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Abstract

In the modern world, making informed decisions requires obtaining and aggregating relevant

information about events of interest. For many political, business, and entertainment events,

the information of interest only exists as opinions, beliefs, and judgments of dispersed indi-

viduals, and we can only get a complete picture by putting the separate pieces of information

together. Thus, an important first step towards decision making is motivating the individ-

uals to reveal their private information and coalescing the separate pieces of information

together.

In this dissertation, I study three information elicitation and aggregation methods, pre-

diction markets, peer prediction mechanisms, and adaptive polling, using both theoretical

and applied approaches. These methods mainly di↵er by their assumptions on the partici-

pants’ behavior, namely whether the participants possess noisy or perfect information and

whether they strategically decide on what information to reveal. The first two methods,

prediction markets and peer prediction mechanisms, assume that the participants are strate-

gic and have perfect information. Their primary goal is to use carefully designed monetary

rewards to incentivize the participants to truthfully reveal their private information. As a

result, my studies of these methods focus on understanding to what extent are these methods

incentive compatible in theory and in practice. The last method, adaptive polling, assumes

that the participants are not strategic and have noisy information. In this case, our goal is to

accurately and e�ciently estimate the latent ground truth given the noisy information, and

we aim to evaluate whether this goal can be achieved by using this method experimentally.
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I make four main contributions in this dissertation. First, I theoretically analyze how the

participants’ knowledge of one another’s private information a↵ects their strategic behavior

when trading in a prediction market with a finite number of participants. Each participant

may trade multiple times in the market, and hence may have an incentive to withhold

or misreport his information in order to mislead other participants and capitalize on their

mistakes. When the participants’ private information is unconditionally independent, we

show that the participants reveal their information as late as possible at any equilibrium,

which is arguably the worse outcome for the purpose of information aggregation. We also

provide insights on the equilibria of such prediction markets when the participants’ private

information is both conditionally and unconditionally dependent given the outcome of the

event.

Second, I theoretically analyze the participants’ strategic behavior in a prediction market

when a participant has outside incentives to manipulate the market probability. The presence

of such outside incentives would seem to damage the information aggregation in the market.

Surprisingly, when the existence of such incentives is certain and common knowledge, we

show that there exist separating equilibria where all the participants’ private information

is revealed and fully aggregated into the market probability. Although there also exist

pooling equilibria with information loss, we prove that certain separating equilibria are more

desirable than many pooling equilibria because the separating equilibria satisfy domination

based belief refinements, maximize the social welfare of the setting, or maximize either

participant’s total expected payo↵. When the existence of the outside incentives is uncertain,

trust cannot be established and the separating equilibria no longer exist.

Third, I experimentally investigate participants’ behavior towards the peer prediction

mechanisms, which were proposed to elicit information without observable ground truth.

While peer prediction mechanisms promise to elicit truthful information by rewarding partic-

ipants with carefully constructed payments, they also admit uninformative equilibria where

coordinating participants provide no useful information. We conduct the first controlled
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online experiment of the Jurca and Faltings peer prediction mechanism, engaging the par-

ticipants in a multiplayer, real-time and repeated game. Using a hidden Markov model to

capture players’ strategies from their actions, our results show that participants successfully

coordinate on uninformative equilibria and the truthful equilibrium is not focal, even when

some uninformative equilibria do not exist or result in lower payo↵s. In contrast, most players

are consistently truthful in the absence of peer prediction, suggesting that these mechanisms

may be harmful when truthful reporting has similar cost to strategic behavior.

Finally, I design and experimentally evaluate an adaptive polling method for aggregating

small pieces of imprecise information together to produce an accurate estimate of a latent

ground truth. In designing this method, we make two main contributions: (1) Our method

aggregates the participants’ noisy information by using a theoretical model to account for the

noise in the participants’ contributed information. (2) Our method uses an active learning

inspired approach to adaptively choose the query for each participant. We apply this method

to the problem of ranking a set of alternatives, each of which is characterized by a latent

strength parameter. At each step, adaptive polling collects the result of a pairwise compar-

ison, estimates the strength parameters from the pairwise comparison data, and adaptively

chooses the next pairwise comparison question to maximize expected information gain. Our

MTurk experiment shows that our adaptive polling method can e↵ectively incorporate noisy

information and improve the estimate accuracy over time. Compared to a baseline method,

which chooses a random pairwise comparison question at each step, our adaptive method

can generate more accurate estimates with less cost.

v



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 Introduction 1

1.1 High Level Introduction to Three Methods . . . . . . . . . . . . . . . . . . . 4

1.1.1 Prediction Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Peer Prediction Mechanisms . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Adaptive polling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Connecting the Three Methods . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 My Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Theoretical Studies of Prediction Markets . . . . . . . . . . . . . . . 10

1.3.2 Experimental Evaluation of Peer Prediction Mechanisms . . . . . . . 11

1.3.3 Designing and Evaluating Adaptive Polling . . . . . . . . . . . . . . . 12

1.4 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Preliminaries 13

2.1 Proper Scoring Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Prediction Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Market Scoring Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Finite-Stage Prediction Markets 18

3.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 The Market Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 The Finite-Stage Market Game . . . . . . . . . . . . . . . . . . . . . 22

3.3.2 Information Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.3 Solution Concept and Players’ Strategies . . . . . . . . . . . . . . . . 26

3.4 The 3-Stage Market Game with Any Information Structure . . . . . . . . . . 27

3.4.1 Describing PBE of the 3-Stage Market Game . . . . . . . . . . . . . . 28

3.4.2 Systematically Identify Candidate PBE Strategies . . . . . . . . . . . 30

vi



3.4.3 The Consistency Condition . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 PBE of the Finite-Stage I Game . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.1 Delaying PBE of 3-stage I Game . . . . . . . . . . . . . . . . . . . . 35

3.5.2 A Family of PBE for the Finite-Stage I Game . . . . . . . . . . . . . 37

3.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 The 3-Stage D Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6.1 An Expression for Alice’s Ex-Interim Expected Payo↵ . . . . . . . . . 43

3.6.2 Three Candidate PBE Strategies for Alice . . . . . . . . . . . . . . . 44

3.6.3 A Su�cient Condition for the Truthful PBE . . . . . . . . . . . . . . 45

3.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Prediction Markets with Outside Incentives 48

4.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 The Market Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 The 2-Stage Market Game . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.2 Solution Concept and Players’ Strategies . . . . . . . . . . . . . . . . 58

4.4 Known Outside Incentive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.1 Truthful vs. Separating PBE . . . . . . . . . . . . . . . . . . . . . . 60

