
JavaFAN: A Rewriting Logic Approach to Formal Analysis
of Multithreaded Java Programs ∗

Azadeh Farzan
University of Illinois at Urbana

Champaign
201 N. Goodwin

Urbana, IL

afarzan@cs.uiuc.edu

Feng Chen
University of Illinois at Urbana

Champaign
201 N. Goodwin

Urbana, IL

fengchen@cs.uiuc.edu

Jose Meseguer
University of Illinois at Urbana

Champaign
201 N. Goodwin

Urbana, IL

meseguer@cs.uiuc.edu

Grigore Rosu
University of Illinois at Urbana

Champaign
201 N. Goodwin

Urbana, IL

grosu@cs.uiuc.edu

ABSTRACT
JavaFAN (Java Formal ANalysis) is a multithreaded pro-
gram analysis framework based on rewriting logic specifi-
cations of Java. It can perform several types of analysis,
including symbolic execution of Java programs, detection
of safety violations searching through the potentially un-
bounded state space of a multithreaded program, and ex-
plicit state model checking of programs whose state space
is finite. Both Java source-code and byte-code analyses are
possible. The former is user-friendly, with counter-examples
directly related to familiar Java source-code, and the latter
affords a more precise analysis of the running code, not de-
pending on the correctness of the compiler, and can be used
even when the Java source-code of the program is not avail-
able.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Delphi theory

Keywords
ACM proceedings, LATEX, text tagging

1. INTRODUCTION
Rewriting logic [18] extends equational logic with rewrit-

ing rules and has been mainly introduced as a unified model

∗(Produces the permission block, and copyright informa-
tion). For use with SIG-ALTERNATE.CLS. Supported by
ACM.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSENewPort Beach, CA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

of concurrency. Many formal theories of concurrency have
been naturally mapped into rewriting logic during the last
decade. A next natural challenge is to define mainstream
concurrent programming languages in rewriting logic and
then use rewriting-based analysis techniques to reason about
concurrent program properties. There is already a substan-
tial body of case studies, of which we only mention [26, 25,
28], backing one of the key claims of this paper, namely that
rewriting logic can be fruitfully used as a unifying framework
for defining programming languages.

The focus here is on showing that a rewriting-based ap-
proach can be computationally used in practice to formally
analyze concurrent programs in a real programming lan-
guage like Java, and in this way of providing formal analy-
sis techniques for Java multi-threaded programs. Our tech-
niques are based on rewriting logic specifications of the Java
language and of the Java Virtual Machine (JVM) bytecode
semantics, both executable in the Maude language [3]. These
specifications define both the sequential and the concurrent
semantics of Java threads and can be used to perform the
following types of formal analysis, at both the source-code
and the byte-code levels: (1) symbolic simulation, with spec-
ifications used as interpreters that execute programs with
actual or symbolic inputs; (2) breadth-first formal analysis
of a concurrent program’s state space to find violations of
safety properties; and (3) model checking of linear temporal
logic (LTL) properties for programs whose state space is fi-
nite. To make the analysis framework user friendly, we have
implemented a tool called JavaFAN (the Java Formal AN-
alyzer) that wraps the underlying Maude specifications and
accepts Java or JVM code from a user as input. One can
analyze a Java program either directly, using the Java se-
mantics, or first compile it and then input the resulting JVM
code to JavaFAN. One can also analyze directly byte-code
when the source-code is not available. Symbolic simulation
can be performed without the user even being aware of the
underlying Maude.

We have analyzed in JavaFAN a number of Java pro-
grams. Some of the case studies conducted are reported
in this paper. Due to space limitations, other case studies
are reported on the WWW [8]; the same HTTP address also
contains the Maude JVM semantics, example codes, and a
downloadable JavaFAN.
Related Work. There is a vast literature on formal anal-
ysis of Java programs that we cannot exhaustively review

here. We can classify the different approaches as focusing
on either sequential or concurrent programs. Our work falls
in the second category. More specifically, it belongs to a
family of approaches that use a formal executable specifica-
tion of the concurrent semantics of Java or the JVM as a
basis for formal reasoning. Two other approaches in pre-
cisely this category are one based on the ACL2 logic and
theorem prover [16], and another based on a formal JVM
semantics and reasoning based on Abstract State Machines
(ASM) [24]. Our approach seems complementary to both
of these, in the sense that it provides new formal analysis
capabilities, namely search and LTL model checking. The
ACL2 work is in a sense more powerful, since it uses an
inductive theorem prover, but this greater power requires
greater expertise and effort.

