
State Space Reduction of Rewrite Theories
Using Invisible Transitions

Azadeh Farzan José Meseguer
Department of Computer Science,

University of Illinois at Urbana-Champaign.
{afarzan,meseguer}@cs.uiuc.edu

Abstract. State space explosion is the hardest challenge to the effec-
tive application of model checking methods. We present a new technique
for achieving drastic state space reductions that can be applied to a
very wide range of concurrent systems, namely any system specified as
a rewrite theory. Given a rewrite theory R = (Σ, E, R) whose equa-
tional part (Σ, E) specifies some state predicates P , we identify a subset
S ⊆ R of rewrite rules that are P -invisible, so that rewriting with S
does not change the truth value of the predicates P . We then use S to
construct a reduced rewrite theory R/S in which all states reachable by
S-transitions become identified. We show that if R/S satisfies reason-
able executability assumptions, then it is in fact stuttering bisimilar to
R and therefore both satisfy the same CTL∗−X formulas. We can then
use the typically much smaller R/S to verify such formulas. We show
through several case studies that the reductions achievable this way can
be huge in practice. Furthermore, we also present a generalization of our
construction that instead uses a stuttering simulation and can be applied
to an even broader class of systems.

1 Introduction

Although model checking is one of the most successful automated verification
techniques, there are real limitations to its applicability in practice. These limi-
tations are mostly related to the state space explosion problem. For example, as
the number of processes considered in a distributed system grows, the associated
state space may easily grow exponentially, particularly due to the system’s con-
currency. This can make it unfeasible to model check a system except for very
small initial states, sometimes not even for those.

For this reason, a host of techniques to tame the state space explosion prob-
lem, which could be collectively described as state space reduction techniques,
have been investigated: bisimulation techniques, partial order reduction (POR)
techniques, abstraction techniques, and so on (see for example [20, 33, 22, 4, 9, 11,
19, 34, 32, 1, 21, 16]). The general idea is to transform the original system into a
simpler one (typically bisimilar or at least similar to the original one) whose state
space is small enough to model check properties. Transfer results then ensure
that the same property holds in the original system.

This paper proposes a new such state space reduction technique within the
rewriting logic semantic framework, in which concurrent systems are formally
specified as rewrite theories [27]. In such specifications, the set of states is spec-
ified as an algebraic data type by an equational theory (Σ, E), and the system’s

transitions are specified by rewrite rules R that are applied modulo the equations
E. The rewrite theory specifying the system is then the triple R = (Σ, E,R).
The fact that rewriting logic has been shown to be a very general and expressive
semantic framework to specify concurrent systems [28, 25] makes our proposed
state space reduction technique applicable to a very wide range of concurrent
systems. Achieving a state space reduction typically requires discharging proof
obligations to verify that the reduction is correct. In this regard, the fact that the
state space is itself axiomatized by an equational theory (Σ,E) makes the tool-
assisted discharging of such proof obligations using equational theorem proving
techniques and tools much easier than if a non-logical specification formalism
had been used instead.

Our technique is based on the idea of invisible transitions, that generalize
a similar notion in POR techniques (see for example [5]). The basic setting is
that we assume a rewrite theory R = (Σ, E,R) in which a certain set P of state
predicates has been equationally axiomatized by some of the equations in E. R
then has an associated Kripke structure, whose labeling function associates to
each state (represented as an E-equivalence class of terms [t] in the initial algebra
TΣ/E) all those predicates in P that hold in [t] according to the equations E. We
then call a rewrite rule r in R P -invisible if in any rewrite step [t] −→ [t′] using r
the states [t] and [t′] satisfy the same state predicates, i.e., they are labeled in the
same way. Our state space reduction technique is then very simple: we identify
a subset S ⊆ R of rules such that all rules in S are invisible. We then define the
S-reduction of R = (Σ,E,R) as the rewrite theory R/S = (Σ, E∪S, R\S), that
is, we turn all rules in S into equations, thus collapsing the set of states from
TΣ/E to the quotient TΣ/E∪S . The intuitive idea, therefore, is that all states that
can be reached from a given state by repeated S-transitions can be collapsed into
a single one. In practice, as we show by means of several case studies in Section
4, the reductions obtained this way can be huge.

However, the above technique must meet an important executability require-
ment. The point is that, for E an arbitrary set of equations, rewriting modulo
E, which is the way transitions take place in the Kripke structure associated
to R = (Σ, E,R), is in general undecidable. Therefore, to be able to execute
and model check a rewrite theory in a rewriting logic language implementation
such as Maude [6, 7] we must require that the equations E are confluent and
terminating (perhaps modulo some axioms A) and that the rules R are strongly
coherent with respect to the equations E [35]. Intuitively, the coherence require-
ment means that we can identify a state [t] with the canonical form canE(t) of t
by the equations E, and that rewriting with equations E and with rules R com-
mutes in an appropriate sense, so that we can safely restrict our computations
with R to only rewrite E-canonical forms. Therefore, the executability require-
ment for our technique is that R/S = (Σ, E ∪ S, R\S) should be executable,
that is, that E ∪S should be confluent and terminating, and that the rules R\S
should be strongly coherent with respect to E ∪ S (perhaps modulo axioms A).