4.4.2 A Deeper Look into Alice’s Strategy Space . . . . . . . . . . . . . . . 63

4.4.3 A Necessary and Su�cient Condition for Pure Strategy Separating PBE 65

4.4.4 Pure Strategy Separating PBE . . . . . . . . . . . . . . . . . . . . . 71

4.4.5 Pooling PBE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Identifying Desirable PBE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.1 Domination-based Belief Refinement . . . . . . . . . . . . . . . . . . 76

4.5.2 Social Welfare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5.3 Alice’s Total Expected Payo↵ . . . . . . . . . . . . . . . . . . . . . . 80

4.5.4 Bob’s Expected Payo↵ . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6.1 Other Market Scoring Rules . . . . . . . . . . . . . . . . . . . . . . . 84

4.6.2 Uncertain Outside Incentive . . . . . . . . . . . . . . . . . . . . . . . 85

4.7 Connection to Spence’s Job Market Signaling Game . . . . . . . . . . . . . . 86

4.8 Conclusion and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . 90

5 An Experimental Evaluation of a Peer Prediction Mechanism 91

5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 The Jurca and Faltings Mechanism . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Experiment Design and Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 98

vii



5.4 Treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5.1 Summary of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5.2 Learning a Hidden Markov Model . . . . . . . . . . . . . . . . . . . . 107

5.5.3 Classifying Convergence to Pure Strategy Equilibria . . . . . . . . . . 115

5.5.4 Non Peer-Prediction Treatment . . . . . . . . . . . . . . . . . . . . . 117

5.6 Experimental Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6 Adaptive Polling for Information Aggregation 122

6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 Our Adaptive Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2.1 Noisy Information Model . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2.2 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . 128

6.2.3 Adaptive Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5 Conclusion and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . 138

7 Conclusion and Future Directions 140

Bibliography 145

Appendix A Appendix to Chapter 3 153

A.1 Omitted Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.1.1 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.1.2 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.1.3 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.1.4 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

A.1.5 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A.1.6 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

A.1.7 Proof of Theorem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

A.2 Omitted Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A.2.1 Derivation for the expression of uai(r) . . . . . . . . . . . . . . . . . . 172

Appendix B Appendix to Chapter 4 174

B.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

B.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

B.3 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

viii



B.4 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

B.5 Proof of Theorem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

B.6 Proof of Theorem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

B.7 Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

B.8 Proof of Proposition 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

B.9 Proof of Theorem 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

B.10 Proof of Theorem 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Appendix C Appendix to Chapter 5 190

C.1 Estimated HMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Appendix D Appendix to Chapter 6 192

ix



List of Tables

1.1 Comparison and contrast between the three methods . . . . . . . . . . . . . 7

3.1 An example prior distribution. Each cell gives the value of P(!, ai, bj) for the

realized outcome !, Alice’s signal ai and Bob’s signal bj. . . . . . . . . . . . 46

4.1 Comparison between our setting and Spence’s job market signaling game . . 88

5.1 Payment rule examples. In (a), each cell gives a player’s payo↵ if he reports r

and his reference report is rf . In (b) and (c), each cell gives a player’s payo↵

if he reports r and m out of the nf reference reports are s
1

.). . . . . . . . . . 97

5.2 Treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Payment rules of treatments 1 and 2. The cell at (r, rf ) gives a player’s

payment if the player reports r and his reference report is rf . . . . . . . . . . 104

5.4 Payment rules of treatments 3 and 4. The cell at (r, ff ) gives a player’s

payment if the player reports r and nf of his reference reports are MM . . . . 105

5.5 Comparison of actual payo↵ with expected payo↵ at truthful equilibrium . . 107

5.6 Each tuple gives the estimated strategy (µj(MM,MM), µj(GB,MM)). All num-

bers are rounded to 2 decimal places. . . . . . . . . . . . . . . . . . . . . . . 110

5.7 Classification of convergence to pure strategy equilibria using the simple method.

Each cell gives the number of games converging to the particular equilibrium

in the specified treatment. The symbol “-” means that the equilibrium does

not exist for the payment rule tested in the specified treatment. . . . . . . . 117

B.1 An example prior distribution. Each cell gives the value of P(⌦, SA, SB) for

the corresponding realizations of ⌦, SA, and SB. . . . . . . . . . . . . . . . . 175

B.2 An example prior distribution with ✏ 2 (0, 0.25). Each cell gives the value of

P(⌦, SA, SB) for the corresponding realizations of ⌦, SA, and SB. . . . . . . 177

C.1 Treatment 1 Estimated HMM (K = 4). P(MM | MM) is the probability of

reporting MM given a MM signal. P(MM | GB) is the probability of reporting

MM given a GB signal. Pi is the initial probability of state i. The cell at row

i and column j gives the transition probability from state i to state j. . . . . 190

x



C.2 Treatment 2 Estimated HMM (K = 4). P(MM | MM) is the probability of

reporting MM given a MM signal. P(MM | GB) is the probability of reporting

MM given a GB signal. Pi is the initial probability of state i. The cell at row

i and column j gives the transition probability from state i to state j. . . . . 190

C.3 Treatment 3 Estimated HMM (K = 4). P(MM | MM) is the probability of

reporting MM given a MM signal. P(MM | GB) is the probability of reporting

MM given a GB signal. Pi is the initial probability of state i. The cell at row

i and column j gives the transition probability from state i to state j. . . . . 191

C.4 Treatment 4 Estimated HMM (K = 4). P(MM | MM) is the probability of

reporting MM given a MM signal. P(MM | GB) is the probability of reporting

MM given a GB signal. Pi is the initial probability of state i. The cell at row

i and column j gives the transition probability from state i to state j. . . . . 191

C.5 Non-Peer Prediction Treatment Estimated HMM (K = 4). P(MM | MM)

is the probability of reporting MM given a MM signal. P(MM | GB) is the

probability of reporting MM given a GB signal. Pi is the initial probability of

state i. The cell at row i and column j gives the transition probability from

state i to state j. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

xi



List of Figures

3.1 A PBE of a Finite-Stage I Game with 3 players . . . . . . . . . . . . . . . . 40

4.1 An illustration of YH and YT by partitioning Alice’s strategy space. The

blue regions contain Alice’s reports that are dominated by truthful reports.