Outside the range of approaches based on executable for-
mal specification, but somewhat close in the form of analy-
sis, is NASA’s Java Path Finder (JPF) [12, 2], which is an
explicit state model-checker for Java bytecode based on a
modified version of a C implementation of a JVM. Prelimi-
nary rough comparisons of JavaFAN and JPF1 are encour-
aging, in the sense that we can analyze the same types of
JVM programs of relatively the same size.

Other related work includes [23], which proposes an algo-
rithm that takes the bytecode for a method and generates a
temporal logic formula that holds iff the bytecode is safe; an
off-the-shelf model checker can then be used to determine
the validity of the formula. Among the formal techniques
for sequential Java programs, some approaches similar in
spirit to ours include the ACL2-based work on the defen-
sive JVM [4], which focuses on dynamic safety checks, and
the collective effort around the JML specification language
and verification tools for sequential Java [7], where formal
executable specifications of Java semantics in PVS are used,
e.g. see [27], to verify Java programs.

Another approach to define analysis tools for Java is based
on language translators, generating simpler language code
from Java programs and then analyzing the later. Bandera
[5] extracts abstract models from Java programs, specified in
different formalisms, such as Promela, which can be further
analyzed with specialized tools sach as SPIN [13]. JCAT [6]
also translates Java into PROMELA. [21] presents an analy-
sis tool which translates Java bytecode into C++ code repre-
senting an executable version of a model checker. While the
translation-based approaches can benefit from abstraction
techniques being integrated into the generated code, they
inevitably lead to natural worries regarding the correctness
of the translations. Unnecessary overhead seems to be also
generated, at least in the case of [21]; for example, exactly
the same Remote Agent Java code that can be analyzed in
0.1 second in JavaFAN [8] takes more than 2 seconds even
on the most optimized version of the tool in [21].

2. SPECIFYING CONCURRENT LANGUAGES
IN REWRITING LOGIC

In this section we explain the general rewriting logic for-
mal specification methodology that we use to define concur-
rent programming languages. As a whole, the specification
of a language is a rewrite theory, that is, a triple (Σ, E, R),
with (Σ, E) an equational specification with signature of op-

1Authors thank Willem Visser for examples and valuable
information about JPF.

erators Σ and a set of equational axioms E; and with R a
collection of labelled rewrite rules. The equational specifica-
tion describes the static structure of the concurrent system’s
state space as an algebraic data type. The dynamics of the
system are described by the rules in R that specify local
concurrent transitions that can occur in the system axioma-
tized by (Σ, E, R), and can be applied modulo the equations
E. Particularly important equations are those of associativ-
ity, commutativity and identity of binary operations, which
allow us to elegantly and effectively define (and implicitly
implement) the crucial infrastructure of programming lan-
guages, including environments and stores as well as the
lookup operations on these.

Maude [3] supports, executes and formally analizes rewrit-
ing logic theories, via a suite of efficient algorithms for term
rewriting, state-space search, and linear temporal logic (LTL)
model checking. These features are essential for JavaFAN.
Thanks to Maude’s frewrite command, the formal specifi-
cations for Java and the JVM become interpreters, in which
we can simulate the fair execution of a concurrent Java pro-
gram at the source and JVM levels. Maude’s search com-
mand and its LTL model checker allow exhaustive explo-
rations of a concurrent program’s state space. An impor-
tant point about our methodology is that, since according
to the semantics of rewriting logic [18], rewriting with R
happens modulo E, only the rules in R (not the equations
E) can produce a state space explosion. Therefore, all de-
terministic aspects of the Java computation are specified
with equations, with rules used only for concurrent features.
The number of such rules is relatively small (only 15 in a
150 JVM instruction specification, and a similar number for
Java) making state spaces as small as possible. The search

command provides breadth-first search and can be used as
a semidecision procedure to find errors in possibly infinite
state spaces. LTL model checking instead is a decision pro-
cedure but requires such state spaces to be finite. As already
pointed out, E, besides having confluent equations specify-
ing deterministic Java computations, contains associativity,
commutativity and identity (ACI) axioms to represent the
concurrent state of a Java or JVM computation as a mul-
tiset of entities such as the memory, continuations, and in
the JVM specification a collection of object and message
data structures representing JVM entities (objects, threads,
and so on) as objects in the ACI soup. Therefore, most of
our equations and rules are applied modulo ACI, which in
Maude is a highly optimized and efficient process for com-
monly occurring lefhandside patterns. For example, Fig-
ures ?? and ?? present two typical object-oriented rewrite
rules. An object in a given state is represented as a term
〈O : C | a1 : v1, . . . , an : vn〉, where O is the object’s name
or identifier, C is its class, the ai’s are the names of the ob-
ject’s attribute identifiers, and the vi’s are the corresponding
values.