We show in Section 3 that the above-mentioned executability requirements
on R/S, besides being absolutely essential to model check R/S in practice, en-
sure a further very important property, namely that R and R/S are stuttering

2

bisimilar, and therefore they satisfy exactly the same CTL∗
−X formulas. Fur-

thermore, to make our technique applicable to cases where a suitable set S may
not be available, we generalize it to allow enlarging a set of invisible rules S by
adding new invisible rules not in R to get a superset Ŝ ⊇ S. This gives rise to
a state space reduction R̂/Ŝ that is no longer stuttering bisimilar to R but is
nevertheless similar to it. This still allows us to verify ACTL∗

−X formulas for R
if we can model check them for R̂/Ŝ, but such model checking can now give rise
to spurious counterexamples. We illustrate how this more general technique is
also quite useful in practice by means of a client-server protocol in Section 4.3.

s1

s1

s1

t1

t1

s2

s2

s2

t2

t2

s3

1

2 3

7 8

10

12

s3 s3

t2

s3
s3

t1
5

6

11

14

13

4

9

t2 t1

t2t1

6, 9, 12 8, 11, 13

14

1, 2, 3, 4, 5, 7, 10

(a) (b)

Fig. 1. Restaurant State Space

We can make all these ideas concrete by means of an example which mod-
els the workflow in a simplistic restaurant with one waiter and two customers.
Customers have a flag indicating their status (waiting, ordered, or eating), so a
customer is represented as a pair C(id, f) with id an identifier and f the flag.
The waiter has also a status flag (free or order-taken). Therefore, the waiter is
represented by a term of the form W (f). The restaurant state is a set with a
waiter and two customers, with set union represented by a binary associative
and commutative juxtaposition operator “ ”. We have the following rewrite
rules R in our theory R = (Σ, A,R), where A consists of the associativity and
commutativity axioms for “ ”:

s1 : W (free)C(1,waiting) −→W (order-taken)C(1, ordered)
s2 : W (free)C(2,waiting) −→W (order-taken)C(2, ordered)
s3 : W (order-taken) −→W (free)
t1 : W (free)C(1, ordered) −→W (free)C(1, eating)
t2 : W (free)C(2, ordered) −→W (free)C(2, eating)

Figure 1 (a) shows the state space induced by the above rewrite rules from
an initial state with the waiter free and the two customers waiting.

3

Let us assume that the property φ that we are interested in is: “eventually
both customers eat”. This property can be expressed as formula �(e1∧e2) where
ei is true if the ith customer’s status is “eating” and false otherwise. Rewrite
rules s1, s2, and s3 do not change the truth value of the predicates e1 and e2.
One can observe that the rules in S = {s1, s2, s3} are confluent and terminating
and R\S is strongly locally coherent [35] with respect to S modulo axioms.
The reduced theory R/S (see the state space in Figure 1 (b), where each state
represents an S-equivalence class) is then stuttering bisimilar to the theory R.

Besides the small example used above to illustrate the main ideas, in Section
4 we show that our technique yields very drastic state space reductions in three
more substantial case studies involving well-known algorithms and applications.
Furthermore, in Section 5 we discuss in detail the discharging of the necessary
proof obligations ensuring that a proposed S-reduction R/S is both correct and
executable, and the kind of tool support necessary to facilitate such discharging
activities. We end with a discussion of related work and some concluding remarks
in Section 6.

2 Preliminaries

2.1 Termination, Confluence and Coherence in Rewrite Theories

A rewrite theory [27] is a triple R = (Σ, E,R) where (Σ, E) is an equational
theory with signature Σ and equations E, and where R is a set of conditional
rewrite rules of the form l −→ r if C. In this paper we assume that C is al-
ways an equational condition. Intuitively, if a concurrent system is modeled as
a rewrite theory R = (Σ,E,R), then the equational theory (Σ, E) defines the
system states (terms in TΣ/E) and the set of rewrite rules R specify the system’s
concurrent transitions.

Given two terms u, v ∈ TΣ , a one-step rewrite u
τ−→ v means that there

is a rule τ : l → r if C in R that can be applied to a subterm of u with a
ground substitution θ such that E |= θC and u rewrites to v by replacing the
subterm θ(l) by the subterm θ(r). We write u

R−→ v to mean that there is a rule
τ ∈ R such that u

τ−→ v. The notation R−→∗ denotes the reflexive and transitive
closure of the relation R−→. Set CanS includes all elements x ∈ TΣ such that no
rule in S is enabled at x. We define S−→!= {(x, y)|x S−→∗ y ∧ y ∈ CanS} and
x ↓S y ⇔ ∃z : x

S−→∗ z ∧ y
S−→∗ z. Rewriting over equivalence classes modulo

equations E is defined as follows: [t]E
r−→ [t′]E if and only if there are terms

u and v such that u ∈ [t]E and v ∈ [t′]E and u
r−→ v. We define

R/E−→ by the

equivalence [t]E
R−→ [t′]E ⇔ t

R/E−→ t′.
A set S ⊆ R of rewrite rules is confluent modulo E in the theory (Σ, E,R)

if and only if ∀t, t′, t′′ ∈ TΣ : ([t]E
S−→∗ [t′]E ∧ [t]E

S−→∗ [t′′]E) ⇒ (∃w :
[t′]E

S−→∗ [w]E ∧ [t′′]E
S−→∗ [w]E). S is terminating if for all t there exists no

infinite chain of rewriting [t]E
S−→ . . .

