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ABSTRACT
In this paper, we describe con2colic testing — a systematic testing
approach for concurrent software. Based on concrete and symbolic
executions of a concurrent program, con2colic testing derives in-
puts and schedules such that the execution space of the program
under investigation is systematically explored. We introduce inter-
ference scenarios as key concept in con2colic testing. Interference
scenarios capture the flow of data among different threads and en-
able a unified representation of path and interference constraints.
We have implemented a con2colic testing engine and demonstrate
the effectiveness of our approach by experiments.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Verification, Security

Keywords
Testing, Concurrency, Concolic, Interference

1. INTRODUCTION
Testing and bug finding for concurrent programs has been a very

active area of research in recent years. There is an array of tools
that successfully discover errors in concurrent programs by using a
wide range of heuristic techniques that have been developed to alle-
viate the interleaving explosion problem that is inherent in analysis
of concurrent programs. From a classical point of view, testing
(sequential program testing, to be more exact) techniques are of-
ten coupled with a notion of coverage that the technique guaran-
tees. Various coverage criteria have been introduced for sequential
program testing over the years. Existing concurrency testing tech-
niques can be divided into three categories of coverage guarantees
(on program runs, inputs, code, assertions, etc.) that they provide:
(i) No specific coverage guarantees: heuristic-based techniques
[25, 24, 22, 12, 4, 2, 17] are based on the philosophy of using
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heuristics to target interleavings that are more likely to contain
bugs, and testing as many of those as possible (under the given
time and space limitations). These techniques have been extremely
successful in finding bugs, but cannot provide any useful informa-
tion to the tester about what they have or have not missed during
testing, that is, they cannot provide any coverage guarantees.
(ii) Coverage guarantees over the space of interleavings: search
prioritization techniques [11, 5, 10, 14, 3] take a more coverage-
oriented approach than the techniques in category (i) by using ideas
like preemption-bounding [10], context-bounding [14, 11], depth-
bounding [5], and delay-bounding [3] to prioritize the search in
the space of all program interleavings. These prioritizations enable
us to quantify (in a meaningful way) how much of the interleav-
ing space is tested, a property that the heuristic-based search tech-
niques of category (i) do not provide. Search prioritization tech-
niques have been very successful in discovering bugs. For exam-
ple, CHESS [11] is a successful testing tool based on the context-
bounding search prioritization. Nevertheless, these techniques all
work based on a fixed (pre-determined) set of inputs and, therefore,
if a bug cannot be discovered on the given set of inputs, it will be
missed (see Section 3 for an example). Moreover, coverage guar-
antees are only over the space of program interleavings.
(iii) Coverage guarantees over the space of program inputs and
interleavings: There are also sequentialization techniques [8, 23,
15, 13, 16], that, based on context-bounding (or more recently other
types of search prioritization), translate a concurrent program to a
sequential program that has the same behaviour (up to a certain
context bound), and then analyze the sequential program (stati-
cally) for the property of interest. To check if (for example) an
assertion fails, the space of both inputs and interleavings (but up
to the bound) are searched. These techniques are excellent at dis-
covering bugs (they are incomplete, due to the bound, for proving
properties). However, the sequential programs generated are not
appropriate models to be used for testing (cf. Section 9). More
recently, there has been some focus on exploring input and inter-
leaving spaces of the program [19, 21] in a more systematic way.
However, these techniques only explore a subset of the program
behaviours, and therefore, cannot aim for maximum coverage.

We propose a concurrency testing technique that belongs in cat-
egory (iii). Our goal is to systematically test concurrent code such
that meaningful coverage guarantees can be provided. Concolic
(concrete and symbolic) testing [6, 1] is the gold standard of se-
quential testing with exactly the same point of view for sequential
programs. There, the set of possible inputs (the only parameter that
can change for sequential programs) is systematically explored to
provide standard code coverage guarantees, such as branch cover-
age, for the program and existing program errors are discovered
meanwhile. Our proposed approach can be viewed as the general-
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Figure 1: Overview of Con2colic Testing.

ization of concolic testing to concurrent programs, and hence we
call it concurrent concolic testing, or con2colic testing in short. In
Section 3, we introduce the running example of this paper. Target-
ing code coverage is a reasonable goal for a testing routine, since
it has been shown that most dynamic program errors can be en-
coded as program assertions [7] which can easily be tested/verified
through branch coverage. In con2colic testing, we aim to achieve
maximal code coverage for the program (time and space allowing).

It is important to note that almost all existing concurrency testing
techniques today use an under-approximation of the set of concur-
rent executions as a model for testing. Most techniques in category
(i), mentioned before, use one or several program runs as a basis
for predicting buggy runs. The techniques in category (ii), use the
set of program runs prioritized by one of the bounding techniques
discussed above, as the under-approximation of their choice. A
common limitation among most of these techniques is that their
under-approximate model is fixed a priori. Once they start test-
ing, they are limited to performing the tests within their bounded
model1. Specifically, all techniques that we list in category (iii)
(which is our focus) also have this limitation. Con2colic testing
does not have this limitation. Similar to concolic testing, we have
the program at our disposal and we can keep expanding the set of
behaviours that we consider for testing. Naturally, our approach is
also limited by the same constraints that hold concolic testing back,
namely the unavailability of external library functions or undecid-
able logics. This aspect of con2colic testing has a very important
consequence. We can theoretically guarantee completeness in the
limit; by this, we mean that if the testing algorithm runs for long
enough, then we can cover every program branch or declare it un-
reachable (again within the limitations of concolic testing).

We implemented the con2colic testing approach as a tool for
testing multi-threaded C code. We use a set of benchmarks found
in concurrency research literature to demonstrate the practical effi-
ciency of our approach in providing code coverage and finding bugs
in these benchmarks. In the next section, we provide an extended
overview of con2colic testing.

2. CON2COLIC TESTING
We start by a short overview of concolic testing, in order to high-

light what needs to be done to generalize it to concurrent programs.
Concolic testing has three main components: concolic execution
engine, path exploration, and realizability checker. The concolic
execution engine executes the program on a given input vector con-
colically (i.e. using both concrete and symbolic values for inputs)
and as a result, generates an execution trace that contains a se-
quence of path constraints on symbolic inputs (i.e. branch con-
ditions encountered during execution). The goal is to try to diverge
from the just observed execution by taking a different side of an en-
countered branch. The path exploration component, hence, selects
some of these branch conditions and negates them in order to guide
the execution along a different path. In the realizability checker,
1Category (ii) techniques do not have this limitation theoretically,
but in practice, only very small values for bounds are feasible.

SMT solvers are used to generate an input vector (if possible) that
would satisfy the new path constraints, with the understanding that
such an input vector is likely to force the program to execute a
different path. For a deterministic sequential program, each input
vector specifies a single path in the program.

The behaviour of a concurrent program, however, is not only
influenced by the input vector, but also by the interleaving of exe-
cution of threads. Each interleaving of execution of threads deter-
mines a pattern of interferences among the threads. An interference
occurs when a thread reads a value that is generated by another
thread. An interference could substantially change the course of
the local computation of a thread, because the value generated by
another thread may not be producible locally. Therefore, the local
behaviour (e.g. an assertion violation) followed by this interference
may never surface by pure sequential testing.

We propose con2colic testing (see Figure 1) as a concolic testing
approach tailored for concurrent programs. We introduce the con-
cept of interference scenario (formally defined in Section 5) as a
representation of a set of interferences among the threads. Concep-
tually, interference scenarios are the essential information that de-
fine the important scheduling constraints for a concurrent program
run; in other words, all runs with the same interference scenario
are behaviourally equivalent under the same input values. The con-
straint system for sequential concolic execution is also modified to
model interferences as well. The con2colic testing engine is then
able to produce schedules, in addition to input vectors, for con-
current programs. To accommodate this change, con2colic testing
has one more component (compared to sequential concolic testing)
called interference exploration, that navigates the space of all inter-
ference scenarios in a systematic way.

