
Formal Analysis of Java Programs in JavaFAN

Azadeh Farzan, Feng Chen, José Meseguer, Grigore Roşu
Department of Computer Science,

University of Illinois at Urbana-Champaign.
{afarzan,fengchen,meseguer,grosu}@cs.uiuc.edu

Abstract. JavaFAN is a Java program analysis framework, that can
symbolically execute multithreaded programs, detect safety violations
searching through an unbounded state space, and verify finite state pro-
grams by explicit state model checking. Both Java language and JVM
bytecode analyses are possible. JavaFAN’s implementation consists of
only 3,000 lines of Maude code, specifying formally the semantics of Java
and JVM in rewriting logic and then using the capabilities of Maude for
efficient execution, search and LTL model checking of rewriting theories.

1 Introduction
JavaFAN (Java Formal ANalyzer) is a tool to simulate and formally analyze
multithreaded Java programs at source code and/or bytecode levels. A novel
feature of JavaFAN’s design is that it is directly based on formal definitions of
the Java and the JVM semantics in the form of rewrite theories that are efficiently
executed and analyzed in the Maude language [2]. The following types of analysis
are supported: (1) symbolic simulation, with Java and JVM specifications used
as interpreters executing programs with actual or symbolic inputs; (2) breadth-
first search (BFS) within a concurrent program’s state space to find violations
of safety properties; (3) model checking of linear temporal logic (LTL) properties
for programs whose state space is finite. These forms of analysis are efficiently
supported by Maude’s underlying rewriting, breath-first search, and LTL model
checking features [2]. To keep the framework user-friendly, JavaFAN wraps the
Maude specifications and accepts Java or JVM code from the user as input.

JavaFAN’s specification-based design has a number of important advantages:
(1) formal specifications provide a rigorous semantic definition for a language
that can be mathematically scrutinized; (2) such formal specifications can be
developed with relatively little effort, even for large languages like Java and the
JVM; (3) Maude’s underlying formal analysis infrastructure is entirely generic,
so that formal analysis tools become available for free for each language so spec-
ified; and (4) in spite of their generality, the formal analyses can be performed
with competitive performance. Section 3 discusses several examples, providing
analysis times and comparisons of JavaFAN with other related analysis tools.

The reason for JavaFAN’s efficiency is twofold. On the one hand, Maude
has a rewrite engine achieving millions of rewrites per second, an efficient BFS
algorithm, and an explicit state LTL model checker with performance compa-
rable to SPIN [3]. On the other hand, our approach in specifying the semantics
of a concurrent language as a rewrite theory in Maude tries to maximize per-
formance. A rewrite theory is a triple (Σ, E,R), with Σ a signature declaring
types and function symbols, E a set of equations, and R a set of rewrite rules.
Intuitively, the equations E specify the semantics of a language’s deterministic

computations, whereas the rules R specify its concurrent transitions. The point
is that the state space is only defined by the rules R: the smaller R is, the more
efficient the analysis. In JavaFAN, R is indeed small compared to E: for Java
|R| = 15 and |E| = 600, and for JVM |R| = 40 and |E| = 300. A continuation-
based semantics also increases performance, because most equations and rules
then become unconditional and thus more efficient to execute. Finally, by distin-
guishing between the static and dynamic parts of a program, only the dynamic
component is kept in the state representation, with huge resource savings for
large programs.

2 Overview of JavaFAN

Figure 1 presents the architecture of JavaFAN. The user interface module hides
the Maude back-end behind a user-friendly environment. It also plays the role of
a dispatcher, sending the Java source code and/or the bytecode to Java and/or
JVM analyzers, respectively. The analyzers wrap the input programs into prop-
erly defined Maude modules and invoke Maude, which analyzes the code based
on formal specifications of the Java language and the JVM. The output format-
ter collects the output of Maude, transforms it into a user-readable format, and
sends it to the user. We use Maude to specify the operational semantics of a suffi-

Fig. 1. Architecture of JavaFAN.

ciently large subset of Java and the JVM, including multithreading, inheritance,
polymorphism, object references, and dynamic object allocation. Native meth-
ods and many of the Java built-in libraries are not currently supported. Java and
the JVM are modeled differently. For Java, a quite efficient continuation-based
style is adopted, while for the JVM we use an object oriented style that makes
the specification simpler and easier to understand.

Continuation-based Semantics of Java. The semantics of Java is defined
modularly —different features of the language are defined in separate modules—
to ease extensions and maintenance. A state is a multiset of state attributes,
such as threads, memory, synchronization information, etc. To support multi-
threaded programs, we introduce the notion of thread context, which consists
of three components: (1) a continuation, (2) the thread environment, and (3)
the corresponding object. The continuation maintains the control context of the
thread, which explicitly specifies the next steps to be performed by it.

2

Object-based Semantics of the JVM. The state of the JVM is represented
as a multiset of objects and messages in Maude. Objects in the multiset fall
into four major categories: (1) objects which represent Java objects, (2) objects
which represent Java threads, (3) objects which represent Java classes, and (4)
auxiliary objects used mostly for definitional purposes. Rewrites (with rewrite
rules and equations) in this multiset (modulo associativity, commutativity, and
identity) model the changes in the state of the JVM. In each rewrite, there is
usually one thread involved, together with classes and/or objects that may be
needed to execute the next bytecode instruction.

