
Meta-analysis of Concurrent Program Runs with
Nested Locking for Atomicity Violations?

Azadeh Farzan1, P. Madhusudan2, and Francesco Sorrentino2

1 University of Toronto
2 Univ. of Illinois at Urbana-Champaign

Abstract. We study the problem of determining, given a run of a con-
current program, whether there is any alternate execution of it that vi-
olates atomicity, where atomicity is defined using marked blocks of local
runs. We show that if a concurrent program adopts nested locking, the
problem of predicting atomicity violations is possible efficiently, without
the exploration of all interleavings. In particular, for the case of atom-
icity violations involving only two threads and a single variable, which
covers many of the atomicity errors reported in bug databases, we exhibit
efficient algorithms that work in time that is linear in the length of the
runs, and quadratic in the number of threads. Moreover, we report on an
implementation of this algorithm, and show experimentally that it scales
well for benchmark concurrent programs and is effective in predicting a
large number of atomicity violations even from a single run.

1 Introduction

The multicore revolution is transforming computer science. The fact that indi-
vidual processors may not get any faster, and the only way software can gain
speed is to exploit concurrent executions on multiple processor cores, has cre-
ated a need to update all disciplines within computer science (algorithms, data
structures, programming languages, software engineering, architecture, operat-
ing systems, testing, verification, etc.) to adapt themselves to concurrency.

The motivation of this paper is to study problems in testing concurrent pro-
grams. Testing, which is the primary technique used in the industry to assure
correctness of software, is fundamentally challenged for concurrent programs be-
cause of the interleaving explosion problem. Given a concurrent program P and a
single test input i to it, there are a multitude of interleaved executions on i. This
grows exponentially with the number of cores, making a systematic exploration
of all executions on the test infeasible.

One way to tackle this problem is to choose (wisely) a subset of interleaved ex-
ecutions to test. The CHESS project at Microsoft research is one such tool, which
systematically explores all interleavings that involve only k context-switches (for
a small fixed k), banking on the intuition that most errors manifest themselves
within a few context switches. IBM’s ConTest tool also explores schedules that
are more likely to have data races, deadlocks, etc.
? An extended version of this paper and all the experiments data can be found at
http://www.cs.uiuc.edu/∼madhu/cav09/

In the line of work we pursue, we have chosen the class of executions that
violate atomicity as a candidate for selecting schedules. A programmer writing
a procedure often wants uninterfered access to certain shared data that will
enable him/her to reason about the procedure locally. The programmer often
puts together concurrency control mechanisms to ensure atomicity, often by
taking locks on the data accessed. This is however extremely error-prone: errors
occur if not all the required locks for the data are acquired, non-uniform ordering
of locking can cause deadlocks, and naive ways of locking can inhibit concurrency,
which forces programmers to invent intricate ways to achieve concurrency and
correctness at the same time. Recent studies of concurrency errors [11] show
that a majority of errors (69%) are atomicity violations. This motivates our
choice in selecting executions that violate atomicity as the criterion for choosing
interleavings to execute.

In this paper, we tackle a key problem towards this goal: given an execution of
a concurrent program on a test input, say ρ, we pose the meta-analysis problem
of efficiently checking whether there is an alternate scheduling of the events in
ρ that violates atomicity.

Notice that this is quite a more complex problem than the monitoring prob-
lem of checking whether, given a particular execution ρ, whether ρ itself violates
atomicity. We examined the monitoring problem in work reported in CAV last
year [3], where we showed that this is efficiently solvable using streaming algo-
rithms that take space independent of the length of the executions. The recent
tool Velodrome [6] also considers only the simpler monitoring problem, and not
the meta-analysis problem we consider in this paper.

In recent work [4], we have studied the meta-analysis problem for atomicity,
and shown that when all synchronization actions in the execution are ignored,
efficient algorithms that work in time linear in n (where n is the length of the
execution) are feasible. However, we also showed that if the locking synchroniza-
tion between threads is taken into account, an algorithm that is linear in n is
unlikely to exist.

The main result of this paper is to show that when the program uses only
nested locking (i.e. when threads release locks in the reverse order of how they
acquired them), we can build algorithms that effectively analyze all interleavings
for basic atomicity violations in time that is linear in the length of the execution.

Our goal in this work is also to find an efficient scalable algorithm for analyz-
ing executions for atomicity violations. Consequently, we study only atomicity
violations caused by two threads accessing one variable only. More precisely, we
define atomicity using serializability. We look for minimal serializability viola-
tions which are those caused by two threads and one variable only; i.e. we look
for threads T and T ′, where there are two events e1 and e2 that access a variable
v in a single transaction of T , and there is an action in thread T ′ that is happens
in between the events e1 and e2, and is conflicting with both e1 and e2.