The white regions contain Alice’s reports that are not dominated by truthful

reports. YH and YT are the upper bound values for the white regions. . . . . 64

5.1 The Game Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Percentage of players with the specified signal and report . . . . . . . . . . . 107

5.3 The graphical model for each player i implied by the HMM. . . . . . . . . . 109

5.4 Treatment 1 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.5 Treatment 2 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.6 Treatment 3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.7 Treatment 4 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.8 Non Peer-Prediction Treatment Results. Each row shows how a single player’s

strategy evolves over multiple rounds. . . . . . . . . . . . . . . . . . . . . . . 118

6.1 Two example pictures. The left picture has 342 dots, and the right one has

447 dots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 Frequency of the left picture being selected in the 1200 pairwise comparisons

of all 12 trials. The x-axis represents the di↵erence in number of dots between

the left and right pictures (left � right). The observations are grouped into 7

buckets according to the di↵erence in dots. Each bar represents the empirical

frequency for the corresponding bucket.The curve is �(0.017x). . . . . . . . . 134

6.3 The dynamics of the estimated strength parameters for an adaptive polling

trial. The x-axis is the number of iterations. The y-axis is the value of the

estimated strength parameters. The rightmost part of the figure labels the

value of the “gold standard” strength parameter for each picture. . . . . . . 135

6.4 The entropy of the estimated distribution N (ŝ, ⌃̂) . . . . . . . . . . . . . . . 136
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Chapter 1

Introduction

To make informed decisions in the modern world, it is crucial to obtain and aggregate

relevant information about some uncertain events of interest. For instance, depending on

the forecasted release dates of their products, companies such as Google and HP may want

to adjust their research and development strategies. Businesses such as Yelp and Angie’s list

care about soliciting accurate and honest reviews of restaurants, service companies and health

care professionals. Individuals speculate about and bet on the rankings of sports teams in

competitions and the rankings of horses in horse races. In such domains, the information

of interest only exists as opinions, beliefs, and judgements of dispersed individuals. Each

individual only possesses a small piece of the whole information puzzle, and we can only

get a complete picture by putting the separate pieces of information together. Therefore,

motivating the individuals to reveal their private information and coalescing the separate

pieces of information together is an important first step towards decision making.

Information Elicitation: There are three main challenges associated with the task of

eliciting useful information from individuals. First, for individuals who have useful infor-

mation, it is costly for them to reveal it, yet this action only benefits others. Thus, it is

imperative to reward the participants for revealing their information. Many websites o↵er

explicit rewards for the participants’ contributions. These rewards may or may not be mon-
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etary. Iowa Electronic Markets, a famous example of prediction markets, provide monetary

rewards for participants who have accurate information for forecasting future events. On

Amazon’s Mechanical Turk, requesters o↵er monetary rewards to the workers for completing

many di↵erent kinds of tasks, such as labeling images, providing opinions, transcribing au-

dios. On platforms such as StackOverflow, Yahoo Answers, Reddit, and Yelp, participants

can earn non-monetary rewards such as badges and ratings for their contributions. These

rewards make it rational for participants to contribute their opinions and information rather

than not.

Moreover, although explicit rewards make participating and contributing rational, they

do not necessarily incentivize the individuals to contribute their information truthfully, es-

pecially when the individuals strategically decide on what to contribute. In many scenarios,

instead of truthfully revealing his information, a participant may be tempted to withhold

information or reveal false information. For example, a prediction market participant may

reveal false information inside the market in order to gain external rewards. When par-

ticipating on Yelp or Amazon, a participant may want to be nice and not leave negative

reviews, or he may be paid to leave a positive or negative review for a certain company. On

crowdsourcing markets such as Amazon’s Mechanical Turk, a participant is typically o↵ered

a constant monetary reward for completing a task. In this case, the participant may choose

to make a contribution requiring the least e↵ort rather than contributing his true opinion or

information. Thus, the second challenge is to motivate the participants to truthfully reveal

his information rather than strategically withhold or misreport their information.

Finally, for incentivizing truthful contributions, the designer assumes that the partici-

pants already have the desired information. In reality, however, participants need to invest

costly e↵ort to obtain the desired information, and the quality of the participants’ informa-

tion depends on the amount of e↵ort invested. Thus, the third challenge is to motivate the

participants to invest costly e↵ort in order to acquire accurate and high quality information.

In this dissertation, I study several information elicitation methods, which o↵er explicit
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rewards for the participants’ contributions. I focus on studying how the reward schemes of

these methods address the first two challenges of incentivizing the participants to participate

and to contribute truthful information. I do not study whether they can address the third

challenge of motivating the participants to invest costly e↵ort to acquire information. More

specifically, I characterize the participants’ behavior towards these methods in theory and in

practice and analyze the e↵ect of these behavior on the quality of the elicited information.

Information Aggregation: Once the participants’ reports are collected, we may want

to aggregate these reports together to produce a single quantity for decision making, e.g. a

probability estimate of an uncertain event. Given a set of reports, some common methods for

aggregating the reports include statistical methods, voting, and probabilistic inference. The

aggregation and elicitation processes can be separate, but they may also be combined into

a single mechanism. For example, in a prediction market, each participant is motivated to

infer information from other participants’ reports and incorporate these inferred information

into his own report, e↵ectively performing the aggregation for the mechanism.

For a given set of reports, di↵erent aggregation methods may produce estimates of dif-

ferent accuracies. Choosing the best aggregation method critically depends on how the

participants’ information relates to the ground truth we are estimating. With little knowl-

edge of how participants formed their reports, simple methods such as averaging or majority

voting can be suitable for a wide range of settings. However, if we can better capture the

participants’ private information using theoretical models, then we may be able to develop

more sophisticated aggregation methods to produce more accurate estimates. In this dis-

sertation, I propose an adaptive polling method, which uses a particular statistical model

to capture the noise in the participants’ reports, and demonstrate that this method can

e↵ectively aggregate the participants’ reports to produce an accurate estimate of the latent

ground truth.
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1.1 High Level Introduction to Three Methods

In this dissertation, I study three methods: prediction markets, peer prediction mechanisms,

and adaptive polling. In this section, I give a high level introduction to these methods and

describe the research questions that I address for these methods.

1.1.1 Prediction Markets

An important task for decision making is to generate accurate forecasts of uncertain events.

Some examples of such events are weather, elections, product sales, and Oscar winner. Pre-

diction markets are designed to elicit probabilistic estimates from participants and aggregate

these probabilities together to forecast uncertain events, whose realized outcomes will be

observed in the future. Participants of a prediction market can reveal their private informa-

tion through trading contracts, and the market rewards the participants by evaluating their

probabilistic estimates against the observable ground truth. At any time, the current market

price/probability can be interpreted as a consensus probabilistic forecast for the future event

given all the information that has been revealed to the market so far.