3. JAVA AND JVM REWRITING SEMAN-
TICS

We use Maude to specify the operational semantics of a
sufficiently large subset of Java and the JVM, including mul-
tithreading, inheritance, polymorphism, object references,
and dynamic object allocation. We do not support native
methods and many of the Java built-in libraries at the mo-
ment. Besides mathematical correctness, efficiency of the re-

subsort StateAttribute < State .
op _,_ : State State -> State [assoc comm id: empty] .
op c : Context -> StateAttribute . *** Thread Context
op m : Store -> StateAttribute . *** Store the mapping from locations to values
op l : LockList -> StateAttribute . *** The synchronization locks
op w : LockList -> StateAttribute . *** The waiting locks
op s : ObjEnv -> StateAttribute . *** The static fields of classes
op out : Output -> StateAttribute . *** Collected outputs

Figure 1: Signature of the Java Program State.

subsort ContextItem < Context .
op _,_ : Context Context -> Context [assoc comm id: noItem] .
op k : Continuation -> ContextItem . *** The continuation of the thread
op e : Env -> ContextItem . *** The local environment for the thread
op o : Object -> ContextItem . *** The object running the thread

Figure 2: Signature of the Java Thread Context

sulting tools has also been a key goal in our formal language
definitions. Consequently, Java and the JVM are modeled
differently. For Java, a quite efficient continuation-based
style is adopted, while for the JVM we use an object ori-
ented style that makes the specification simpler and easier
to understand. The essential idea, however, is the same:
the use of rewriting logic to specify the changes to the pro-
gram state. Our language definitions underwent a series of
optimizations, which have significantly improved the overall
efficiency of JavaFAN. A major design principle is to keep
the size and the number of system’s states minimal, so that
Maude’s internal algorithms perform optimally. The former
has been achieved through separating the static and dynamic
aspects of the program, maintaining only the dynamic part
in the system’s state. For the latter, we reduced the number
of rewrite rules in the specification. Subsection 3.3 discusses
these optimizations in more detail.

3.1 Continuation-based Semantics of Java
The semantics of Java is defined modularly –different fea-

tures of the language are defined in separate modules– to
ease extensions and maintenance. The specification contains
75 modules, about 600 equations and 15 rewriting rules. We
next show a few snapshots of Java’s definition, see [8] for the
entire definition.

3.1.1 States
A state is an AC soup of state attributes, such as threads,

memory, synchronization information, etc. Figure 1 shows
the main constructors for the Java state. We adopt the well-
known representation of program states for object-oriented
languages [15], where an environment maps variable names
to locations, and a store maps locations to values. Objects
are stored as environments enriched with their class types.
To also support multi-threaded programs, we introduce the
notion of thread context, which consists of three components
(Figure 2): (1) a continuation, (2) the thread environment,
and (3) the corresponding object. The continuation main-
tains the control context of the thread, which explicitly spec-
ifies the next steps to be performed by the thread.
In addition to the thread context, there are other shared (by
threads) state attributes, including the static fields of the
classes, the store of values, the synchronization information,
and also the collected outputs of the execution.

eq k((X += E) -> K) = k(loc(X) -> += (E) -> K) .
rl c(k(L -> += (E) -> K), context), m([L,V] M) =>

c(k([E | V] -> + -> (set&fetch(L) -> K)), context), m([L,V] M) .

Figure 3: Semantics of += Expression

3.1.2 Continuations
Conditional rewrite rule definitions tend to be inefficiently

executed by rewriting systems because of the potentially un-
bounded control context that needs to be maintained. Con-
tinuations are a typical technique to transform the uncon-
trolable control context into controllable data context, by
stacking the sequence of actions that still need to be ex-
ecuted by a program or thread. The use of continuations
has resulted in a definition of Java using only unconditional
equations and rewriting rules, which can execute Java pro-
gram orders of magnitude faster than a conditional rewriting
semantics. E.g., the addition operation can be specified us-
ing continuations as follows.