In our experience in studying concurrency bugs, we have found that many
atomicity violations are caused due to such patterns of interaction. The recent
study of concurrency bugs by Lu et al [11] in fact found that 96% of concurrency

2

errors involved only two threads, and 66% of (non-deadlock) concurrency errors
involved only one variable. The restriction to atomicity errors involving only two
threads and one variable makes our algorithm feasible in practice.

Our main result is to show that given a run ρ of length n where threads
synchronize using nested locking, we can predict whether any of the many inter-
leavings (which can be exponential in n) has a minimal serializability violation
in time linear in n, linear in the number of global variables, and quadratic in the
number of threads. Our algorithm is compositional : it works first locally on each
individual thread, extracting information called profiles that depend only on the
set of locks and variables, and is independent of n. Then, in a second phase, we
combine the profiles obtained from the different threads to check whether there
is an interleaved run that violates atomicity.

Our algorithm is derived by reducing the meta-analysis of minimal atomicity
violations to the problem of pairwise reachability of two threads. We then use a
beautiful result by Kahlon et al [9] to solve the latter problem for threads with
nested locking compositionally, using lock-sets and acquisition histories.

We have also implemented our meta-analysis algorithm for atomicity in a
tool. By transforming concurrent programs so that they can be monitored, we
extract concurrent executions on test inputs, and use our algorithm to find atom-
icity violations. In these examples, the length of the executions are extremely
long (some have about 11 million events), and any algorithm that runs even in
time quadratic in n would not scale. We show, through experiments, that our
algorithm scales well to these long executions, and accurately predicts a large
number of atomicity violations even from a single run.

Related Work: Apart from the related work discussed above, atomicity vi-
olations based on serializability have been suggested to be effective in finding
concurrency bugs in many works [7, 5, 18, 17, 19]. Lipton transactions have been
used to find atomicity violations in programs [10, 7, 5, 8]. In [2], we had proposed
a slightly different notion of atomicity called causal atomicity ; the violations we
find in this paper can also be seen as causal atomicity violations.

The run-time monitoring for atomicity violations is well-studied [3, 6]. Note
that here the problem is to simply observe a run and check whether that particu-
lar run (and only that run) is atomic. The work in [13] defines access interleaving
invariants that are certain patterns of access interactions on variables, learns the
intended specifications using tests, and monitors runs to find errors. A variant
of dynamic two-phase locking algorithm [12] for detection of an serializability
violation is used in the atomicity monitoring tool developed in [19].

Turning to predictive analysis, there are two main streams of work that are
relevant. In papers [18, 17], Wang and Stoller study the prediction of runs that
violate serializability from a single run. Under the assumptions of deadlock-
freedom and nested locking, they show precise algorithms that can handle se-
rializability violations involving at most two transactions (not threads). They
also give heuristic incomplete algorithms for checking arbitrary runs. In con-
trast, we focus on minimal serializability here, and check for violations involving
two threads which could contain a huge number of transactions. The approach

3

in [17] uses a structure which grows quadratically with the size of the observed
run, and therefore has limited scalability. Our algorithm uses space independent
of the size of the observed run, and time linear in the observed run, and scales
well. Predicting alternate executions from a single run are also studied in a se-
ries of papers by Rosu et al [14, 1]. While these tools can also predict runs that
can violate atomicity, their prediction model is tuned towards explicitly gener-
ating alternate runs, which can then be subject to atomicity analysis. In sharp
contrast, the results we present here search the exponential space of alternate
interleavings efficiently, without enumerating them. However, the accuracy and
feasibility of prediction in the above papers are better as the algorithm is aware
of the static structure of the programs and the control dependencies.

2 Modeling Executions of Concurrent Programs

Notation: For any alphabetA, and any word w ∈ A?, let w[i] (1 ≤ i ∈ |w|) denote
the letter in the i’th position of w, and w[i, j] denote the substring w[i]w[i +
1] . . . w[j] of w. For w ∈ A? and B ⊆ A, let w|B denote the word w projected to
the letters in B.

Transactions and Schedules

A program consists of a set of threads that run concurrently. Each thread exe-
cutes a series of transactions. A transaction is a sequence of actions; each action
can be a read or a write to a (global) variable, or a synchronization action.

We assume an infinite set of thread identifiers T = {T1, T2, . . . , }. We also
assume an infinite set of entity names (or just entities) X = {x1, x2, . . . , . . .}
that the threads can access. The set of actions that a thread T can perform on a
set of entities X ⊆ X is defined as ΣT,X = {T :B, T :C}∪{T :read(x), T :write(x) |
x ∈ X}. Actions T :read(x) and T :write(x) correspond to thread T reading and
writing to entity x, while T :B and T :C correspond to the beginning and the end
of transaction blocks in thread T .

