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Abstract. We study the problem of monitoring concurrent program
runs for atomicity violations. Unearthing fundamental results behind
scheduling algorithms in database control, we build space-efficient moni-
toring algorithms for checking atomicity that use space polynomial in the
number of active threads and entities, and independent of the length of
the run monitored. Second, by interpreting the monitoring algorithm as
a finite automaton, we solve the model checking problem for atomicity of
finite-state concurrent models. This establishes (for the first time) that
model checking finite-state concurrent models for atomicity is decidable,
and remedies incorrect proofs published in the literature. Finally, we
exhibit experimental evidence that our atomicity monitoring algorithm
gives substantial time and space benefits on benchmark applications.

1 Introduction

Correct concurrent programs are way harder to write than sequential ones. Se-
quential bug-free programs are already hard to write, maintain, and test, though
the tremendous effort over the last 20 years in finding errors in programs has
yielded certain tractable approaches and tools to assure correctness. The advent
of multi-core technologies and the increasing use of threads and communicating
modules in software design has brought all concurrency issues to the forefront.
Consequently, one of the most important problems in software analysis is to un-
derstand concurrency idioms used in practice, and leverage the understanding
to build testing and verification tools.

While programming for a multicore (shared-memory) architecture to exploit
concurrency, a useful mechanism to have is the ability to parallelize tasks such
that there is controlled interaction amongst them. For instance, the proposal
of transactional memory (and software transactional memory [23]) introduces
such an atomicity construct in a programming language. Programmers writing
in current programming languages (such as Java or C with Pthreads) implicitly
need such a construct, but since it is not available, implement their own con-
currency control mechanism (say using locks) in order to mutually exclude their
threads from accessing shared data. A large number of errors in these concurrent
programs are due to mismanaged atomicity. For instance, a recent study on bug
characteristics in real-world concurrent programs revealed that more than 68%
of concurrency bugs were due to atomicity violations (where blocks of code were
intended to be atomic but the mechanisms did not ensure atomicity) [16].

The above intuition motivates a remarkable generic specification (a specifi-
cation common across applications) for concurrent programs called atomicity.



Consider a concurrent program where certain blocks of code are annotated as
transaction blocks, capturing the intention of the programmer that they be atom-
ically executed. We declare an interleaved run to be atomic if it is semantically
equivalent to a serial run where the transaction blocks are scheduled one after
another, without any interleaving. The idea then is that non-atomic runs violate
programmer intentions and hence are likely to be unintended interactions that
may be concurrency errors. This notion of atomicity stems from the concept of
serializability studied in database concurrency control, and the idea of using the
notion of atomicity as a generic specification for concurrent programs (running
on non-TM platforms) was first proposed by Flanagan and Qadeer in 2003 [9].

The most well-studied, accepted and tractable notion of serializability is con-
flict serializability [20, 4]. Intuitively, we declare events to be dependent if they
cannot be commuted— so, two accesses to the same variable are dependent if
one of them is a write. Two runs r and r′ are equivalent if we can obtain one
from the other by commuting independent events in the run. A run is conflict-
serializable if it has an equivalent serial run. We study only conflict-serializability
in this paper, and will henceforth refer to it as simply serializability. The terms
serializability and atomicity are synonymous in this paper.

Notice that our methodology of finding errors in programs is parameterized
with annotations of blocks of code intended to be atomic. While we can choose
natural syntactic blocks of code (such as methods in a class) to be blocks intended
to be atomic (as many papers in the literature have done), it is also possible to
learn the intended atomic blocks from positive test runs [17] (see also [27]).
Here, we are interested in building algorithms for identifying non-atomic runs,
and hence we will assume that the annotations of transactional blocks as given.

The objective of this paper is to (a) study the algorithmics of monitoring
atomicity of individual runs of concurrent programs, and (b) leverage the mon-
itoring algorithm to solve the model checking problem for checking atomicity in
concurrent Boolean programs.

