
Bounded-Interference Sequentialization
for Testing Concurrent Programs�

Niloofar Razavi1, Azadeh Farzan1, and Andreas Holzer2

1 University of Toronto
2 Vienna University of Technology

Abstract. Testing concurrent programs is a challenging problem: (1) the tester
has to come up with a set of input values that may trigger a bug, and (2) even
with a bug-triggering input value, there may be a large number of interleavings
that need to be explored. This paper proposes an approach for testing concurrent
programs that explores both input and interleaving spaces in a systematic way. It
is based on a program transformation technique that takes a concurrent program
P as an input and generates a sequential program that simulates a subset of be-
haviours of P . It is then possible to use an available sequential testing tool to test
the resulting sequential program. We introduce a new interleaving selection tech-
nique, called bounded-interference, which is based on the idea of limiting the de-
gree of interference from other threads. The transformation is sound in the sense
that any bug discovered by a sequential testing tool in the sequential program is a
bug in the original concurrent program. We have implemented our approach into
a prototype tool that tests concurrent C# programs. Our experiments show that
our approach is effective in finding both previously known and new bugs.

1 Introduction

Testing concurrent programs is notoriously difficult. There is often a large number of in-
terleavings that need to be tested and an exhaustive search is mostly infeasible. Several
recent heuristics have been proposed to limit the search in the set of concurrent inter-
leavings, to a manageable subset. Focusing on interleavings that contain races [17,15,7]
or violate atomicity [14,22,19,23,13] are examples of these heuristics. These techniques
have been successful in finding bugs in concurrent programs. However, there are cur-
rently two main limitations in concurrent testing techniques: (1) they do not include
any input generation mechanisms, and have to rely on a given set of inputs as a starting
point, and (2) they usually do not provide meaningful coverage guarantees to the tester
in the same sense that sequential testing tools provide various standardized coverage
guarantees.

Recent successful sequential testing tools, such as DART [8] and PEX [20], have
mostly overcome both limitations mentioned above. They employ symbolic execution
techniques to explore the space of possible inputs in a systematic way [11]. This enables
these tools to explore the program code (or code parts such as branches, statements, and

� Supported in part by the Austrian National Research Network S11403-N23 (RiSE) of the Aus-
trian Science Fund (FWF), and by the Vienna Science and Technology Fund (WWTF) grant
PROSEED.

T. Margaria and B. Steffen (Eds.): ISoLA 2012, Part I, LNCS 7609, pp. 372–387, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Bounded-Interference Sequentialization for Testing Concurrent Programs 373

sometimes even paths) in a systematic way by generating custom input values, which
in turn makes it possible for them to provide guarantees for standard code coverage
criteria such as branch coverage or statement coverage.

Most concurrency testing tools expect a set of inputs to be available as a starting point
for the testing process, and do not contain a mechanism to generate new inputs to use.
This has two important ramifications: (i) These techniques have to rely on the provided
input (or set of inputs) to have the potential to lead to existing program errors; otherwise,
errors will be overlooked. (ii) Since the input set is not generated in a systematic way,
the testing tool can hardly quantify the extent of coverage that the testing provides.
In fact, the latter problem goes beyond the input space for most concurrency testing
techniques, that scarcely perform a systematic exploration of the interleaving space of
concurrent programs, even if we overlook the input problem. By relying on a given set
of inputs, the best guarantee that they can provide is of the form: ”no errors exist in the
program if executions are limited to the selected set of interleavings (by the heuristic of
choice) and inputs are limited to the set which was used for testing”.

The goal of our work is to provide a systematic way of testing concurrent programs.
We introduce a new interleaving selection heuristic called bounded-interference, that
incrementally explores the space of concurrent program interleavings by increasing the
degree of interference from other threads. When a thread reads from a shared variable a
value written by another thread, we consider that an interference from the writer thread.
A remarkable property of bounded-interference is that, since it is defined from the point
of view of flow of data between threads (in contrast to the control-based notions such as
bounded context-switching), it can be very naturally incorporated into a setting in which
the search for the right input and the suitable interleaving can be conducted side by side.
This will allow our testing approach to provide a greater assurance of correctness and
reliability of the tested program, in the form of (clearly defined) coverage measures for
our testing approach. Moreover, we take advantage of the great progress that has been
made in sequential testing, by formulating the solution as sequentializaiton technique.
We transform the concurrent program (under test) into a sequential program that can be
tested using standard sequential testing tools. Our program transformation effectively
defers both the input generation and interleaving selection tasks to the sequential testing
tool, by effectively encoding both as inputs to the newly generated sequential program.
All interleavings with a certain degree of interference are encoded into the generated
sequential program, but the choice of which interleaving to follow is left as a choice
determined by values of newly introduced input variables. This way, we employ the
systematic testing algorithm of a sequential tester to achieve a more systematic testing
technique for concurrent programs.

The idea behind the program transformation is as follow. Consider a concurrent pro-
gram P consisting of two threads T and T ′. Let us assume that testing T sequentially
leads to no error, but composed with T ′, an error state can be reached in T . How can
T ′ help direct the execution of T into an error state? A natural scenario is that T ′

can write certain values to shared variables that let T pass conditional statements (that
would have been blocked otherwise) and execute down a path to an error state. One
can imagine that these values are injected into the sequential execution of T when the
shared variable reads are performed by T . This simple idea is the inspiration behind our

374 N. Razavi, A. Farzan, and A. Holzer

program transformation. We choose a number k, and then select k shared variable reads
in T to be the only ones among all reads of shared variable in T that are allowed to ob-
serve a value written by a write in T ′ (we call these reads non-local reads). This number
k, in a sense, indicates a measure of diversion from a fully sequential execution of T to-
wards a more concurrent execution and can be gradually incremented to find concurrent
bugs involving more interference from T ′, i.e. higher number of non-local reads. More-
over, we do not choose these k non-local reads a priori; the specific selection becomes
part of the resulting sequential program input and therefore, the sequential testing tool
has the freedom to choose different non-local reads (through input selection) that will
help find the error. Since the original program inputs (to P) are also preserved as inputs
to the sequential program, the sequential testing tool has the potential to find the bug
triggering values for these inputs as well.