Evaluate the operand expressions first: eq k((E1 + E2) -> K) = k((E1, E2) -> + -> K)
. Add the results and pass the final result: eq k((v1, v2) -> + -> K) = k((v1 + v2) ->
K).

K represents the remaining part of the continuation. Once
the expressions on the top of the continuation (E1, E2) are
evaluated, their results will be passed to the remaining con-
tinuation. Continuations significantly facilitate the defini-
tion of flow-control instructions, such as break, continue,
return, and exceptions.

Each thread context contains one continuation item, which
stores the remaining execution flow of the thread. Thus, the
two generic equations above can apply within any thread
context in the state soup.

3.1.3 Thread communication
Threads can communicate via shared variables. The order

in which they access shared variables or synchronization ob-
jects leads to different multithreaded computations, includ-
ing potentially eroneous ones. In order for the Maude search
and model checking procedures to appropriately explore all
the multithreaded computations of a Java program, one has
to ensure that the semantics of all the statements involving
potentially shared data, such as read/write of variables, are
defined as rewriting rules rather than equations.
Figure 3, e.g., shows the semantics of the += operator (X
+= E). The equation says how the statement should be eval-
uated: the location of the left operand needs to be first
obtained, then the marker += followed by the expression is
placed in the continuation, to state what one should do with
the location once calculated. Having a location L, the oper-
ation +=, and an expression E on top of the continuation, the
rewrite rule creates three new tasks for the continuation: (1)
Compute the expression E and add it to the value V (value
associated to location L) which is done through [E | V] ->

+; (2) write the result from part (1) to location L and also
pass it to the remaining continuation K via the operation
set&fetch(L), which is not defined here due to space limi-
tations. What is important here is that the above has to be
a rewriting rule instead of an equation because it involves
a memory read; another thread may write the same loca-
tion, so one wants to potentially allow both permutations of
location accesses.

3.2 Object-based Semantics of the JVM
The state of the JVM is represented as a multiset of ob-

jects and messages in Maude [3].
Objects in the multiset fall into four major categories: (1)

objects which represent Java objects, (2) objects which rep-
resent Java threads, (3) objects which represent Java classes,
and (4) auxiliary objects used mostly for definitional pur-
poses. Rewrites (with rewrite rules and equations) in this
multiset (modulo associativity, commutativity, and identity)
model the changes in the state of the JVM. In a rewrite,
there is usually one thread involved, together with classes
and/or objects that may be needed to execute the next byte-
code instruction. Reader can find a detailed discussion on
the JVM model in [9].

3.3 Optimizations
Below, we discuss two major optimizations we applied at

the both levels to decrease the size and number of system
states.

3.3.1 Size of the State

In order to keep the state of the system small, we only
maintain the dynamic part of the Java classes inside the sys-
tem state. Every attribute of Java threads and Java objects
can potentially change during the execution, but Java classes
contain attributes that remain constant all along, namely,
the methods, inheritance information, and field names. This,
potentially huge amount of information, does not have to be
carried along in the state of the JVM. The attributes of each
class are grouped into dynamic and static attributes. The
former group appears as a part of system’s state, and the
latter group is kept outside the pool, in a constant accessed
through auxiliary operations.

3.3.2 Rules vs. Equations

Using equations for all deterministic computations, and
rules only for concurrent ones leads to great savings in state
space size. The key idea is that the are only two cases in
which a thread interacts with (possibly changes) the out-
side environment are shared memory access and acquiring
locks. Examples of the former include the semantics of +=
at Java language level (see Section 3.1) and of the instruc-
tion getfield (see Section ??) at the bytecode level. As
an example for the latter case (see Section ??), we refer the
reader to semantics of acquiring a lock at both levels.

4. FORMAL ANALYSIS
Using the underlying fair rewriting, search and model

checking features of Maude, JavaFAN can be used to for-
mally analyze Java programs in bytecode format. The Maude’s
specification of the JVM can be used as an interpreter to
simulate fair JVM computations by rewriting. Breadth-first
search analysis is a semi-decision procedure that can be used
to explore all the concurrent computations of a program
looking for safety violations characterized by a pattern and
a condition. Infinite state programs can be analyzed this
way. For finite state programs it is also possible to perform
explicit-state model checking of properties specified in linear
temporal logic (LTL).