A simple monitoring algorithm for serializability works by maintaining a con-
flict graph, which is a graph depicting the precedence order imposed by the run
on the transactions (blocks of code). A run is serializable if, and only if, this
graph remains acyclic. A tempting idea to minimize the conflict graph while
monitoring a run is to remove completed transactions from the conflict-graph,
replacing it with transitive edges that summarize its effect, with the intuition be-
ing that the completed transactions cannot play any role in the future. However,
this intuition is wrong. In a paper by Alur, McMillan and Peled [2], automata-
based algorithms were designed for checking serializability that overlooked this
subtlety and deleted transactions, resulting in an erroneous algorithm (confirmed
by one of its authors [1]).

Unearthing techniques from designs of database schedulers, we obtain sim-
ple space-efficient algorithms for monitoring runs for serializability. The main
idea is not to remove completed transactions, but rather summarize their effects
by throwing in transitive edges and absorbing their event content into active
transactions. Such algorithms are present in the database literature (see [5]),
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and we have adapted these to the multithreaded software realm (especially to
the setting of threads executing multiple transactions) to provide space-efficient
monitoring. We refer the interested reader to two textbooks on database the-
ory [20, 4], a paper on the combinatorics of removing completed transactions and
related deletion policies on the conflict-graph [12], and a volume on concurrency
control by Casanova [5], from which our intuitions have been gained.

The monitoring algorithm we obtain is a streaming algorithm that reads runs
of a program, and after reading a run r uses space O(k2 + k.n), where k is the
number of active threads after r and n is the number of entities accessed by r.
Furthermore, the time taken to update the information on reading an event is
only linear in this graph. Note that there is no dependence on the number of
events or transactions executed in r, and hence our algorithm scales well when
working on long executions of programs.

The monitoring algorithm, surprisingly, paves the way to decision procedures
to model check programs for atomicity violations. When there are a finite number
of threads and entities, our monitoring algorithm uses a bounded amount of
space, and hence can be seen as a deterministic finite automaton. Using this, we
prove that concurrent Boolean programs without recursion (where each thread
runs a program with a regular control structure and where all variables are
interpreted over finite domains), the model checking problem for atomicity is
decidable and is . Pspace-complete. As far as we know, this is the first time
that the decidability of model checking atomicity for finite-state programs has
been established. Note that a similar claim appears in [2], but is incorrect due
to the grave error we mentioned.

Turning to the experiments, we have implemented both the conflict-graph
based monitoring algorithm and the new monitoring algorithm based on sum-
marized conflict graphs. We evaluate these on a suite of benchmarks, and il-
lustrate the significant space (and hence time) gains our algorithm provides in
monitoring long runs of realistic concurrent benchmark programs.

Related Work: Atomicity is a new notion of correctness; the more classical
notion is race checking : a race is a pair of accesses to the same variable by
different threads, where one of the accesses is a write [19, 22, 6]. Data races also
signal improper synchronization in code, and are routinely used to find errors in
concurrent programs (see [22, 6] for testing and runtime checking for data races
and [18] for static data race analysis). It has been suggested [10, 8, 26, 25] that
atomicity notions based on serializability are more appropriate and yield fewer
false positives; some practical tools built for serializability demonstrate this [27].

Most work in software verification for atomicity errors are based on approxi-
mations of the concept, including Lipton transactions (a sufficient but not nec-
essary condition) that ensures serializability [15]. Type systems [10] and model
checkers [13] for atomicity based on Lipton transactions have been developed.
The work in [8] reports ways of exploring a run and a possible serialization of it
simultaneously and checks whether they result in the same effect. In [7], we had
proposed a slightly different notion of atomicity called causal atomicity which
can be checked using partial-order methods. The work in [17] defines access in-
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terleaving invariants that are certain patterns of access interactions on variables,
learns the intended specifications using tests, and monitors runs to find errors.