Substantial empirical research has demonstrated that prediction markets produce re-

markably accurate forecasts in practice [Berg et al., 2001, Camerer, 1998, Chen and Plott,

2002, Debnath et al., 2003, Forsythe et al., 1992, 1999, Wolfers and Zitzewitz, 2004]. Yet,

existing theory on prediction markets fails to explain its empirical success, especially how

and why information gets aggregated in the market. Ideally, prediction markets should be

designed to be incentive compatible such that every participant reveals his private informa-

tion truthfully at his first opportunity to trade in the market. Unfortunately, prediction

market mechanisms are not incentive compatible in general. Thus, whether the market can

elicit and aggregate accurate information depends on how the strategic participants behave

in response to the monetary rewards provided by the mechanism. Specifically, when a par-

ticipant has multiple opportunities to trade in the market, or when he receives payo↵s from
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outside of the market contingent on his trade in the market, the participant may have in-

centives to withhold or misreport his private information when trading the market in order

to mislead other participants and maximize his total expected payo↵. If such manipulations

occur, it would be questionable whether all the participants’ information will be revealed

and incorporated into the market probability.

In this dissertation, I focus on studying market scoring rules proposed by Hanson [2007a],

which is one of the most popular automated market maker mechanisms for prediction mar-

kets. Market scoring rules achieves a weaker property than incentive compatibility: if all

participants are rational and self-interested economic agents, then any myopic participant

is incentivized to truthfully reveal his private information when trading in a market scoring

rule prediction market. A myopic participant is not forward looking and decides on what to

report for the current trade based on his expected reward from the current trade only.

My main goal in studying market scoring rules is to understand the behavior of non-

myopic participants and the e↵ects of these participants’ behavior on the accuracy of the

collected and aggregated information. Specifically I tackle the following research questions:

• In theory, how do non-myopic participants behave at game-theoretic equilibria of mar-

ket scoring rules?

• How does the equilibrium behavior of non-myopic participants a↵ect the accuracy of

the elicited and aggregated probabilistic estimates for uncertain events?

1.1.2 Peer Prediction Mechanisms

For many events of interest, the outcome of the events are neither observable nor verifiable,

so we cannot evaluate the participants’ reports against an observable ground truth. For ex-

ample, the outcome of the event may be subjective (e.g. the quality of a book), not publicly

observed (e.g. the breakdown frequency of a product, which is only known by the manufac-

ture), or not verifiable (e.g. the extinction of the human race). Peer prediction mechanisms
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are designed to elicit probabilistic estimates from participants about such events without ob-

servable ground truth. Peer prediction mechanisms use carefully designed monetary rewards

to induce the participants to reveal their private information truthfully. Assuming that the

participants are rational and self-interested economic agents, peer prediction mechanisms

have the following desirable theoretical property: a participant maximizes his expected re-

ward by reporting truthfully if he believes that all other participants are also truthful. In

other words, peer prediction mechanisms induce truth telling in equilibrium.

Despite the desirable property of peer prediction mechanisms, there is little theoretical

guarantee that the participants will adhere to truth telling in practice. First of all, many

peer prediction mechanisms have other uninformative equilibria where no useful information

is revealed, and the theory has no prediction on which equilibrium will be played in practice.

Moreover, there is a lack of understanding of the practical performance of peer prediction

mechanisms since most of them have not been evaluated in a practical setting.

My main goal in studying peer prediction mechanisms is to understand the behavior of

the participants towards peer prediction mechanisms in practice. Specifically I tackle the

following research questions:

• In practice, how do the participants behave towards peer prediction mechanisms?

• How do the participants’ behavior towards peer prediction mechanisms a↵ect the ac-

curacy of the elicited probabilistic estimates for uncertain events?

1.1.3 Adaptive polling

Adaptive polling aims to aggregate small pieces of imprecise information together in order

to produce an accurate estimate of a latent ground truth. In designing this method, we

make very di↵erent assumptions about the participants compared to the assumptions of

prediction market and peer prediction mechanisms. First, we assume the participants to be

non-strategic. Thus, eliciting truthful information is not our concern because the participants
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will truthfully reveal their information for a constant monetary reward. Moreover, we assume

that each participant provides a small and partial piece of noisy information of the latent

ground truth. One challenge is to understand and account for the noise in the participants’

information when aggregating their contributions. In addition, we assume to have the ability

to actively query the participants for specific pieces of information. So we aim to find a way to

adaptively query information from the participants to improve the accuracy of the estimate

as quickly as possible. In summary, we explore the following research questions:

• How to use a theoretical model to best capture the participants’ noisy observations for

a particular latent ground truth?

• How to e�ciently aggregate small pieces of noisy information contributed by the par-

ticipants in order to produce an accurate estimate of the ground truth?

• How to adaptively query information from the participants to improve the accuracy of

the estimate produced as quickly as possible?

1.2 Connecting the Three Methods

In this section, I compare and contrast the three methods in terms of which part of the prob-

lem they are targeting, whether they require observable ground truth, and what assumptions

they make about the participants’ behavior. By comparing and contrasting them from sev-

eral perspectives, I would like to relate the three methods and provide a bigger picture for

this dissertation. The following discussion is summarized in Table 1.1.

Prediction Markets Peer Prediction Adaptive Polling
Elicitation and Aggregation Elicitation Aggregation
Observable Ground Truth Latent Ground Truth

Strategic Participants Non-Strategic Participants
Perfect Information Noisy Information

Table 1.1: Comparison and contrast between the three methods
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Targeted Problem First, all three methods were proposed to solve the same high level

problem, but each of them was designed to target di↵erent parts of the whole problem.

Prediction markets were designed to tackle the whole information elicitation and ag-

gregation problem. A prediction market provides carefully designed monetary rewards to

incentivize the participants to truthfully reveal their private information. Moreover, the de-

sign of the market encourages each participant to improve upon the existing market estimate

by inferring information from the historical forecasts and incorporating the inferred infor-

mation into their own estimate. In essence, the participants are performing the aggregation

for the mechanism.

In contrast, peer prediction mechanisms and adaptive polling focus on solving part of

the whole problem. Peer prediction mechanisms aim to elicit truthful information from the

participants, but they do not specify how to use the elicited information. Although adaptive

polling has distinct elicitation and aggregation processes, it assumes away the challenge of

eliciting truthful information by considering the participants to be non-strategic. Instead,

adaptive polling focuses on adaptively query information from the participants and e�ciently

aggregate the elicited information to produce an accurate estimate of the latent ground truth.

Type of Ground Truth These three methods also di↵er by the type of event they are able

to estimate or forecast. Prediction markets are designed to forecast events with observable

ground truth, since their rewards are determined by evaluating the participants’ probabilistic

estimates against the realized outcome of the event. Because an observable ground truth is

available, prediction markets can achieve relatively stronger theoretical guarantee – they are

incentive compatible for myopic participants.

In contrast, peer prediction mechanisms and adaptive polling are more powerful methods

since they can estimate or predict events without observable ground truth. Due to the lack

of observable ground truth, peer prediction mechanisms can only achieve a weak theoretical

guarantee — they can induce truth telling in equilibrium only. Adaptive polling uses a

theoretical model to accurately capture the noise in the participants’ information. Therefore,
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it can make good use of the reported noisy information to accurately estimate the latent

ground truth.

