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Abstract. Atomicity is an important generic specification that assures
that a programmer can pretend blocks occur sequentially in any execu-
tion. We define a notion of atomicity based on causality. We model the
control flow of a program with threads using a Petri net that naturally
abstracts data, and faithfully captures the independence and interaction
between threads. The causality between events in the partially ordered
executions of the Petri net is used to define the notion of causal atomic-
ity. We show that causal atomicity is a robust notion that many correct
programs adopt, and show how we can effectively check causal atomicity
using Petri net tools based on unfoldings, which exploit the concurrency
in the net to yield automatic partial-order reduction in the state-space.

1 Introduction

Programs with multiple threads are a common paradigm in concurrent pro-
gramming. Programming correctly with threads is particularly hard as one has
to consider the various interleavings of threads at run-time. Moreover, bugs that
manifest themselves because of interleavings are harder to detect using testing,
as they can be very infrequent in occurrence. A practical approach to program-
ming threads is to develop techniques that allow the programmer to specify and
verify disciplined interaction between threads.

The lack of race conditions is such a discipline; a race condition occurs when
two threads simultaneously access a global variable, and one of the accesses is
a write. Depending on when the write event gets scheduled, the program could
take very different paths, which is a cause of concern. While the lack of races does
seem to be a natural discipline to adhere to, it has been observed and argued
that it is not a strong enough condition [10].

A stronger1 discipline is to require methods or blocks of code to be atomic.
The general definition of atomicity is: a code block is atomic [10] if for every in-
terleaved execution of the program in which the code block is executed, there is an
equivalent run of the program where the code block is executed sequentially (with-
out interleaving with other threads). Intuitively, since for every interleaved exe-
cution t, there is an equivalent execution t′ where the block occurs sequentially,

? Research supported by ONR grant N00014-02-1-0715.
1 Atomicity is not a strictly stronger notion than race-freedom; see Figure 7 for an
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if the block had a logical error making t incorrect, then t′ would be incorrect
as well, arguing that the error in the block was not because of its interleaving
with other threads. Consequently, a block being atomic greatly simplifies writ-
ing and understanding code: the programmer can pretend that the code block is
executed sequentially, which simplifies its correctness argument. Note that the
problem of checking atomicity of program blocks is obviously undecidable.

Atomicity is a well-argued principle of programming: in the database liter-
ature, it is known as serializability [6, 19, 2, 1, 21], and in the software analysis
literature, it has been argued that many errors in threaded code can be traced
back to blocks being non-atomic [10, 9, 7, 23, 13, 8, 22]. There has been extensive
work on detecting atomicity of program blocks: static analysis techniques that
use type-checking to detect transactions [15, 10, 9, 23], where a transaction is a
strong notion that implies atomicity; dynamic analysis that checks atomicity of
tests of the program at run-time [8, 22]; and model checking for atomicity where
a monitor that detects non-atomic blocks runs in parallel with the system, which
is then model checked [13, 7].

In order to get effective algorithms, atomicity checkers aim for soundness
(i.e. if the tool reports a block to be atomic, then the block should indeed be
atomic), and the generic way to achieve this is to abstract the program in a
sound fashion, as well as define a sound notion of equivalence between abstract
traces. In other words, the equivalence relation between traces of the abstract
model should imply that the concrete traces represented by them are equivalent
as well.

While atomicity checkers in the literature do assure that their analyses are
sound, they do not define precisely the abstraction they use, nor define precisely
the notion of equivalence they assume. For example, static atomicity check-
ing using types are based on transactions (transactions imply atomicity), but
transactions require knowing what kind of “mover” each statement is, which is
achieved using a separate race-checking analysis (which again is not precisely
defined). The algorithm for checking for transactions is then implemented using
types, and again it is not argued whether given the classification of statements
as movers, the type-checking approach is complete or not. All in all, though
every step is sound, and the soundness of the whole algorithm is assured, the
precise abstraction and notion of equivalence used is not clear, making it hard
to evaluate and compare the formalisms.