The closest work to ours is a series of papers by Wang and Stoller on runtime
verification of atomicity [25, 26]. In these papers, the authors consider a different
and harder problem than what we tackle: they consider a run, project the run
onto each thread, and ask whether they can be recombined in some way to
produce a non-serializable run This is significantly harder: first, recombinations
of runs may not be feasible in the original program in general, and though the
authors handle locks accurately, the runs may still be infeasible (say due to data
checks) and hence raise false alarms. Also, even abstracting the program to a set
of reads and writes as they do, the problem of checking if a non-serializable run
exists can be shown to be Np-hard. The authors provide approximate algorithms,
that are neither sound nor complete, for the settings where locks are nested
and transactions have no potential for deadlocks. The experimental results are
reported for a small number of threads (3 in most cases). Our problem however
is to simply check if the current run is itself non-serializable for which we show a
scalable algorithm and where we have tested the benchmarks for a large number
of threads (going up to 50; see Section 5 for more details).

A variant of dynamic two-phase locking algorithm [20] for detection of seri-
alizability violations is used in the atomicity tool developed in [27]. As discussed
in [20], the set of runs that are detected as atomic by a two-phase locking algo-
rithm are a strict subset of the set of conflict serializable runs.

2 Preliminaries

Modeling Runs of Concurrent Programs: We consider programs that run
threads concurrently, with accesses to local and global data. We also assume that
blocks of program code are marked as transactions, with each thread running a
sequence of transactions on any run. We will check runs of programs for atomicity
violations with respect to these blocks. We first define a general notion of a run of
a concurrent program, where we assume the global accesses, the thread creations
and termination, and the beginning and ending of transactions are observable.

Let us assume an infinite but countable set of thread identifiers T = {T1, T2, . . .}.
Let us also assume a countable set of (global) entity names (or just entities)
X = {x1, x2, . . . , }. The set of actionsA overX, is defined as:A = {rd(x),wr(x) |
x ∈ X}. The alphabet of events of a thread T ∈ T is

ΣT = {T :a | a ∈ A} ∪ {T :B, T :C} ∪ {BegT ,EndT }.
The events T :rd(x) and T :wr(x) correspond to thread T reading and writing to
entity x, respectively, and T :B and T :C correspond to transaction boundaries
that begin and end blocks of code in thread T , while BegT and EndT denote
the creation and termination of the thread T itself. Let Σ =

⋃
T∈T ΣT denote

the set of all events.
Note that the above can model dynamic memory allocation as well, provided

we observe the memory allocation/release actions. The only difference is that
the set of actions A changes during the monitoring. We can assign a fresh name
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to every new piece of memory allocated (based on the desired granularity), and
maintain aliasing information to observe accesses to the location.

For any alphabet A, w ∈ A∗, let w[i] denote the i’th element of w, and w[i, j]
denote the substring from position i to position j in w. For w ∈ A∗ and B ⊆ A,
let w|B denote the word w projected to the letters in B. For a word σ ⊆ Σ∗, let
σ|T be a an abbreviation of σ|ΣT

, which includes only actions of thread T .
The runs of concurrent programs, which we call schedules, are executions of

the program where actions of threads are interleaved.

Definition 1. A schedule is a word σ ∈ Σ∗ such that for each T ∈ T , σ|T is a
prefix of the word BegT ·

[
(T :B) · {T :a | a ∈ A}∗ · (T :C)

]∗ · EndT .

In other words, the actions of thread T start with BegT and end with EndT ,
and the actions within are divided into a sequence of transactions, where each
transaction begins with T :B, is followed by a set of reads and writes, and ends
with T :C. Let Sched denote the set of all schedules.

Notice that schedules do not observe synchronization mechanisms such as
mutual exclusion using locks, semaphores, etc. as serializability of one schedule
is independent of the synchronization mechanism.

A transaction tr of thread T is a word of the form T :B w T :C, where w ∈
{T :a | a ∈ A}∗. Let TranT denote the set of all transactions of thread T , and let
Tran denote the set of all transactions.

When we refer to two particular events σ[i] and σ[j] in σ, we say they belong
to the same transaction if they belong to the same transaction block: i.e. if there
is some T such that σ[i] = T :a, σ[j] = T :a′, where a, a′ ∈ A, and there is no i′,
i < i′ < j such that σ[i′] = T :C. We refer to the transaction blocks freely and
associate (arbitrary) names to them, using notations such as tr, tr1, tr′, etc.