Assumptions of Participants’ Behavior One of the most important distinctions among

these methods is their assumptions of the participants’ behavior. These assumptions have

critical influences on the focus of these methods. For di↵erent assumptions, the designers

face di↵erent challenges when attempting to solve the overall problem, and thus the resulting

methods are derived with particular desirable properties which target specific aspects of the

whole problem. In particular, the assumptions of these three methods capture two distinct

aspects of the participants’ behavior: whether the participants make perfect or imperfect

observations of the desired information and whether they are strategic or not.

Prediction markets and peer prediction mechanisms assume that the participants have

“perfect information” and they are “strategic”. The participants make perfect observations

of the desired information and their information are not noisy. Moreover, the participants

are rational and self-interested economic agents and that they choose their actions in order

to maximize their expected rewards from the mechanism. Given these assumptions, the

designer aims to design the mechanism to be incentive compatible such that the participants

are best o↵ truthfully revealing their information. However, achieving complete incentive

compatibility is quite challenging. For the mechanisms studied in this dissertation, there

are several settings where a participant may be able to improve his expected rewards from

inside or outside of the mechanism by withholding or misreporting his information.

In contrast, adaptive polling assumes that the participants possess “noisy information”

but they are “not strategic”. The participants make noisy observations of the desired in-

formation, but they are always willing to truthfully reveal their information regardless of

whether their expected rewards can be improved by behaving otherwise. Given these as-

sumptions, this method focuses on developing the most e↵ective way to aggregate the noisy

information contributed by the participant to accurately estimate the latent ground truth.

The assumptions of all three methods are simplifying the participants’ behavior in one
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way or another. In practice, it is reasonable to assume that the participants have “noisy

information” and they are “strategic”. However, prediction markets and peer prediction

mechanisms ignore the “noisy information” aspect whereas adaptive polling assumes away

the “strategic” aspect. In the conclusion, I will discuss the implication of our results on

these assumptions as well as some new models of participants’ behavior in recent work.

1.3 My Contributions

In this section, I outline the four main contributions of my dissertation.

1.3.1 Theoretical Studies of Prediction Markets

We theoretically analyze the participants’ behavior at game theoretic equilibria of market

scoring rule prediction markets in following two settings.

In the first setting, there are a finite number of participants in the market and each par-

ticipant can only trade for a finite number of times in the market. Since a participant can

trade multiple times in the market, he may have incentives to misreport or withhold his in-

formation in order to mislead the other market participants and capitalize on their mistakes

later on. We characterize equilibria of such prediction markets depending on how the par-

ticipants’ private information relates to the event being forecasted. When the participants’

information is unconditionally independent, there exists a unique family of equilibria, where,

qualitatively speaking, every participant reveals his private information as late as possible.

This is arguably the worst outcome for the purpose of information aggregation. We also

provide insights for the equilibria of the markets when the participants’ private information

is both conditionally and unconditionally dependent on the realized outcome of the event.

In the second setting, there are two participants in the market and each trades in the

market once. The final probabilistic forecast generated by the market is used to make

a decision, and the first market participant receives an additional payo↵ from outside of
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the market contingent on the decision. If the first market participant’s outside payo↵ is

attractive, he may have incentives to misreport or withhold his information when trading

inside the market in order to improve his additional payo↵ from outside of the market. For

this setting, it would seem that information loss within the market is inevitable because of

the first participant’s incentive to manipulate the market probability. However, we show

that there exists a “separating” equilibria where all the participants’ private information is

revealed and incorporated into the final market probability, which is the goal of running the

market. We characterize su�cient and necessary conditions for such separating equilibria

to exist. We also characterize “pooling” equilibria where information loss occurs in the

market and show that the separating equilibria are more desirable than many other equilibria

because the separating equilibria satisfy domination based belief refinements, maximize the

social welfare of the setting, or maximize either participant’s total expected payo↵.

1.3.2 Experimental Evaluation of Peer Prediction Mechanisms

We experimentally evaluate the performance of the Jurca and Faltings [2009] (JF) peer

prediction mechanism through a controlled online experiment. Our experiment allows the

participants to learn and adapt to the mechanism through a multiplayer, real-time and

repeated game. Using our experimental data, we analyze the participants’ behavior in terms

of convergence to game-theoretic equilibria of the JF mechanism.

In our setting, we observe that participants clearly favor the uninformative equilibria over

the truthful equilibrium when paid by the JF mechanism. Eliminating some uninformative

equilibria or making them less desirable successfully deterred the participants from choosing

them, but did not motivate the participants to be truthful. In contrast, the majority of

the participants are consistently truthful in the absence of any peer prediction mechanism.

Methodology wise, our work demonstrates the promise of evaluating game theoretic mecha-

nisms through online behavioral experiments, and using probabilistic models for analyzing

experimental data to explain the participants’ behavior.
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1.3.3 Designing and Evaluating Adaptive Polling

We design and experimentally evaluate an adaptive polling method for aggregating small

pieces of imprecise information to produce an accurate estimate of a latent ground truth. In

designing this method, our main contribution is to combine an aggregation process, which

produces accurate estimates by accounting for the noise in the participants’ information,

with an elicitation process, which adaptively queries information from the participants in

order to quickly improve the estimate accuracy.

We apply adaptive polling to the problem of ranking a set of alternatives, each of which

is characterized by a latent strength parameter. Our goal is to produce accurate estimates of

the strength parameters in order to correctly rank the alternatives. At each step, adaptive

polling collects the result of a pairwise comparison, estimates the strength parameters from

the pairwise comparison data, and adaptively chooses the next pairwise comparison question

to myopically maximize expected information gain.

We evaluate our method through an experiment on Amazon Mechanical Turk. Our exper-

imental results show that the adaptive method can e↵ectively incorporate noisy information

and improve the estimate accuracy over time. Also, adaptive polling is superior to a naive

method of presenting a random pair of alternatives for each participant.

1.4 Dissertation Organization

Chapter 2 introduce preliminary technical concepts to prepare for the subsequent sections.

Chapter 3 presents a theoretical analysis of participants’ equilibrium behavior in prediction

markets with a finite number of stages. Chapter 4 describes a theoretical analysis of predic-

tion markets where a market participant has incentives to manipulate the market probability

from outside of the market. Chapter 5 is an experimental evaluation of a peer prediction

mechanism. Chapter 6 proposes and experimentally evaluates an adaptive polling method

for eliciting and aggregating information without economic incentives.
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Chapter 2

Preliminaries

2.1 Proper Scoring Rules

The simplest information elicitation mechanism is a scoring rule. A scoring rule provides

a carefully designed payment to incentivize a single expert to truthfully report his proba-

bilistic estimates of an event. The amount of the payment depends on the expert’s reported

probabilistic estimates and the realized outcome of the event [Good, 1952, Winkler, 1969,

Savage, 1971, Gneiting and Raftery, 2007].