Define ΣX =
⋃
T∈T ΣT,X (actions on entities X by all threads), ΣT =⋃

X∈X ΣT,X (actions by thread T on all entities), and Σ =
⋃
X∈X ,T∈T ΣT,X

(all actions).
For a word w ⊆ Σ?, let w|T be a shorthand notation for w|ΣT

, which in-
cludes only the actions of thread T from w. The following defines the notion of
observable behaviors on the global variables of a concurrent program, which we
call a schedule.

Let TranT,X = (T :B) ·{T :read(x), T :write(x) | x ∈ X}? ·(T :C). A transaction
tr of a thread T is a word in TranT,X . Let TranT = (TranT,X)? denote the set
of all possible sequences of transactions for a thread T , and let Tran denote the
set of all possible transaction sequences.

Definition 1. A schedule over a set of threads T and entities X is a word
σ ∈ (ΣT ,X)? such that for each T ∈ T , σ|T belongs to TranT . Let SchedT ,X
denote the set of all schedules over threads T and entities X .

4

In other words, a schedule is a sequence of actions such that its projection
to any thread T is a word divided into a sequence of transactions, where each
transaction begins with T :B, is followed by a set of reads and writes, and ends
with T :C.

When we refer to two particular actions σ[i] and σ[j] in σ, we say they belong
to the same transaction if they are actions of the same thread T , and they are in
the same transaction block in σ|T : i.e. if there is some T such that σ[i], σ[j] ∈ AT ,
and there is no i′, i < i′ < j such that σ[i′] = T :C.

Concurrent executions with lock-synchronization

Let us now define executions of concurrent programs that synchronize using
(nested) locks. An execution is more detailed than a schedule in that it also
contains the synchronization actions a program performs. In this paper, we limit
the synchronization to acquire and release of global locks.

Let us fix a set of global locks L. For a thread T ∈ T and a set of locks L ⊆ L,
define the set of lock-actions of T on L by ΠL,T = {T :acquire(l), T :release(l)| l ∈
L}. Let ΠL =

⋃
T∈T ΠL,T , and ΠT = ΠL,T , and finally Π =

⋃
T∈T ΠT .

A word γ ∈ Π? is lock-valid if it respects the semantics of the locking mecha-
nism; formally, for every l ∈ L, γ|Π{l} is a prefix of

[⋃
T∈T (T :acquire(l) T :release(l))

]?.
A global execution over the set L is a finite word ρ ∈ (Σ ∪ΠL)? such

that (a) for any thread T , ρ|Σ is a schedule and (b) ρ|ΠL is lock-valid.
In other words, a global execution is a finite sequence of actions, involving

a finite set of threads accessing a finite set of variables, along with acquisitions
and releases of locks, such that the sequence projected to any thread forms a
sequence of transactions, and the sequence respects the locking mechanism.

We will often handle local executions as well, which are executions of indi-
vidual threads. Formally, a local set of executions over the set L is a set
{αt}t∈T , where for each thread T , αT ∈

(
Σ{T},X ∪ΠL

)∗. Note that a global
execution ρ naturally defines a set of local executions {ρT }T∈T .

An event in a set of local executions {ρT }T∈T is a pair (T, i) where T ∈ T
and 1 ≤ i ≤ |ρT |. In other words, an event is a particular action one of the
threads executes.

Let ρ be a global execution, and e = (T, i) be an event in {ρT }T∈T . Then we
say that the j’th action (1 ≤ j ≤ |ρ|) in ρ is the event e (or, Event(ρ[j]) = e =
(T, i)), if ρ[j] = T :a (for some action a) and ρT [1, i] = ρ[1, j]|T . In other words,
the event e = (T, i) appears at the position j in ρ in the particular interleaving
of the threads that constitutes ρ. Reversely, for any event e in {ρT }T∈T , let
Occur(e, ρ) denote the (unique) j (1 ≤ j ≤ |ρ|) such that the j’th action in ρ is
the event e, i.e Event(ρ[j]) = e. Therefore, we have Event(ρ[Occur(e, ρ)]) = e,
and Occur(Event(ρ[j])) = j.

A (global) execution ρ over L is said to respect nested-locking if
there is no thread T and two locks l and l′ such that ρ|Π{l,l′},{T} has a contiguous
subsequence T :acquire(l)T :acquire(l′)T :release(l). In other words, an execution

5

respects nested-locking if each thread releases locks strictly in the reverse order
in which they were acquired.

Finally, for any execution ρ, the schedule defined by ρ is the word obtained
by removing the locking-events from it: Sched(ρ) = ρ|Σ .

The prediction model

Given a execution ρ over a set of locks L, we would like to infer other executions
ρ′ from ρ. This prediction model we consider is defined as follows. An execution
ρ′ belongs to the inferred set of ρ iff ρ′T is a prefix of ρT , for every thread T . (Of
course, ρ′ is lock-valid by the merit of being an execution.)

