. Meseguer, and G. Roşu. Formal analysis of Java
programs in JavaFAN. In Proceedings of CAV, volume 3114, pages 501 – 505,
2004.

[10] A. Farzan and J. Meseguer. Partial order reduction for rewriting semantics of
programming languages. Technical Report UIUCDCS-R-2005-2598, University
of Illinois at Urbana-Champaign, 2005.

[11] A. Farzan, J. Meseguer, and G. Roşu. Formal JVM code analysis in JavaFAN.
In AMAST, volume 3116, pages 132 – 147, 2004.

[12] C. Flanagan and P. Godefroid. Dynamic partial order reduction for model
checking software. In Proceedings of POPL, 2005.

[13] C. Flanagan and S. Qadeer. Transactions for software model checking. In
Workshop on Software Model Checking, volume 338–349, 2003.

[14] P. Godefroid. Partial-order methods for the verification of concurrent systems
- an approach to the state-space explosion problem. In Lecture Notes in
Computer Science, volume 1032. Springer-Verlag, 1996.

[15] P. Godefroid. Model checking for programming languages using Verisoft. In
POPL, volume 174–186, 1997.

19

Farzan and Meseguer

[16] P. Godefroid and P. Wolper. A partial approach to model checking. In
Proceedings of Logic in Computer Science, pages 406 – 415, 1991.

[17] S. Katz and D. Peled. Defining conditional independence using collapses.
Theoretical Computer Science, 101:337–359, 1992.

[18] R. Kurshan, V. Levin, M. Minea, D. Peled, and H. Yenigun. Static partial order
reduction. In TACAS, volume 1384, pages 345 – 357, 1998.

[19] J. Meseguer. Conditional Rewriting Logic as a Unified Model of Concurrency.
Theoretical Computer Science, pages 73–155, 1992.

[20] J. Meseguer and G. Roşu. Rewriting logic semantics: from language
specifications to formal analysis tools. In Automated Reasoning, volume 3097,
pages 1–44, 2004.

[21] J. Meseguer and G. Roşu. The rewriting logic semantics project. In Proc. SOS
2005. Elsevier ENTCS, 2005.

[22] D. Peled. All from one, one for all: on model checking using representatives. In
CAV’93, LNCS, pages 409–423, 1993.

[23] D. Peled. Combining partial order reduction with on-the-fly model checking. In
Proceedings of computer aided verification, volume 818, pages 377 – 390, 1994.

[24] S. D. Stoller. Model-checking multi-threaded distributed java programs. In
SPIN Workshop, pages 224–244, 2000.

[25] A. Valmari. A stubborn attack on state explosion. In Proceedings of the 2nd
workshop on computer aided verification, volume 531, pages 156 – 163, 1990.

[26] P. Viry. Equational rules for rewriting logic. Theoretical Computer Science,
285:487–517, 1992.

20

	Introduction
	Preliminaries
	Rewriting Logic Language Specification
	Background on Partial Order Reduction

	Partial Order Reduction for Language Definitions
	Some Assumptions
	The Theory Transformation
	The Partial Order Reduction Module
	Correctness of the Theory Transformation

	Applications of the Method and Experiments
	The JVM POR Unit
	Experiments

	Related Work and Conclusions
	References