Formally, consider an event ⌦ with a set ! of m mutually exclusive and exhaustive

outcomes. Let r = {r
1

, r
2

, . . . , rm} be the probabilistic estimates reported by the expert.

For a given set of probabilistic estimates r, the scoring rule s(!, r) assigns a score si(r) if

the i-th outcome in ! is realized. In fact, any bounded, convex and di↵erentiable function of

r corresponds to a proper scoring rule [Savage, 1971]. For example, a popular proper scoring

rule is the logarithmic scoring rule

si(r) = b ln(ri) (2.1)

where b is a positive parameter.

A (strictly) proper scoring rule is incentive compatible for a risk neutral expert — a
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risk neutral expert maximizes his expected score by truthfully reporting his probabilistic

estimates. For example, consider the logarithmic proper scoring rule with m = 2. Assume

that the expert believes the probabilities of the two outcomes to be p and 1 � p, and he

reports the probabilities q and 1� q. The expert maximizes his expected score by reporting

q = p, as shown below:

@

@q
{pb ln(q) + (1� p)b ln(1� q)} = 0 (2.2)

) b

⇢

p

q
� 1� p

1� q

�

= 0 (2.3)

) b{p(1� q)� q(1� p)} = 0 (2.4)

) b{p� pq + pq � q} = 0 (2.5)

) q = p (2.6)

In this dissertation, I study prediction market and peer prediction mechanisms, which

are both derived using proper scoring rules.

2.2 Prediction Markets

Prediction markets are powerful mechanisms created for the purpose of forecasting future

events. Similar to a financial market, a prediction market o↵ers contracts whose payo↵s

are tied to outcomes of a future event. For example, to forecast whether the flu activity in

Massachusetts will be widespread by May 1 this year, the contract could pay $1 per share if

the CDC characterizes the flu activity to be widespread in Massachusetts on May 1 and $0

otherwise. Participants can express their private information about flu activity in a credible

way by trading shares of this contract, and they will be rewarded based on their trades and

the realized outcome of the event. If a risk neutral participant believes that the flu activity

will be widespread with probability p, then he can make profits in expectation by buying

the contract if its current price is lower than p and selling the contract if its current price
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is higher than p. Thus, the market price of the contract may be interpreted as a consensus

forecast for this event.

Prediction markets have been deployed and shown to be extremely successful in prac-

tice. Some notable examples of deployed prediction markets include Iowa Electronic Markets

(http://tippie.uiowa.edu/iem/), Inkling Markets (http://inklingmarkets.com/), Hol-

lywood Stock Exchange (http://www.hsx.com/) and Betfair (http://www.betfair.com/

GBR/en/). Substantial empirical research has demonstrated that prediction markets pro-

duce remarkably accurate forecasts in practice and often outperform alternative forecasting

methods in a wide range of settings [Berg et al., 2001, Wolfers and Zitzewitz, 2004, Forsythe

et al., 1992, 1999, Debnath et al., 2003, Chen and Plott, 2002].

A prediction market has traditionally been run like a financial market, by setting up

a double auction where traders place orders to buy or sell shares of contracts and making

an auctioneer match the buy and sell orders without incurring any risk. These double

auctions work well for financial markets where the number of participants is large, making

it easy to match buy and sell orders. However, double auctions may su↵er from the thin

market problem, which presents the participants from revealing their information through

trading. Moreover, double auctions are zero-sum games for the participants, and the no-trade

theorem shows that rational risk-neutral traders should not participate in such a zero-sum

game. These problems motivate the use of automated market maker mechanisms.

For an automated market maker mechanism, each participant interacts with the market

maker for buying or selling shares of the contracts. The market maker is always wiling to

accept any buy or sell orders at the price quoted by the market maker. Such an automated

market maker essentially subsidizes the market for the purpose of eliciting useful information.

Hanson’s market scoring rules (MSR) is the de facto automated market mechanism [Hanson,

2007a]. We formally introduce market scoring rules in the next section. MSR has the

desirable property that the maximum amount of money that the market maker may lose is

bounded in the worse case.
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2.3 Market Scoring Rules

Market scoring rules (MSR), proposed by Hanson [2003, 2007b], are derived from proper

scoring rules. Consider a proper scoring rule s(!, r) for a binary event. The corresponding

MSR market is a sequential shared version of the proper scoring rule. Suppose that we

would like to forecast a binary event ⌦ with its realized outcome denoted ! 2 {0, 1}. The

MSR market starts with an initial market probability r0 for ! = 1. For a binary event, the

probability of outcome ! = 0 is implicitly 1�r0. Participants trade in the market in sequence

and each participant can change the current probability estimate to a new value of his choice.

The market closes at a predefined time. After that, the realized outcome ! is observed and

participants receive their payo↵s. When a participant changes the market probability for

! = 1 from rt�1 to rt, he is paid the scoring rule di↵erence, s(!, rt)� s(!, rt�1), depending

on the realized outcome !. A participant may trade in the market multiple times. If Ti

denotes the set of stages where participant i trades, then participant i’s total payo↵ is the

sum of the payo↵ for each of his reports,
P

t2Ti
(s(!, rt)�s(!, rt�1)). The logarithmic market

scoring rule (LMSR), derived from the logarithmic proper scoring rule, is one of the most

popular market scoring rule mechanisms.

A market scoring rule has the nice incentive property that a risk-neutral, myopic par-

ticipant can maximize his expected payo↵ by truthfully reporting his probability estimate,

because he cannot influence the market probabilities before his report. A participant is my-

opic if he is not forward looking and trades in each stage as if it is his only chance to trade in

the market. If a participant can trade multiple times in the market and wants to maximize

his total payo↵, then he may want to misreport his estimate or withhold his information in

order to mislead other participants and capitalize on their mistakes later on. Alternatively,

a participant may want to manipulate the market probability in order to increase an payo↵

he receives from outside of the market.