In con2colic testing, the execution engine is leveraged to execute
a concurrent program based on a given schedule. The important
part of the observed execution is stored in a forest data structure
(formally defined in Section 5) that keeps track of various interfer-
ence scenarios that have been explored already. The path explo-
ration component then decides what new scenario to try next, aim-
ing at covering previously uncovered parts of the program, based on
the set of interferences that have already been explored. For each
interference scenario, the realizability checker investigates whether
there exist a set of inputs and a feasible schedule such that a pro-
gram execution based on these inputs and this schedule results in
the same set of interferences. If the answer is yes, then the input
and the schedule are used in the next round of concolic execution.
Otherwise, the interference exploration component generates new
candidates by introducing new interferences.

Next, we briefly explain con2colic testing components and then
we present an exploration strategy that we implemented.
Concolic Execution. There are two input parameters for the con-
colic execution engine in con2colic testing: (1) an input vector and
(2) a schedule. The engine executes the concurrent program with
the given input vector and according to the given schedule. The
program is instrumented such that, during the execution, all im-
portant events are recorded and a symbolic trace is produced as a
result. These important events include synchronization operations,
accesses to shared variables, and path constraints. The symbolic
trace contains all the necessary information for the con2colic en-
gine to make progress. However, it excludes extra information,
such as details of local computations of threads, that can safely be
ignored in our approach to gain scalability and efficiency.
Path Exploration. The role of the path exploration routine is to
explore the input space for a new set of input values that may cover
the yet uncovered parts of the program. This module does not mod-
ify the set of interferences observed in the previous execution, and



only guides the execution down a different program path by negat-
ing the conditions of branches (observed along the last execution).
Therefore, the changes made in this phase are only changes of the
input values, and the essential structure of the schedule (i.e. inter-
ference scenario) remains the same.

Realizability Checker. The role of the realizability checker is to
determine if there is a set of inputs and a feasible schedule that
realize the given interference scenario. Each interference scenario
imposes two constraint systems: (1) constraints on input values that
are satisfied by all executions having the same interference scenario
and (2) constraints that define the temporal order of the events of
different threads (e.g., a read event of one thread has to occur af-
ter the corresponding write event of another thread). We formally
define the resulting constraint systems in Section 6. If both con-
straint systems have a solution, then an input vector and a schedule
can be inferred which give rise to a real program execution with
exactly the same set of interferences as defined in the interference
scenario. If at least one of the constraint systems does not have a
solution then the interference scenario has to change. To that end
the current interference scenario is passed to the interference ex-
ploration module (described below), such that a new one will be
derived from it. In Section 7.5, we will discuss how to prune the
exploration space (of interference scenarios) based on the reason
for the unsatisfiability of the constraint system.

Interference Exploration. Interference exploration produces new
interference scenarios from previously explored interference sce-
narios, essentially by introducing a new interference. This is done
by picking a read from the given interference scenario that is not in-
terfered by other threads, and an appropriate write from the forest,
and adding an interference from the write to the read to generate
a new interference scenario. Note that the occurrence of the write
event itself may be conditional on the existence of other interfer-
ences. Therefore, to preserve soundness, all of those interferences
should be included in the produced interference scenario as well.
We discuss the function of this module in detail in Section 7.

Exploration Strategy and Completeness. With the above com-
ponents, con2colic testing can exploit different search strategies
and heuristics to explore the interference scenario space. We have
implemented a search strategy that targets branch coverage (Sec-
tion 7). The search strategy then explores interference scenarios
with an increasing number of interferences. That is, all interfer-
ence scenarios with one interference are explored first, and then
interference scenarios with two interferences are explored, and so
on. A nice feature of this exploration strategy is that it is com-
plete (Theorem 7.3) modulo the exploration bound (and of course
concolic testing limitations).

3. RUNNING EXAMPLE
We use the buggy implementation of function addAll in Fig. 2

as a running example in this paper. The example is a variation of
the addAll method of the built-in class Vector in Java. The error
in it is a real error. We have rewritten it in C (our tool’s input
language) and simplified it a bit to make it suitable as a running
example. addAll has two input parameters which are pointers to
vector structures. It appends all elements of the second vector to the
end of the first vector. Each vector has three fields: data which
is an array holding vector elements, size which represents the size
of data, and cnt which keeps track of the number of elements in
data. Function addAll uses a lock lk to synchronize the calls to
this function. It first checks whether there is enough space to insert
all elements of u->data into v->data, i.e. v->cnt + u->cnt

≤ v->size (cf. line 4). If not, it increases the size of v->data

typedef struct {int cnt, int size, int* data} vector;
pthread_mutex lk;

1 void addAll(vector* v, vector* u) {
2 int numElem = v->cnt + u->cnt;
3 pthread_mutex_lock(&lk);
4 if(numElem > v->size) {
5 v->data = realloc(numElem * 2);
6 v->size = numElem * 2;
7 }
8 assert(v->size ≥ u->cnt + v->cnt);
9 ... //copy data from u to v

10 v->cnt = v->cnt + u->cnt;
11 pthread_mutex_unlock(&lk);
12 }

Figure 2: Function addAll: a buggy concurrent implementation of
vector concatenation.

accordingly. The invariant v->size≥ u->cnt + v->cnt is stated
as an assertion in line 8. Finally, it copies the elements and updates
v->cnt. The bug in addAll corresponds to the fact that the value
of v->cnt is being read (at line 2) outside the lock block and hence
v->cnt can be changed by other threads before the lock block is
executed, leading to an inconsistent state.

For simplicity, we just refer to v->cnt and u->cnt, while in the
real implementation, these accesses are protected by locks. There-
fore, there is no data race on these accesses and the error that we
discuss here is independent of that data race and exists in the origi-
nal race-free code.

Imagine a concurrent program with two threads T and T ′ each of
them calling addAll with v and u as arguments, where v is shared
between the threads and u is an input of the program. Therefore,
each individual field of v is treated as a shared variable and each in-
dividual field of u is treated as an input. Also, suppose that initially
v->cnt is 10 and v->size is 20. Consider the situation where
u->cnt=7 and the program is executed as follows:

(i) The first thread T executes line 2, reading 10 from v->cnt, 7
from u->cnt and storing value 17 in numElem.

(ii) The second thread T ′ is executed completely. It reads val-
ues 10 and 7 from v->cnt and u->cnt, respectively, at line 2
and assigns 17 to numElem. Then, it enters the lock block. Since
v->size is greater than 17 it skips lines 5 and 6 and assigns 17 to
the shared variable v->cnt before exiting the lock block.

(iii) Then, T continues execution: It skips lines 5 and 6 since
(numElem=17) < (v->size=20). However, when T gets to the
assertion, v->cnt has value 17 written by T ′. Therefore, we have
(v->size=20) < (17 + 7), and hence the assertion is violated.

This particular error occurs because the naive locking of indi-
vidual vectors is not the correct way of copying from one vector
(that can change meanwhile) to another. The error is interesting be-
cause it requires a combination of a particular concurrent schedule
combined a with particular (relative) values for the input vectors
to manifest. If the threads are executed sequentially back to back,
nothing goes wrong. On the other hand, if we execute the same
interleaving (as described above), but start with u->cnt having the
value 3 (instead of 7), then nothing goes wrong; the first thread
assigns 13 to numElem, the second thread skips lines 5 and 6 and
assigns 13 to u->cnt. Then, the first thread skips lines 5 and 6
since (numElem=13) < (v->size=20). This means that trigger-
ing this concurrency bug does not solely depend on the concurrent
schedule, nor does it solely depend on the chosen input values; it
depends on finding the right combination of input values and the
choice of concurrent schedule. Any testing technique that does not
explore the combination space systematically has the potential of
missing on this bug.