We have implemented our program transformation technique into a prototype tool
and tested a benchmark suite of concurrent C# programs. We found all previously
known errors in these benchmarks, and found some new errors all within a very rea-
sonable time and for k ≤ 3.

In summary, the contributions of this paper are:

– A novel sequentialization approach tailored specifically towards testing concurrent
programs, which does not assume a fixed input for concurrent programs and pro-
vides coverage guarantees after the testing process is finished.

– A novel interleaving selection technique, called bounded-interference, based on
iteratively allowing more non-local reads, and the appropriate incorporation of this
idea so that a backend sequential testing tool can explore all possibilities for the
non-local reads and their corresponding writes, through the input generation.

– An effective way of encoding all feasible interleavings for a set of non-local reads
and their corresponding writes as a set of constraints, and the use of SMT solvers
to ensure the soundness of the approach (every error found is a real error) and to
accommodate the reproducibility of the errors found.

– A prototype implementation that confirms the effectiveness of the approach and
reports no false positives.

2 Motivating Examples

We use the Bluetooth driver (from [16]) as an example to illustrate the high level
idea behind the bounded-interference approach. Figure 1 shows a simplified model of
the Bluetooth driver. There are two dispatch functions called Add and Stop. Add
is called by the operating system to perform I/O in the driver and Stop is called
to stop the device. There are four shared variables: pendingIO, stoppingFlag,
stoppingEvent, and stopped. The integer variable pendingIO is initialized to
1 and keeps track of the number of concurrently executing threads in the driver. It is
incremented atomically whenever a thread enters the driver and is decremented atom-
ically whenever it exits the driver. The boolean variable stoppingFlag is initial-
ized to false and will be set to true to signal the closing of the device. New threads
are not supposed to enter the driver once stoppingFlag is set to true. Variable
stoppingEvent is initialized to false, and will be set to true after pendingIO

Bounded-Interference Sequentialization for Testing Concurrent Programs 375

becomes zero. Finally, stopped is initialized to false and will be set to true once the
device is fully stopped; the thread stopping the driver sets it to true after it is established
that there are no other threads running in the driver. Threads executing Add expect
stopped to be false (assertion at line l7) after they enter the driver.

Add Stop
vars: int status, pIO; vars: int pIO;
l1 : if (stoppingFlag) l′1 : stoppingFlag = true;
l2 : status = -1; l′2 : atomic {
l3 : else { l′3 : pendingIO--;
l4 : atomic{ pendingIO++; } l′4 : pIO = pendingIO; }
l5 : status = 0; } l′5 : if (pIO == 0)
l6 : if (status == 0) { l′6 : stoppingEvent = true;
l7 : assert(stopped==false); l′7 : assume(stoppingEvent==true);
l8 : //do work here } l′8 : stopped = true;
l9 : atomic {
l10 : pendingIO--;
l11 : pIO = pendingIO; }
l12 : if (pIO == 0)
l13 : stoppingEvent = true;

Fig. 1. The simplified model of Bluetooth driver [16]

Consider a concurrent program with two threads. Thread T executes Add and thread
T ′ executesStop. The assertion at l7 inAdd ensures that the driver is not stopped before
T starts working inside the driver. It is easy to see that this assertion always passes if T is
executed sequentially, i.e. without any interference from T ′. Therefore, if the assertion
at l7 is to be violated, it will have to be with some help from T ′, where a shared variable
read in T reads a value written by a write in T ′; we call these reads non-local reads.

We start by digressing slightly from the fully sequential execution of T , by letting
one read of a shared variable in T to be non-local. If the read from stoppingFlag in
T reads the value written by T ′ at l′1 then the assert statement at l7 is not reachable.
Selecting the read from pendingIO at l4 as the non-local read, forces the read from
stop in the assertion statement to read the initial value (i.e. false) and hence the assertion
will be successful. If we select the read from stopped in the assertion statement as a
non-local read (reading the value written by T ′ at l′8), then the read frompendingIO in
one of the threads has to be non-local as well. Therefore, the assertion cannot be violated
by making only one read non-local, and we decide to digress more by allowing two reads
of shared variables in T to be non-local.

With two non-local reads, the assertion can be falsified if the reads frompendingIO
at l4 andstopped at l7 read the values written byT ′ at l′3 and l′8, respectively. Moreover,
there exists a feasible interleaving (a real concurrent execution of the program) in which
all other reads (in both T and T ′) are local; the execution is l1, l′1, l′2, l′3, l′4, l3, l4, l5, l′5,
l′6, l′7, l′8, l6, l7.

We propose a sequentialization technique that for any k, transforms the concurrent
program P , consisting of two threads T and T ′, into a sequential program ̂Pk such that
every execution of ̂Pk corresponds to an execution of P in which exactly k reads of T
are non-local, while all other reads are local. We then use a sequential testing tool to
test ̂Pk for errors such as violations of assertions. In the above example, no errors can
be found in ̂P1, but the assertion is violated in ̂P2. We will make these notions precise
in the remainder of this paper.

376 N. Razavi, A. Farzan, and A. Holzer

3 Preliminaries

Sequential and Concurrent Programs. Figure 2 (a) presents the syntax of simple bounded
sequential programs for the purpose of the presentation of ideas in this paper. We con-
sider bounded programs while loops are unrolled for a bounded number of times. We
handle dynamically allocated objects in our implementation, but for simplicity here we
will limit the domains to integer and boolean types.