The main contribution of this paper is a new notion of atomicity for programs
based on causality, and that has precise definitions of the abstraction mechanism
and the notion of equivalence between abstract runs. Given a program P with
multiple threads, we exhibit a clean control model of the program as a Petri
net [18, 16]. This modeling is aimed at capturing control and abstracting away
the data values used in the program. Moreover, the Petri net explicitly captures
the independence of execution of threads, and the interaction mechanism of
the threads (using shared variables, locks, etc.). The model for the program is
independent of any notion of atomicity, and captures just the dependence and
independence of control in the threads of the program.
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This model of a Petri net generates, in a standard way, partially-ordered runs
of P that depict possible control interactions between threads [4]; we call these
partially-ordered runs the control traces of P . The partially ordered control
traces depict the set of events that have occurred and also define the causal
relation between these events (such a causal structure is not evident in the linear
runs of P ). Moreover, the Petri net model is such that if one linearization σ of a
partially ordered run Tr is feasible in the original program, then all linearizations
of the Tr are feasible in the concrete program as well and are equivalent to r (in
terms of the final state reached).

Causal atomicity is defined using the causal structure of the control traces
generated by the program. We consider two sequential executions of a program
to be equivalent if and only if they correspond to linearizations of the same
partially-ordered trace of the program. Causal atomicity reduces to a very simple
property on partially ordered traces: a block B of a thread is causally atomic
if there is no control trace of the program where an event of another thread
occurs causally after the beginning of B and causally before another event that
is within the same block B.

Our notion of causal atomicity is simple and yet powerful enough to cap-
ture common interaction disciplines in correct programs. Our notion is certainly
stronger than looking for patterns of transactions [15, 10], and can handle pro-
grams that do not explicitly use locks.

Turning to algorithms for checking atomicity, we show how causal atomicity
can be checked using partial-order techniques based on unfoldings of Petri nets.
Our algorithm is sound and complete in checking for causal atomicity of the net.
Given a Petri net model of P with a block marked to be checked for atomicity,
we show how to reduce the problem of checking causal atomicity of P to a cov-
erability problem for an associated colored Petri net Q [14]. The latter problem
is decidable and there are several tools that can efficiently check coverability
in colored Petri nets. In particular, the tools that use unfolding techniques [17,
5] of nets are useful as they exploit the structure of the net to give automatic
reduction in state-space (akin to partial-order reduction that has been exploited
in model checking concurrent systems).

Finally, we show that causal atomicity is a common paradigm in many pro-
grams by considering several examples. We report on experiments that reduce
checking causal atomicity to coverability, where the latter is solved using the
Pep tool (Programming Environment based on Petri nets) [12]. The experi-
ments show that causal atomicity lends itself to fast partial-order based model
checking.

When there is only one block that is being checked for atomicity, our notion
of atomicity is the same as the notion of serializability studied for database trans-
actions [11, 1]. However, when there are multiple blocks, serializability demands
that for every execution, there is one execution where all the atomic blocks are
executed serially, while our notion demands that for every execution and every
block, there is some execution where that block occurs sequentially. We believe
our notion is more appropriate for threaded software. Figure 1 shows an example
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of a trace of a program with four threads and two blocks which intuitively ought
to be declared atomic. For instance, any pre-post condition of the block B (or
B′) that depends only on the variables used in the block holds on all interleaved
runs provided it holds in runs where the block is executed sequentially. Note
a program with such a trace would be declared non-serializable, but declared
causally atomic.

read(z)

read(t)

read(x)

read(y)

write(y)

write(x)

write(t)

write(z)

beginB beginB′

endB′endB

Fig. 1. Serializable but not causally atomic

While we believe the jury is still
out on which of these notions of atom-
icity is useful and accurate for check-
ing programs, note that our contri-
butions hold equally well for serializ-
ability: we can define a notion of se-
rializability using the causal edges in
the Petri net model and check for it
using unfolding algorithms (however,
checking serializability seems more com-
plex than checking causal atomicity).

The paper is structured as follows. Section 2 introduces a simple syntax for
a programming language with threads, and defines Petri nets and the partially
ordered traces they generate. Section 3 defines the modeling of a program as a
Petri net and defines causal atomicity based on the traces generated by this net.
Section 4 gives the generic translation of such a program model into a colored
Petri net, reducing causal atomicity to coverability. Section 5 gives experimental
results that show the efficacy of partial-order model checking tools in detecting
causal atomicity, and Section 6 contains concluding remarks.