Defining atomicity: We define atomicity through the notion of conflict seri-
alizability. The dependency relation D is a symmetric relation defined over the
events in Σ, and captures the dependency between (a) two events accessing the
same entity, one of them being a write, and (b) any two events of the same
thread, i.e.,

D = {(T1:a1, T2:a2) | (T1 = T2 ∧ a1, a2 ∈ A ∪ {B,C}) ∨
[∃x ∈ X such that (a1 = rd(x) ∧ a2 = wr(x)) ∨
(a1 = wr(x) ∧ a2 = rd(x)) ∨ (a1 = wr(x) ∧ a2 = wr(x))]}

Definition 2 (Equivalence of schedules). The equivalence of schedules is
defined as the smallest equivalence relation ∼ ⊆ Sched × Sched such that the
following condition holds:

if σ = ρee′ρ′, σ′ = ρe′eρ′ ∈ Sched with (e, e′) 6∈ D, then σ ∼ σ′.

It is easy to see that the above notion is a well-defined equivalence relation.
Intuitively, two schedules are considered equivalent if we can derive one sched-
ule from the other by iteratively swapping consecutive independent actions in
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the schedule. It is also clear (given that two actions accessing an entity are in-
dependent only if both are reads), that equivalent schedules produce the same
valuation of all entities. Formally, assuming each thread has its view limited to
the entities it has read and written, we can show that no matter what the do-
main of the entries are, and what functions the individual threads may compute,
and no matter how many local variables a thread may have, the final values of
both local variables and global entities remains unchanged when executing two
equivalent schedules.

We call a schedule σ serial if all the transactions in it occur atomically:
formally, for every i, if σ[i] = T :a where T ∈ T and a ∈ A, then there is some
j < i such that T [i] = T :B and every j < j′ < i is such that σ[j′] ∈ ΣT . In
other words, the schedule is made up of a sequence of complete transactions
from different threads, interleaved at boundaries only (the final transactions
of a thread may be incomplete, but even then the actions in each incomplete
transaction must occur together).

Definition 3. A schedule is serializable if it has an equivalent serial schedule.
That is, σ is a serializable schedule if there a serial schedule σ′ such that σ ∼ σ′.

The conflict-graph characterization: A simple characterization of atomic
(or conflict-serializable) schedules uses the notion of a conflict-graph, and is a
classic characterization from the database literature (this notion is so common
that many papers in database theory define conflict serializability using it).

If a transaction tr of thread T reads x and is followed by a transaction tr′

of thread T ′ that writes x, then we must schedule the (entire) transaction T
before the (entire) transaction T ′. The conflict graph [11, 20, 4] is a graph that
captures these constraints, and is made up of transactions as nodes, and edges
capturing ordering constraints imposed by a schedule. A schedule is serializable
iff its conflict graph represents a partial order (i.e. is acyclic).

Formally, for any schedule σ, let us give names to transactions in σ, say
tr1, . . . , trn. The conflict-graph of σ is the graph CG(σ) = (V,E, S) where V =
{tr1, . . . , trn}, S : V −→ 2Σ is a labeling of vertices such that S(tri) is precisely
the set of events that have been scheduled in tri, and E contains an edge from tr
to tr′ iff there is some event e in transaction tr and some event e′ in transaction
tr′ such that (1) the e-event occurs before e′ in σ, and (2) eDe′.

Note that transactions of the same thread are always ordered in the order
they occur (since all actions of a thread are dependent on each other to preserve
sequential consistency).

Lemma 1. A schedule σ is atomic iff the conflict graph of σ is acyclic. ut

The above lemma essentially follows from [11] (also [4, 20]). The classic model
is however a database model where transactions are independent; we require
an extension of this lemma to our model where there are additional constraints
imposed by the fact that some transactions are executed by the same thread. The
above characterization actually happens to hold when the underlying alphabet
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has any arbitrary dependence relation, and hence holds in our threaded model
since we have ensured that any two events of a thread are dependent.