4. BASIC DEFINITIONS AND NOTATIONS
We will now introduce some notions from concolic testing ad-

justed to our application. Classical sequential concolic testing [6,
1] logs a set of path constraints over input variables during concolic
execution which describes the conditions on the values of the inputs
that have to be true to drive the execution of the program along the
same path. However, doing the same for concolic execution of
multi-threaded programs would result in a set of constraints that
are closely tied to the specific schedule performed during program
execution. To solve this problem, we proceed as follows: Instead
of explicitly tracking scheduling decisions, we introduce symbolic
variables which enable us to track the information flow between
threads. More precisely, we introduce an additional symbolic vari-
able each time a shared variable is read and for each shared variable
write, we store the symbolic value (based on symbolic inputs and
symbolic read variables). This will enable us to build constraints
which capture the essence of a concurrent execution path.

A concurrent program consists of a set T = {T1, T2, . . .} of
threads Ti, a set of input variables IN, a set of shared variables SV,
a set of local variables LV, and a set of locks L. Let SymbIN be a
set of symbolic input variables {i0, i1, . . .} and SymbRV be a set
of symbolic shared read variables {r0, r1, . . .}. Let Expr repre-
sent the set of all expressions over SymbIN and SymbRV, and let
Pred(Expr) represent the set of all predicates over Expr. Then, the
set of actions Σ that a thread can perform on a set of shared vari-
ables SV and locks L is defined as:

Σ={rd(x, r) | x ∈ SV, r ∈ SymbRV} ∪
{wt(x, val) | x ∈ SV, val ∈ Expr} ∪ {tf(Ti) | Ti ∈ T} ∪
{ac(l), rel(l) | l ∈ L} ∪ {br(ψ) | ψ ∈ Pred(Expr)}

Action rd(x, r) corresponds to reading from a shared variable x
and the symbolic value of the shared variable x becomes the sym-
bolic variable r. Each time we observe a read from a shared vari-
able during concolic execution, we introduce a new symbolic vari-
able r ∈ SymbRV that is uniquely associated with that specific
read. Action wt(x, val) corresponds to writing to a shared vari-
able x a symbolic value which is represented as an expression val.
To couple a read of x with a write to x, it is enough to connect the
stored expression at the write to the symbolic value of the read, i.e.,
r = val. Action tf(Ti) represents forking thread Ti. Actions ac(l)
and rel(l) represent acquiring and releasing of lock l, respectively.
Finally, action br(ψ) denotes a branch condition which requires
that predicate ψ is true. We model assertions in a program by two
branches, i.e., one branch for passing the assertion and one branch
for violating the assertion.

We denote the execution of an action by a thread as an event.
Formally, an event is a tuple (Ti, a) ∈ T × Σ. Let EV denote the
set of all possible events. During concolic execution, we observe a
sequence of events, a so-called symbolic trace:

DEFINITION 4.1 (SYMBOLIC TRACE). A symbolic trace is a
finite string π ∈ EV ∗. By π[n], we denote the n-th event of π.
Given a symbolic trace π, π|Ti is the projection of π to events in-
volving Ti. A symbolic trace π is thread-local, if π = π|Ti for
some Ti.

The inputs to our concolic execution engine are an input vector
and a schedule which exactly specifies the resulting program run:

DEFINITION 4.2 (PROGRAM RUN). Consider a determinis-
tic concurrent program P . A (partial) run of P , represented by
R = P (in, σ), is uniquely described by a valuation in of the in-
put variables IN and a schedule σ. A schedule σ is defined by

Initial thread: T

1 rd(v->cnt, r0)

Context switch: T → T ′

2 rd(v->cnt, r′0)
3 ac(lk)
4 rd(v->size, r′1)
5 br(r′0 + i0 ≤ r′1)
6 rd(v->size, r′2)
7 rd(v->cnt, r′3)
8 br(r′2 ≥ i0 + r′3)
9 rd(v->cnt, r′4)

10 wt(v->cnt, r′4 + i0)

11 rel(lk)

Context switch: T ′ → T

12 ac(lk)
13 rd(v->size, r1)
14 br(r0 + i0 ≤ r1)
15 rd(v->size, r2)
16 rd(v->cnt, r3)
17 br(r2 < i0 + r3)

2[r′0 = 10]

3

4[r′1 = 20]

5br(r′0 + i0 ≤ r′1)

6[r′2 = 20]

7[r′3 = 10]

8br(r′2 ≥ i0 + r′3)

9[r′4 = 10]

10wt(v->cnt, r′4 + i0)

11

1 [r0 = 10]

12

13 [r1 = 20]

14 br(r0 + i0 ≤ r1)

15 [r2 = 20]

16 [r3 = r′4 + i0]

17 br(r2 < i0 + r3)

T ′

T

Figure 3: Symbolic trace π obtained from the assertion violating
execution of the program in Fig. 2 and its corresponding interfer-
ence scenario IS(π). i0 represents the symbolic value of input
v->cnt. r0, r′0, r′3, and r′4 read initial value 10, and r1, r2, r′1, and
r′2 read initial value 20, and r3 reads r′4 + i0

a sequence (Ti1 , n1)(Ti2 , n2) . . . (Tim−1 , nm−1)(Tim ,−) where
Tij ∈ T , for 1 ≤ j ≤ m, and nj > 0, for 1 ≤ j < m, speci-
fies the number of executed actions. A tuple (Tij ,−) represents the
execution of thread Tij until Tij terminates. A run of program P

is feasible if P can be executed with input vector in and accord-
ing to schedule σ. Each feasible program run R yields a symbolic
trace π(R).

We assume that the program is instrumented in such a way that
all program actions covered in EV are actually observed by π(R).
In Fig. 3, on the left, we show a symbolic trace π obtained from the
assertion violating execution of the program in Fig. 2, discussed in
Section 3. Observe that the concolic execution engine only logs
reads from and writes to shared variables, but no reads from or
writes to local variables. Internally, the concolic execution engine
keeps track of the symbolic values of local variables and is there-
fore able to correctly update the symbolic value of a shared variable
when it gets written.

5. INTERFERENCE SCENARIOS
An interference occurs whenever a thread reads a value that is

written by another thread. We introduce interference scenarios to
describe a class of program executions under which certain inter-
ferences happen during concolic execution. Intuitively, an inter-
ference scenario is a set of thread-local traces extended with an
interference relation between write and read events from different
threads. We represent a set of interference scenarios in a data struc-
ture called interference forest. Formally, an interference forest is a
finite labeled directed acyclic graph whose nodes represent events
and whose edges express relations between events.

DEFINITION 5.1 (INTERFERENCE FOREST). An interference
forest is a tuple I = (V,E, `) where V is a set of nodes, ` : V →
EV is a labeling function which assigns events to nodes. For v ∈
V where `(v) = (Ti, a), we also define Th(v) = Ti and Ac(v) = a
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Figure 4: Interference scenarios in an interference forest F

to be the thread and the action of the corresponding event, respec-
tively. The set of edges E is the disjoint union E = EL ∪̇ EI
of thread-local edges EL and interference edges EI . A thread-
local edge (or, simply, a local edge) is an edge (s, t) ∈ EL where
Th(s) = Th(t). An interference edge (s, t) ∈ EI is an edge where
Th(s) 6= Th(t) and Ac(s) = wt(x, val) and Ac(t) = rd(x, r) for
some x, val, and r. We require that EI is an injective relation, i.e.,
each read is connected to at most one write byEI . The thread-local
edges can be naturally partitioned according to their threads, i.e.,
EL = ET1 ∪̇ ET2 . . . ∪̇ ETn . Each ETi induces a subforest GTi

which consists of all nodes with Th(v) = Ti and edges in ETi . We
require that each GTi is a rooted tree. The number of interference
edges |EI | is called the degree of the interference forest.