2 Preliminaries

2.1 The Language for Programs

We base our formal development on the language SML (Simple Multithreaded
Language). Figure 2 presents the syntax of SML. The number of threads in an
SML program is fixed and preset. There are two kinds of variables: local and
global, respectively identified by the sets LVar and GVar. All variables that
appear at the definition list of the program are global and shared among all
threads. Any other variable that is used in a thread is assumed to be local to
the thread.

We assume that all variables are integers and are initialized to zero. We use
small letters (capital letters) to denote local (global, resp.) variables. Lock is a
global set of locks that the threads can use for synchronization purposes through
acquire and release primitives. The semantics of a program is the obvious one
and we do not define it formally.

begin and end primitives are used to mark the beginning and end of a block
that is intended to be checked for atomicity. The goal of the atomicity checker is
to check whether all such blocks are indeed atomic. Figure 5 shows two examples
of multithreaded programs written in SML.
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P ::= defn thlist (program)
thlist ::= null | stmt || thlist (thread list)
defn ::= int Y | lock l | defn ; defn (variable declaration)
stmt ::= x := e

| while (b) { stmt } | begin stmt end

| if (b) { stmt } else { stmt } | skip
| acquire(l) | release(l) | stmt ; stmt (statement)

e ::= i | x | Y | e + e | e ∗ e | e/e (expression)
b ::= true | false | e op e | b ∨ b | ¬b (boolean expression)

op ∈ {<,≤, >,≥, =, ! =}
x ∈ LVar, Y ∈ GVar, i ∈ Integer, l ∈ Lock

Fig. 2. SML syntax

2.2 Petri Nets and Traces

Definition 1. A Petri net is a triple N = (P, T, F ), where P is a set of places,
T (disjoint from P ) is a set of transitions, and F ⊆ (P × T ) ∪ (T × P ) is the
flow relation.

For a transition t of a (Petri) net, let •t = {p ∈ P |(p, t) ∈ F} denote its set
of pre-conditions and t• = {p ∈ P |(t, p) ∈ F} its set of post-conditions.

A marking of the net is a subset M of positions of P .2 A marked net is a
structure (N, Init), where N is a net and Init is an initial marking. A transition t
is enabled at a marking M if •t ⊆ M . The transition relation is defined on the set
of markings: M

t−→ M ′ if a transition t is enabled at in M and M ′ = (M\•t)∪t•.
Let ∗−→ denote the reflexive and transitive closure of −→. A marking M ′ covers
a marking M if M ⊆ M ′.

A firing sequence is a finite or infinite sequence of transitions t1t2 . . . provided
we have a sequence of markings M0M1 . . . such that M0 = Init and for each i,
Mi

ti+1−→ Mi+1. We denote the set of firing sequences of (N, Init) as FS (N, Init). A
firing sequence can be viewed as a sequential execution of the Petri net. However,
we are interested in the partially-ordered runs that the Petri net exhibits; we
will define these using Mazurkiewicz traces.
Traces: A trace alphabet is a pair (Σ, I) where Σ is a finite alphabet of actions
and I ⊆ Σ ×Σ is an irreflexive and symmetric relation over Σ called the inde-
pendence relation. The induced relation D = (Σ×Σ)\I (which is symmetric and
reflexive) is called the dependence relation. A Mazurkiewicz trace is a behavior
that describes a partially-ordered execution of events in Σ (when I = ∅, it is
simply a word).

Definition 2. [4] A (Mazurkiewicz) trace over the trace alphabet (Σ, I) is a
Σ-labeled poset t = (E ,�, λ) where E is a finite or a countable set of events, �
is a partial order on E, called the causal order, and λ : E −→ Σ is a labeling
function such that the following hold:

2 Petri nets can be more general, but in this paper we restrict to 1-safe Petri nets
where each place gets at most one token.
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– ∀e ∈ E, ↓ e is finite. Here, ↓ e = {e′ ∈ E | e′ ≤ e}.
So we demand that there are only finitely many events causally before e.