< seq pgm > ::= < input decl >< var list >< method >+

< input decl > ::= inputs: < var decl >∗

< var list > ::= vars: < var decl >∗

< var decl > ::= int x; | bool x; | int[c] x; | bool[c] x;
(a) < method > ::= f(x) { < var list >< stmt >; }

< stmt > ::= < stmt >;< stmt > | < simple stmt > | < comp stmt >
< simple stmt > ::= skip | x =< expr > | x = f(x) | return x | assume(b expr) | assert(b expr)
< complex stmt > ::= if(< b expr >) {< stmt >;} else{< stmt >;}
< conc pgm > ::= < input decl >< var list >< init >< seq pgm >+

(b) < init > ::= < method >
< complex stmt > ::= if (< b expr >) { < stmt >; } else { < stmt >;} | lock (x) {< stmt >;}

Fig. 2. (a) Sequential (b) Concurrent Program Syntax

A sequential program has a list of inputs, a list of variables, and a list of methods that
access the inputs and variables. We assume that every sequential program has a method,
named main, from which it starts the execution. Each method has a list of input param-
eters, a list of local variables, and a sequence of statements. Statements are either simple
(i.e. skip, assignment, call-by-value function call, return, assume, and assert) or complex
(i.e. conditional statement).

We define a concurrent program (Figure 2 (b)) to be a finite collection of sequen-
tial programs (called threads) running in parallel. The sequential programs share some
variables, and their inputs are included in the inputs of the concurrent program. Here,
definition of the complex statement is augmented by lock statements as a synchroniza-
tion mechanism for accessing shared variables. A lock statement consists of a sequence
of statements which are executed after acquiring a lock on a shared variable x.

Each concurrent program has a method, init for initializing shared variables, and
also for linking the inputs of the concurrent program to the inputs of the individual se-
quential programs (threads). The semantics of locking mechanism is standard; whenever
a thread obtains a lock on a variable, other threads cannot acquire a lock on the same vari-
able unless the thread releases the lock.

Program Traces. A concurrent program has a fixed number of threadsT ={T1, T2, .., Tn}
and a set of variables shared between the threads, represented bySV . We also fix a subset
of shared variables to be lock variables L ⊂ SV . The actions that a thread Ti can per-
form on the set of shared variables SV is defined as: ΣTi = {Ti:rd(x), Ti:wt(x)| x ∈
SV − L} ∪ {Ti:acq(l), Ti:rel(l)| l ∈ L}.

Actions Ti : rd(x) and Ti : wt(x) are read and write actions to shared variable x,
respectively. Action Ti:acq(l) represents acquiring a lock on l and action Ti:rel(l) rep-
resents releasing a lock on l by thread Ti. We define Σ =

⋃

Ti∈T ΣTi as the set of all
actions. A word in Σ∗, which is an action sequence, represents an abstract execution of
the program. The occurrence of actions are referred to as events in this paper. An event,

Bounded-Interference Sequentialization for Testing Concurrent Programs 377

ei, is a pair 〈i, a〉 where i is a natural number and a is the action performed. A program
trace is a word 〈1, a1〉 . . . 〈m, am〉 where a1 . . . am is an action sequence of the program.
A feasible trace of a concurrent program is a trace that corresponds to a real execution
of the program. Any feasible trace respects the semantics of locking (is lock-valid), and
implies a partial order on the set of events in the trace, known as program order. These
are captured by the following two definitions (σ|A denotes the corresponding action se-
quence of σ projected to the letters in A).

Definition 1 (Lock-validity). A trace σ ∈ Σ∗ is lock-valid if it respects the semantics
of the locking mechanism. Formally, let Σl = {Ti: acquire(l), Ti: release(l) | Ti ∈ T }
denote the set of locking actions on lock l. Then σ is lock-valid if for every l ∈ L, σ|Σl

is a prefix of
[⋃

Ti∈T (Ti:acquire(l) Ti:release(l))
]∗

Definition 2 (Program Order). We define a total order on the set of events of each
thread Ti, represented by �i. For any ej , ek ∈ E, if ej = 〈j, a〉 and ek = 〈k, a〉 belong
to thread T and j ≤ k, then ej �i ek. The union of the total orders in the threads form
the program order �= ∪Ti∈T �i.

4 From Concurrent to Sequential Programs

Let P be a bounded concurrent program consisting of two threads T and T ′, with an
input set I . The goal is to check if the shared memory values produced by T ′ can be
used to direct the execution of T to an error state. Given k, the number of non-local
reads of shared variables in T , we transform P into a sequential program ̂Pk, with an
input set ̂Ik where I ⊂ ̂Ik. Every execution of ̂Pk corresponds to at least one execution
of P with exactly k non-local reads in T that observe values written by T ′ while all
other reads are local. As we explain in Section 4.1, once k is fixed, there is a choice of
which k reads to choose in T and which k writes to choose as their corresponding writes
in T ′. Program ̂Pk takes all of these choices as inputs. This means that any sequential
testing tool that explores the input space to expose bugs will naturally try all possible
combinations (within computation limits) to find the one leading to a bug.

T

feasibility
check

feasibility
check

feasibility
check

T ′

store

first
non-local

read

last
paired
write

store
x′

load
x′

store
y′

z′

load
z′

load
y′

(1)

(2)

(3)

(4)(5)

write x′

write y′

write z′

read x

read y

read z

The Figure on the right demonstrates
the high level idea behind our transfor-
mation. The sequential program ̂Pk has
two copies of shared variables; each thread
reads/writes on its own copy. The dashed
path in the figure illustrates how ̂Pk sim-
ulates the executions of P with k non-
local reads in T . First, ̂Pk simulates the
execution of T up to the first non-local
read specified by the inputs (part (1) in
the Figure). It then stops simulating T ,
and starts simulating the execution ofT ′

from the beginning until the first lock-free point where all writes that are supposed to
produce values for non-local reads have occurred (parts (2) and (3)). Since T ′ is being
executed using its own copy of shared variables, we need to remember the values written
by such paired writes in some auxiliary variables and later load these values while the

378 N. Razavi, A. Farzan, and A. Holzer

corresponding non-local reads are being performed. Then, ̂Pk goes back to simulating
T , retrieving the value stored in the corresponding auxiliary variable as each non-local
read is being performed (parts (4) and (5)).