In other words, we infer executions from ρ by projecting ρ to each thread to
obtain local executions, and combining these local executions into a global execu-
tion ρ′ in any interleaved fashion that respects the synchronization mechanism.
Let Infer(ρ) denote the set of executions inferred from ρ.

Notice that our prediction model is quite optimistic: it recombines executions
in any manner that respects the locking constraints. Of course, these executions
may not be valid in the original program (this could happen if the threads
communicate using other mechanisms; for example, if a thread writes a particular
value to a global variable based on which another thread chooses an execution
path; in this case an execution that switches these events may not be valid).
The choice of a simple prediction model is deliberate: while we could build more
accurate models, we believe that having a simple prediction model can yield
faster algorithms. Since we can anyway try to execute a predicted interleaving
that violates atomicity and check whether it is feasible, this will not contribute
to the final false positives in a testing scenario.

Deadlock freedom: We say that an execution ρ is deadlock-free if no run
inferred from ρ deadlocks. Formally, ρ is deadlock-free if for every ρ′ ∈ Infer(ρ),
there is a ρ′′ ∈ Infer(ρ) such that ρ′ is a prefix of ρ′′ and |ρ| = |ρ′′| (i.e. any
partial execution inferred from ρ can be completed to another that executes all
the actions of ρ).

Defining atomicity through serializability:

We now define atomicity as the notion of conflict serializability. Define the de-
pendency relation D as a symmetric relation defined over the events in Σ, which
captures the dependency between (a) two events accessing the same entity, where
one of them is a write, and (b) any two events of the same thread, i.e.,

D = {(T1:a1, T2:a2) | T1 = T2 and a1, a2 ∈ A ∪ {B,C} or
∃x ∈ X such that (a1 = read(x) and a2 = write(x)) or

(a1 = write(x) and a2 = read(x)) or (a1 = write(x) and a2 = write(x))}

Definition 2 (Equivalence of schedules). The equivalence of schedules is
defined as the smallest equivalence relation ∼ ⊆ Sched × Sched such that: if
σ = ρabρ′, σ′ = ρbaρ′ ∈ Sched with (a, b) 6∈ D, then σ ∼ σ′.

6

It is easy to see that the above notion is well-defined. Two schedules are
considered equivalent if we can derive one schedule from the other by iteratively
swapping consecutive independent actions in the schedule.

We call a schedule σ serial if all the transactions in it occur sequentially:
formally, for every i, if σ[i] = T :a where T ∈ T and a ∈ A, then there is some
j < i such that T [i] = T :B and every j < j′ < i is such that σ[j′] ∈ AT . In
other words, the schedule is made up of a sequence of complete transactions
from different threads, interleaved at boundaries only.

Definition 3. A schedule is serializable (or atomic) if it has an equivalent serial
schedule. That is, σ is a serializable schedule if there a serial schedule σ′ such
that σ ∼ σ′.

2.1 Serializability violations involving two threads and one variable

While the above defines the general notion of serializability, in this paper we
confine to checking a more restricted notion called minimally serializable; a
schedule is minimally serializable if there are no serializability violations that
involve two threads and a single variable only. More precisely,

Definition 4. A schedule σ is minimally serializable (or minimally atomic) if
for every pair of threads (T, T ′) and every entity x ∈ X , σ|Σ{T,T ′},{x} is serial-
izable. An execution ρ is minimally serializable if the schedule corresponding to
it, Sched(ρ), is minimally serializable.

We can now define the precise problem we consider in this paper:
• Problem of meta-analysis of executions for minimal serializability:

Given: A finite deadlock-free execution ρ over a set of threads, entities and
locks.

Problem: Is there any execution ρ′ ∈ Infer(ρ) that is not minimally serializ-
able?

First, note that an execution ρ′ is not minimally serializable iff there exists
two threads T and T ′ such that ρ′ projected to these threads is not serializable.
Even for a fixed T and T ′, there are a large number of interleavings possible
(in fact, exponential in |ρ|), making an explicit search on the interleaving-space
infeasible.

A better way of solving the above problem is to build an automaton which
generates all possible interleavings of two threads T and T ′, and intersect it with
another automaton that detects atomicity violations [3]. State of this automaton
is represented by a triple (x, y, π) where x denotes the position in the first thread,
y tracks the position of the second thread, and π : L → ⊥, T, T ′ tracks the thread
that holds each lock (⊥ denoting the lock is free). Alternatively, we can view
this as a dynamic programming solution, where we track, for each pair (x, y),
the state of the monitor on them.

Though the above algorithm does not explicitly enumerate all interleavings,
it works in time O(n2) (where n = |ρ|). Since n, the length of the given run, can

7

be extremely large (millions of events in our experiments), an algorithm that
runs in time quadratic in n simply does not scale in practice.