S−→

4

Definition 1. [35] In a rewrite theory R = (Σ, E,R), where E = E0 ∪ A with
E0 a (terminating) set of equations and A a set of equational axioms, R is called
locally strongly coherent with respect to E0 modulo A if

(t
R/A−→ t1 ∧ t

E0/A−→ t2)⇒ (∃t3, t4 :

t2
E0/A−→! t3 ∧ t3

R/A−→ t4 ∧ t4 ↓E0/A t1)

t
R/A- t1

t2

E0/A

?

E0/A

∗

...................-

t3

E0/A !

?

.........
.............

R/A
- t4

∗

E0/A.....
.....

.....
....-

Strong local coherence is the main property to check to ensure executability
of a rewrite theory R = (Σ, E0 ∪ A,R) when we have matching algorithms
for the equational axioms A. Viry shows that if the equations E0 are confluent
and terminating modulo A, then strong local coherence implies a more general
strong coherence property [35]. Strong coherence ensures that we can achieve
the effect of rewriting with R in E0 ∪ A-equivalence classes by first computing
the E0 ∪ A-canonical form modulo A, and then rewriting that canonical form
with R modulo A.

2.2 Stuttering Simulations
Let us assume that the equational part (Σ, E) of a rewrite theory R = (Σ, E,R)
defines, among other things a set P of state predicates on the initial algebra
TΣ/E

1. We can then associate to R a Kripke structure [5] whose states are the
set TΣ/E,State for some designated sort State of states, whose labeling function
assigns to each state the predicates p ∈ P that provably hold in it using E, and
whose transition relation is the total closure R−→• of R−→, that is, we make R−→
into a total relation by adding identity transitions for each deadlock state. We
can then interpret any temporal logic formula, say in CTL∗ in R, namely by
interpreting it in its associated Kripke structure. For a more detailed presentation
on the relations between rewrite theories, Kripke structures and temporal logic,
with applications to model checking in Maude see [14].

We present some basic notions and results, used later on, about transition
systems, Kripke structures, and stuttering (bi-)simulations between them that
will apply in particular to the Kripke structures associated to rewrite theories.

Definition 2. Let A = (A,
A−→) and B = (B,

B−→) be transition systems and
let H ⊆ A × B be a relation. Given a path π in A and a path ρ in B, we say
that ρ H-matches π if there are strictly increasing functions α, β : N → N with
α(0) = β(0) = 0 such that, for all i, j, k ∈ N, if α(i) ≤ j < α(i + 1) and
β(i) ≤ k < β(i + 1), it holds that π(j)Hρ(k).

Definition 3. Given transition systems A and B, a stuttering simulation of
transition systems H : A −→ B is a binary relation H ⊆ A × B such that if
1 Note that all the equivalent states modulo E satisfy the same set of predicates.

5

aHb, then for each path π in A starting at a there is a path ρ in B starting at b
that H- matches π.

Definition 4. Given Kripke structures A = (A,
A−→, LA) and B = (B,

B−→, LB)
over a set of predicates P , a stuttering P -simulation H : A→ B is a stuttering
simulation of transition systems H : (A,

A−→) → (B,
B−→) such that if aHb

then LB(b) ⊆ LA(a). We call the stuttering P -simulation strict if aHb implies
LB(b) = LA(a). H is called a stuttering P -bisimulation if both H and H−1 are
stuttering P -simulations.

In [31], it is shown that (strict) stuttering simulations preserve the satisfac-
tion of ACTL∗

−X(P) formulas. Also, [24, 3] state that stuttering bisimulations
preserve the satisfaction of CTL∗

−X(P) formulas which can be derived by gen-
eralizing the results from [31].
3 Invisible Transitions and the R/S Reduction
Definition 5. Given a rewrite theory R = (Σ, E,R) and having an equationally-
defined set of atomic predicates P , a rewrite rule τ : l → r if C in R is called
P -invisible if for any [t] ∈ TΣ/E and any u ∈ [t] such that u

τ−→ v, then for
each p ∈ P we have [t] |= p ⇔ [v] |= p. We denote by InvP (R) the set of all
P -invisible rewrite rules of R.

We call R/S = (Σ, S ∪ E0 ∪ A, T = R\S) the S-reduced theory of R =
(Σ, E0 ∪ A,R). We are particularly interested in the S-reduced theory of R
when S ⊆ InvP (R), S ∪ E0 is confluent and terminating modulo A, and T is
coherent with respect to S ∪ E0 modulo A.

Theorem 1. Let R = (Σ,E0 ∪ A,R) be a rewrite theory with P a set of equa-
tionally defined atomic predicates. Let S ⊆ R be a set of P -invisible rules such
that S ∪ E0 is confluent and terminating modulo A, and T = R\S is coherent
with respect to S ∪ E0 modulo A. Then R and R/S are stuttering bisimilar.