– ∀e, e′ ∈ E , e≺· e′ ⇒ λ(e)Dλ(e′).3 Events that are immediately causally related
must correspond to dependent actions.

– ∀e, e′ ∈ E , λ(e)Dλ(e′) ⇒ (e � e′ ∨ e′ � e). Any two events with dependent
labels must be causally related.

begin

aquire(l)

release(l)

end

l

Y1
Y2

T1 T2

Y := 5

Y := 3

x := Y - 2

Fig. 3. Sample Net Model

T (Σ, I) denotes the set of all traces over
(Σ, I). We identify traces that are iso-
morphic.

A linearization of a trace t = (E ,�
, λ) is a linearization of its events that
respects the partial order; in other words,
it is a word structure (E ,�′, λ) where �′

is a linear order with � ⊆ �′.
Let us define an equivalence on words

over Σ: σ ∼ σ′ if and only if for ev-
ery pair of letters a, b ∈ Σ, with aDb,
σ ↓ {a, b} = σ′ ↓ {a, b}, where ↓ is the
projection operator that drops all sym-
bols not belonging to the second argu-
ment. Then, σ and σ′ are linearizations
of the same trace iff σ ∼ σ′. We denote
the equivalence class that σ belongs to as
[σ].

Let (Σ, I) be a trace alphabet and
∼ be the associated relation. Let us now
formally associate the (unique) trace that
corresponds to a word σ over Σ.

A finite word σa is said to be prime
if for every σ′ ∼ σa, σ′ is of the form σ′′a (i.e. all words equivalent to σa end
with a).

Let σ be a finite or infinite word over Σ. The trace associated with σ, Tr(σ) =
(E ,�, λ) is defined as:

– E = {[σ′] | σ′ is prime ,∃σ′′ ∼ σ, σ′ is a prefix of σ′′},
– [σ] � [σ′] if there exists σ1 ∈ [σ], σ′

1 ∈ [σ′] such that σ1 is a prefix of σ′
1,

– λ([σ′a]) = a for each [σ′a] ∈ E .

It is easy to see that Tr(σ) is a trace, and σ is a linearization of it.
Traces of a Petri net: Let us now define the set of traces generated by a

Petri net. Given a marked net (N, Init), N = (P, T, F ), we consider the trace
alphabet (Σ, I) where Σ = T , and (t, t′) ∈ I if and only if the neighborhoods of
t and t′ are disjoint, i.e. (•t ∪ t•) ∩ (•t′ ∪ t′•) = ∅.
3 ≺· is the immediate causal relation defined as: e≺· e′ iff e ≺ e′ and there is no event

e′′ such that e ≺ e′′ ≺ e′.
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Now the traces generated by the net is is defined as {Tr(σ) | σ ∈ FS (N, Init)}.
Note that a single trace represents several sequential runs, namely all its lin-
earizations.

3 Causal Atomicity

Modeling programs using Petri Nets

We model the flow of control in SML programs by Petri nets. This modeling
formally captures the concurrency between threads using the concurrency con-
structs of a Petri net, captures synchronizations between threads (e.g.. locks,
accesses to global variables) using appropriate mechanisms in the net, and for-
malizes the fact that data is abstracted in a sound manner.

Figure 4 illustrates the function N that models statements using nets (in-
ductively, for a fixed number of threads n). N(S) is defined to have a unique
entry place pSin and one or more exit transitions txS

1, . . . , tx
S
m. In this natural

way of modeling the control of a program, transitions correspond to program
statements, and places are used to control the flow, and model the interdepen-
dencies and synchronization primitives. Figure 3 illustrates the Petri net model
for the program in Figure 5(a).

begin S end acquire(l) / release(l) while (e) { S } if (e) {S} else {S’}

begin

end

tx

N(S).... .
.

l

tx

l

tx

acquire(l)

release(l)

e = true e = false

tx.... .
.

N(S)

pin

.... .
.

.... .
.

b = true b = false

N(S) N(S′)

reading global variable Y writing global variable Y S:stmt ; S’:stmt skip

tx

pin

x := Y

Ti

Yi

Y1 Yn

tx

pin

Y := x

.... .
.

N(S′).... .
.