If the conflict graph is acyclic, then it can be viewed as a partial order, and
it is clear that any linearization of the partial order will define a serial schedule
equivalent to σ. If the conflict-graph has a cycle, then it is easy to show that the
cyclic dependency rules out the existence of any equivalent serial schedule.

The above characterization yields a simple algorithm for serializability that
simply constructs the conflict-graph and checks for cycles. The algorithm can
process the schedule event by event, updating the graph, and finally call a cycle-
detection routine. Hence [20, 4]:

Proposition 1. The problem of checking whether a singe schedule σ is atomic
is decidable in polynomial time. ut

3 Monitoring Atomicity

The goal of this section is to build a space-efficient monitoring algorithm for
checking serializability violations. Our algorithm, after reading a run r, will take
a space at most polynomial in the (maximum) number of active threads (at every
moment) in r and the number of entities accessed in r; most importantly, this
will have no dependence on the length of r itself.

Note that there is a simple algorithm that monitors serializability violations
by keeping track of the conflict graph and checking it for cycles. However, since
the conflict graph contains one node for every transaction that has ever happened
in the system, it can grow arbitrarily large, and does not result in the monitoring
algorithm we seek. We want to keep a reduced conflict graph when monitoring.

t2

t1 t3

Let us look at an example to see how to reduce the conflict
graph. Consider the following non-serializable schedule:

T1:B T1:rd(x) T2:BT2:wr(x) T2:rd(z)
T3:B T3:wr(z) T2:C T1:wr(x)

The figure on the right demonstrates the conflict graph for the above schedule
without the last event T1:wr(x) (t1, t2, and t3 are transactions of threads T1, T2,
and T3).

Now, in this graph, since the transaction t2 of T2 has finished, it is very
tempting to remove the node t2, and summarize its effect by replacing it by an
edge from t1 to t3. However, this is a serious error: for example, if we deleted t2,
then the next event T1:wr(x) does not cause a cycle. The reason is that though
t2 is a completed transaction, it may still participate in later cycles as outgoing
edges from t2 can always be introduced even after t2 has completed.

The work by Alur, McMillan and Peled [2] considers precise algorithms for
monitoring serializability violations (using automata that keep track of reduced
conflict-graphs on the schedule it has read). Their paper has the grave error
mentioned above, and the algorithms establishing upper bounds of checking
serializability in the paper are wrong.
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In fact, the problem of when completed transactions can be deleted is a well
studied problem in database concurrency control, and there have been several
approaches to finding safe deletion policies [4, 5, 12]. Next, we present a way to
summarize the essential information of the conflict-graph using just a graph of
nodes formed by active threads3.

Summarized Conflict Graph for Serializability

The following notion of summarized conflict graphs is adapted from a conflict-
serializable scheduling algorithm in [5]. Intuitively, we keep the conflict graph
restricted to edges between the active transactions only (paths between active
transactions summarized as edges), and also maintain for each active transac-
tion/thread T a set C which denotes the set of events that occurred in transac-
tions that must be scheduled later than this transaction. Moreover, when keeping
track of events of completed threads, we erase the thread id from its description.

Recall that A is the set of actions of reads and writes to global entities, and
Σ includes the set {T :a | T ∈ T , a ∈ A} as well as begin and end events for
transactions and threads. In the summarized graph, each node corresponding to
an active thread T will be associated with two sets, S and C, where S ⊆ ΣT
is the set of scheduled events of the current active transaction of thread T (as
in the conflict graph), and C ⊆ Σ ∪ A is the set of conflicting events, events
that occurred in completed transactions that must be scheduled later than the
current transaction of T .