We describe MSR as a mechanism where participants sequentially revise the probability

estimates of event outcomes. However, it is known that under mild conditions, MSR can
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be equivalently implemented as an automated market maker mechanism where participants

trade shares of contracts with the market maker and the market maker updates the contract

prices based on the trades. In practice, a MSR market o↵ers one contract for each outcome

and the contract pays o↵ $1 if the corresponding outcome materializes. The prices of all

contracts represent a probability distribution over the outcome space. In this work, we

analyze MSR as a mechanism for changing probability estimates since abstracting away the

contracts makes subsequent analyses more tractable. We refer interested readers to [Chen

and Pennock, 2007] and [Abernethy et al., 2013] for more information on the equivalence of

the two models.
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Chapter 3

Finite-Stage Prediction Markets

A prediction market provides economic incentives for the participants to reveal their private

information about some uncertain event of interest. A market participants can express his

probability estimates for outcomes of the event by trading shares of financial contracts, and

he will be rewarded if his probability estimate is more accurate than the previous market

estimate. By observing trading activities of other participants, a rational participant can

infer some information from their activities and combine such information with his private

information when trading in the market. Prediction markets rely on the economic incentives

provided by the mechanism and the belief updating of participants to achieve the primary

goal of eliciting and aggregating information about uncertain events of interest.

To this end, arguably we desire that participants reveal their private information truth-

fully and immediately in prediction markets. However, how well the information elicitation

and aggregation goal is achieved depends on the strategic behavior of the self-interested mar-

ket participants, and the behavior of the market participants is influenced by their private

information and their knowledge of others’ private information. We formally refer to the

relationship between the participants’ private information as the information structure of

the participants.

In this work, we model a prediction market as an extensive-form Bayesian game where
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each participant has a piece of private information, there is a joint distribution of the par-

ticipants’ private information and the event outcome, and this joint distribution is common

knowledge to all participants. This joint distribution, which is the information structure

of the market game, captures what participants know about one another’s private informa-

tion. The goal of this work is to understand how and how quickly information is aggregated

in the market by characterizing game-theoretic equilibria of the market game for di↵erent

information structures.

We study Hanson’s logarithmic market scoring rule (LMSR) [Hanson, 2007b], which is the

de facto automated market maker mechanism for prediction markets. Because participants

interact with the market maker, which is the mechanism per se and behaves deterministically,

we only need to model the participants side of the market. This makes the generally challeng-

ing equilibrium analysis for extensive-form Bayesian games tractable for some information

structures in our setting.

Prior work [Chen et al., 2007, 2010b] has shown that when participants’ information is

conditionally independent given the true outcome of the event, there exists a unique family

of equilibria where every participant races to truthfully reveal all their information as soon

as possible. This is arguably the most desirable outcome for the market’s goal. This work

considers the market games with the two remaining classes of information structures:

• The I game: the participants’ private information is unconditionally independent, and

• The D game: the participants’ private information is both conditionally and uncondi-

tionally dependent.

3.1 Our Results

We characterize the unique family of equilibria of the I game with a finite number of partici-

pants and a finite number of stages. At any equilibrium in this family, if player i’s last stage

of participation in the market is after player j’s, player i only reveals his information after
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player j’s last stage of participation and on or before his own last stage of participation.

Qualitatively speaking, at any equilibrium of this game, participants race to delay revealing

their information, which is probably the least desirable outcome for the market’s goal. These

equilibria are in stark contrast to the equilibria of the market game when the participants’

information is conditionally independent given the realized outcome of the event.

We also provide insights on equilibria of the D game. It is in general challenging to

characterize equilibria of the D game because the information structure does not have any

clear mathematical property that we can leverage. We provide a systematic method for

identifying possible equilibrium strategies in the market game with any information structure.

With this method, we identify all possible PBE strategies for the players in a restricted 3-

stage D game with 2 participants Alice and Bob, the sequence of participation Alice Bob

and Alice, and 2 realized signals for Alice. Moreover, we show that there exist instances of

the D game that admit truthful equilibria. In particular, we give a su�cient condition for a

truthful equilibrium to exist in the 3-stage D game and give a prior distribution satisfying

this condition.

3.2 Related Work

Our work closely follows the prior work by Chen et al. [2007], Dimitrov and Sami [2007],

and Chen et al. [2010b]. We model a prediction market as an extensive-form Bayesian game

as in these prior work. Chen et al. [2010b] considered both a finite-stage, finite-player and

an infinite-stage, finite-player market game. They showed that when players’ information is

conditionally independent given the true state of the world, for both the finite- and infinite-

stage games, there is a unique type of Perfect Bayesian Equilibria (PBE), where players

reveal their information truthfully and as soon as they can. When players’ information is

(unconditionally) independent, they proved that the truthful play is not an equilibrium for

both the finite- and infinite-stage games. An earlier work by Nikolova and Sami [2007] also
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presented an instance in which the truthful strategy is not optimal in an extensive-form game

based on this market. However, when players have independent information, the existence of

a PBE was left as an open question. In this work, we characterize all PBE of the finite-stage

game with independent information and explore a special case of the setting when players’

information is neither conditionally nor unconditionally independent.

Instead of characterizing equilibria, Ostrovsky [2012] studied whether information is fully

aggregated in the limit at a PBE of an infinite-stage, finite-player market game with risk-

neutral players. He characterized a separability condition under which the market price of a

security converges to its expected value conditioned on all information with probability 1 at

any PBE. If the security and the partition structure satisfy the separability condition, then

the following situation will never occur: every player believes the security to be of one value

in a particular state whereas the actual value of the security in this state is a di↵erent value.

In particular, the separability condition is always satisfied by complete markets, which is the

setting studied in this chapter. Thus Ostrovsky’s setting does not place any restriction on

the information structure of the market. Iyer et al. [2010a] extended the setting to risk-averse

players and characterized the condition for full information aggregation in the limit at any

PBE. However, whether a PBE exists in such market games remains an open question.

The 3-stage version of our prediction market model resembles the ones studied by Dim-

itrov and Sami [2010a] and our work in Chapter 4: they both study 2-player games and the

first player has another chance of participation after the second player’s turn in the game.

However, both Dimitrov and Sami [2010a] and our work in Chapter 4 consider that the first

player has utility for some event outside of the current market and the price in the current

market influences the outcome of this event. In this work, players only derive utilities from

their trades in the market.

Jian and Sami [2010] studied market scoring rule prediction markets in a laboratory

setting. In their experiment, participants may have conditionally or unconditionally inde-

pendent information and the trading sequence may or may not be structured (a trading
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sequence is structured if it is pre-specified and is common knowledge to all participants).

They confirmed previous theoretical predictions of the strategic behavior by Chen et al.

[2010b] when the trading sequence is structured. This study suggests that the behavior

of participants in a prediction market critically depends on whether they reason about the

other participants’ private information.

There are experimental and empirical studies on price manipulation in prediction markets

using double auction mechanisms. The results are mixed, some giving evidence for the

success of price manipulation [Hansen et al., 2004b] and others showing the robustness of

prediction markets to price manipulation [Camerer, 1998, Hanson et al., 2007, Rhode and

Strumpf, 2004, 2007]. In the literature on financial markets, participants have been shown

to manipulate market prices [Allen and Gale, 1992, Chakraborty and Yilmaz, 2004, Kumar

and Seppi, 1992].