The goal of this paper is to present an algorithm that solves the above prob-
lem in time that is linear in n (and linear in the number of entities, and quadratic
in the number of threads). Note that this means that we do not explore all in-
terleavings explicitly, and yet predict atomicity violations. Our scheme is in fact
compositional ; we extract a finite amount of information from each local execu-
tion in linear time, and combine this information to predict minimal atomicity
violations.

3 Meta-analysis of runs for minimal serializability

e1

e2

f

T T ′

...

...

...

!

!
...

...

...

...

In this section, we present the main result of this paper: the basis
for an algorithm that solves the meta-analysis problem for minimal
serializability in time linear in the length of the given run. We will
show how meta-analysis for minimal serializability can be reduced to
the global reachability problem for two threads, which in turn can be
compositionally and efficiently solved for nested-locking programs.
The results obtained in this section will be used to formulate our
algorithm in Section 4.

The first observation is that only three events are relevant in
finding a violation of minimal serializability; we need to observe two
events e1 and e2 from a single transaction of a thread T and an
event f from another thread T ′ such that e1 and f are dependent and e2 and f
are dependent. Moreover, and crucially, there should exist an execution in which
f occurs after e1, and e2 occurs after f . The figure on the right describes this
pattern, and the following lemma captures this property:

Lemma 1. Let ρ be a global execution, and let {ρT }T∈T be the set of local
executions corresponding to it. Infer(ρ) contains a minimally non-serializable
run iff there exists two different threads T and T ′, an entity x ∈ X , and ρ′ ∈
Infer(ρ|Σ{T,T ′},{x}) such that there are (read or write) events e1, e2, f of {ρT }T∈T
where

– Occur(e1, ρ′) < Occur(f, ρ′) < Occur(e2, ρ′)
– e1 and e2 are events of thread T , and f is an event of thread T ′

– e1 and e2 belong to the same transaction,
– e1 D f D e2.

While we can find candidate events e1 and e2 from thread T and a candidate
event f from T ′ by individually examining the local runs of T and T ′, the main
problem is in ensuring the condition that we can find an inferred run where e1
occurs before f and f occurs before e2. This is hard as the threads synchronize
using locks which needs to be respected by the inferred run. In fact, for threads
communicating using locking, our results in [3] show that it is highly unlikely to
avoid considering the two thread runs in tandem, which involves O(n2) time.

8

Let us first show the following lemma that reduces checking whether three
events e1, f , and e2 are executable in that order, to global reachability of two
threads.

Lemma 2. Let ρ be a deadlock-free execution, and let T, T ′ be two threads with
T 6= T ′. Let e1, e2, f be (read or write) events in {ρT }T∈T such that e1 = (T, i1)
and e2 = (T, i2) are events of thread T with i1 < i2, and f is an event of
thread T ′. Then, there is an execution ρ′ ∈ Infer(ρ) such that Occur(e1, ρ′) <
Occur(f, ρ′) < Occur(e2, ρ′)

if, and only if,
there is an execution ρ′′ ∈ Infer(ρ) such that

– e1 occurs in ρ′′ and e2 does not occur in ρ′′, and
– f occurs in ρ′′, and in fact f is the last event of T ′ that occurs in ρ′′.

e1

e2

f

T T ′

...

...

...

...

...

...

ρ′′

...

Intuitively, the above lemma says the following: fix an
execution ρ, and three events e1, e2, f in it such that events
e1 and e2 belong to the same transaction (and thread) and
event f belongs to a different thread. Then, we can find
a run inferred from ρ that executes event e1 followed by
event f followed by event e2, if, and only if, we can find an
(incomplete) inferred run that executes events events e1 of
thread T (and possibly later events), but does not execute
e2, and executes precisely up to event f in thread T ′. This
is depicted in the figure on the right.

The above lemma is useful as it reduces finding a series of three events to
the simpler global reachability question of a set of pairs of positions in the two
threads.

Pairwise reachability

Our final hammer in solving the problem relies on a beautiful result by Kahlon
et al [9] that argues that global reachability of two threads communicating via
nested locks is effectively and compositionally solvable by extracting locking
information from the two threads in terms of acquisition histories.

Let ρ be an execution and let {ρT }T∈T be its set of local executions. Con-
sider ρT (for any T). The lock-set held after ρT is the set of all locks T holds:
LockSet(ρT) = {l ∈ L | ∃i.ρT [i] = T :acquire(l) and there is no j > i and ρT [j] =
T :release(l)}.

The acquisition history of ρT records, for each lock l held by T at the end
of ρT , the set of locks that T acquired (and possibly released) by T after the
last acquisition of the lock l. Formally, the acquisition history of ρT , AH(ρT) :
LockSet(ρT) → 2L, where AH(l) is the set of all locks l′ ∈ L such that there is
an ∃i.ρT [i] = T :acquire(l) and there is no j > i such that ρT [j] = T :release(l)
and ∃k > i.ρT [k] = T :acquire(l′).