Definition 4. Let σ be a schedule and let CG(σ) be its conflict graph. The
summarized conflict graph of a schedule σ is a tuple SCGσ = (V,E, S,C), where
(V,E) is a graph and S and C are two vertex-labeling functions S : V −→ 2Σ,
C : V −→ (2Σ∪A), where

– V contains a node vi for each active thread Ti;
– E contains an edge from v to v′ (respectively associated to transactions tr

and tr′) if and only if there exists a path from the node corresponding to
tr to that corresponding to tr′ in CG(σ) which does not contain any nodes
corresponding to active transactions;

– For any vi ∈ V , if vi corresponds to active transaction tr, then S(vi) consists
of precisely the label of tr in the conflict-graph of σ, and C(vi) contains:
• the set of events T :a ∈ Σ such that T is an active thread and there is

some completed transaction tr′, reachable from tr in CG(σ), whose label
contains T :a, and

• the set of actions a ∈ A such that there is some completed transaction
tr′, reachable from tr in CG(σ), whose label contains T :a, and where T
is a thread that has already ended in σ.

The above is a static definition of the summarized conflict graph, and it is easy
to see that cycles in the conflict graph manifest themselves in the summarized
conflict graph:
3 An active thread T is a thread for where the beginT action has appeared in the

schedule, and endT has not appeared yet .
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Lemma 2. There is a cycle in the conflict graph of σ iff there is a cycle in the
summarized cycle graph of σ′ for some σ′ that is a prefix of σ. ut

Notice that when a cycle gets formed in the summarized conflict graph, it may
get removed later (for example if all the threads that form the transactions of
the cycle end) However, since whenever a node is removed, we combine incoming
edges and outgoing edges from this node with a transitive edge, it follows that
unless all nodes in the cycle are removed, the cycle is preserved. When the cycle
is finally removed, it will be in the form of a self-loop on a transaction node that
is being deleted. Hence, when monitoring, it is sufficient to check for self-loops.

Maintaining the summarized conflict graph: Let us now turn to an algo-
rithm for maintaining the summarized conflict graph. The following set of rules
show how the summarized conflict graph can be constructed dynamically as the
schedule σ progresses. The dynamic algorithm updates the graph based on these
rules until a self-loop is created, and at which point reports a serializability
violation. The algorithm maintains a set AT of the currently active threads.

– (Rule 1): If the next event in σ is Ti:B, then create a new node vi and set
S(vi) = ∅ and C(vi) = ∅.

– (Rule 2): If the next event in σ is Ti:C, then remove vi by connecting all
its (immediate) predecessors to all its (immediate) successors. Also for every
(immediate) predecessor vk of vi, set C(vk) = C(vk) ∪ S(vi) ∪ C(vi).

– (Rule 3): If the next event in σ is Ti:a, then set S(vi) := S(vi)∪{Ti:a}. For
all vk 6= vi, if there is an event Tj:b ∈ S(vk) ∪ C(vk) such that (Tj:b, Ti:a) ∈
DΣ , add an edge (vk, vi) to E. Also, for any action b ∈ C(vk) such that
(Tk:b, Ti:a) ∈ DΣ , add an edge (vk, vi) to E.

– (Rule 4): If the next event in σ is BegTi
, then set AT = AT ∪ {Ti}.

– (Rule 5): If the next event in σ is EndTi , then set AT = AT \ {Ti}, and
replace every Ti:a in every conflict s et C by a.

The summarized conflict graph given here is derived from a similar one pre-
sented in [4, 5], but adapted to handle threads. Furthermore, for terminated
threads, we have adapted the algorithm to remove the thread id information,
thereby bounding the information kept at each node to the product of the num-
ber of active threads and entities accessed only. In the case of dynamic memory
allocation, when a location is freed, it can be removed from all the label sets.

The following theorem captures the correctness of the algorithm in maintain-
ing the summarized conflict graph, and hence, by Lemma 2 and Lemma 1, is a
streaming algorithm that detects serializability violations.