N(S)

tx

pin

skip

Fig. 4. Model Construction

There is a place l associated to each lock l which initially has a token in it.
To acquire a lock, this token has to be available which then is taken and put
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back when the lock is released. This ensures that at most one thread can hold
the lock at any time.

For each global variable Y, there are n places Y1, . . . , Yn, one per thread.
Every time the thread Ti reads the variable Y (Y appears in an expression), it
takes the token from the place Yi and puts it back immediately. If Ti wants to
write Y (Y is on the left side of an assignment), it has to take one token from
each place Yj , 1 ≤ j ≤ n and put them all back. This is to ensure causality: two
read operations of the same variable by different threads will be independent (as
their neighborhoods will be disjoint), but a read and a write, or two writes are
declared dependent. If Ni = (Pi, Ti, Fi) is the Petri net model for statement Si

(1 ≤ i ≤ n), then the Petri net model for S1 || · · · || Sn is the net (P1∪· · ·∪Pn, T1∪
· · · ∪ Tn, F1 ∪ · · · ∪ Fn), assuming Ti’s are disjoint. Note the soundness of the
abstraction: if a read and a write of two threads are simultaneously enabled (i.e.
if there is a race condition), then the order on their accesses may be crucial. Since
we are not keeping track of data in any manner, we declare them to be causally
dependent and hence will consider the two runs inequivalent. The dependency
relation defined in the model will lead to the appropriate notion of causality in
the traces of the Petri net.

For a firing sequence σ of the net corresponding to a program, the sequence σ
may not be feasible in the concrete program (because of the abstraction of data
values). However, note that for every feasible sequence of the concrete program,
its control trace is a trace of the net. Moreover, if σ is a firing sequence of the
net which is feasible in the program (say by a concrete run r), then it is easy
to see that for each firing sequence σ′ such that σ′ ∈ [σ], there is a concrete
run r′ corresponding to it in the program that is equivalent to r (in terms of
resulting in the same valuation of concrete variables). This property is key in
ensuring that our entire approach is sound, as we will use trace equivalence as
the equivalence over runs in defining atomicity.

Causal Atomicity

Recall the general notion of atomicity: a block is atomic if for for every sequential
execution in which it is executed, there is another equivalent sequential execution
where the block is executed without being interleaved with other threads. Given
our abstraction using a Petri net, the only reasonable definition of equivalence
of two sequential executions is that they are linearizations of the same control
trace (see argument above).

Let us first illustrate the concept of causal atomicity by a simple example.
Consider the two programs in Figure 5. Although the first thread (on the left)
is the same in both versions, the block within begin and end is atomic in 5(b)
and not atomic in 5(a).

The Petri net model of a program P induces the traces that correspond
to the partially ordered runs of the program, which we call the control traces.
Causal atomicity is defined as a property of these control traces. Figure 6 shows a
control trace of the non-atomic program of Figure 5(a). Here labels of the events
(transitions given by λ) are mentioned instead of the event names themselves
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T T’

lock l ; int Y; ||
(1) begin (1) x := Y - 2
(2) acquire(l)
(3) Y := 5;
(4) Y := 3
(5) release(l)
(6) end

T T’

lock l ; int Y; ||
(1) begin (1) acquire(l)
(2) acquire(l) (2) x := Y - 2
(3) Y := 5; (3) release(l)
(4) Y := 3
(5) release(l)
(6) end

(a) (b)

Fig. 5. Two Programs

to make the trace more readable. The arrows depict the immediate causality
relation. The trace is a witness for non atomicity since x:=Y-2 is causally after
Y:=5 and causally before Y:=3, and therefore in all linearizations of this trace,
x:=Y-2 has to appear in the middle of the block.

begin acquire(l) release(l) endY := 5 Y := 3

x := Y− 2

Fig. 6. Non-Atomic Trace
A notational remark: when we denote a transition as tTi , we mean that it

belongs to the thread Ti.