Note that for some pairs of non-local reads and writes specified by the inputs of ̂Pk

there may not exist any corresponding feasible trace of P . Therefore, we have to ensure
that there exists a feasible trace of P which (1) consists of the same events as in the
execution of ̂Pk, (2) observes for each non-local read in T the value written by the cor-
responding write in T ′, and (3) where all reads other than the non-local reads are indeed
local. To achieve this, all global events (accesses to shared variables, and synchroniza-
tion events) are logged during the execution of ̂Pk, and a set of constraints is generated
that corresponds to the existence of a feasible trace. Every time that T performs a read
from a shared variable, we use a call to an SMT solver to check for the satisfiability of
these constraints (these points are marked as feasibility checks in Figure 4). If the feasi-
bility check passes, it means that there exists a trace, with the same set of global events,
in which the previous non-local reads are paired with the corresponding writes, and all
other reads are paired with local writes. In this case, the execution of ̂Pk continues. Oth-
erwise, the execution is abandoned to prevent exploring unreachable states. Note that
the feasible trace may be different from the illustrated trace in Fig. 4 but since the inter-
ferences are limited to the non-local reads, the state of the program after passing each
feasibility check in the illustrated trace would be the same as the state of the program in
the corresponding feasible trace at that point. Therefore, it is just enough to ensure the
existence of a feasible trace to be able to proceed the execution soundly.

In the remainder of this section, we precisely define the transformation that was in-
formally described here.

4.1 Transformation Scheme

The Figure below illustrates the sequential program ̂Pk constructed based on P con-
sisting of two threads T and T ′. We assume that both T and T ′ are bounded sequential
programs, and therefore, all reads from shared variables in T and all writes to shared
variables in T ′ can be enumerated and identified. The input set of ̂Pk consists of I (in-
puts of P), and two arrays, rds and wrts, of size k where rds[i] stores the id of the ith

non-local read in T and wrts[i] stores the id of the write in T ′ which is supposed to
provide a value for rds[i]. These two arrays determine what reads in T will be non-local
and what writes in T ′ will provide the values for them.

inputs: I; int[k] rds, wrts; main() { init() {
vars: G; G′; init(); //read-write assumptions
int[k] vals; bool allWsDone ; τ [T]; ...
bool[k] rDone, wDone; } initialize G and G′;

}

The sequential program
̂Pk has two copies of shared
variables, G and G′, so
that T and T ′ operate on
their own copy. Variable vals is an array of size k, where vals[i] stores the value writ-
ten by wrts[i]. There are also two arrays of size k, named rDone and wDone such that
rDone[i] andwDone[i] indicate whether the ithnon-local read and its pairing write have
occurred, respectively. The elements of these arrays are initialized to false.wDone[i] and
rDone[i] become true when the write wrts[i] and the read rds[i] are performed, respec-
tively. Later, we will explain how these arrays are used to ensure that the corresponding
reads and writes show up in the execution of ̂Pk.

Bounded-Interference Sequentialization for Testing Concurrent Programs 379

As mentioned earlier, not all values provided by inputs for rds and wrts arrays are
acceptable. Therefore, the validity of the values of rds and wrts is ensured through a
set of assumption statements in the init method, first. The assumptions ensure: (1) the
non-local reads are ordered, i.e. rds[i]< rds[i+1] for 1 ≤ i < k, and (2) for each non-
local read (rds[i]) from shared variable x, the pairing write candidate (wrts[i]) should
write to the same variable x. Note that in our transformation scheme, one always has the
option of limiting the search space by allowing only a subset of reads in T to be non-
local, and also by selecting only a subset of writes to the corresponding variable in T ′

as candidates for each non-local read.
The sequential program ̂Pk first calls the init method which ensures that rds and

wrts satisfy the above assumptions and initializes both G and G′ according to the init
method of P . Then, ̂Pk executes the transformed version of T (represented by τ [T]).
The transformed versions of T and T ′ use functions append and isFeasible that are
required to check the existence of a feasible trace. Function append adds to a log file the
information about a global event, i.e. the identifier of the thread performing it, its type
(read, write, lock acquiring and releasing), and the corresponding variable. At any point
during the execution of ̂Pk, this log provides the exact sequence of global events that
occurred up to that point. Function isFeasible checks whether the log can correspond to
a feasible trace of programP (explained in Section 4.2). Figure 3 gives the transformation
function τ for the statements of T .

Transformation Scheme for T . The goal of the transformation is to let each read of a
shared variable in T be a candidate for a non-local read, observing a value provided by
a write in T ′. When handling a (boolean) expression, we perform for each read r from
a shared variable x a case distinction:

– r is selected as one of the non-local reads by inputs; in this case we distinguish the
first such read (rds[1]) from all the other non-local reads, since T ′ has to be called
before the first of the non-local reads is performed (see the dashed schedule presented
in Figure 4). If r is the first non-local read, i.e., r == rds[1] is true, the transformed
version of T ′ is called first (represented by τ ′[T ′]). Then, by assume(allWsDone)
we ensure that all writes in wrts occurred during the execution of τ ′[T ′]. If r is the
jth non-local read (1 ≤ j ≤ k), thenxwill read the value vals[j]written bywrts[j].
Then, rDone[j] is set to true (which is required when read rds[j+1] is performed)
and we log a write to x and a read from x to simulate a local write to x just before it
is read. The read rds[j] and the write wrts[j] are now paired, and we need to ensure
that a feasible concurrent trace exists. Therefore, we call isFeasible(log) and stop
the execution if no such feasible concurrent trace can be found.