Two acquisition histories AH and AH ′ are said to be compatible if there do
not exist two locks l and l′ such that l′ ∈ AH(l) and l ∈ AH(l′). The following is

9

a direct consequence of a result by Kahlon et al [9], which says that there is an
execution that ends with event e in one thread and event f in the other thread,
if, and only if, the acquisition history at e and that at f are compatible.

Lemma 3 (Kahlon et al [9]). Let ρ be an execution, let {ρT }T∈T be its set
of local executions, and let T and T ′ be two different threads. Let e = (T, i) be
an event of thread T and f = (T ′, j) be an event of thread T ′ of these local
executions.

There is a run ρ′ ∈ Infer(ρ) such that e and f occur in ρ′, and further,
ρ′T = ρT [1, i] and ρ′T ′ = ρT ′ [1, j]

if, and only if,
Lockset(ρT [1, i]) ∩ Lockset(ρT [1, j]) = ∅, and the acquisition history of ρT [1, i]
and the acquisition history of ρT ′ [1, j] are compatible. ut

e1

e2

f

T T ′

...

...

...

!

!

...

...

...

...

e
...

AH 1
AH 2

LS 2LS 1} {
LS 1 ∩ LS 2 = ∅
AH 1 compatible with AH 2
{

We have reduced checking of serializabil-
ity to pairwise reachability, which is solvable
compositionally by computing the acquisi-
tion histories from each thread, and checking
them for compatibility. We summarize this in
the following:

Theorem 1. Let ρ be a deadlock-free global
execution. A minimally non-serializable exe-
cution can be inferred from ρ iff there exists
two different threads T and T ′ and an entity
x ∈ X , and there are events e1 = (T, i), e2 = (T, i′), f = (T ′, j) of {ρT }T∈T such
that

– e1 and e2 belong to the same transaction,
– e1 D f D e2,
– There is an event e = (T, i′′) of {ρT }T∈T such that i ≤ i′′ < j and the

acquisition histories of ρT [1, i′′] and ρT ′ [1, j] are compatible.

4 The Meta-analysis Algorithm for minimal serializability

Given a set of local executions {ρT }T∈T with nested locking, Theorem 1 allows
us to build an efficient algorithm to predict an interleaving of them that violates
minimal serializability.

The aim is to find three events e1, e2, and f , where e1 and e2 occur in the
same transaction in a thread T , f occurs in a different thread T ′, with e1DfDe2,
and further, find an event e between e1 and e2 (e is allowed to be e1 but not
to be e2) such that the locksets of e and f are disjoint, and their acquisition
histories are compatible.

The algorithm is divided into two phases. In the first phase, it gathers the
lockset and acquisition histories of all possible witnesses e and all possible wit-
nesses f ; this is done by examining the events of each thread individually. In the

10

second phase, we test the compatibility of the locksets and acquisition histories
of every pair of witnesses e and f in different threads.

Let us fix an entity x ∈ X . We divide our work into finding two patterns:
one where e1 and e2 are writes to x and f is a read of x, and the other where
e1 and e2 are accesses (read/write) to x and f is a write to x. This clearly
covers all cases of minimal serializability violations— the former covers violations
e1− f−e2 of the form Write−Read−Write, while the latter covers those of
the form Read−Write−Read, Read−Write−Write, Write−Write−Read and
Write−Write−Write.

Phase I. In the first phase, for each thread T and each entity x, the algorithm
gathers witnesses in four lists: R[T, x], W [T, x], WW [T, x] and AA[T, x]. Intu-
itively, the sets R[T, x] and W [T, x] gather witnesses of events of thread T that
read and write to x, respectively, for each lockset and acquisition history pair,
in order to witness the event f in our pattern.

The set WW [T, x] gathers all witnesses e that are sandwiched between two
write-events to x that occur in the same transaction of thread T , keeping only
one representative witness for each lockset and acquisition history pair. Similarly
AA[T, x] gathers witnesses e sandwiched between any two accesses of thread T
to x that occur in the same transaction.

The algorithm gathers the witnesses by processing the execution in a single
pass. It continually updates the lockset and acquisition history, adding events to
the various witness sets, making sure that no set has multiple events with the
same lockset and acquisition history. Note that the computation of WW [T, x]
and AA[T, x] sets need care due to the fact that events e recorded must be
validated by a later occurrence of the relevant event e2.

Note that the phase I considers every event at most once, and hence runs in
time linear in the length of the execution.

Phase II. In this phase, the algorithm checks whether there are pairs of com-
patible witnesses that were collected in the first phase. More precisely, we check
whether, for any entity x, and for any pair of threads T and T ′, there is an
event e ∈ WW [T, x] and an event f ∈ R[T ′, x] that have disjoint locksets and
compatible acquisition histories. Similarly, we also check whether there is an
event e ∈ AA[T, x] and an event f ∈ W [T ′, x] that have disjoint locksets and
compatible acquisition histories. The existence of any such pair of events would
mean (by Theorem 1) that there is a minimal serializability violation.