Proof. (sketch) The relation H on which the bisimilarity is based is defined by
the quotient homomorphism H : TΣ/E � TΣ/E∪S . We need to prove that: (a)
H is a stuttering simulation; and (b) that H−1 is so too. Since H maps deadlock
states to deadlock states, and H−1 of a deadlock state always contains a deadlock
state, we can disregard deadlocks.
(a) It suffices to show that for each path π in the underlying Kripke structure
of the theory R, (TΣ/E ,

R−→•), there exists a stuttering equivalent path π′ in the

underlying Kripke structure of the S-reduced theory R/S, (TΣ/E∪S ,
S/ bS−→•).

π must be of the following general form:

π : [s0]E
S−→∗ [t0]E

T−→ [s1]E
S−→∗ [t1]E

T−→ . . .
T−→ [sn]E

S−→∗ [tn]E
T−→ . . .

Since the rules in S are P -invisible, we know that L(si) = L(ti) for all i. Also, ob-
serve that by collapsing the S−→∗, we have [si]E∪S = [ti]E∪S . Then the following
path

π′ : [t0]S∪E
T−→ [t1]S∪E

T−→ . . .
T−→ [tn]S∪E

T−→ . . .

6

is stuttering equivalent to π and of course, by construction, it is a path in the
underlying Kripke structure of R/S.
(b) It suffices to show that for each path ρ in the underlying Kripke structure
of the theory R/S, (TΣ/E∪S ,→R/S), there exists a stuttering equivalent path ρ′

in the underlying Kripke structure of the reduced theory R, (TΣ/E ,
R−→•).

Assume that ρ is of the following general form:

ρ : [s0]S∪E
T−→ [s1]S∪E

T−→ . . .
T−→ [sn]S∪E

T−→ . . .

We show by construction that there exists a stuttering equivalent path ρ′ of the
following form:

ρ′ : [s′0]E
S−→∗ [t0]E

T−→ [s′1]E
S−→∗ [t1]E

T−→ . . .
T−→ [s′n]E

S−→∗ [tn]E
T−→ . . .

where s0 = s′0 and for all i, si ≡S∪E s′i, and therefore L(si) = L(s′i). H−1 then
relates the state [si]S∪E to all the states on [s′i]E

S−→∗ [ti]E which by invisibility
of S all satisfy the same set of predicates.

[si]S∪E
T−→ [si+1]S∪E implies that there are terms ui and ui+1 such that

si ≡S∪E ui
T−→ ui+1 ≡S∪E si+1. If s′i ≡S∪E si (meaning s′iHsi), then there is

a term ti such that si
S∪E−→! ti and s′i

S∪E−→! ti. Since ui ≡S∪E si, by confluence of
S ∪ E, we have ui

S∪E−→! ti. Therefore, by T being coherent with respect to S∪E0

modulo A, there exists a term s′i+1 such that ti
T−→ s′i+1 and s′i+1 ↓S∪E ui+1.

Since ui+1 ≡S∪E si+1, we have s′i+1 ≡S∪E si+1 (meaning that s′i+1Hsi+1).

si ≡S∪E ui
T- ui+1 ≡S∪E si+1

s′i
S

∗
-

≡

ti

! S∪E

?
T -

!

S∪E�
s′i+1

≡ ≡

Start by letting s′0 = s0. Since s′0 = s0, it trivially holds that s′0 ≡S∪E s0.
Inductively construct the path according to the above diagram. Note that by
viewing S steps as τ -transitions, the above argument also shows that ≡S∪E is a
branching bisimulation relation [30]. ut

We have shown that, under the theorem hypothesis, the reduced rewrite the-
ory R/S is stuttering P -bisimilar with the original theory R. Therefore, (see
Section 2) for any φ ∈ CTL∗

−X(P)2 , and any initial state [t]E we have

R, [t]E |= φ ⇔ R/S, [t]E∪S |= φ

In practice, the reduced theory R/S can have a drastically smaller state space
than R, making model checking of R/S feasible when model checking of R is
unfeasible.
2 Note that the simulation relations are strict in the sense that aHb ⇒ L(a) = L(b)

and therefore negation does not have to be excluded.

7

In cases where the R/S construction cannot be carried out for lack of a
suitable S satisfying the confluence condition in Theorem 1, we can nevertheless
achieve a similar state space reduction with a relation H that is a stuttering
simulation. For example the client-server reduction in Section 4.3 is achieved in
this manner. The general method is as follows: we assume that we have a set
of rules S ⊆ R which are P -invisible (S ⊆ InvP (R)), and T = R\S is coherent
with respect to S ∪ E0 modulo A, and S ∪ E0 is terminating but not confluent
modulo A. We then extend S to a set of rules Ŝ with S ⊆ Ŝ, Ŝ 6⊆ R, and where
Ŝ is still P -invisible, and (R\Ŝ) is coherent with respect to Ŝ ∪ E0 modulo A,
and furthermore, E0 ∪ Ŝ is terminating and confluent modulo A. Consider now
the rewrite theory R̂ = (Σ, E0 ∪ A,R ∪ Ŝ). Since R̂ has more rules than R, if
R is deadlock-free3, that is, if any state [t]E can always be rewritten by R to a
new state [t′]E , then the following proposition is easy to prove:

Proposition 1. The identity homomorphism 1TΣ/E0∪A
: TΣ/E0∪A → TΣ/E0∪A

induces a P -simulation map from the underlying Kripke structure of R to that
of R̂.