– r is treated as a local read, since r doesn’t belong to the input set rds; nothing needs
to be done in this case other than calling isFeasible(log), to make sure that a con-
current trace in which this read is paired with the most recent local write (while all
previous non-local reads are paired with the corresponding writes) exists.

For each assignment statement we first transform the right-hand side expression, execute
the assignment, and in case we write to a shared variable, we log a write event afterward.
For a lock statement on variable x, a lock acquire and lock release event are logged just
before and after the transformation of the lock body, respectively. Assume and assert

380 N. Razavi, A. Farzan, and A. Holzer

Statement/expr S Transformation τ [S] Statement/expr S Transformation τ ′[S]
(b)expr //for each read r = read(x) in x = (b)expr τ ′[(b)expr];

//(b)expr and x is a shared var (x is a local variable) x = (b)expr′

x = (b)expr τ ′[(b)expr];
if (r == rds[1]) { (x is a shared var x′ = (b)expr′;
τ ′[T ′]; where w is the id if (w == wrts[1]) {
assume(allWsDone); of this write) vals[1] = x′;
x = vals[1]; wDone[1] = true;
rDone[1] = true; append(log, (T ′,WT, x, 1));
append(log, (T,WT, x, 1)); if (returnCondition()) return;
append(log, (T, RD, x, 1)); } else if (w == wrts[2]) {
assume(isFeasible(log)); vals[2] = x′;

} else if (r == rds[2]) { wDone[2] = true;
x = vals[2]; append(log, (T ′,WT, x, 2));
assume(rDone[1]); if (returnCondition()) return;
rDone[2] = true; }

append(log, (T,WT, x, 2));
.
.
.

append(log, (T, RD, x, 2)); else if (w == wrts[k]) {
assume(isFeasible(log)); vals[k] = x′;

} wDone[k] = true;

.

.

. append(log, (T ′,WT, x, k));
else if (r == rds[k]) { if (returnCondition()) return;
x = vals[k]; }
assume(rDone[k − 1]); (b)expr // for each read r = read(x) in
append(log, (T,WT, x, k)); // (b)expr where x is a shared var
append(log, (T, RD, x, k)); append(log, (T ′, RD, x));
assume(isFeasible(log)); lock(x){ S } append(log, (T ′, AQ, x));

} else { τ ′[S];
append(log, (T, RD, x)); append(log, (T ′, RL, x));
assume(isFeasible(log)); if (returnCondition()) return;

}
x = (b)expr τ [(b)expr]; assume(b expr) τ ′[b expr];
(x is a local var) x = (b)expr assume(b expr′)
x = (b)expr τ [(b)expr]; assert(b expr) τ ′[b expr];
(x is a shared var) x = (b)expr; assert(b expr′)

append(log, (T,WT, x)) if(b expr){S1} τ ′[b expr];
lock(x){S} append(log, (T,AQ, x)); else{S2} if(b expr′){τ ′[S1]}

τ [S]; else{τ ′[S2]}
append(log, (T,RL, x)) S1;S2 τ ′[S1]; τ ′[S2]

assume(b expr) τ [b expr]; skip skip
assume(b expr)

assert(b expr) τ [b expr];
assert(b expr)

if(b expr){S1} τ [b expr];
else{S2} if(b expr){τ [S1]}

else{τ [S2]}
S1;S2 τ [S1]; τ [S2]
skip skip

Fig. 3. Transformation scheme for T and T ′

statements remain the same unless we transform the corresponding boolean expressions
before these statements. Analogously, we transform conditional statements as well as
sequences of statements. Skip statements stay unchanged.

Transformation Scheme for Statements in T ′. The transformed program τ ′[T ′], which
is called from τ [T] before the first non-local read is performed, is executed until the first
lock-free point in which all writes specified inwrts have occurred. Note, log contains all
information necessary to determine which locks are held at any point in the execution. We
continue the execution ofT ′ up to a lock-free point after the last write inwrts to increase
the possibility of finding a feasible trace, by having the option to release some locks
before context-switching to T . The function returnCondition , used in τ ′[T ′], returns

Bounded-Interference Sequentialization for Testing Concurrent Programs 381

true if T ′ is at a lock-free point and all writes inwrts were performed (returnCondition
sets the flag allWsDone accordingly). As mentioned before,T ′ operates on its own copy
of shared variables,G′. For each shared variable x, let x′ denote the corresponding copy
for thread T ′ and let (b)expr′ be a (boolean) expression in which each shared variable
x is replaced by x′.

If an assignment statement writes to a shared variable, we first check whether the write
is in wrts or not. In case the write is supposed to provide a value for the jth non-local
read, i.e.w == wrts[j] holds, the value of the shared variable is stored in vals[j] and the
flag wDone[j] is set to true. Then, a write event to the corresponding shared variable is
logged and function returnCondition is called to return when T ′ gets to an appropriate
point. The transformation of lock statements inT ′ is the same as inT unless after logging
a lock release event we call function returnCondition to check whether we should stop
executing T ′. For assert, assume, assignment, and conditional statements, we log a read
event for each read from a shared variable in the corresponding expressions just before
these statements.

4.2 Checking Feasibility of Corresponding Concurrent Runs

The log ρ is used to check for the existence of a feasible trace of the concurrent program,
in which all reads other than the non-local reads are reading values written by local writes
while each non-local read rds[i] in ρ is paired with the write wrts[i] for 1 ≤ i ≤ k′,
where k′ is the number of non-local reads appearing in ρ and k′ ≤ k. We generate a
constraint, PO ∧ LV ∧ RW, encoding all such feasible traces, consisting of the events
that appear in ρ, and use SMT solvers to find an answer. For each logged event e, an
integer variable te is considered to encode the timestamp of the event. The constraints
required for such feasible traces are captured using timestamps.