An isomorphism between two interference forests is a graph iso-
morphism which preserves the labeling function. Given an inter-
ference forest J , RI(J) denotes the read nodes involved in the in-
terference edges of J , i.e., RI(J) = {nr | ∃nw.(nw, nr) ∈ EI}.

Figure 4 shows an interference forest. The nodes labeled with
read/write and branch actions are represented by squares and di-
amonds, respectively. Local edges are presented by arrows and
interference edges are presented by dotted arrows. The left tree
represents GT1 and the right tree represents GT2 . The degree of
the interference forest is 2.

DEFINITION 5.2 (INTERFERENCE SCENARIO). We define an
interference scenario (IS) as an interference forest where each GTi

is a path.

As mentioned at the beginning of this section, an interference
forest is a compact representation for a set of interference scenarios.

DEFINITION 5.3 (CAUSAL INTERFERENCE SCENARIO). Let
I = (V,E, `) be an interference forest. The transitive closure E∗

of the edge relation E is called the causality relation of I . Given a
node n, the causal interference scenario (CIS) of n is the subforest
of I induced by the causal predecessors of n, i.e., by the node set
{v | (v, n) ∈ E∗}. We denote it by C = CIS(I, n) and call n the
sink of C, i.e., sink(C) = n.

Every causal interference scenario is an interference scenario.
This is also the crucial property why interference forests serve as
compact representations for sets of interference scenarios. In Fig. 4,
the causal interference scenario of node n is the interference sce-
nario enclosed by dashed lines.

Construction of new interference scenarios from existing ones
and merging interference scenarios into an interference forest are
two central operations in our testing approach. But we cannot com-
bine arbitrary interference forests/scenarios; They have to be com-
patible with each other:

DEFINITION 5.4 (COMPATIBLE INTERFERENCE FORESTS).
Two interference forests I , J are compatible if there is an interfer-
ence forest K and interference subforests I ′, J ′ of K such that I ′

and J ′ are interference forests themselves and I is isomorphic to
I ′ and J is isomorphic to J ′.

Definition 5.4 applies to compatible interference scenarios as well
since each interference scenario is an interference forest.

REMARK 5.5. Compatible interference forests can be merged
into an interference forest by naturally taking the minimal K, i.e.,
K only contains nodes and edges corresponding to I ′ and J ′. If
interference scenarios I and J are not compatible, then there is at
least one thread for which I and J describe different computations.

Each symbolic trace π defines an interference scenario, denoted
by IS(π). Intuitively, each event represents a unique node in IS(π)
which is labeled with that event. For each thread Ti, thread-local
edges are added between the corresponding nodes according to the
order in π|Ti (where π|Ti = πi,1, πi,2, .., πi,m denotes the projec-
tion of events in π on thread Ti.) An interference edge is added
for each node labeled with a read event if the last write event to
the same shared variable before the read event in π is performed by
another thread. More formally, IS(π) = (V,E, `) is defined as:

• V =
⋃
Ti
{ni,j | ni,j is a unique node for event πi,j},

• `(ni,j) = πi,j for each node ni,j ,

• ETi = {(ni,k, ni,k+1) | 0 ≤ k ≤ m− 1}, and

• EI = {(ni,k, nj,h) | Th(ni,k) 6= Th(nj,h),Ac(ni,k) =
wt(x, val),Ac(nj,h) = rd(x, r) for some x, val, r and πi,k
is the last write to x in π before πj,h}.

Figure 3 shows the interference scenario for the symbolic trace ob-
tained from the assertion violating execution of the program in Fig-
ure 2 which is discussed in Section 3.

DEFINITION 5.6 (REALIZABLE INTERFERENCE SCENARIO).
An interference scenario I is realizable iff there is a feasible partial
program run R with π = π(R) such that I = IS(π). We say R
realizes I for such a feasible program run R.

Realizable interference scenarios define equivalence classes on
the set of program runs which represent the same flow of data
among the threads. Note that interference scenarios are not mono-
tonic wrt. realizability. Let I and I ′ be two interference scenarios
where I is a subgraph of I ′. Then, the realizability of I does not
imply the realizability of I ′ and vice versa. We will discuss the
reasons for this behaviour in Section 6.

Interference scenarios specify partial program runs and therefore
unanticipated behaviour can be observed:

DEFINITION 5.7 (UNFORESEEN INTERFERENCES). Let I be
a realizable interference scenario and R be a partial program run
with π = π(R) such that I = IS(π). Let R′ be a run that ex-
tends R, i.e., π′ = π(R′) and π is a prefix of π′. Then, IS(π′)
is a supergraph of IS(π). More specifically, IS(π′) might contain
some additional interferences. We refer to these interferences as
interferences unforeseen by interference scenario I in run R′.

6. CONSTRAINT SYSTEMS FOR INTER-
FERENCE SCENARIOS

Each interference scenario implies constraints on both data and
temporal order of the events. In this section, we describe these con-
straints in detail. In Section 7, we present our soundness theorem



Data Constraints DC(I)

DC(I): DCbranch(V ) ∧ DCinterfere(I) ∧ DClocal(I)

DCbranch(V ):
∧
ψ∈BR(V ) ψ where

BR(V ) = {ψ | v ∈ V,Ac(v) = br(ψ)}
DCinterfere(I):

∧
(vwt,vrd)∈EI

DCmatch(vwt, vrd)

DClocal(I):
∧

(vwt,vrd)∈EL
DCmatch(vwt, vrd) whereEL is the

set of local write-read matches.
DCmatch(vwt, vrd): (val = r) for Ac(vwt) = wt(x, val), Ac(vrd) =

rd(x, r)

Temporal-Consistency Constraints TC(I)
TC(I):

∧
Ti∈T POTi

∧ FC ∧ LC1 ∧ LC2 ∧ WRCinterfere ∧
WRClocal

POTi
:

∧
ni,j∈GTi

, ni,j is not a leaf (tni,j < tni,j+1 )

FC:
∧
Ti∈T (tntf(Ti)

< tni,1 )

LC1:
∧
Ti 6=Tj

∧
l∈L

∧
[aq,rl]∈LTi,l

[aq′,rl′]∈LTj,l

(
trl< taq′ ∨ trl< taq

)
LC2:

∧
Ti 6=Tj

∧
l∈L

∧
aq∈NoRelTi,l

[aq′,rl′]∈LTj,l

(trl′< taq)

WRCinterfere:
∧

(u,v)∈EI
Coupled(v, u)

WRClocal:
∧
v 6∈intReads Coupled(v, LocW(v))

Coupled(v, u): (tu < tv) ∧
∧
n∈Wx\{u}((tn < tu) ∨ (tv < tn))

Figure 5: Constraint systems DC(I) and TC(I) for an interference
scenario I = (V,E, `)

(Thm. 7.2) that shows how these constraints can be used to check
for the realizability of an interference scenario.

Data Constraints. Each interference scenario I = (V,E, `) de-
fines a data constraint DC(I) as shown in Fig. 5. Any solution to
DC(I) (if one exists), defines an input vector ī for the concurrent
program. The constraint DC(I) consists of three parts: (i) DCbranch,
(ii) DCinterfere, and (iii) DClocal. The constraint DCbranch encodes all
branch conditions occurring in I . The intuition behind this con-
straint is that the program execution should follow the control path
represented by the respective branching conditions. DCinterfere re-
lates reads from shared variables, which should be interfered by
writes from other threads, to the symbolic values of the write the
read should interfere with. Finally, DClocal relates each read from a
shared variable, which should not be interfered by any writes from
other threads, to the most recent write to the same shared variable
performed by the same thread. If there is no such write before the
read, we constrain the symbolic value of the shared variable to the
initial value of the variable.