We can now apply Theorem 1 to R̂ to obtain a stuttering P -bisimilar Ŝ-reduced
theory R̂/Ŝ. Since any simulation is a special case of a stuttering simulation,
and stuttering simulations are closed under composition [31, 24], by composing
the above simulation from R to R̂ with the stuttering bisimulation from R̂ to
R̂/Ŝ generated by Theorem 1, we obtain a stuttering simulation from R to R̂/Ŝ
and therefore we have

Theorem 2. Under the above assumptions for any φ ∈ ACTL∗
−X(P) and any

initial state [t]E0∪A in R, we have R̂/Ŝ, [t]E0∪bS∪A |= φ ⇒ R, [t]E0∪A |= φ.

Therefore, if we can model check the property φ using the reduced theory R̂/Ŝ,
we are then guaranteed that φ holds in R. See Section 4.3 for an example.

4 Case Studies

We present three case studies showing how the R/S and R̂/Ŝ constructions can
be achieved in practice for real applications, leading to massive reductions in
the state space. All the experiments have been performed with the Maude LTL
model checker running on an Intel machine with a 2.6GHz processor and 4GB
of memory running Linux.
4.1 Leader Election Protocol

We consider the simple case where the network is a ring consisting of n nodes,
numbered from 1 to n in the clockwise direction. We want to investigate the
LCR algorithm to select a leader. The informal description of this algorithm is
as follows [23]:
3 Given a rewrite theory R, we can always transform it into a bisimilar deadlock-

free theory (see [29]). Therefore, there is no real loss of generality imposed by this
requirement.

8

Each process sends its identifier around the ring. When a process receives
an incoming identifier, it compares that identifier to its own. If the in-
coming identifier is greater than its own, it keeps passing the identifier;
if it is less than its own, it discards the incoming identifier; if it is equal
to its own the process declares itself the leader.

We can specify a rewrite theory modeling this algorithm by means of objects
and messages, where the distributed state is a multiset of objects and messages
built by an associative and commutative multiset union operator “ ”:

s0 : 〈I〉 −→ [I] (I → I + 1 mod N)
s1 : [I] (J → I) −→ [I] if J < I
s2 : [I] (J → I) −→ [I](J → I + 1 mod N) if J > I
t : [I] (I → I) −→ Leader(I)

where N is the number of processes on the ring and 〈I〉 is the initial state of
process I. In the first phase (rewrite rule s0), each process I sends its identifier
to its neighbor and changes its format [I] so that this is done only once. As
soon as a process I receives its own identifier through the ring, the computation
is over; it removes all the object and the message and outputs Leader(I). The
messages are of the general form (I → J) where J is the identifier of the receiver
and I is the integer content of the message.

The set S = {s0, s1, s2} can be shown to be confluent and terminating modulo
associativity and commutativity. Let us assume that the property that we are
interested in is that eventually some process will be elected as leader. This is
expressed by means of a single atomic predicate, p, that is true in any state
containing Leader(I). The rules in S are p-invisible, and t is coherent with respect
to S modulo the associativity and commutativity axioms. Therefore, by Theorem
1, we can use the stuttering bisimilar reductionR/S to model check our property.
Note that reducing R with the rewrite rule s0 above (which can easily be shown
to be confluent and terminating) collapses an N -dimensional cube (generated by
rule s0) into a path of length N , meaning that the number of states in R/{s0} is
reduced from 2N to N , and the number of paths reduces from 2N to 1. Table 1
shows the performance evaluation of model checking this problem before and
after reduction using the Maude LTL model checker.

4.2 Distributed Spanning Tree
A spanning tree of an undirected graph G = (V,E) is a tree (i.e., a connected
acyclic graph) that consists entirely of undirected edges and contains every vertex
of G. The distributed spanning tree problem tries to find a spanning tree for
a given set of network nodes V that are connected by E. The asynchronous
algorithm from [23] solves this as follows:

There is a distinct node r that is initially marked and acts as the root. A
marked node v asynchronously sends a message to each of its neighbors
once and for all. An unmarked node v nondeterministically chooses one
of the nodes who have sent it a message as its parent in the spanning
tree, becomes marked, and discards all the other messages.

9

One possible way of specifying the above algorithm is by the following rewrite
rules:

s1 : [N | P, M NL] −→ [N | P, NL](M ← N)
t1 : [N | none, NL](N ←M) −→ [N | M, NL]
s2 : [N | M, NL](N ← K) −→ [N | M, NL]
s3 : [N | root, NL](N ← K) −→ [N | root, NL]

where the state is represented as a multiset (modulo associativity, commutativity,
and identity) of nodes and messages. Each node is of the form [N | P, L] where
N is its unique identifier, P is its parent node (initially none), and L is the list of
its neighbors (their identifiers to be exact). Variable M is of type integer which
denotes a known parent and consequently cannot be none or root. The node
with “root” as its parent is the root of the spanning tree. Let us assume that
the property of interest is “to eventually reach a state in which every node has
a parent”. This property can be expressed using a single atomic predicate, p,
that is false if there is a node with “none” as the parent. One can easily check
that the set of rules S = {s1, s2, s3} is p-invisible, confluent, terminating modulo
associativity, commutativity, and identity, and t1 is coherent with respect to S
modulo the same axioms. Since there are no equations (excluding the axioms)
in the theory, one can turn these rules into equations and gain a huge reduction
in the state space for model checking. Table 1 shows the performance evaluation
of model checking this problem before and after this R/S reduction using the
Maude LTL model checker.