4.1 Simulation
Our Maude specification provides executable semantics

for Java and the JVM, which can be used to execute Java

programs in source code and bytecode formats. This sim-
ulator can also be used to execute programs with symbolic
inputs. Maude’s frewrite command provides fair rewriting
with respect to objects, and since all Java threads are de-
fined as objects in the specification, no thread ever starves,
although no specific scheduling algorithm is imposed2.

This part has to be rewritten very carefully.

To facilitate user interaction, the JVM seman-
tics specification is integrated within a prototype
tool, called JavaFAN, that accepts standard byte-
code as its input. The user can use javac (or
any Java compiler) to generate the bytecode. She
can then execute the bytecode in JavaFAN, be-
ing totally unaware of Maude. We use javap as
the disassembler on the class files along with an-
other disassembler jreversepro [14] to extract
the constant pool information that javap does not
provide.

4.2 Breadth-first Search
Using the simulator (Section 4.1), one can explore only

one possible trace (modeled as sequence of rewrites) of the
Java program being executed. Maude’s search command
allows exhaustively exploring all possible traces of a Java
program. The breadth-first nature of the search command
gives us a semi-decision procedure to find errors even in in-
finite state spaces, being limited only by the available mem-
ory. Below, we discuss a number of case studies.

4.2.1 Remote Agent.
The Remote Agent (RA) is an AI-based spacecraft con-

troller that has been developed at Nasa Ames Research Cen-
ter and has been part of the software component of NASA’s
Deep Space 1 shuttle, the first New Millennium Mission test-
ing several cutting-edge technologies such as the ionic engine
and the on-board optical navigation. However, on Tuesday,
May 18th, 1999, Deep Space 1’s software deadlocked 96 mil-
lion kilometers away from the earth and consequently had
to be manually interrupted and restarted from ground. The
blocking was due to a missing critical section in the RA
that had led to a data-race between two concurrent threads,
which further caused a deadlock [10, 11]. This real life ex-
ample shows that even quite experienced programmers can
miss data-race errors in their programs. Moreover, these
errors are so subtle that they often cannot be exposed by
intensive testing procedures, such as NASA’s, where more
than 80% of a project’s resources go into testing. This jus-
tifies formal analysis techniques like the ones presented in
this paper which could have caught that error.

The RA consists of three components: a Planner that gen-
erates plans from mission goals; an Executive that executes
the plans; and a Recovery system that monitors RA’s status.
The Executive contains features of a multithreaded operat-
ing system, and the Planner and Executive exchange mes-
sages in an interactive manner. Hence, this system is highly
vulnerable to multithreading errors. Events and tasks are
two major components (see Figure ?? in the Appendix). In
order to catch the events that occur while tasks are exe-
cuting, each event has an associated event counter that is

2By not committing to any specific thread scheduling, we
have the advantage of detecting the violations that may hap-
pen in some scheduling schemes, but not in others.

increased whenever the event is signaled. A task then only
calls wait for event in case this counter has not changed,
hence, there have been no events since it was last restarted
from a call of wait for event.

The error in this code results from the unprotected access
to the variable count of the class Event. When the value of
event1.count is read to check the condition, it can change
before the related action is taken, and this can lead to a
possible deadlock. This example has been extensively stud-
ied in [10, 11]. Using the search capability of our system,
we also found the deadlock in the same faulty copy in 0.1
second in source code level and in 0.3 second in bytecode
level. This is while the tool in [21] finds it in more than 2
seconds in its most optimized version3.

The Thread Game.
The Thread Game [20] is a simple multithreaded program
which shows the possible data races between two threads ac-
cessing a common variable (see Figure ?? in the Appendix).
Each thread reads the value of the static variable c twice
and writes the sum of the two values back to c. Note that
these two readings may or may not coincide. An interest-
ing question is what values can c possibly hold during the
infinite execution of the program. Theoretically, it can be
proved that all natural numbers can be reached [20].

We can use Maude’s search command to address this ques-
tion for each specific value of N . The search command can
find one or all existing solutions (sequences) that lead to
get the value N . Tablel 1 presents some numbers and the
amount of time (in seconds) to find a solution for that num-
ber in both source code and bytecode levels.

N 50 100 200 400 500 1000
JVM 7.2 17.1 41.3 104 4.5m 10.1m
Java 2.7 6.6 17 54.7 2m 5.1m

Table 1: Thread Game Times.