Temporal-Consistency Constraints. An interference scenario I
also defines a temporal consistency constraint TC(I). This con-
straint is over symbolic traces and any solution to it defines a sched-
ule for the concurrent program. The constraints in TC(I), as de-
fined in Fig. 5, are divided into the following four categories: (i)
thread-local program-order consistency (POTi ), (ii) thread-fork con-
sistency (FC), (iii) lock consistency (LC1&LC2), and (iv) write-
read consistency (WRC1&WRC2). For each node n in I , an integer
variable tn (timestamp) is considered to encode the index of the
event of the node in a symbolic trace π. In the constraints, let ni,j
represent the jth node in GTi , and let ntf(Ti) represent the node n
where Ac(n) = tf(Ti). The constraints of TC(I) are:

POTi : Ensures that for thread Ti, the thread-local program order
is respected in the schedule.

FC: Ensures that no thread can be scheduled before it is forked.

LC1 & LC2: Each lock acquire node aq with Ac(aq) = ac(l)
and Th(aq) = Ti and its corresponding lock release node rl in Ti
define a lock block, represented by [aq, rl]. Let LTi,l be the set

of lock blocks in thread Ti regarding lock l. LC1 ensures that no
two threads can be inside lock blocks of the same lock l, simulta-
neously. LC2 ensures that the acquire of lock l by a thread that
never releases it in I must occur after all releases of lock l in other
threads. In this formula, NoRelTi,l stands for lock acquire nodes in
Ti with no corresponding lock release nodes.
WRCinterfere & WRClocal: Let Wx represent the set of all nodes u
with Ac(u) = wt(x, val), intReads be all nodes v with Ac(n) =
rd(x, r) such that v is involved in an interference edge in EI , and
LocW be a function that for each node v with Ac(v) = rd(x, r)
and Th(v) = Ti returns a node u with Ac(u) = wt(x, val) and
Th(u) = Ti in I such that u is the closest such node to v before
v in GTi . For each read node v and write node u, the formula
Coupled(v, u) ensures that the read event of v is coupled with the
write event of u in π by forcing all events that write to the corre-
sponding variable to happen either before the event of u or after the
event of v in π.
Non-Monotonicity of Realizability. We can now explain the non-
monotonic behaviour of interference scenarios wrt. realizability
that was mentioned in the discussion following Def. 5.6. Let I and
I ′ be two interference scenarios where I is a subgraph of I ′. Then,
according to the data constraints, all constraints in DCbranch(I) and
DCinterfere(I) appear in DCbranch(I

′) and DCinterfere(I
′), respectively.

However, the constraints in DClocal(I) and DClocal(I
′) are incom-

parable. The same phenomenon exists in the temporal-consistency
constraints, i.e., WRClocal in I and I ′ are incomparable. This im-
plies that, by extending an interference scenario, the resulting con-
straint systems do not change in a monotonic way.

7. TESTING ALGORITHM
We now present our con2colic testing algorithm. The algorithm

tries to increase branch coverage in concurrent programs. Recall
that we model each assertion in the program by two branches and,
therefore, implicitly target at finding assertion violations. Since we
aim for branch coverage, we are specifically interested in interfer-
ence scenarios related to nodes labeled with branch actions:

DEFINITION 7.1 (INTERFERENCE SCENARIO CANDIDATE).
Let n be a branch node, i.e., Ac(n) = br(ψ), for some ψ. A causal
interference scenario C is an interference scenario candidate (ISC)
for n if sink(C) = n.

Note that each ISC C with sink(C) = n (if realizable) defines a set
of partial program runs where Ac(n) is the last action in the run.
Our algorithm enumerates all ISCs of degree k (starting at k = 0),
checks their realizability and moves on to ISCs of degree (k + 1).

To keep the exposition simple, we will make the following sim-
plifying assumptions: (i) There are no unforeseen interferences for
an ISC C, i.e., each program run R′ extending a partial run R, with
C = IS(R), results in an interference scenario IS(R′) which has
exactly the same interferences as C. (ii) There are no barriers in a
program P . (iii) There are no locks in a program P . In Section 7.3
we will address assumptions (i) and (ii) and in Section 7.4 we will
address assumption (iii). Note that we state all these assumptions
for ease of presentation and that our approach is not limited to set-
tings where these assumptions are true, especially, all benchmark
programs in Section 8 contain locks.

7.1 Testing Algorithm
Alg. 1 shows our con2colic testing algorithm. Given a concur-

rent program P and a threshold kmax , the algorithm investigates all
ISCs whose degree is ≤ kmax . For each such ISC the algorithm
tries to compute a corresponding test.



Algorithm 1: Test(program P , bound kmax )

1 IForest forest← ∅
2 ISC-Set W0, . . . ,Wkmax , UN 0, . . . ,UN kmax

3 for k = 0 to kmax do
4 Wk ← ∅
5 UN k ← ∅

6 ī← random inputs
7 foreach thread Tj do
8 π ← ConcolicExecution(P, (̄i, (Tj ,−)))

9 W0 ← W0 ∪ ExtractISCs(π)

10 for k = 0 to kmax do
11 while Wk 6= ∅ do
12 pick and remove C from Wk

13 (result, ī, σ)← RealizabilityCheck(C)
14 ISC-Set iscs ← ∅
15 if result 6= realizable then
16 UN k ← UN k ∪ {C}
17 iscs ← ExploreISCs(C,write-nodes(forest))

18 else
19 π ← ConcolicExecution(P, (̄i, σ))

20 Wk ← Wk ∪ ExtractISCs(π)
21 Wrts ← new-write-nodes(forest, π)

22 forall the C′ ∈ UN i, 0 ≤ i ≤ k − 1 do
23 iscs ← iscs ∪ ExploreISCs(C′,Wrts)

24 foreach C′ ∈ iscs do
25 k′ ← Degree(C′)
26 if k′ ≤ kmax then
27 W k′ ←W k′ ∪ {C′}

1-5: Data Structures. We have three central data structures: (i) a
global interference forest forest that stores all interference scenarios
explored by concolic execution, (ii) a list of sets W0, . . . , Wkmax ,
where each Wk, for 0 ≤ k ≤ kmax , serves as a worklist for ISCs
of degree k, and (iii) a list of sets UN 0, . . . , UN kmax , where each
UN k, for 0 ≤ k ≤ kmax , stores all processed but unrealizable
ISCs of degree k. All these data structures are initially empty (cf.
lines 1 to 5). During execution of Alg. 1, each generated ISC C
of degree k is initially inserted into Wk and later on, if C is not
realizable, it is moved to UN k for further exploration.

6-9: Initial Path Exploration. We initialize W0 by executing a
test (̄i, (Tj ,−)) for each thread Tj (line 8), where ī is a random in-
put vector (we use the same ī for each thread Tj) and the schedule
(Tj ,−) allows only a sequential execution of thread Tj without any
interruption from other threads. When the concolic execution en-
gine reaches the end of thread Tj , the program execution is aborted
without executing any other thread (our approach can be general-
ized to handle barriers, but for simplicity of presentation we ignore
them here). As the result of the concolic execution, a symbolic
trace π is returned. Then, at line 9, ExtractISCs takes the symbolic
trace π and derives new ISCs with the same degree as IS(π) for
further exploration of program behaviour, i.e., during initialization
it generates ISCs of degree 0. We describe algorithm ExtractISCs in
the next paragraph. We insert the returned ISCs into worklist W 0.
Now, after the initialization phase in lines 3 to 5 in Alg. 1, W 0

contains for each thread in P a set of ISCs for further (initially
thread-local) exploration.