Problem Number of Nodes Time Space Time (reduced) Space (reduced)

Leader Election 10 3.6s 27633 0 2
13 2.7m 506037 0 2
14 19.3m 1329885 0 2
15 – – 0 2

Spanning Tree 3 0.02s 417 0 9
4 10.2s 120183 0.01s 64
5 – – 0.17s 625
6 – – 0.5s 1296
7 – – 110.22s 117649
8 – – 99m 2097152

Client-Server 6 4.0s 125248 0.01 64
7 81.4s 1753600 0.01s 128
8 – – 0.01s 256
15 – – 1.8s 32768
20 – – 5.3m 1048576

Table 1. Performance Results.

4.3 A Distributed Client-Server System
Consider a system consisting of several clients and one server. The server has
a log (a list) for incoming requests. The clients send a message to the server
to request a service. When the server receives a request message, it sends the
relevant client a message containing the requested material, and adds an entry

10

to its log (B) to keep track of this communication. The following set of rewrite
rules model a simple version of this system:

s1 : [N | M] −→ {N | M}(server← (N,M))
s2 : (server← (N,M))[server | B] −→ [server | B (N,M)](N ← serv(M))
t1 : (N ← serv(M)){N | M} −→ {N}

where the state is a multiset (modulo associativity, commutativity, and identity
of multiset union operator “ ”) of a server, clients, and messages. The server
is indicated by identifier server. Clients each have an integer identifier N and
another integer index M indicating the service they require from the server.
Each client sends a message including its identifier and the index of the service
to the server. The server replies back and logs the communication in its local list
B. Assume that the property of interest is “a client that requires a service will
eventually receive it”. This property can be expressed by a set P of two atomic
predicates, of which one indicates the requirement of the service and the other
indicates the receipt. The set {s1, s2} is P -invisible and a very good candidate
for S, but because of the list nature of the buffer, these rules are not confluent.
For the property of interest, it does not matter in what order the messages are
buffered; but since the resulting buffer is different, confluence does not hold. If
one assumes a lexicographical ordering on the buffer (pairwise comparison of the
pairs (M,N)), then adding the following rule which always sorts the buffer

s3 : [server | B (N,M) (N ′,M ′) B′] −→ [server | B (N ′,M ′) (N,M) B′] if
(N ′ > N) ∨ ((N = N ′) ∧ (M ′ > M))

and makes the set Ŝ = {s1, s2, s3} confluent and terminating. It is also invisible,
and t1 is coherent with respect to Ŝ modulo axioms. Therefore, one can reduce
this theory to a theory of the form R̂/Ŝ. Table 1 shows the performance evalua-
tion of model checking this problem before and after reduction using the Maude
LTL model Checker.

5 Discharging Proof Obligations

Typically, formal verification efforts using state space reduction techniques in-
volve two separate tasks: (i) model checking the desired properties in the re-
duced model; and (ii) discharging proof obligations ensuring that the proposed
reduction is indeed a correct reduction of the original system. We discuss here
the proof obligations that must be verified to ensure the correctness of an S-
reduction R/S, and ways in which the discharging of such obligations can be
assisted by formal tools. For R/S to be a correct reduction of R the following
proof obligations must be discharged:

1. the rules S must be proved P -invisible;
2. S ∪ E0 must be shown confluent and terminating modulo A; and
3. the rules in R\S must be proved locally strongly coherent with respect to

the equations S ∪ E0 modulo A.

11

Proving (1) is an inductive theorem proving task. Specifically, it amounts
to proving that each state predicate p ∈ P and also its negation ¬p are both
invariants for the rewrite theory (Σ, E0 ∪A,S). This can be reduced to proving
a series of first-order formulas that must be shown to hold inductively in the
equational specification (Σ, E0 ∪ A); that is, to be satisfied in the initial model
TΣ/E0∪A. Proofs can be assisted by any first-order inductive theorem prover.
For Maude specifications Maude’s ITP [8] can be used. The proof obligations for
this task become considerably easier if the rules in S are topmost, that is, if all
rewriting happens at the top of a term. Many rewrite theories whose state is a set
or multiset of objects and messages, such as those in the case studies presented
in this paper, can be transformed into bisimilar topmost rewrite theories.

Proving (2) can be done mechanically using standard termination and con-
fluence checking tools that support reasoning modulo axioms A such as associa-
tivity and commutativity, and can in some cases handle conditional rules. Tools
of this kind include, for example, CiME [10] (for both tasks) AProVE [17] (for
termination), and for Maude specifications the Maude Termination Tool (MTT)
[13] and the Maude Church-Rosser Checker [8].

There is a discussion on proving (3) in [35]. For most combinations of as-
sociativity, commutativity and identity axioms in A this task can be checked
algorithmically when the rules are linear and unconditional. To the best of our
knowledge the only tool available is Maude’s Coherence Checker [12], which
currently can only reason modulo commutativity axioms.

