
Duet: Static Analysis for Unbounded Parallelism

Azadeh Farzan and Zachary Kincaid

University of Toronto

Abstract. Duet is a static analysis tool for concurrent programs in
which the number of executing threads is not statically bounded. Duet
has a modular architecture, which is based on separating the invari-
ant synthesis problem in two subtasks: (1) data dependence analysis,
which is used to construct a data flow model of the program, and (2)
interpretation of the data flow model over a (possibly infinite) abstract
domain, which generates invariants. This separation of concerns allows
researchers working on data dependence analysis and abstract domains
to combine their efforts toward solving the challenging problem of static
analysis for unbounded concurrency. In this paper, we discuss the archi-
tecture of Duet as well as two data dependence analyses that have been
implemented in the tool.

1 Introduction

Verification of concurrent programs is a notoriously challenging problem. The
difficulty arises from the fact that the size of the control space of a concurrent
program is exponential in the number of executing threads, which makes direct
analysis of the control space infeasible. The problem is even more difficult for
programs where the number of executing threads is not bounded: in this case,
the control space is infinite.

In this paper, we present Duet, a static analysis tool for analyzing pro-
grams with unbounded parallelism. Duet is based on the general philosophy
that general invariant generation can be reduced to data-dependence analysis.
This philosophy is particularly interesting in the case of programs with un-
bounded parallelism, since in this setting invariant generation is a formidable
problem but data-dependence analysis is tractable. In this paper, we expound
on the philosophy of Duet. We describe its architecture and describe two dif-
ferent analyses implemented in the tool [4,5]. Finally, we present experimental
results demonstrating the efficacy of our tool on a set device drivers.

2 Overview

Duet is based on the idea that much of the essential behaviour of a program is
captured by the data flow of the program. Consider the program below, in which
unboundedly many copies of the thread Thread i execute in parallel. A data flow
graph (DFG) for this program is pictured to its right. The edges of this DFG
match each read of a variable with the writes that may reach it: for example,
the edge from c := 1 to x := x + c labeled c indicates that the value of c may

N. Sharygina and H. Veith (Eds.): CAV 2013, LNCS 8044, pp. 191–196, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



192 A. Farzan and Z. Kincaid

flow from c := 1 to x := x + c (and thus, c may be 1 at x := x + c). Note
that some edges in this graph go in the opposite direction of control flow (e.g.,
the double-headed edge between x := x + c and x := x - c, which indicates
a pair of edges, one in each direction). The value of x may flow from x := x - c

to x := x + c because these instructions may be executed by different threads.
Notice also that several interesting edges do not exist: there is no x-labeled loop
on x := x - c; Lock l enforces the atomicity of the lock block, which breaks
this data flow; an occurrence of x := x + c must always be executed between
any two x := x - c instructions.

Thread i:
c := 1

acquire(l)

x := x + c

assert(x == 1)

x := x - c

release(l)

c := 1

init

acquire(l)

x := x + c

assert(x == 1)

x := x - c

release(l)

l

l

c

c

x

x

x

A data flow graph represents a
system of constraints that can be
solved automatically (using stan-
dard techniques) to yield program
invariants [5]. This is the essen-
tial idea of the Duet tool: since
DFGs can be used to compute in-
variants, invariant generation can
be reduced to constructing a DFG
for a program. Moreover, since
data flow captures an essential fea-
ture of program behaviour, this
strategy is often sufficient to prove
properties of interest. For the ex-
ample program above, Duet is
able to prove that assertion always holds by interpreting the DFG over an inter-
val abstract domain.

3 Duet’s Architecture

The high-level architecture of Duet is pictured in Figure 1. We will begin by
describing the basic work-flow of Duet and then discuss each of the component
modules in more detail.

CIL

Goto-Fe

BP-Fe
Packing

POPL12

SAS10

Construct
DFG

Front-End

Fixpoint solver

Assertion checker

C program

Goto
program

Boolean
program

Control flow

automata

DFG

Invariants

Invariants

Error report

Pa
ck
s

Fig. 1. Duet’s architecture



Duet: Static Analysis for Unbounded Parallelism 193

First, one of the three front-end modules (CIL, Goto-Fe, BP-Fe) takes a (C,
Goto, or Boolean) program as input and produces a system of control flow au-
tomata,with one automaton for each thread of the program.Next, a variablepack-
ing algorithm determines a set of packs (a pack is a set of semantically related
variables, according to some heuristic). The set of packs and the system of con-
trol flow automata are fed into one of the two construct DFGmodules (POPL12
or SAS10), which uses a data dependence analysis to construct a DFG for the pro-
gram.Thefixpoint solver interprets the DFGover some abstract domain to com-
pute a set of invariants, which are passed to the assertion checker (in the case of
POPL12, the invariants may alternatively be fed back into the DFG construction
module). The assertion checker uses the invariants to determine check which as-
sertions are safe and whichmay fail, and generates an error report.