Definition 3. A code block B = begin S end of the program P is causally
atomic if and only if the Petri net model of the program P does not induce a
trace Tr = (mathcalE,�, λ) for which the following holds:

∃e1, e2, f ∈ E : e1 � f � e2 where
λ(e1) = tTbegin, λ(e2) = tT2 , λ(f) = tT

′

3 such that
T 6= T ′ and 6 ∃e ∈ E : (λ(e) = tTend ∧ e1 � e � e2)

e1

e2

f

begin

T T ′

...

...

∗

∗

The above definition says that a block declared atomic is not causally atomic
if the block begins, and there are two events, e2 belonging to the same thread
(and e2 occurs before the block finishes) and f belonging to another thread such
that f occurs causally between the beginning of the block and e2. Note that
traces that witness non-atomicity may not even execute the block completely
(and we do not require any termination requirement for blocks).

The following theorem captures the intuition of why the above defines causal
atomicity; it argues that if a trace of the program is not of the kind mentioned
in the definition above, then there is indeed some linearization of events that
executes the atomic block without interleaving. The proof is easy for finite traces,
but more involved for the infinite ones; we skip the proofs.

Theorem 1. (a) A code block B = begin S end of the program P is causally
atomic if and only if for all finite traces induced by the Petri net model of
P , there is a linearization of the trace where all occurrences of block B occur
sequentially (without interleaving with other threads).
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(b) If a code block B = begin S end of thread T in the program P is causally
atomic then for all infinite traces induced by the Petri net model of P , there
is a linearization of a causally downward closed subset of the events of the
trace that contains all events belonging thread T , in which occurrences of
block B occur sequentially.

Note that the above theorems yield soundness of our approach: if a code
block B is causally atomic, then by the above theorem and by the fact that
either every linearization of a trace of the net is feasible in the concrete program
or none are, it follows that the block B is atomic in the concrete program as
well.

t = X X = 1

Y = 1

r = Y

T1 T2 T3

begin

end

Fig. 7. Example

The program in Figure 7 distinguishes causal
atomicity from other static notions of atomicity
in the literature. The code block in thread T2 is
causally atomic. However, since there are races
on both global variables X and Y, both statements
X = 1 and Y = 1 are non-mover statements and
this block is not a transaction, and therefore will
not be detected as atomic by the method in [10].
Our notion of causal atomicity is also behavioral
and more geared towards model checking as it depends on the partial-order
executions of the program, not on the static structure of the code.

Commit-atomicity [7] is a dynamic notion of atomicity which is different
from our static notion. The presence of data in commit-atomicity allows a more
precise detection of atomicity according to the general definition of atomicity
and there are examples (e.g. see Bluetooth3 in Section 5) that can be detected
atomic by commit-atomicity, but they fail the causal atomicity check. On the
other hand, the presence of data limits commit-atomicity to finite state space
programs, and impedes scalability (specifically, in terms of number of threads).
However, causal atomicity can deal with infinite data since the data is completely
abstracted. Also, the commit-atomicity method requires the the atomic blocks
to be terminating while we do not need such an assumption.

4 Checking Atomicity

In this section, we present how causal atomicity defined on traces can be reduced
to coverability in a colored Petri net.

Colored Petri Nets

Colored Petri nets are subclass of high level Petri nets [14]. We explain how
causal atomicity checks can be done by checking very simple properties on the
colored nets. This does not imply any complications theoretically since the result
in [14] shows that each colored net has an equivalent Petri net, and practically
since most Petri net analysis tools today support high level nets.

10



We use a very simplified definition of colored Petri nets. We will not define
them formally, but explain them intuitively. A colored Petri net has, as an un-
derlying structure, a Petri net, but a token at a place can take a color c, which
is drawn from a finite set of colors C. Transitions get enabled when their pre-
conditions get marked, as before; but the transitions can now examine the colors
of tokens and decide the colors of tokens on the post-conditions.

Given a model of a program P as a net N = (P, T, F ) and an initial marking
Init, we define a colored Petri net that has the same underlying net N , but with
colors C = {A,B, Y,R}. The initial marking is the initial marking Init, with all
tokens colored A (achromatic).

The evolution of colors is determined by rules defined below. Note however
that since the colored net has the same underlying net, it inherits the indepen-
dence relation and generates the same traces as the net modeling the program.