We now discuss briefly the proof obligations for the R̂/Ŝ reductions. To begin
with, the same proof obligations (1)–(3) must be discharged, but now for R̂/Ŝ

instead of R/S. But that still leaves open the task of coming up with the rules Ŝ
in the first place. Two approaches are possible for this. On the one hand, as done
in the case study of Section 4.3, one can use insight about the given specification
to find a suitable Ŝ. On the other, it is also possible to automatically search for
such a set Ŝ by performing Knuth-Bendix (KB) completion modulo A on the
equations E0∪S using any KB completion tool (modulo A) such as, for example,
CiME [10].

6 Related Work and Conclusions

Broadly speaking, our work is related to all other state space reduction and
abstraction techniques (see for example [20, 33, 22, 4, 9, 11, 19, 34, 32, 1, 21, 16]).
We discuss below several approaches that are most closely related to our own.

Several partial order reduction (POR) techniques achieve a reduction to a
representative subset of all states while preserving various types of bisimilarity.
Some of these techniques [19, 34, 32, 1, 21, 16] exploit the notion of invisibility, an
idea that is generalized here to arbitrary rewrite theories. A first main difference
with the POR approach is that POR techniques are typically dynamic (all except
[1, 21]), in the sense that the reduction is performed on-the-fly during the model
checking and requires substantial changes to the underlying model checking algo-
rithm (see [15, 18] for an exception to this); by contrast, our technique is a static
method, since we generate the reduced rewrite theory and then model check it.
Furthermore, it does not require any changes in the model checker. A second

12

important difference is in the different levels of generality: POR techniques typ-
ically assume a conventional concurrent language with processes and consider
invisible process transitions, whereas our approach is much more general: it does
not rely on these assumptions, and applies to arbitrary rewrite theories.

Our method has also some similarities with a reduction technique presented in
[2]. However, the settings are quite different, because [2] works in the framework
of process algebras, whereas our technique works for arbitrary rewrite theories.
Furthermore, the notion of invisibility used in [2] is not based on a certain
set of predicates. Instead, in our case the invisibility depends on what state
predicates are involved in the property that we want to model check. Also, the
notion of confluence used in [2] is completely different from ours: we use the
standard term-rewriting notion. The notion of coherence used in this work has
some similarities with notion of weak confluence in [36] if one views the rules
in S as τ -transitions. Moreover, their approach is dynamic, while ours is static.
The symbolic prioritization in [2] is relevant to our work in two senses: (1) it is
static, and (2) it is giving priority to some transitions over the rest, while we
also in some sense give priority to some rules over the rest.

Our reduction technique is also closely related to other notions of abstraction
and simulation used for reduction purposes in rewriting logic. In the case of
equational abstractions [29] one begins with a rewrite theory R = (Σ,E0∪A,R)
and adds extra equations G to it to obtain an abstract theory R/G = (Σ, E0 ∪
G∪A,R), so that we have a rewrite theory inclusion R ⊆ R/G. This technique is
generalized in [26] to much more general rewrite theory morphisms H : R −→ R′

that need not be theory inclusions, give rise to simulations, and can be used
for model checking purposes when R′ is more abstract than R. Our proposed
technique is different from those in [29] and [26]. In our case the relationship
between R and R/S cannot be understood as a theory morphism: it is only a
theory transformation. This means that we now have a new state space reduction
technique for rewrite theories that nicely complements those proposed in [29, 26].

Our technique makes essential use of Viry’s notion of coherence [35] in rewrite
theories. But we use the notion in precisely the opposite way than in Viry’s work.
The original purpose of coherence is to make a rewrite theory R = (Σ, E0∪A,R)
executable by turning the equations E0 into rules. Strong coherence then guaran-
tees that R and the resulting theory (Σ, A,E0 ∪R) are semantically equivalent.
We do somehow the opposite: beginning with a rewrite theoryR = (Σ, E0∪A,R)
we select a subset of rules S ⊆ R and turn those rules into equations to obtain
our reduced theory R/S = (Σ,E0∪S∪A,R\S). We then check strong coherence
of R/S for executability and stuttering bisimilarity purposes.

We can summarize our contributions as follows: we have presented a general
method to reduce the state space of a concurrent system specified as a rewrite
theory R by selecting a set S of P -invisible transition rewrite rules that, when
turned into equations, yield a reduced theory R/S. We have shown that if R/S
satisfies reasonable executability assumptions it is stuttering bisimilar to R and
therefore satisfies the same CTL∗

−X formulas under this bisimilarity. Several
case studies presented show that R/S can have a drastically smaller state space

13

in practice, making it feasible to model check properties for R by using R/S
instead. We have also presented a method to obtain reductions of this kind using
extra invisible rules not present in the original theory R. The proof obligations
that must be discharged to guarantee the correctness of our proposed reductions
have also been discussed. Discharging them involves reasonable proof tasks that
for the most part can be supported by existing formal tools.