3.1 Front-End

Duet accepts three types of inputs: (1) C programs using pthreads library for
thread operations (using the CIL front-end [9]), (2) Boolean programs1, or (3) goto
programs, as produced by the goto-cc C/C++ front-end (part of the CProver
project [1]). The front-end transforms these programs into a common form, namely
a system of control flow automata. It also annotates the program with assertions,
according to user input (for example, an assertion assert(p != 0) is generated for
each access path of the form *p, if the -check-null-pointer option is set).

3.2 Variable Packing

In the DFGs implemented in Duet, each edge is labeled by a pack rather than a
variable. A pack is a set of variables that may be related to one another. We may
think of a DFG edge labeled by a pack as “carrying” a value for each variable
in that pack (which allows an abstract domain to correlate variables belonging
to a pack). The case where edges are labeled by variables is the special case
where all packs are singleton sets. The packing module computes a set of packs
from an input program, and passes those packs to the DFG construction phase.
The choice of the abstract domain (non-relational vs relational) determines the
choice of the packing algorithm used (there are currently two options in Duet).

3.3 DFG Construction

A DFG construction module takes a system of control flow automata and a
set of packs (and in the case of POPL12, a set of invariants), and constructs
a DFG representation of the program. There are currently two strategies for
constructing DFGs that are implemented in Duet, which we describe below.

Nested locks (SAS10). In [4], we leverage reachability results for concurrent
programs communicating via nested locks [6] to develop a compositional technique
for solving bitvector analysis problems. Data-dependence analysis can be formu-
lated as a bitvector problem, so wemay use this technique to construct DFGs. Our
method computes a summary for each thread describing its behaviour and then

1 http://www.cprover.org/boolean-programs/

http://www.cprover.org/boolean-programs/


194 A. Farzan and Z. Kincaid

composes the summaries to compute a DFG for the program. This compositional
approach enables our analysis to be sound and precise (it computes meet-over-
feasible-paths solutions) evenwhen the number of executing threads inunbounded.

Global variables (POPL12). A more challenging (and also strictly more
general) program model uses global variables for synchronization rather than
locks. This model is difficult because it requires circular reasoning: in order to
perform a reasonably accurate data dependence analysis to construct a DFG
we need invariants for the synchronization variables, and in order to compute
invariants for the synchronization variables we need to construct a DFG.

In [5], we present an approach based placing the DFG construction module
(POPL12) and the fixpoint solver into a feedback loop. The DFG and the
invariants are iteratively coarsened as the algorithm progresses (that is, the in-
variants become weaker, and more edges are added to the DFG) until a fixpoint
is reached. When a fixpoint is reached, the invariants overapproximate the dy-
namic behaviour of the program in question.

3.4 Fixpoint Solver

The fixpoint solver module interprets a DFG over an abstract domain to yield
program invariants. It accomplishes this by computing a weak topological order
on the DFG and repeatedly evaluating DFG nodes over the chosen abstract
domain until a fixpoint is reached, as in [3]. Duet employs the abstract domains
implemented in Apron [2] for this task.

3.5 Assertion Checker

Finally, the assertion checker module iterates over the DFG vertices: for each
assertion vertex, we determine whether the invariant at that location (computed
by the fixpoint solver) implies the assertion using the Apron [2] library. If the
check fails, the assertion may fail, and we add it to the error report.

4 Experiments

We used a benchmark suite of 15 Linux device drivers to evaluate Duet. Since
a driver may have arbitrarily many clients, these programs exhibit unbounded
parallelism. Table 1 presents the result of running Duet on a collection of 15
Linux device drivers. These drivers are all written in C, and include infinite data
(such as integer types).

With an interval analysis,Duetmanages to provemost of the assertions correct
(1312 out of a total 1597), and does so in 13 minutes.Duet’s performance using an
octagon analysis is slightly worse, proving 1277 assertions correct in 90 minutes.

Most false positives for Duet appear to be caused by one of two reasons:
imprecision in the abstract domain (e.g. lack of a precise enough abstraction
to handle zero-terminated arrays that are used in most of these drivers), and
imprecision in how Duet handles the treatment of spinlocks in goto programs
(due to the imprecision in the alias analysis that for lock variables). Neither of



Duet: Static Analysis for Unbounded Parallelism 195

Table 1. Duet’s Performance on Integer Programs with unbounded parallelism, run
on an 3.16GHz Intel(R) Core 2(TM) machine with 4GB of RAM

Device Drivers #assertions
Duet: Interval Analysis Duet: Octagon Analysis
safe time safe time

i8xx tco 90 75 1m51s 71 1m25s

ib700wdt 75 64 30s 64 20s

machzwd 87 73 39s 67 14m44s

mixcomwd 91 72 22s 74 25

pcwd 240 147 2m43s 145 23m48s

pcwd pci 204 187 2m18s 188 2m59s

sbc60xxwdt 91 77 28s 69 11m27s

sc520 wdt 85 71 28s 65 13m20s

sc1200wdt 77 66 34s 66 33s

smsc37b787 wdt 93 80 47s 80 47s

w83877f wdt 92 78 29s 72 13m24s

w83977f wdt 101 90 34s 82 34s

wdt 99 88 25s 86 25s

wdt977 88 77 27s 75 28s

wdt pci 84 67 33s 66 5m33s

total 1597 1312 13m9s 1270 90m21s

these sources of imprecision is due to a fundamental limitation of the analysis
technique proposed in this paper (or related to concurrency). But, they hint on
the idea that more precise alias analysis techniques (for concurrent code) and
better abstract domains could hugely benefit the false positive rate of Duet.