Algorithm 2: ExtractISCs (Symbolic Trace π) : ISC-Set

1 F← addDanglingNodes(IS(π))
2 MergeInterferenceForests(forest,F)
3 ISC-Set iscs← ∅
4 foreach dangling node n newly added to forest do
5 iscs← iscs ∪ {CIS(forest, n)}
6 return iscs

2

T ′

3 4 5

br(r′0 + i0 ≤ r′1)

6 7 8

br(r′2 ≥ i0 + r′3)

9 10 11

(a) Interference scenario IS(πT ′ ) for a symbolic trace πT ′ obtained by a
sequential execution of thread T ′ (cf. Fig. 3).

2

T ′

3 4 5

br(r′0 + i0 ≤ r′1)

6 7 8

br(r′2 ≥ i0 + r′3)

9 10 11

d1

br(r′0 + i0 > r′1)

d2

br(r′2 < i0 + r′3)

(b) Interference scenario IS(πT ′ ) extended with dangling nodes d1 and d2.

2

T ′

3 4 5

br(r′0 + i0 ≤ r′1)

6 7 8

br(r′2 ≥ i0 + r′3)

9 10 11

d1

br(r′0 + i0 > r′1)

d2

br(r′2 < i0 + r′3)

(c) Interference scenario candidates CIS(forest, d1) and CIS(forest, d2).
Figure 6: Example showing initialization for thread T ′ (cf. Fig. 3).

Algorithm ExtractISCs. ExtractISCs, shown in Alg. 2, gets a sym-
bolic trace π as input. Each branch event in π, has a corresponding
dual branch event where its symbolic constraint is negated. Alg. 2
first obtains IS(π). For example, Fig. 6a shows IS(π) where π
is the symbolic trace returned by the initial sequential execution
of thread T ′ (introduced in Fig. 3). In line 1 in Alg. 2, IS(π) is
extended to an interference forest F by introducing for each dual
branch event a so called dangling node, e.g., nodes d1 and d2 in
Fig. 6b. Then, F is merged into forest (cf. line 2) as described
in Remark 5.5. For each dangling node which was not merged
with an existing node, we create an ISC (cf. lines 4 and 5), e.g.,
CIS(forest, d1) and CIS(forest, d2) in Fig. 6c. These ISCs are re-
turned to the main algorithm. Note that all generated ISCs will have
the same degree as IS(π). This is due to the fact that the dangling
nodes which are not already present in forest occur after the sink
of the ISC which was used when generating the test for π. Since
forest is initially empty, during the initialization phase an ISC is
generated for each dangling node in F .

10-27: Main Loop. The testing algorithm processes worklists
W0, . . . ,Wkmax in ascending order (cf. main loop at line 10). While
processing Wk (the loop at line 11), each ISC C ∈ Wk is removed
from Wk and its realizability is checked (see Section 7.2, algorithm
RealizabilityCheck). Given an ISC C, RealizabilityCheck returns a
triple (result, ī, σ) where result indicates whether C is realizable or
not. If C is realizable, then (̄i, σ) forms a test that realizes C.

15-17: ISC Exploration. If C is not realizable, then we store C
into UN k for later processing. Since the realizability of ISCs is
not monotonic (as discussed in Section 5), C still has a chance to
become realizable if we introduce some more interferences in it.
Therefore, we collect all write nodes stored in forest (cf. line 17)
and then use ExploreISCs (Alg. 3) to extend C to a set of ISCs
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br(r′0 + i0 ≤ r′1)
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br(r′2 ≥ i0 + r′3)
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br(r0 + i0 ≤ r1)

15 16 17

br(r2 < i0 + r3)

d3

br(r0 + i0 > r1)

d4

br(r2 ≥ i0 + r3)

d1

br(r′0 + i0 > r′1)

d2

br(r′2 < i0 + r′3)

T ′

T

Figure 7: Interference scenario IS(π) from Fig. 3 extended by dan-
gling nodes d1, d2, d3, and d4. The loosely dashed lines enclose
the interference scenario candidate CIS(forest, d4).

for target branch sink(C) by introducing a new interference from
a write in Wrts to a read in C. Each of the generated ISCs has a
degree i > k and is added to W i in lines 24 to 27. Since i > k,
the newly generated ISCs will be processed after W k is processed
completely. We discuss ExploreISCs at the end of Section 7.1.

19-20: Path Exploration. If C is realizable, then the program is
concolically executed with input vector ī and according to schedule
σ (cf. line 19). The moment sink(C) is executed, the schedule σ
enforces an exclusive execution of thread Th(sink(C)) without any
interruption from other threads. As in the sequential case, the mo-
ment the end of thread Th(sink(C)) is encountered, the concolic
execution engine aborts program execution. The concolic execu-
tion returns a symbolic trace π which is fed to ExtractISCs to derive
ISCs from π similar to the k = 0 case described earlier (see Fig. 7
for an example with k > 0). All generated ISCs are added to W k.

21-23: ISC Re-Exploration. During concolic execution we might
observe a write event we have not observed so far (this might be
due to the fact that we covered a new code location, or that we ob-
served a write to a shared variable combined with a symbolic value
which was not observed before). Note that, at line 17, we extended
an unrealizable ISC by interferences resulting from writes stored
in forest. When we observe a write event which was not in forest
back then, we have to reconsider all previously unrealizable ISCs
and have to extend them by interferences from this new write event
to reads in these ISCs. This happens in lines 21 and 23. There,
each previously unrealizable ISC C with degree smaller than k is
re-explored with the newly observed writes. Each such write event
must occur after sink(C) was executed and, therefore, has degree k.
Then, the ISCs generated in line 23 have degree greater than k and
are added to the according worklists in lines 24–27.

Algorithm ExploreISCs. Algorithm ExploreISCs explores ISCs
by extending existing ISCs with new interferences. Let nr be a
read node in a given ISC C. Let nw be a write node in forest
and let Iw be the causal interference scenario of nw, i.e., Iw =
CIS(forest, nw). To create an ISC C′′ which extends C by the in-
terference (nw, nr), the algorithm checks the following conditions:

(i) nr and nw are in different threads, i.e., Th(nr) 6= Th(nw).

(ii) nr reads from the variable to which nw writes to, i.e., if
Ac(nr) = rd(x, r), for some symbolic variable r, then Ac(nw)
is of the form wt(x, val), for some expression val.

(iii) nr is not involved in any interference in C or Iw, i.e., nr /∈
RI(C) and nr /∈ RI(Iw) (cf. Section 5).

(iv) C and Iw are compatible (cf. Def. 5.4 and Remark 5.5).

Algorithm 3: ExploreISCs(ISC C,write nodes Wrts) : ISC-
Set

1 ISC-Set iscs ← ∅
2 foreach nr ∈ read-nodes(C) \RI(C) do
3 let Ac(nr) = rd(x, r) for some x
4 foreach nw ∈Wrts do
5 if Ac(nw) = wt(x, val) for some val then
6 if Th(nw) 6= Th(nr) then
7 Iw ← CIS(forest, nw)
8 if nr /∈ RI(Iw) and compatible(C, Iw) then
9 C′ ← merge(C, Iw)

10 C′′ ← extend C′ by interference (nw, nr)

11 iscs ← iscs ∪ {C′′}

12 return iscs

If all conditions are satisfied, then, in line 9, C and Iw are merged as
described in Remark 5.5 and form an ISC C′. Then, in line 10, C′ is
extended to ISC C′′ by introducing the interference edge (nw, nr).
Alg. 3 collects all generated ISCs (cf. line 11) and finally returns
them in line 12. Note that each generated ISC C′′ has the same
sink as C, i.e., sink(C′′) = sink(C), and has at least one more
interference than C, i.e., Degree(C′′) ≥ Degree(C)+1. The degree
of C′′ might increase by more than one interference, because Iw
might contain interferences which are not present in C, but, due to
the merge, they show up in C′ and C′′ as well.