This work is part of a broader effort to develop state space reduction tech-
niques of wide applicability for concurrent systems specified as rewrite theories.
In this sense, it complements earlier efforts to develop reduction techniques of
this kind for rewrite theories [29, 26, 15]. It is however a new technique, different
from earlier ones. In future work we plan to further develop the ideas presented
here in two opposite directions. In a more general direction, we plan to investi-
gate weaker conditions under which invisible transitions S can be used to reduce
the state space. In a more specific direction, we plan to apply these techniques
to distributed object systems, where we hope to exploit the more specific nature
of those systems to obtain even more drastic reductions. Two other aspects that
need to be further developed are: (i) building a stronger tool environment for
checking proof obligations, particularly for checking coherence modulo more gen-
eral axioms A; and (ii) developing a broader experimental base of case studies.
Acknowledgment. Research funded by ONR grant N00014-02-1-0715.

References

1. R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Partial-
order reduction in symbolic state exploration. In CAV, volume 1254 of LNCS,
pages 340 – 351, 1997.

2. Stefan Blom and Jaco van de Pol. State space reduction by proving confluence. In
CAV, volume 2404 of LNCS, pages 596–609, 2002.

3. M.C. Browne, E. M. Clarke, and O. Grumberg. Characterizing finite kripke struc-
tures in propositional temporal logic. Theoretical Computer Science, 59:115 – 131,
1988.

4. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 16(5):1512–1542, 1994.

5. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT
Press, 2001.

6. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-
sada. Maude: specification and programming in rewriting logic. Theoretical Com-
puter Science, 285:187–243, 2002.

7. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. Maude Manual (Version 2.2). December 2005, http://maude.cs.uiuc.edu.

8. M. Clavel, F. Durán, S. Eker, and J. Meseguer. Building equational proving tools
by reflection in rewriting logic. In Proc. of the CafeOBJ Symposium, April 1998.

9. M. A. Colón and T. E. Uribe. Generating finite-state abstractions of reactive
systems using decision procedures. In Computer Aided Verification, volume 1427
of Lecture Notes in Computer Science, pages 293–304, 1998.

10. E. Contejean and C. Marché. CiME: Completion modulo E. In RTA, volume 1103
of LNCS, 1996.

11. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.
ACM Transactions on Programming Languages and Systems, 19:253–291, 1997.

14

12. F. Durán. Coherence checker and completion tools for Maude specifications.
Manuscript, http://maude.cs.uiuc.edu/papers, 2000.

13. F. Durán, S. Lucas, J. Meseguer, C. Marché, and X. Urbain. Proving termination
of membership equational programs. In PEPM’04, pages 147–158, 2004.

14. S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker
and its implementation. In SPIN’03, volume 2648 of LNCS, pages 230 – 234, 2003.

15. A. Farzan and J. Meseguer. Partial order reduction for rewriting semantics of
programming languages. In WRLA06, pages 56–75, 2006.

16. C. Flanagan and P. Godefroid. Dynamic partial order reduction for model checking
software. In Proceedings of POPL, 2005.

17. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated termination
proofs with AProVE. In RTA, volume 3091 of LNCS, pages 210–220, 2004.

18. P. Godefroid. Model checking for programming languages using VeriSoft. In POPL,
volume 174–186, 1997.

19. P. Godefroid and P. Wolper. A partial approach to model checking. In Proceedings
of Logic in Computer Science, pages 406 – 415, 1991.

20. Y. Kesten and A. Pnueli. Control and data abstraction: The cornerstones of prac-
tical formal verification. International Journal on Software Tools for Technology
Transfer, 4(2):328–342, 2000.

21. R. Kurshan, V. Levin, M. Minea, D. Peled, and H. Yenigun. Static partial order
reduction. In TACAS, volume 1384, pages 345 – 357, 1998.

22. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design, 6:1–36, 1995.

23. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
24. P. Manolios. Mechanical Verification of Reactive Systems. PhD thesis, University

of Texas at Austin, August 2001.
25. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic: roadmap and bibliography. The-

oretical Computer Science, 285:121–154, 2002.
26. N. Mart́ı-Oliet, J. Meseguer, and M. Palomino. Theoroidal maps as algebraic

simulations. In WADT, pages 126–143, 2004.
27. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-

retical Computer Science, 96(1):73–155, 1992.
28. J. Meseguer. Research directions in rewriting logic. In Computational Logic, NATO

Advanced Study Institute, Marktoberdorf. 1999.
29. J. Meseguer, M. Palomino, and N. Mart́ı-Oliet. Equational abstractions. In CADE,

volume 2741 of LNCS, pages 2–16, 2003.
30. R. De Nicola and F. Vaandrager. Three logics for branching bisimulation. Journal

of ACM, 42(2), 1995.
31. M. Palomino, J. Meseguer, and N. Mart́ı-Oliet. A categorical approach to simula-

tions. In CALCO, pages 313–330, 2005.
32. D. Peled. Combining partial order reduction with on-the-fly model checking. In

CAV, volume 818 of LNCS, pages 377 – 390, 1994.
33. H. Säıdi and N. Shankar. Abstract and model check while you prove. In Computer

Aided Verification, volume 1633 of LNCS, pages 443–454, 1999.
34. A. Valmari. A stubborn attack on state explosion. In CAV, volume 531 of LNCS,

pages 156 – 163, 1990.
35. P. Viry. Equational rules for rewriting logic. Theoretical Computer Science,

285:487–517, 2002.
36. M. Ying. weak confluence and tau-inertness. Theoretical Computer Science,

238:465–475, 2000.

15