OCT
safe unsafe

IV
L safe 1267 45

unsafe 3 282

Interval vs Octagon Analysis. The table on the right
compares the results of interval and octagon analyses in
Duet over the driver benchmarks (same experiments as
in Table 1. Octagon analysis performs worse than inter-
val analysis, however, it manages to prove 3 assertions safe that interval analysis
fails. Octagon analysis is very sensitive to the variable packing algorithm. Inves-
tigating more sophisticated packing algorithms is a topic of our future work.

4.1 Boolean Programs

Although Boolean programs are not the intended target of Duet, we performed
a set of experiments over existing Boolean program benchmarks for two reasons:
(1) to compare with two recent approaches [8,7] for verification of concurrent
Boolean programs with unboundedly many threads, and (2) there is no aliasing
present in Boolean programs, which limits the scope of implementation-related
imprecision for a better evaluation of the core method.

Even thoughDuet candirectly analyze the original devicedriver codes (i.e. does
not require a predicate abstraction phase), we chose to compare with the existing
tools [8,7] on the Boolean abstractions (for which these tools were designed), to
present a more fair comparison. We compareDuet against two recent algorithms
that handle Boolean programswith unbounded parallelism: dynamic cutoff detec-
tion (DCD) from [7], as implemented in Boom, and linear interfaces (LI) from [8],



196 A. Farzan and Z. Kincaid

as implemented in Getafix. We compared these tools against the benchmarks pro-
vided by the authors. It is important to note that both tools are capable of finding
counterexamples to definitively declare an assertion unsafe, whereas, when Duet
fails to produce strong enough invariants to prove an assertion correct, it is not clear
whether the assertion is incorrect or Duet failed to prove it correct. The timeout
is 5 minutes in all cases.

LI
safe unsafe timeout unknown

D
u
e
t safe 1289 0 267 957

unknown 54 247 23 579
timeout 0 0 0 0

The table on the left presents the
results of comparing Duet against
LI over LI benchmarks. Columns/
rows titled safe, unsafe, and time-
out are self-explanatory. An “un-
known” response fromDuetmeans

that the invariants were not strong enough to prove the assertion safe, and an
“unknown” response from LI means that neither a counter example was found
nor the program was proved safe. Duet substantially outperforms LI; for exam-
ple, there were 957 assertions proved safe by Duet that were declared unknown
by LI, where as LI could only prove safe 54 of Duet’s unknown cases.

DCD
safe unsafe timeout

D
u
e
t safe 19 0 39

unknown 0 203 2
timeout 0 7 0

The table on the right presents the results
of comparing against DCD over DCD bench-
marks. Again,Duet substantially outperforms
DCD in proving assertions correct; 39 more as-
sertions (out of 58) areproved correctbyDuet.

References

1. Alglave, J., Kroening, D., He, N., Ranjan, A., Seghir, N., Tautschnig, M.: CPROVER
Project (November 2011)

2. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009)

3. Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: Pottosin,
I.V., Bjorner, D., Broy, M. (eds.) FMP&TA 1993. LNCS, vol. 735, pp. 128–141.
Springer, Heidelberg (1993)

4. Farzan, A., Kincaid, Z.: Compositional bitvector analysis for concurrent programs
with nested locks. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp.
253–270. Springer, Heidelberg (2010)

5. Farzan, A., Kincaid, Z.: Verification of parameterized concurrent programs by mod-
ular reasoning about data and control. In: POPL, pp. 297–308 (2012)

6. Kahlon, V., Ivančić, F., Gupta, A.: Reasoning about threads communicating via
locks. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
505–518. Springer, Heidelberg (2005)

7. Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized con-
current programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS,
vol. 6174, pp. 645–659. Springer, Heidelberg (2010)

8. La Torre, S., Madhusudan, P., Parlato, G.: Model-checking parameterized concur-
rent programs using linear interfaces. In: Touili, T., Cook, B., Jackson, P. (eds.)
CAV 2010. LNCS, vol. 6174, pp. 629–644. Springer, Heidelberg (2010)

9. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: Cil: Intermediate language and
tools for analysis and transformation of c programs. In: CC, pp. 213–228 (2002)


	DUET: Static Analysis for Unbounded Parallelism

	1 Introduction
	2 Overview
	3 DUET's Architecture

	4 Experiments
	References