Tokens are of one of the colors achromatic (A), blue (B), yellow (Y ), and
red (R), and we use them to monitor executions. The net nondeterministically
chooses an occurrence of a block B of a thread T that is to be checked for
atomicity, and at its begin event, turns the local control place of T to the color
blue. Whenever an event has a local pre-condition marked blue, it taints all its
post-conditions blue; hence the blue color spreads to all conditions causally after
the begin-event of B. When a different thread reads a blue token, it transforms
the token to yellow. Events that read any yellow-colored pre-condition taint their
post-conditions to yellow as well, and hence propagate the yellow color to causal
successors. If the thread T executes a statement of block B (before reaching
the end of the block) and reads a pre-condition labeled yellow, it would detect
violation of causal atomicity, and mark a special place red. If the end of block
B is reached without detecting violation of causal atomicity, the net abruptly
stops, as the occurrence of the block guessed to be non causal atomic was wrong.

Thus the problem of checking atomicity in the Petri net model of a program
reduces to the problem of checking whether in the associated colored net, there
is a reachable marking that covers a special place colored red (R).

Theorem 2. The special place with a red (R) token is coverable in the colored
Petri net constructed from the Petri net model of the program if and only if some
marked block B is not causally atomic.

5 Experiments

We have applied the method in Section 4 to check causal atomicity of several
programs taken from [7]. This section presents a brief description of each program
and the performance of our algorithm.
Dekker’s mutual exclusion algorithm: Dekker’s algorithm is a classic algo-
rithm for mutual exclusion between two threads that uses subtle synchronization.
The mutual exclusion is modeled by means of two boolean variables. We check
whether the critical sections of the threads are atomic, and they do turn out to
be causally atomic.
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Busy-waiting acquire lock: In this example a busy waiting while loop is used
to acquire a lock. There is a forever loop that acquires the mutex using this
method, then a global variable data is updated, and the mutex is released. The
correctness specification requires the updating of the data to be done atomi-
cally. We have checked two different versions of this example. In Acquire1 there
is only one line modifying the data, while in Acquire2 there are several lines
manipulating the data. Using our technique, there is negligible difference differ-
ence in the size of the unfolding between the two cases since the partial order
semantics would not interleave the internal statements that modify the data. In
contrast, the model checking algorithm in [7] uses interleavings, and they see a
large increase in the time taken for Acquire2. One can make the block in Ac-
quire1 non-atomic by adding an extra thread that manipulates the data without
acquiring the mutex; nAcquire1 refers to this case.

In Acquire1* and Dekker*, multiple blocks (one per thread) are checked for
causal atomicity. This is in contrast to the rest of the benchmarks where one
block is checked at a time.
Bluetooth Device Driver: We used a simplified version of the Bluetooth
device driver in Windows NT (Bluetooth), similar to the one used in [20, 7].
There are two dispatch functions; let us call them Add and Stop. Any process that
wants to use the driver calls Add, and any process that wants to stop the driver
calls Stop. The correctness specification requires these two dispatch functions
to run atomically. The Add function is not causally atomic which can be verified
using only two threads where one calls Add and the other one calls Stop. This
turns out to be a real cause for concern in the code, as interleaving events from
other threads while executing Add does make the program behave unexpectedly;
this was already reported in [20, 7]. There is a fixed version of Bluetooth from [3]
(Bluetooth3) which is still not causally atomic despite the fact that it is correct.
However, commit-atomicity [7] can detect this as atomic since it can keep track
of the value of the counter in the program.

Experimental Results

Table 1 shows the result of evaluating the above benchmarks using Pep [12].
Each program is modeled as a colored Petri net as described in Section 4. The
unfolding of the colored net is generated. Then, with a simple query, we check
whether the special place having a red token is coverable. The table reports the
size of the unfolding, the time taken to check for causal atomicity (in seconds),
and whether the atomicity checker detected causal atomicity. We performed
these experiments under Linux on a 1.7GHz Pentium M laptop with 384MB of
memory. The output time is reported with the precision of 10 milliseconds, and
all experiments with 0 reported time were done in less than 10ms.