Program Order (PO): A feasible concurrent trace has to respect the order of events
according to each thread. Let ρ|T = e1, e2, ..., em and ρ|T ′ = e′1, e′2, ..., e′n be the se-
quence of events in ρ projected to threads T and T ′, respectively. The constraint PO =
∧i=m−1

i=1 (tei < tei+1)
∧i=n−1

i=1 (te′i < te′i+1
), ensures that the order of events in T and

T ′ is preserved.

Lock-Validity (LV): In a feasible concurrent trace, threads cannot hold the same lock
simultaneously. The set of events between a lock acquire event eaq and its correspond-
ing lock release event erl in the same thread is defined as a lock block, represented by
[eaq, erl]. We denote the set of lock blocks of a lock l in threads T and T ′ by Ll and L′

l,
respectively. The following constrains ensure that two threads cannot simultaneously
be inside a pair of lock blocks protected by the same lock, by forcing the lock release
event of one of the lock blocks to happen before the lock acquire event of the other:

LV =
∧

lock l

∧

[eaq ,erl]∈Ll

∧

[e′aq,e
′
rl]∈L′

l

(

terl < te′aq
∨ te′rl < teaq

)

Read-Write (RW): These constraints ensure that reads and writes are paired as re-
quired. Note that in the transformation, whenever the non-local read rds[i] is performed,
we inject a new write event by T in the program and log it before logging a read event

382 N. Razavi, A. Farzan, and A. Holzer

from the corresponding variable. This is to simulate the writewrts[i] as to be a local write
in T and hence the consequent reads of the same variable in T will be paired locally with
this new local write. Therefore, it is sufficient to ensure that each read is paired with a
local write (RW1 expresses these constraints). However, to guarantee that an injected
write eventw simulates the corresponding write w′ in T ′, we need to ensure that w′ hap-
pens before w and no other write to the corresponding variable should occur between
these two writes (RW2 encodes this constraint).

We define an x-live block, [ew, er], to be a sequence of events in one thread starting
from a write event ew (to variable x) until the last read event (from x) er, before the next
write to x by the same thread. An x-live block should execute without interference from
any write to x by the other thread so that all the reads (of x) in it are paired with the write
event ew. For each x-live block [ew, er] and every write e′w to x by the other thread, e′w
should happen either before the write event ew or after the read event er. Let Lvx and
Lv ′

x represent the set of all x-live blocks in T and T ′, and Wx and W ′
x represent the set

of all write events to x in T and T ′, respectively. Then RW1 =

∧

var x

[
∧

[ew,er]∈Lvx

∧

e′w∈W ′
x

(
te′w <tew ∨ ter <te′w

)∧
∧

[e′w ,e′r]∈Lv′x

∧

ew∈Wx

(
tew <te′w ∨ te′r <tew

)
]

are true if none of the x-live blocks are interrupted. We also need constraints to ensure
rds[i] observes the value written by wrts[i]. Let wrts[i] = e′w,i, and assume that ew,i is
the new local write event injected during the transformation of rds[i]. Suppose er is a read
in T after ew,i such that [ew,i, er] forms an x-live block. Let e′′w,i be the next write event
to x after e′w,i in T ′. Then, e′w,i should happen before the x-live block, [ew,i, er], while

forcing e′′w,i to happen after the block:RW2 =
∧

[ew,i,er]

(

te′w,i
<tew,i ∧ ter <te′′w,i

)

.

Finally, RW = RW1 ∧RW2.

4.3 Soundness and Reproducibility

Here, we discuss the soundness of our sequentialization, i.e. every error state in the re-
sulting sequential program corresponds to an error in the concurrent program. Let P be
a concurrent program with threads T and T ′, and ̂Pk be the corresponding sequential
program which allows k reads in T to read values written by T ′. The soundness of our
technique is stated in the following theorem:

Theorem 1. Every error in the sequential program ̂Pk corresponds to an error in the
concurrent program P , i.e. there exists a feasible trace in P which leads to the error.

In case an error is found in ̂Pk, the SMT solution from the latest feasibility check can
be used to extract the bug-triggering concurrent trace in P , and hence effectively repro-
ducing the error.

5 Concurrency Bug Coverage

The ultimate goal of our sequentialization technique is using standard sequential testing
tools to test ̂Pk to find errors inP . Here, we discuss what coverage guarantees our testing

Bounded-Interference Sequentialization for Testing Concurrent Programs 383

approach can provide, based on the assumptions that can be made about the coverage
guarantees that the backend sequential testing tool provides. We characterize a class of
bugs that our tool can fully discover, if the underlying sequential tool manages to provide
certain coverage guarantees.

k-coupled Bugs. We define a function λ that given a trace σ and a read event e (from a
shared variable x) in σ, returns the identifier of the thread that has performed the most
recent write to the same shared variable before e. When there is no such write, value init
is returned by λ.

A trace σ is T -sequential if all reads in thread T are local (i.e. either read the initial
values or values written by writes in T). Formally, for all event e = 〈i, T : rd(x)〉 (see
Section 3 for the formal definition of events), we have λ(σ, e) ∈ {T , init}. A trace σ is
T -k-coupled if there are exactly k non-local reads in T , and all the other reads are local.
Formally, we have |{e = 〈i, T :rd(x)〉 : λ(σ, e) �∈ {T , init}}| = k.

Consider a concurrent program that consists of threads T and T ′. Let Δ be the set of
feasible traces which are T -k-coupled and T ′-sequential. We define the set of bugs that
can be discovered by testing all traces in Δ to be the k-coupled bugs in T .

Coverage Criteria. Let us consider some commonly used (by the state-of-the-art se-
quential testing tools) coverage criteria and discuss how these coverage criteria in the
underlying sequential testing tools can result in the coverage of all k-coupled bugs of
the concurrent programs by our technique.

First, we first discuss path coverage which gives us the strongest theoretical results.
Since path coverage is expensive to achieve, we also discuss control flow coverage which
is often used as the more practical alternative by testing tools.