4.3 Model Checking
Maude’s model checker is explicit state and supports Lin-

ear Temporal Logic. This general purpose rewriting logic
model checker can be directly used on the Maude specifica-
tion of JVM’s concurrent semantics. This way, we obtain a
model checking procedure for Java programs for free. The
user has to specify in Maude the atomic propositions to be
used in order to specify relevant LTL properties. We illus-
trate this kind of model checking analysis by the following
examples.

4.3.1 Dining Philosophers.
See Figure ?? in the Appendix for the version of the dining

philosophers problem that we have used in our experiments.
The property that we have model checked is whether all the
philosopher can eventually dine. Each philosopher prints
her ID when she dines. Therefore, to check whether the first
philosopher has dined, we only have to check if 1 is written in
the output list (see Section ?? for the output process). The
LTL formula can be built based on propositions defined as
follows. op Check : Int -> Prop, where Check(N) will be true

3All the performance results given in this section are in sec-
onds on a 2.4GHz PC.

Table 2: Dining Philosophers Times

Tests Times(s)
DP(4) 0.64
DP(5) 4.5
DP(6) 33.3
DP(7) 4.4m
DP(8) 13.7m
DP(9) 803.2m
DF(4) 21.5
DF(5) 3.2m
DF(6) 23.9m
DF(7) 686.4m

at some state if the output list contains all the numbers from
1 to N . In this case, we check the following LTL formula us-
ing the modelCheck, where InitialState is the initial state
of the program defined automatically. The formula that we
model checked is 3Check(n) for n philosophers. The model
checker generates counterexamples, in this case a sequence
of states that lead to a possible deadlock. The sequence
shows a situation in which each philosopher has acquired
one fork and is waiting for the other fork. Currently, we can
detect the deadlock for up to 9 philosophers (Table 2). We
also model checked a slightly modified version of the same
program which avoids deadlock. In this case, we can prove
the program deadlock-free when there are up to 7 philoso-
phers. This compares favorably with JPF [2, 12] which for
the same program cannot deal with 4 philosophers.

4.3.2 2-stage Pipeline.
Figure ?? in the Appendix implements a pipeline com-

putation, where each pipeline stage executes as a separate
thread. Stages interact through connector objects that pro-
vide methods for adding and taking data. The property we
have model checked for this program is related to the proper
shutdown of pipelined computation, namely, “the eventual
shutdown of a pipeline stage in response to a call to stop

on the pipeline’s input connector”. The LTL formula for
the property is �(c1stop → 3(¬stage1return)). JavaFAN
model checks the property and returns true in 17 minutes
(no partial order reduction was used). This compares favor-
ably with the model checker in [21] which without using the
partial order reduction performs the task in more than 100
minutes.

5. CONCLUSION AND FUTURE WORK
We have presented JavaFAN, have explained its underly-

ing formal executable specification of the concurrent seman-
tics, and have illustrated its use in formally analyzing JVM
code by simulation, search, and model checking. Although
the results so far are encouraging, much work remains ahead.
One important issue is how to scale up to larger programs
in face of the inherent combinatorial state explosion. Both
new algorithms and better control of the granularity of the
concurrency, when this can be shown to be safe, are needed.
Another important technique needed to drastically reduce
the state space size is abstraction. Recent equational ab-
straction techniques for Maude specifications [19], as well
as the experience in using abstraction to model check pro-
grams in work such as, e.g., [1] should be exploited in this

regard. Partial-order reduction [22] techniques for rewriting
logic model checking is certainly a promissing area of fur-
ther research. Another non-trivial issue is to properly deal
with foreign functions, since most Java libraries are in fact
implemented in C.

Other future research involves widening the range of for-
mal analyses. On one side, theorem proving support would
be desirable; the work of the JML and ACL2 researchers
will be helpful in this regard, but the kind of logic needed to
specify properties must go beyond JML, where only sequen-
tial programs are treated. On the other side, it would be
interesting to incorporate in JavaFAN domain-specific cer-
tification and specification-based monitoring techniques.

6. ADDITIONAL AUTHORS

7. REFERENCES
[1] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and

Cartesian abstraction for model checking C programs.
In TACAS’01, LNCS 2031, pages 268 – 283, 2001.

[2] G. Brat, K. Havelund, S. Park, and W. Visser. Model
checking programs. In ASE’00, pages 3 – 12, 2000.