For example, the algorithm runs the procedure in Figure 1 for finding the
violations using the R and WW sets (the procedure using the W and AA sets
is similar):

Note that phase II runs in time O(t2.v.ah2) where t is the number of threads,
v is the number of entities accessed, and ah is the total number of disjoint
acquisition histories of events in the thread. Note that this is independent of the
length of the execution (Phase I summarized the events in the execution, and
Phase II does not consider the run again).

The quadratic dependence on the number of threads is understandable as we
consider serializability violation between all pairs of threads. The linear depen-

11

1 for each entity x ∈ X do
2 for each T, T ′ in T such that T 6= T ′ do
3 for each (e, LS,AH) in WW [T,X] do
4 for each (f, LS′, AH′) in R[t, x] do
5 if (LS ∩ LS′ = ∅ ∧ AH and AH′ are compatible) then
6 Report minimal serializability violation found;
7 end

Fig. 1. Phase II for R-WW patterns.

dence on v is very important for scalability as the number of entities accessed
can be very large on typical runs. The number of different acquisition histories,
in theory, can be large (O(2l

2
), where the execution uses l locks)— however, in

practice, there tend to be very few distinct acquisition histories that get mani-
fested, and hence is not a bottleneck (see the next section for details).

Though we record violations only in terms of the two witnesses e and f , we
can actually recover a precise execution that shows the atomicity violation. This
run can be obtained using the locksets and acquisition histories of e and f (using
the method prescribed by Kahlon et al [9]), and may in fact involve several
context switches (O(l) of them, if there are l locks) to execute the atomicity
violation. However, this replay of an exact run that violates atomicity is involved,
and has not been implemented.

5 Implementation and Experiments

We implemented the meta-analysis algorithm to look for minimal serializability
violations in the set of executions inferred from a single execution of a concurrent
program. Note that our algorithm computes only one representative violation for
each pair of threads, each entity, each pair of events with a compatible set of lock-
sets and acquisition histories, and each pattern of violation (R-W-R and A-R-A).
The current implementation does not find all multiplicities of these serializabil-
ity violations. Note that our algorithm is sound and complete; it does guarantee
that it will report some minimal serializability violation, if violations at all exist.
The tool can also be easily modified to enumerate all possible violations. More
specifically, after the second phase of the algorithm, all the interesting acquisition
histories are known, so one can use this information and the original execution
to generate all the violations without additional performance costs.

We evaluated the algorithms on a benchmark suite of six programs. These
benchmarks are all concurrent Java programs that use synchronized blocks and
methods as means of synchronization (note that using synchronized blocks au-
tomatically ensures nested locking, and is one of the reasons why nested locking
program are common). They include raytracer from the Java Grande multi-
threaded benchmarks [15], elevator, tsp, and hedc from [16], and Vector and
HashTable from Java libraries. elevator simulates multiple lifts in a building,
tsp solves the traveling salesman problem in parallel for a given input map,
raytracer renders a frame of an arrangement of spheres from a given view
point, hedc is a web-crawler, and Vector and HashTable are Java libraries that
respectively implement the concurrent vector and the concurrent hashtable data
structures.

12

Application Threads Entities Locks Events Trans Time Violations
(LOC) (s) WRW RWR /RWW

WWR /WWW

elevator
(566)

3 32 8 9K 140 0.09s 0 4
5 32 8 29K 423 0.27s 0 4
5 200 50 78K 273 26.23s 8 12

raytracer
(1537)

10 1 10 86 10 0.03s 0 90
20 1 20 160 20 0.02s 0 380
40 1 40 320 40 0.16s 0 1560

stack
(1400) 2 4 2 105 2 0.07s 0 194

vector
(1281) 2 4 2 107 2 0.08s 0 144

hedc
(2165)

10 6 2 176 10 0.03s 20 6
10 6 2 132 10 0.03s 12 6

tsp
(794)

3 30 2 97 5 0.03s 0 0
8 50 2 18K 10 0.53s 0 0
5 140 2 1.4M 17 1.55s 16 248
10 140 2 2.5M 31 2.51s 36 339
20 1510 2 11M 106 12.58s 171 1609

Table 1. Running Results (K=1000; M=1000000).

Since recurrent locks (multiple acquisitions of the same lock by the same
thread) are typical in Java, the tool is tuned to handle them by ignoring all the
subsequent acquisitions of the same lock by the same thread. One can easily
verify that this approach maintains well-nestedness of locks and (hence) the
correctness of the main theorem of the paper.

We investigated the other concurrent benchmarks in the Java Grande suite,
but they either had no synchronization, or used barriers as their synchronization
mechanism, and hence were not good candidates for testing our analysis method.