The goal of path coverage is to explore all possible program paths. Several testing
tools such as DART [8], EXE [6], and CUTE [18] aim to provide full path coverage. The
following theorem formalizes the bug coverage guarantees provided by our technique:

Theorem 2. Let P be a concurrent program and ̂Pk be the corresponding sequential
program allowing k non-local reads in thread T . Suppose that a sequential testing tool,
SEQTOOL, provides full path coverage for ̂Pk. Then, SEQTOOL can discover allk-coupled
bugs in T .

Achieving a full path coverage can be expensive in practice. Therefore, some testing
tools focus on control-flow coverage, and its variations such as basic block coverage
and explicit branch coverage. Control-flow coverage is in general weaker than full path
coverage in the sense that it can miss some of the bugs that can be caught by targeting
full path coverage. Targeting control-flow coverage for the resulting sequential programs
may lead to overlooking some feasible pairings of read-writes since not all feasible paths
are guaranteed to be explored. We used PEX [20], which is based on control-flow cov-
erage, as the sequential testing tool in our experiments and managed to find all known
bugs and some new bugs.

6 Experiments

We have implemented our approach into a prototype tool for concurrent C# programs.
The source-to-source transformation is performed by augmenting a C# parser,

384 N. Razavi, A. Farzan, and A. Holzer

CSPARSER [1], to generate the corresponding sequential programs using the proposed
sequentialization method in Section 4. We used Microsoft PEX [20] as our backend se-
quential testing tool and Z3 [3] as the underlying SMT solver while searching for feasible
traces.

We performed experiments on a benchmark suite of 15 programs. Table 1 contains
information about the programs, their sizes (number of lines of code), and the results
of tests. Bluetooth is simplified model of the bluetooth driver presented in Figure 1.
Account is a program that creates and manages bank accounts. Meeting is a sequen-
tial program for scheduling meetings and here, like in [10], we assumed that there are
two copies of the program running concurrently. Vector, Stack, StringBuffer,
and Hashset are all classes in Java libraries. To test these library classes, we wrote
programs with two threads, where each thread executes exactly one method of the cor-
responding class. Series, SOR, and Ray are Java Grande multi-threaded benchmarks
[5]. We used a Java to C# converter to transform the corresponding Java classes to C#.
FTPNET [4] is an open source FTP server in C# and Mutual is a buggy program in
which threads can be in a critical section simultaneously due to improper synchroniza-
tion.

Table 1. Experimental Results. (*: new bugs
found)

Program #Lines 1-coupled 2-coupled 3-coupled Total
Bugs Bugs Bugs Time[s]

Bluetooth 55 0 1 0 26
Account 103 1 0 0 28
Meeting 101 1 0 0 16
Vector1 345 0 1 0 104
Vector2 336 0 1 0 80
Vector3 365 0 1 0 102
Stack1 340 0 1 0 100
Stack2 331 0 1 0 74
Stack3 361 0 1 0 98

HashSet 334 1 0 0 22
StringBuffer 198 1 0 0 12

Series 230 1 0 0 10
SOR 214 0 1 0 490
Ray 1002 1 0 0 18

FTPNET 2158 2∗ 0 0 56
Mutual 104 1 0 0 10

In Table 1, we present the number of
k-coupled bugs (i.e. bugs caught by al-
lowing k non-local reads) found for 1 ≤
k ≤ 3 in each program. The bug in
Account resides in the transfer method
which acquires a lock on the account trans-
ferring money without acquiring the corre-
sponding lock on the target account. The
bug in Meeting corresponds to the fact
that there are two versions of a sequen-
tial program running concurrently without
using any synchronization mechanism to
prevent the threads from interfering each
other. The bugs/exceptions in Java library
classes and Mutual are due to improper
synchronization of accesses to shared ob-
jects. Series and SOR seems to be bug-
free for two threads. Therefore, we injected bugs in them by fiddling with the synchro-
nization and our approach was able to catch them. The bug in Ray, corresponds to a data
race on the shared variablechecksum1. InFTPNETwe found two previously unknown
bugs that are due to ignoring the situations in which a connection can be closed before
a file transformation is completed.

It is important to note that all bugs were found by allowing only one or two reads to
be non-local. In all cases, no new error was found when k was increased to 3. Since these
benchmarks have been used by other tools before, we know of no (previously found) bugs
that were missed by our tool. Moreover, we found new bugs (that were not previously
reported) in FTPNET. The last column in Table 1 represents the total time, for all 1 ≤
k ≤ 3, spent by our tool. We can see that in many cases the bugs were found in less than

Bounded-Interference Sequentialization for Testing Concurrent Programs 385

one minute. On most benchmarks (exceptSOR) our tool spent less than two minutes. For
SOR, the majority of time (about 7 minutes) was spent testing for 3-coupled bugs. Note
that since this type of testing can be done in batch mode, as long as the full search is
successfully performed, the speed of the process is not a great concern. The reason that
it takes longer to test SOR is that there are many shared variables reads (more than 100)
and many options for the coupling of writes for each read.
Mutual is a good example of the distinction between the idea of bounded context-

switch and bounded interference. Here, 3 context switches are required to discover a
bug while our approach can find the bug by considering only one non-local read. In
fact, CHESS [12] and Poirot [2] (tools based on bounded context-switching) failed to
catch the bug with 4GB of memory within 15 minutes while our approach found the
bug in a few seconds. However, one can find examples in which bounded context-switch
approaches perform better. We believe that these two approaches are not comparable and
are complementary as interleaving selection heuristics.