Theorem 1. The algorithm presented streams events of a schedule σ, and main-
tains the summarized conflict graph. Hence, for schedules in which all started
threads end, the algorithm detects a self-loop on some node at some point in
time iff the schedule is non-serializable. ut

Note that if one is interested in checking a schedule that does not conform to
the above, it is always easy to add transaction end and thread end actions to
the end of the schedule to make it so.
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Complexity of the algorithm: Our monitoring algorithm using the summa-
rized conflict graph simply reads events of a schedule, maintains the summarized
conflict graph, and checks if at any point a self-loop is introduced. Its space com-
plexity is as follows:

Proposition 2. For any schedule σ, the number of nodes of the summarized
conflict graph is bounded by k and the combined sizes of the sets associated
with the nodes is bounded by k.n, where k is the maximum number of active
threads during σ and n is the number of entities accessed by it. The size of the
summarized conflict graph is therefore of O(k2 + k · n). ut

While scanning the schedule σ, the algorithm spends time O(k · log n) when
the next event is a read or a write action by some thread. If the next event is an
end of a transaction, then the monitoring algorithm spends time O(n · k). The
updates for other action are performed in constant time.

4 Model Checking Atomicity for Boolean Programs

In this section, we present the second main result of the paper: a solution for the
problem of checking atomicity of concurrent Boolean programs and establishing
its complexity to be precisely Pspace-complete. The result we prove here was
claimed in [2], but as we mentioned, the proof there was wrong.

We consider succinct representations of programs with Boolean variables with
logical encodings of initial positions and the transition relation (very much akin
to how systems are described in model checking based on Boolean decision dia-
grams such as NuSMV).

Let us fix a finite set of threads T = {T1, . . . , Tk} and a finite set of entities
X = {x1, . . . , xn}. Recall the set of actions associated with these threads and
entities:

ΣT = {T :a | a ∈ A} ∪ {T :B, T :C} ∪ {BegT ,EndT }

and Σ =
⋃
T∈T ΣT . Note that Σ is a finite set.

A Boolean program over threads T and X is defined over a finite set of
Boolean variables V, where the initial set of states is described using a Boolean
formula Init(V ), and for each e ∈ Σ, we have a Boolean formula Transe(V,V ′),
where V ′ = {v′ | v ∈ V}, which describes the transitions on the event e. The
size of the program is defined as |V| + |Init(V)| +

∑
e∈Σ |Transe(V,V ′)|. The

semantics of the program is the natural one.
Imperative concurrent programs with common synchronization constructs

can easily be described as a Boolean program provided there are only a finite
number of threads and entities, and the data manipulated by the program has
been abstracted into a finite domain. This model is particularly interesting in an
abstract-interpretation framework where data domains are abstracted, say using
predicate abstraction [3].

The key to model checking for atomicity violations of Boolean programs is
to realize that the monitoring algorithm presented in this paper maintains a
bounded graph to check atomicity, when the number of threads and entities are
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bounded. We can turn this monitoring algorithm into a deterministic automaton
that checks for atomicity violations, and using the automata-theoretic method,
reduce model checking to a decidable emptiness problem on automata. We build
an automaton Ser that accepts the set of all serializable runs (of k threads and n
entities). It is easy to see that size of Ser is exponential in n and k. By building
an automaton B that accepts all the runs of the program (which will also be
exponential in the size of the program), we can model check for atomicity by
checking if L(B) ⊆ L(Ser), which can be achieved in Pspace by generating
these automata on-the-fly.

Theorem 2. The problem of checking if a Boolean program is serializable is
Pspace-complete. ut

5 Experimental Evaluation

We implemented two algorithms to monitor serializability of program runs: one
was the classic algorithm based on conflict graphs, and the other of our new
algorithm based on summarized conflict graphs. Comparing with the conflict
graph algorithm is useful since existing methods [25] use structures that are
similar to the conflict graph.

We evaluated the algorithms on a benchmark suite of 5 programs. These
benchmarks include sor (successive over-relaxation), lufact (LU factorization),
and raytracer from the Java Grande multithreaded benchmarks [14], and elevator
and tsp from [21]. sor and lufact are (data-intensive) scientific computation
programs which perform numerical computation on matrices, elevator simu-
lates multiple lifts in a building, tsp solves the traveling sales man problem for
a given input map, and raytracer renders a frame of an arrangement of spheres
from a given view point.

We extracted runs by manually instrumenting programs to output the ac-
cesses to entities while executing. We have a simple automatic escape analysis
unit that excludes from the run all accesses to thread-local entities. We then run
the monitoring algorithms on these output files offline. We use the glib library
to efficiently implement set and graph operations. In the case of summarized
conflict graphs, we check for cycles by checking for self loops in the graph, and
for conflict graphs, we check the graph for cycles once at the end.