7.2 Soundness and Completeness
In Section 6, we discussed data constraints DC(I) and tempo-

ral constraints TC(I) corresponding to an interference scenario I.
The following theorem shows how these constraints can be used to
figure out whether an ISC is realizable or not.

THEOREM 7.2 (SOUNDNESS). Let C be an ISC in Wk where
0 ≤ k ≤ kmax . Then, C is realizable if and only if DC(C) and
TC(C) are satisfiable.

Algorithm RealizabilityCheck. Given an ISC C with sink(C) =
n, the realizability of C is checked by determining whether DC(C)
and TC(C) are both satisfiable. Assume that C is realizable and σ′

and ī are solutions for TC(C) and DC(C), respectively. Then Real-
izabilityCheck algorithm (called in Alg. 1 at line 13) returns a triple
(result, ī, σ) where result determines that C is realizable and σ =
σ′(Th(n),−) that forces the sequential execution of thread Th(n)
after σ′. According to Thm. 7.2, our test generation approach is
sound, i.e., if the program is executed with input vector ī, and ac-
cording to schedule σ′, then the branch node n will be covered.

THEOREM 7.3 (COMPLETENESS). Given a deterministic pro-
gram P and a bound kmax , Alg. 1 covers all branches of P that
require at most kmax many interferences to be covered.

Like all completeness results in concolic testing Thm. 7.3 re-
lies on several idealizing assumptions. The theorem states that for
deterministic programs without non-linear arithmetics and calls to
external library functions, our con2colic testing algorithm covers
all branches of P that require at most kmax many interferences to
be covered. In practice, concolic execution falls back upon con-
crete values observed during execution to handle non-linear com-
putations or calls to external library functions, for which no good



symbolic representation is available. For that reason, it always un-
derapproximates program behaviours.

Note that if we do not stop Alg. 1 after it performed kmax -many
iterations of the main loop or after full branch coverage is achieved,
then Alg. 1 actually achieves, in the limit, a stronger coverage than
branch coverage. We leave an exact characterization of the cover-
age achievable by Alg. 1 for future work.

7.3 Unforeseen Interferences
In order to drop assumption (i) stated at the beginning of Section

7, we need to make the following changes: (1) The concolic execu-
tion engine stops as soon as an unforeseen interference is observed
and returns a symbolic trace π that ends with the read event of the
unforeseen interference. (2) Alg. 2 is extended as follows: When
building forest F in line 1, we add a distinguished dangling node
which is labeled with the read event of the unforeseen interference.
However, we do not add the unforeseen interference to F . As an
effect, Alg. 2 will then, in line 5, create a causal interference sce-
nario for this special dangling node. Consequently, Alg. 1 will then
try to realize this interference scenario, first without introducing an
interference. If this is not possible then it will introduce some in-
terferences later. This enables us to explore the interference space
and build the interference forest in a systematic way, i.e., while
processing Wk, the interference forest is updated with interference
scenarios of degree k. Observe that we have to extend the notion of
CIS to allow sink nodes labeled with read events. Since our algo-
rithms never make use of the fact that the sink of a CIS is a branch
node, the overall testing algorithm is not changed. Barriers can be
handled in a similar way; due to space restrictions, we omit details.

7.4 Lock-Protected Writes
Consider an ISC C with sink(C) = n. It might be the case

that for a thread Ti 6= Th(sink(C)), the last node in GTi is la-
beled with a write event that happened while Ti was holding some
locks. This may cause the following problems: (i) C might never
become realizable, e.g., if n is also protected by the same locks,
then Ti does not have any chance to release the locks. (ii) C might
be realizable but the test generated for C may lead to a deadlock,
e.g. thread Th(sink(C)) acquires any of these locks later. To solve
these problems, whenever we create a new ISC C, we extend all
thread-local sub-scenarios of C according to forest, with the excep-
tion of thread Th(sink(C)), such that for each thread Ti the last
node in GTi is not protected by any lock. As an example consider
the ISC shown in Fig. 7. There, T ′ holds a lock at node 10. There-
fore, the ISC is extended to include node 11 where T ′ releases the
lock. Note that this extension might not be unique if the release of a
lock can happen in different code branches. To preserve complete-
ness, we consider all possible extensions, i.e., we actually generate
a set of ISCs. Furthermore, like in the case of re-exploration of
unrealizable ISCs due to newly observed write nodes, we have to
re-explore ISCs whenever we observe new lock-release events. In
our benchmarks, the extensions until lock-free nodes were unique.

7.5 Optimizations for ISC Exploration
Unsat-Core Guidance. In Alg. 1, ISC exploration is performed
by adding new interferences to ISCs. In case an ISC is not real-
izable, it might be the case that no extension of the ISC by inter-
ferences will ever get realizable. From the unsatisfying core of the
constraint systems defined in Section 6, we can identify such sit-
uations. Let C = (V,E, `) be an ISC. Data constraint DC(C) is
then equal to DCbranch(V ) ∧DCinterfere(C) ∧DClocal(C). Extending
C to a new interference scenario C′ by adding an interference to C
removes some predicates in DClocal(C) from DC(C′) but the pred-

icates in DCbranch(V ) and DCinterfere(C) remain as part of DC(C′).
Therefore, if the unsatisfying core of DC(C) does not involve pred-
icates from DClocal(C), we can conclude that DC(C′) or any other
extension of C will not be realizable as well and, therefore, we can
exclude C from further exploration. Analogously, if TC(C) is not
feasible and no constraints from WRClocal are involved in the unsat-
isfying core then, again, we can conclude that C will not become
realizable by adding new interferences and we can exclude C from
further exploration. Furthermore, in both cases, the unsat core can
be used to guide the exploration by introducing an interference for
a so far local read whose constraints are involved in the unsat core.
Duplication Freedom. Alg. 1 allows multiple instantiations of the
same ISC. For example, suppose that an ISC C becomes realizable
by introducing interferences for two reads. The algorithm can first
select any of these reads and generate two ISCs in which one of
these reads is interfered. Then, in the future, these two ISCs can be
extended such that the other read is also interfered, generating two
instances of the same ISC. To avoid duplication of ISCs, we use a
caching mechanism. In this way, an ISC will be processed only if
it is not already in the cache.
Prioritized Exploration. While processing each worklist W k,
we can choose to prioritize the ISCs in W k. For example, in our
implementation, we assign higher priorities to ISCs which would
cover some yet uncovered part of program code (in case they are
realizable). Based on this exploration strategy, Alg. 1, at line 11
first processes ISCs with higher priorities.