7 Related Work

Sequentialization: There are several proposed approaches on sequentializing concur-
rent programs with the aim of reducing verification of concurrent programs to verifica-
tion of sequential programs. Lal and Reps [10] showed that given a boolean concurrent
program with finitely many threads and a bound k, a boolean sequential program can be
obtained that encodes all executions of the concurrent program involving only k context-
rounds. Lahiri et al [9] adapted the sequentialization of Lal and Reps for C. They used
a verification condition generator and SMT solvers instead of a boolean model checker.
A lazy sequentialization for bounded context switches was proposed by La Torre et al
[21] that requires multiple execution of each context. None of these techniques can be
used to sequentialize and then test a concurrent program using a sequential tester. In
fact, these sequentialization techniques are aimed to be used in static analysis (as op-
posed to testing). However, if one still chooses to use them for testing, there are various
complications; some [10,21] require fixed inputs (to guarantee the correctness of their
transformation) and will not function properly if the input changes, some [10] may pro-
duce unreachable states in their search and could generate false-positives, and some only
work for a small number of context switches [16].

Interleaving Selection: To tackle the interleaving explosion problem, recent research
has focused on testing a small subset of interleavings that are more probable in exposing
bugs. The CHESS tool [12] from Microsoft, for instance, tests all interleavings that use
a bounded number preemptions. RaceFuzzer [17] and CTrigger [14] use race/atomicity-
violation detection results to guide their interleaving testing. We use a different inter-
leaving selection scheme that incrementally increases the number of non-local reads to
explore more interleavings. More generally, these detectors are based on a single exe-
cution of the program provided a fixed input, while we have the option of finding the
right input. Also, they suffer from false-positives while our approach generates no false-
positives.

The ConSeq tool [24] detects concurrency bugs through sequential errors. Although
the idea of forcing critical reads to read different values in ConSeq looks similar to our

386 N. Razavi, A. Farzan, and A. Holzer

approach, there are major differences between them: ConSeq works on programs with
fixed inputs, ConSeq only considers a single execution while we work at program level,
and, ConSeq is not precise (ignoring data) and the executions may diverge from the plan,
while we provide guarantees (modulo the back-end sequential testing tool) to simulate
all feasible concurrent executions in a certain category.

References

1. http://csparser.codeplex.com/
2. http://research.microsoft.com/en-us/projects/poirot/
3. http://research.microsoft.com/en-us/um/redmond/projects/z3/
4. http://sourceforge.net/projects/ftpnet/
5. http://www.epcc.ed.ac.uk/research/java-grande/
6. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: Exe: Automatically gener-

ating inputs of death. ACM Trans. Inf. Syst. Secur. 12, 10:1–10:38 (2008)
7. Flanagan, C., Freund, S.N.: Fasttrack: efficient and precise dynamic race detection. Commun.

ACM 53, 93–101 (2010)
8. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. In: PDLI,

pp. 213–223. ACM (2005)
9. Lahiri, S.K., Qadeer, S., Rakamarić, Z.: Static and Precise Detection of Concurrency Errors

in Systems Code Using SMT Solvers. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 509–524. Springer, Heidelberg (2009)

10. Lal, A., Reps, T.: Reducing concurrent analysis under a context bound to sequential analysis.
Form. Methods Syst. Des. 35, 73–97 (2009)

11. Miller, J.C., Maloney, C.J.: Systematic mistake analysis of digital computer programs. Com-
mun. ACM 6, 58–63 (1963)

12. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding and repro-
ducing heisenbugs in concurrent programs. In: OSDI, pp. 267–280 (2008)

13. Park, C.-S., Sen, K.: Randomized active atomicity violation detection in concurrent programs.
In: Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, SIGSOFT 2008/FSE-16, pp. 135–145. ACM, New York (2008)

14. Park, S., Lu, S., Zhou, Y.: Ctrigger: exposing atomicity violation bugs from their hiding
places. In: ASPLOS, pp. 25–36 (2009)

15. Pozniansky, E., Schuster, A.: Multirace: efficient on-the-fly data race detection in multi-
threaded c++ programs: Research articles. Concurr. Comput.: Pract. Exper. 19, 327–340
(2007)

16. Qadeer, S., Wu, D.: Kiss: keep it simple and sequential. SIGPLAN Not. 39, 14–24 (2004)
17. Sen, K.: Race directed random testing of concurrent programs. In: PLDI, pp. 11–21 (2008)
18. Sen, K., Agha, G.: CUTE and jCUTE: Concolic Unit Testing and Explicit Path Model-

Checking Tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 419–423.
Springer, Heidelberg (2006)

19. Sorrentino, F., Farzan, A., Madhusudan, P.: Penelope: weaving threads to expose atomicity
violations. In: FSE 2010, pp. 37–46. ACM (2010)

20. Tillmann, N., de Halleux, J.: Pex–White Box Test Generation for.NET. In: Beckert, B.,
Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg (2008)

21. La Torre, S., Madhusudan, P., Parlato, G.: Reducing Context-Bounded Concurrent Reachabil-
ity to Sequential Reachability. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 477–492. Springer, Heidelberg (2009)

http://csparser.codeplex.com/
http://research.microsoft.com/en-us/projects/poirot/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://sourceforge.net/projects/ftpnet/
http://www.epcc.ed.ac.uk/research/java-grande/

Bounded-Interference Sequentialization for Testing Concurrent Programs 387

22. Wang, C., Limaye, R., Ganai, M., Gupta, A.: Trace-Based Symbolic Analysis for Atomicity
Violations. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 328–342.
Springer, Heidelberg (2010)

23. Yi, J., Sadowski, C., Flanagan, C.: Sidetrack: generalizing dynamic atomicity analysis. In:
PADTAD 2009, pp. 8:1–8:10. ACM, New York (2009)

24. Zhang, W., Lim, J., Olichandran, R., Scherpelz, J., Jin, G., Lu, S., Reps, T.: Conseq: detecting
concurrency bugs through sequential errors. In: ASPLOS, pp. 251–264 (2011)

	Bounded-Interference Sequentialization for Testing Concurrent Programs
	Introduction
	Motivating Examples
	Preliminaries
	From Concurrent to Sequential Programs
	Transformation Scheme
	Checking Feasibility of Corresponding Concurrent Runs
	Soundness and Reproducibility

	Concurrency Bug Coverage
	Experiments
	Related Work
	References