Executions were extracted by (manually) instrumenting programs to output
the accesses to all entities and all synchronization events at runtime. We have a
simple automatic escape analysis unit that excludes from the execution all ac-
cesses to thread-local entities. We then run the meta-analysis algorithm on these
output files off-line. The algorithm can be implemented as an online algorithm
as well (as Phase I can be implemented online), but the current implementation
works off-line.

Table 1 presents the results of our evaluation. We ran each benchmark with
different input parameters, such as number of threads and input files. For each
program, we report in the table the number of lines of code (LOC) (appears
below the program names), number of threads used in the execution, the num-
ber of truly shared entities between threads, the number of locks, the number
of transactions, and the length of the global execution (number of events). The
table presents the results of the meta-analysis of the generated executions; in
particular, we report how many representative minimal serializability violations
were found for the two classes of patterns. The executions were obtained us-
ing various machines (2-core and 4-core); the analysis of the executions were
performed on a 2.16 Ghz Intel Core2 Duo laptop with 2 GB of memory using
MacOS 10.5.

Our results clearly illustrate the tremendous impact of using an algorithm
that runs in time linear in the length of the execution. There are examples of long

13

executions for the tsp benchmark for which the algorithm finds the violations
very quickly. For example, in the setting with 20 threads and more then 11
million events, the algorithm finds 1780 violations in less than 13 seconds. The
only exception is the elevator with 50 locks. However, we noticed that for this
example, the time is almost entirely spent in the compatibility check between two
acquisition histories. Unfortunately, the compatibility check is not implemented
optimally in the current version of the tool (as we need indexed dictionaries, etc.
to do so); we believe that an optimized version of this procedure will considerably
speed up our algorithm.

In the case of Java libraries Vector and Stack, the experiments were set
to run each pair of the library methods concurrently as two threads. These ex-
periments include many small executions (a few hundred, involving two threads,
four entities, and two locks), in which many atomicity violations are found which
are actually related to subtle concurrency errors in quite a few of these library
methods. The numbers reported in Table 1 represent average values over these
executions, while the violations are the total number of violations found.

References

1. F. Chen, T.F. Serbanuta, and G. Rosu. jpredictor: a predictive runtime analysis
tool for java. In ICSE, pages 221–230, 2008.

2. A. Farzan and P. Madhusudan. Causal atomicity. In CAV, pages 315–328, 2006.
3. A. Farzan and P. Madhusudan. Monitoring atomicity in concurrent programs. In

CAV, pages 52–65, 2008.
4. A. Farzan and P. Madhusudan. The complexity of predicting atomicity violations.

In TACAS, page To appear, 2009.
5. C. Flanagan and S. N Freund. Atomizer: a dynamic atomicity checker for multi-

threaded programs. In POPL, pages 256–267, 2004.
6. C. Flanagan, S. N. Freund, and J. Yi. Velodrome: a sound and complete dynamic

atomicity checker for multithreaded programs. In PLDI, pages 293–303, 2008.
7. C. Flanagan and S. Qadeer. A type and effect system for atomicity. In PLDI,

pages 338–349, 2003.
8. J. Hatcliff, Robby, and M. Dwyer. Verifying atomicity specifications for concurrent

object-oriented software using model checking. In VMCAI, pages 175–190, 2004.
9. V. Kahlon, F. Ivancic, and A. Gupta. Reasoning about threads communicating

via locks. In CAV, pages 505–518, 2005.
10. R. J. Lipton. Reduction: a method of proving properties of parallel programs.

Commun. ACM, 18(12):717–721, 1975.
11. S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a comprehensive

study on real world concurrency bug characteristics. In ASPLOS, pages 329–339,
2008.

12. C. Papadimitriou. The theory of database concurrency control. Computer Science
Press, Inc., New York, NY, USA, 1986.

13. S., J. Tucek, F. Qin, and Y. Zhou. Avio: detecting atomicity violations via access
interleaving invariants. In ASPLOS, pages 37–48, 2006.

14. K. Sen, G. Rosu, and G. Agha. Online efficient predictive safety analysis of mul-
tithreaded programs. STTT, 8(3):248–260, 2006.

15. Java Grande Benchmark Suite. http://http://www.javagrande.org/.

14

16. C. von Praun and T. R. Gross. Object race detection. SIGPLAN Not., 36(11):70–
82, 2001.

17. L. Wang and S. D. Stoller. Accurate and efficient runtime detection of atomicity
errors in concurrent programs. In PPoPP, pages 137–146, 2006.

18. L. Wang and S. D. Stoller. Runtime analysis of atomicity for multi-threaded
programs. IEEE Transactions on Software Engineering, 32:93–110, 2006.

19. Min Xu, Rastislav Bod́ık, and Mark D. Hill. A serializability violation detector for
shared-memory server programs. SIGPLAN Not., 40(6):1–14, 2005.

15