8. EXPERIMENTS
Our con2colic testing approach is implemented in a tool called

CONCREST as an extension to CREST [1]. We use a standard col-
lection of concurrency benchmarks to evaluate its effectiveness.
We ran our experiments on a dual-core 64-bit Linux machine with
3.2GHz and 16GB RAM.
Benchmarks. bluetooth is a simplified version of the Bluetooth
driver from [15]. sor is from Java Grande multi-threaded bench-
marks (which we translated to C). ctrace-a and ctrace-b are
two test drivers for the ctrace library. apache-a and apache-b

are test drivers for APACHE FTP server from BugBench [9]. splay
and rbTree are test drivers for a C library implementing several
types of trees. aget is a multi-threaded download accelerator.
pfscan is a multi-threaded file scanning program. Finally, art
is an example designed by us to evaluate the scalability of our ap-
proach when the number of threads increase. It has the property
that there is a new assertion in it every time we increase the num-
ber of threads by one.
Experimental Results. In our experiments we set kmax = 100
(at most 100 interferences) and a timeout of 2 hours. The results
are presented in Table 1. We learned the following important facts:
(i) CONCREST is effective at finding bugs. All the known bugs
were discovered. (ii) All bugs discovered by CONCREST in bench-
marks were the result of a branch which would not be covered se-
quentially. (iii) All bugs were discovered under a relatively small
number of interferences (maximum 4). (iv) On average, a substan-
tial number of branches were not sequentially coverable and were
only covered after interferences were introduced, e.g., for rbTree
which has fixed input, branch coverage increases from 67 to 95
(maximum number of coverable branches). In the lack of a bug
found, reaching this maximum provides guarantees to the tester
that, e.g., no assertions in the code can be violated. (v) We set the
maximum number of interferences to be 100, but the actual bound
explored by CONCREST is much smaller. This is because in most
cases (with the exception of 2 timeout cases), we either achieved



Table 1: Experimental Results
Benchmark ]Threads ]Inputs ]Branches ]Branches Max k reached ]Branches Bug found ] ISC time

(total) k=0/1/2/3/4/... (reason) k=0→Max k (k) (total) (total)

bluetooth 3 2 24 14/8/2 2 (Full Cov.) 14→24 yes(2) 282 0.5
sor 3 - 48 37/8/0/0/3 4 (Full Cov.) 37→48 yes(3) 145 0.6
ctrace-a 3 - 94 54/3 5 (Max Cov.) 54→57 yes(1) 28 0.7
apache-a 3 3 72 41/0/1 11 (Max Cov.) 41→42 yes(2) 392 1.0
splay 3 - 112 46/14/4 15 (Max Cov.) 46→64 no 3501 6.2
apache-b 3 3 48 35/3 11 (Max Cov.) 35→38 yes(1) 22150 15.4
aget 3 - 88 56/0/1 21 (Max Cov.) 56→57 yes(2) 23197 170.4
rbTree 3 - 146 67/22/4/2 24 (Max Cov.) 67→95 no 77037 296.3
pfscan 3 2 130 92/0/0/0/1 4 (Timeout) 92→93 yes(4) 3012548 7200.0
ctrace-b 3 - 128 75/5 2 (Timeout) 76→81 yes(1) 315639 7200.1

art2 3 2 8 7/1 1 (Full Cov.) 7→8 yes(1) 80 0.3
art3 4 3 12 10/1/1 2 (Full Cov.) 10→12 yes(2) 17942 21.8
art4 5 4 16 13/1/1/1 3 (Full Cov.) 13→16 yes(3) 2842066 197.1
art5 6 5 20 16/1/1/1/1 4 (Full Cov.) 16→20 yes(4) 10851573 741.1

]Branches: number of static branches, i.e. number of basic code blocks. k: number of interferences. Full Cov.: all branches are covered. Max Cov.: all
possible interference scenario candidates are explored. ]ISC: number of explored interference scenario candidates. "14/8/2" means 14 branches covered at
k = 0, 8 (new) branches at k = 1, and 2 (new) branches at k = 2. 14 → 24 indcates the difference between the number of branches covered sequentially
(14) and the total number of branches covered (24).

full branch coverage or explored all possible ISCs (i.e. no more
branches are coverable). (vi) Our approach scales well as the num-
ber of threads increase; see art.

There are cases where maximum branch coverage is achieved,
but the number does not coincide with the total number of static
branches. These are due to (sanity-check type) assertions in the
code which were never meant to be violated.

Table 2 presents the effect of the optimizations discussed in Sec-
tion 7.5 for pfscan (as an example). In this benchmark, the bug
(i.e. assertion violation) is discovered at k = 4. When there is no
optimization enabled, it runs out of memory with k = 2. The effi-
cacy of unsat-core guidance is clear because without this optimiza-
tion k cannot go higher than 2. In fact, to move to k = 4 and catch
the assertion violations, both unsat-core guidance and duplication-
freedom have to be enabled. The effect of prioritized exploration
can be observed by comparing rows 1 and 3: when prioritization is
enabled the assertion violation is found earlier.

We compared our tool with Poirot [13] on some of the bench-
marks. Poirot exploits context-bounding sequentialization of con-
current programs and performs a static analysis to check for safety
properties. A side by side comparison with Poirot (when it does not
aim for coverage in the same sense as CONCREST is not meaning-
ful). Our experiments showed that Poirot did not scale well for the
programs that we checked. For example, the bug in sor was found
within a second by our tool, but Poirot was not able to find it for
context-bound of 2, 3, and 4 within 1.5hrs (for each bound).

9. RELATED WORK
In the introduction, we surveyed a number of techniques for test-

ing concurrent programs. Here, we focus on a subset of them which
are closer to con2colic testing and discuss how con2colic testing

Table 2: Effects of optimizations on benchmark pfscan.
Row U P D Assertion Coverage t[s] Max k Total t[s]

1 + + + 4554 4 7200 (timeout)
2 - + + - 2 7200 (timeout)
3 + - + 6701 4 7200 (timeout)
4 + + - - 3 7200 (timeout)
5 - - + - 2 7200 (timeout)
6 - + - - 2 out of memory
7 + - - - 3 7200 (timeout)
8 - - - - 2 out of memory

U = unsat core guidance, P = prioritized exploration, D = duplication free-
dom. Symbols + and - represent optimizations being on and off, respec-
tively. Last three columns correspond to the time it took for the assertion to
be covered, the maximum k explored, and the total time for testing.

distinguishes from them in more detail.
Extensions of concolic testing to concurrent programs have been

proposed before. In jCute [18], the program is executed concoli-
cally and data-races in the observed execution are identified. Then,
either the schedule is fixed and new input values are generated for
the same concurrent schedule, or a new schedule is produced by
keeping the inputs fixed and simply re-ordering the events involved
in a data-race. In contrast to con2colic testing, jCute is incomplete
due to its race-based schedule selection heuristic. Moreover, if a
timeout occurs, it is impossible to quantify the partial work done as
a meaningful coverage measure for the program.

Similar to con2colic testing, a recent related work [17], gener-
ates tests with the aim of increasing code coverage of concurrent
programs. However, it uses an under-approximation of the pro-
gram (i.e. a set of program runs), as opposed to the actual program.
Therefore, it is incomplete. Furthermore, test generation is done by
solving a constraint system that encodes the scheduling constraints
and the data-flow constraints together while considering the whole
computation in the runs. However, con2colic testing generates sep-
arate constraint systems for schedule generation and input gener-
ation which are based on only shared variable accesses and syn-
chronization events; This reduces the complexity of the constraint
systems drastically and increases scalability.

Some other recent work [21, 20] build a framework based on
over and under-approximations of interferences of the programs
to check for safety properties. Like [17], they build a constraint
system which includes local computation as well as global compu-
tation. Therefore, to reduce scalability issues, they focus only on
program slices obtained from program executions.

Finally, several sequentialization techniques [8, 23, 15, 13, 16]
have been proposed to reduce the problem of verifying concurrent
programs to verification of sequential programs. However, one can-
not apply traditional sequential testing techniques on the sequen-
tialized programs obtained by many of them as they are highly
non-deterministic. Furthermore, to execute sequential programs
obtained by [8, 13, 16], we should guess the values of shared vari-
ables at the beginning of each context. However, wrong guesses
might result in reaching invalid program states.
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