3 Experiments

Using the underlying search and model checking features of Maude, JavaFAN
can be used to formally analyze Java programs. Breadth-first search analysis
(supported through Maude’s search command) is a semi-decision procedure that
can be used to explore all the concurrent computations of a program, looking
for safety violations characterized by a pattern and a condition. This empowers
JavaFAN to analyze programs with possibly infinite state spaces. For finite state
programs, it is also possible to perform explicit-state model checking (using
Maude’s model checker) of properties specified in linear temporal logic (LTL).

JavaFAN has effectively been applied on a number of examples. Performance
results are given in seconds on a 2.4 GHz Linux PC. Detailed discussions on the
examples can be found in [4]. Results are given at both Java and JVM levels.
Remote Agent (RA) [5] has two running threads: a planner that generates
plans from mission goals, and an executive that executes the plans. The code
contains a missing critical section, that leads to a data-race between two concur-
rent threads, which further caused a deadlock. JavaFAN finds the deadlock in
0.3 of a second in the bytecode level and 0.09 of a second in the source-code level,
while the tool in [8] finds it in more than 2 seconds in its most optimized version.

Table 1. Thread
Game Times

N JVM Java
50 7.2 2.7
100 17.1 6.6
200 41.3 17
400 104 54.7
500 4.5m 2m
1000 10.1m 5.1m

Thread Game [7] is a simple multithreaded program
which shows the possible data races between two threads
accessing a common variable. Each thread reads the value
of the static variable c twice and writes the sum of the two
values back to c. The question is what values can c possibly
hold during the infinite execution of the program. Theo-
retically, it can be proved that all natural numbers can be
achieved [7]. JavaFAN (using the search command) ad-
dresses this question for any specific value of N . Table 1
presents the result for some numbers.
Dining Philosophers. We have model checked a deadlock-prone (DP) and a
deadlock-free (DF) version of this problem. The property that we have model
checked for this example is whether all the philosophers can eventually dine. The
LTL formula is ♦Check(N), where N is the number of philosophers. The proposi-
tion Check(N) is specified in Maude by the user. For the deadlock-prone version,
the model checker generates a counterexample — a sequence of states that leads
to the deadlock — and states the property to be true in the deadlock-free version.

3

Table 2. Dining
Philosophers Times
Tests JVM Java
DP(5) 4.5 9.9
DP(6) 33.3 81.7
DP(7) 4.4m 15.1m
DP(8) 13.7m 98m
DP(9) 803.2m —
DF(5) 3.2m 19.2
DF(6) 23.9m 2.4m
DF(7) 686.4m 27m

Currently, JavaFAN can detect the deadlock for up
to 8 philosophers at the bytecode level and up to 9
philosophers at the Java Language level in a reason-
able amount of time (Table 2). It can also prove the
program deadlock-free for up to 7 philosophers at both
levels. This compares favorably with JPF [1, 6] which
for the same program cannot deal with 4 philosophers.
2-stage Pipeline is a pipeline computation, where
each pipeline stage executes as a separate thread.
Stages interact through connector objects. The prop-
erty we have model checked for this program states the
“eventual shutdown of a pipeline stage in response to a
call to stop on the pipeline’s input connector”. The LTL formula for the prop-
erty is �(c1stop → ♦(¬stage1return)). JavaFAN model checks the property and
returns true in 17 minutes (no partial order reduction was used). This compares
favorably with the model checker in [8] which without using the partial order
reduction performs the task in more than 100 minutes (both on a 2.4GHz PC).

4 Conclusions and Future Work

We have discussed JavaFAN’s design, and experiments suggesting that it can an-
alyze Java and JVM programs with competitive performance. Perhaps the most
important experience gained is that a formal specification based methodology to
develop formal analysis tools for concurrent programs is a rigorous, cost-effective,
and practical approach when realized on a high-performance logical engine. The
methodology itself is generally applicable to other languages. Future work will in-
volve further experimentation, development of similar tools for other languages,
partial order reduction optimization, and widening the range of formal analyses
supported, including program abstraction and theorem proving.

References

1. G. Brat, K. Havelund, S. Park, and W. Visser. Model checking programs. In ASE’00,
pages 3 – 12, 2000.

2. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. Maude 2.0 Manual, 2003. http://maude.cs.uiuc.edu/manual.

3. Steven Eker, José Meseguer, and Ambarish Sridharanarayanan. The Maude LTL
model checker and its implementation. In Model Checking Software: Proc. 10th Intl.
SPIN Workshop, volume 2648, pages 230–234. Springer LNCS, 2003.

4. A. Farzan, F. Chen, J. Meseguer, and G. Roşu. JavaFAN. fsl.cs.uiuc.edu/es/javafan.
5. K. Havelund, M. Lowry, and J. Penix. Formal Analysis of a Space Craft Controller

using SPIN. IEEE Transactions on Software Engineering, 27(8):749 – 765, August
2001. Previous version appeared in Proceedings of the 4th SPIN workshop, 1998.

6. K. Havelund and T. Pressburger. Model checking Java programs using Java
PathFinder. Software Tools for Technology Transfer, 2(4):366 – 381, April 2000.

7. J. S. Moore. http://www.cs.utexas.edu/users/xli/prob/p4/p4.html.
8. D. Y. W. Park, U. Stern, J. U. Sakkebaek, and D. L. Dill. Java model checking. In

ASE’01, pages 253 – 256, 2000.

4