Note that in the Acquire1 example, the size of the unfolding grows only lin-
early with the number of threads; this reflects the space savings obtained through
unfoldings. In contrast, the model checking algorithm in [7], which reasons using
sequential traces, started to fail at around four threads. Note however that this
isn’t a fair comparison as the notion of atomicity (called commit-atomicity) in
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Benchmark Causally #Threads Unfolding Unfolding Time
Atomic? #Places #Events (sec)

Dekker Yes 2 52 24 0
Dekker* Yes 2 795 409 0.01

Acquire1 Yes 4 81 34 0
Acquire1 Yes 30 2135 1022 0.03
Acquire1 Yes 100 21105 10402 3.71
Acquire1 Yes 150 46655 23102 22.31

Acquire1* Yes 4 146 56 0
Acquire1* Yes 30 4202 1200 0.35
Acquire1* Yes 50 10582 2985 5.02
Acquire1* Yes 100 40486 10784 635.56

nAcquire1 No 4 97 43 0
nAcquire1 No 6 171 77 0
nAcquire1 No 8 261 119 0

Acquire2 Yes 4 73 30 0
Acquire2 Yes 6 146 74 0

Bluetooth No 2 235 116 0
Bluetooth3 No 2 223 109 0

Table 1. Programs and Performances

[7] is quite different, more accurate, and harder to check. However, in all the ex-
amples except Bluetooth3, their notion of atomicity agreed with ours. All the ex-
periments can be found at: http://peepal.cs.uiuc.edu/∼azadeh/atomicity.

6 Conclusions

We have defined a notion of atomicity based on the causal structure of events
that occur in executions of programs. The causal structure is obtained using a
straightforward data abstraction of the program that captures control interac-
tions between threads using the concurrent model of Petri nets. We have demon-
strated the usefulness of the notion of causal atomicity and shown that it can
be effectively checked using unfolding based algorithms on Petri nets.

This work is part of a bigger project whose aim is to identify sound control
abstractions for concurrent programs that can be used for static analysis (for
example, dataflow analysis). We believe that true concurrent models (such as
Petri nets) and true concurrent behaviors (like traces and event structures) would
prove to be effective for this purpose. This paper demonstrates the efficacy of a
truly concurrent behavior model (traces) in identifying atomicity.

There are several future directions. Our method of checking atomicity is a
global analysis involving all threads simultaneously, while methods based on
types and transactions work locally on each thread independently. Since local
algorithms are likely to scale better, it would be interesting to find the weakest
local property that ensures global causal atomicity. Also, finding compositional
algorithms that derive information from each program locally and combine these
to check for global atomicity would be interesting to study as they would scale
better than global analysis and be more accurate than local analysis. Finally,
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we would also like to study extensions of atomicity defined in the literature (for
example, purity [9]), in the causal setting.

References

1. R. Alur, K. McMillan, and D. Peled. Model-checking of correctness conditions for
concurrent objects. Inf. Comput., 160(1-2):167–188, 2000.

2. P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and recovery
in database systems. Addison-Wesley Longman., 1987.

3. S. Chaki, E. Clarke, N. Kidd, T. Reps, and T. Touili. Verifying concurrent message-
passing C programs with recursive calls. In TACAS, volume 3920 of LNCS, pages
334–349, 2006.

4. V. Diekert and G. Rozenberg. The Book of Traces. World Scientific Publishing
Co., 1995.

5. J. Esparza, S. Romer, and W. Vogler. An improvement of McMillan’s unfolding
algorithm. In TACAS, volume 1055 of LNCS, pages 87 – 106, 1996.

6. K. Eswaran, J. Gray, R. Lorie, and I. Traiger. The notions of consistency and
predicate locks in a database system. Commun. ACM, 19(11):624–633, 1976.

7. C. Flanagan. Verifying commit-atomicity using model-checking. In SPIN, pages
252–266, 2004.

8. C. Flanagan and S. Freund. Atomizer: a dynamic atomicity checker for multi-
threaded programs. In POPL, pages 256–267, 2004.

9. C. Flanagan, S. Freund, and S. Qadeer. Exploiting purity for atomicity. IEEE
Trans. Software Eng., 31(4):275–291, 2005.

10. C. Flanagan and S. Qadeer. Types for atomicity. In TLDI, pages 1 – 12, 2003.
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