[3] M. Clavel, F. Durán, S. Eker, P. Lincoln,
N. Mart́ı-Oliet, J. Meseguer, and C. Talcott. Maude
2.0 Manual, 2003.
http://maude.cs.uiuc.edu/manual.

[4] R. M. Cohen. The defensive Java Virtual Machine
specification. Technical report, Electronic Data
Systems Corp, 1997.

[5] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach,
C. S. Păsăreanu, R. Zheng, and H. Zheng. Bandera:
extracting finite-state models from java source code.
In ICSE’00, pages 439 – 448, 2000.

[6] C. Demartini, R. Iosif, and R. Sisto. A deadlock
detection tool for concurrent Java programs. Software
- practice and Experience, 29(7):577 – 603, 1999.

[7] G. T. L. et al. JML: notations and tools supporting
detailed design in Java. In OOPSLA’00, pages
105–106, 2000.

[8] A. Farzan, F. Chen, J. Meseguer, and G. Roşu.
JavaFAN. fsl.cs.uiuc.edu/es/javafan.

[9] A. Farzan, J. Meseguer, and G. Roşu. Formal jvm
code analysis in javaFAN. In Proceedings of
AMAST’04, to appear.

[10] K. Havelund, M. Lowry, S. Park, C. Pecheur, J. Penix,
W. Visser, and J. White. Formal analysis of the
remote agent before and after flight. In the 5th NASA
Langley Formal Methods Workshop, 2000.

[11] K. Havelund, M. Lowry, and J. Penix. Formal
Analysis of a Space Craft Controller using SPIN.
IEEE Transactions on Software Engineering,
27(8):749 – 765, Aug. 2001. Previous version appeared
in Proceedings of the 4th SPIN workshop, 1998.

[12] K. Havelund and T. Pressburger. Model checking Java
programs using Java PathFinder. Software Tools for
Technology Transfer, 2(4):366 – 381, Apr. 2000.

[13] G. J. Holzmann. The model checker SPIN. Software
Eng., 23(5):279 – 295, 1997.

[14] Jreversepro 1.4.1.
http://jrevpro.sourceforge.net/.

[15] S. Kamin. Inheritance in smalltalk-80: a denotational
definition. In POPL’88, pages 80 – 87, 1988.

[16] M. Kaufmann, P. Manolios, and J. S. Moore.
Computer-Aided Reasoning: ACL2 Case Studies.
Kluwer Academic Press, 2000.

[17] Z. Manna and A. Pnueli. The Temporal Verifciation of
Reactive and Concurrent Systems – Specification.
Springer-Verlag Inc., 1992.

[18] J. Meseguer. Conditional Rewriting Logic as a Unified
Model of Concurrency. Theoretical Computer Science,
pages 73–155, 1992.

[19] J. Meseguer, M. Palomino, and N. Mart́ı-Oliet.
Equational abstractions. In CADE-19, volume 2741 of
LNCS, pages 2 – 16, 2003.

[20] J. S. Moore.
http://www.cs.utexas.edu/users/xli/prob/p4/p4.html.

[21] D. Y. W. Park, U. Stern, J. U. Sakkebaek, and D. L.
Dill. Java model checking. In ASE’01, pages 253 –
256, 2000.

[22] D. Peled. All from one, one for all: on model checking
using representatives. In CAV’93, LNCS, pages
409–423, 1993.

[23] J. Posegga and H. Vogt. Java bytecode verification
using model checking. In Workshop “Formal
Underpinnings of Java” OOPSLA’98, Oct. 1998.

[24] R. Stärk, J. Schmid, and E. Börger. Java and the Java
Virtual Machine - Definition, Verification, Validation.
Springer-Verlag, 2001.

[25] M. Stehr and C. Talcott. Plan in Maude: Specifying
an active network programming language. In RTA’02,
volume 71, 2002.

[26] P. Thati, K. Sen, and N. Mart́ı-Oliet. An executable
specification of asynchronous Pi-Calculus semantics
and may testing in Maude 2.0. In RTA’02, 2002.

[27] J. van den Berg and B. Jacobs. The LOOP compiler
for Java and JML. In TACAS’01, volume 2031 of
LNCS, pages 299 – 312, 2001.

[28] A. Verdejo and N. Mart́ı-Oliet. Executable structural
operational semantics in Maude. Manuscript, Dto.
Sistemas Informáticos y Programación, Universidad
Complutense, Madrid, August 2003.