Table 1 presents the results of our evaluation. We ran each benchmark with
different input parameters such as number of threads, and input files. For each
program, we report in the table the number of lines of code (LOC) (appears
below the program names), number of threads used in the run and number of
truly shared entities between threads, the length of the run (number of events).
The table presents the results of running the two monitoring algorithms, conflict
graph (CG) and summarized conflict graph (SCG) on these runs, and we report
the size of each graph (in number of nodes and edges), and the time (in seconds)
consumed to monitor each run (an entry of 0 means the time was less than
0.01 seconds). Note that the times are for processing the run only, and not
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Application
(LOC)

Spec
Threads;
Entities

Length of
the Run

CG
(n, e)

CG
(time)

SCG
(n, e)

SCG
(time)

ser-viol/
bug

sor

(470)

100×100 3; 400 97M 600, 80K 118s 3, 0 0.5s no/–
100×100 10; 1800 97M 2K, 300K 8872s 6, 0 3.5s no/–
100×100 50; 10000 101M — > 8h 17, 0 30.4s no/–

lufact

(1234)

100×100 3; 10K 17M 894, 168K 1824s 3, 2 37s no/–
100×100 10; 10K 18M 3K, 617K 3940s 10, 9 55s no/–
100×100 50; 10K 22M 15K, 3M 11640s 50, 49 84s no/–

elevator

(566)

data 2; 32 7K 137, 6K 0.06s 3, 2 0 yes/no
data2 4; 32 220K 416, 26K 0.97s 5, 2 0.01s yes/no
data3 4; 200 571K 258, 10K 6.3s 5, 3 0.1s yes/no

tsp

(794)
map4 3; 15 80 6, 5 0 1, 0 0 no/–
map14 5; 40 1.4M 18, 109 2.2s 4, 3 1.0s yes/no

raytracer

(1537)
150×150 10; 1 66 10, 90 0.02s 10,9 0.02s yes/yes
200×200 10; 1 66 10, 79 0.02s 10,9 0.02s yes/yes

Table 1. Monitoring Results (K=1000; M=1000000)

generating the run (as that part is common to both algorithms). Finally, we
report whether we found a serializability violation (yes/no), and if yes, whether
it pointed to a real bug in the program (yes/no), the latter determined manually.
All experiments were performed on Linux PC with two 4GHz processors and 4GB
of memory.

Our results clearly illustrate the tremendous impact of using our summarized
conflict-graph algorithm, giving orders of magnitude speedup when compared to
the classic conflict-graph algorithm. For example, for sor with 50 threads, the
CG-algorithm did not finish even after 8 hours while SCG finishes in 30s. This
is primarily due to space savings; for example, lufact with 50 threads gives a
conflict graph of 15K nodes and 3M edges, while the SCG graph never uses
more than 50 vertices (one for each thread) and 49 edges.

Note that the algorithm reported in [25] solves a harder problem, as it tries
to find serializability violations in the current run as well as all other runs that
can be inferred from this run. In fact, their technique does not scale well as
they use a graph similar to the conflict graph; they reported to us that they
get timed-out after 25 minutes while checking the sor benchmark for 50 threads
while we check the run in 30 seconds [24].

All the runs of sor and lufact that we monitored were serializable. tsp
and elevator generated non-serializable runs. But a closer investigation of the
source of non-serializability of these runs shows that they do not correspond
to real errors in the program. They both refer to interesting cases of non-trivial
thread interactions which are intended by the programmer, and we believe a pro-
grammer would find such reports of interactions useful. The non-serializable runs
of raytracer, however, are related to a real bug in that program. The bench-
marks, the monitoring programs, and the precise runs monitored are available
at http://www.cs.uiuc.edu/∼madhu/cav08/.
Acknowledgement. We thank Liqiang Wang and Scott Stoller for useful dis-
cussions and clarifications both theoretical and experimental.
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