3.3 The Market Game

We model a logarithmic market scoring rule (LMSR) [Hanson, 2007b] prediction market as a

Bayesian extensive-form game. Our setting is similar to that of these prior work [Chen et al.,

2010b, 2007, Dimitrov and Sami, 2007, Ostrovsky, 2012]. We study the LMSR market for

forecasting a binary event where ⌦ = {0, 1} denotes the outcome space and ! 2 ⌦ denotes

the realized outcome of this event. Many real-world prediction markets focus on such binary

events, for example “whether the UK economy will go into recession in 2013”, “whether the

movie Lincoln will win the Academy Award for Best Picture”, and “whether a Democrat

will win the US Presidential election in 2016”.

3.3.1 The Finite-Stage Market Game

Our LMSR market game has n stages and m  n players. The players participates in

one or more stages of the market game, following a pre-defined sequence, which is common
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knowledge1.

Each player i has private information about the event given by a private signal si 2 Si

with signal space Si and |Si| = ni. Each signal is only observed by the intended player.

The prior distribution of the event outcomes and the players’ private signals, denoted by

P : ⌦ ⇥ S
1

⇥ · · · ⇥ Sm ! [0, 1], is common knowledge. Before the market starts, nature

draws the realized event outcome and the private signals of the players according to P . The

players receive their private signals before the market opens, and the realized event outcome

is revealed after the market closes.

The players are risk-neutral Bayesian agents. The belief of the player participating in

stage t can depend on the reported estimates in the first t � 1 stages as well as on his own

private signal.

The 3-Stage Market Game. The simplest version of the market game that admits non-

trivial strategic play is a 2-player 3-stage game. The two players are Alice and Bob, and

the sequence of participation is Alice, Bob, and then Alice. Alice and Bob received private

signals sA 2 SA, |SA| = nA and sB 2 SB, |SB| = nB respectively. The analysis of this 3-stage

market game will serve as building blocks for our analysis of the finite-stage market game.

3.3.2 Information Structure

The prior distribution P is a critical component of each instance of the market game. It

encodes the relationship between the players’ private signals and the event outcome, and it

enables players with private signals to reason about other players’ signals and the realized

event outcome. We refer to P as the “information structure” of the market game. The

primary goal of this work is to characterize the strategic play in a market game with a given

information structure.

1It is an interesting future direction to consider a model where players endogenously choose when to
participate. However, our equilibrium results for the D game with a pre-defined participation order imply
that players will delay revealing their information as much as possible in the D game even with endogenously
chosen participation order. We discuss these implications in section 3.5 after our equilibrium results.
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Three Classes of Information Structures

There are three classes of information structures: conditionally independent (CI game),

unconditionally independent (I game), and neither conditionally independent nor uncondi-

tionally independent (D game). These three classes are mutually exclusive and exhaustive.

The first two types impose natural independence assumptions on the prior distribution P ,

and they were first separately studied by Chen et al. [2007] and Dimitrov and Sami [2007],

and later in their joint work [Chen et al., 2010b].

In a CI game, players’ signals are independent conditioned on the realized event outcome.

Prior work [Chen et al., 2007, 2010b] showed that there is a unique type of perfect Bayesian

equilibria (PBE) for the CI game where players honestly report their estimates as early as

possible. Thus, in this work, we focus on analyzing the I and D games.

For I games, players’ signals are unconditionally independent from one another, but they

are not independent of and may stochastically influence the event outcome. Formally, the

prior distribution P for an I game must satisfy: P(si)P(sj) = P(si, sj), 8si 2 Si, sj 2 Sj for

any two players i and j. Dimitrov and Sami [2007] and Chen et al. [2010b] showed that the

I game does not have a truthful PBE where every player honestly reports his estimate as

early as he can, but they left the existence of PBE as an open question.

The I information structure can be motivated by several examples. For stylized ones,

consider a setting where each player independently observes a coin flip. The event to be

predicted is some aggregate information about all of the independent coin flips, for example,

whether more than 1/3 of the coin flips are heads. In this example, the players’ signals are

independent because the coin flips are independent events. For an abstract example, each

player’s private information can be thought of as a single piece of a jigsaw puzzle, and the

event being forecasted is related to the completed picture. For a more realistic example,

consider a flu prediction scenario. Several doctors live in di↵erent regions of the country.

Each doctor gets information about the flu by treating his own patients living in his region.

So the doctors’ information about the flu is arguably independent because the patients’

24



health conditions in di↵erent regions are independent.

Even though the CI and I information structures capture events in some natural settings,

they impose strong independence assumptions on the relationship between the players’ pri-

vate signals. Ideally, we would like to understand the players’ strategic behavior in the

market game without restricting to a particular information structure. For this reason, we

study the D information structure consisting of signals that are neither conditionally inde-

pendent nor unconditionally independent. In other words, the signals in a D game are both

conditionally dependent and unconditionally dependent. Formally, a prior distribution P in

a D game satisfies: 9si 2 Si, sj 2 Sj, s.t. P(si)P(sj) 6= P(si, sj) for two players i and j and

9si0 2 Si, sj0 2 Sj,! 2 ⌦, s.t. P(si0 , sj0 |!) 6= P(si0 |!)P(sj0 |!) for two players i0 and j0. It

would be interesting to explore whether the D information structure could be further divided

up into smaller classes with intuitive properties.

The Distinguishability Condition

To avoid degenerate cases in our analysis, we assume that the prior distribution P satisfies

the following distinguishability condition, consisting of two parts.

Definition 1. The prior distribution P satisfies the distinguishability condition if for all i

it satisfies inequality (3.1)

P(1|s�i, si) 6= P(1|s�i, s
0
i), 8s�i 2 S�i, 8si, s0i 2 Si [ {�}, si 6= s0i (3.1)

where si = � means player i’s private signal is not observed, and S�i = {S
1

[ {�}}⇥ · · ·⇥

{Si�1

[ {�}}⇥ {Si+1

[ {�}}⇥ · · ·⇥ {Sm [ {�}}, and inequality (3.2)

X

si2Si

psi P(1|si, s) 6=
X

si2Si

psi P(1|si, s
0) (3.2)

where s 6= s0 are any two di↵erent vectors of realized signals of any subset of players excluding

i, and the vector (psi)si2Si
is any probability distribution over Si.

Inequality (3.1) generalizes the general informativeness condition by Chen et al. [2010b].
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The inequality is satisfied if di↵erent signal realizations of player i always lead to di↵erent

posterior probabilities of ! = 1, for any vector of realized signals for any subset of the other

players (including unobserved signals). In other words, a player’s signal always contains some

information. Inequality (3.2) is similar to the distinguishability assumption used by Dimitrov

and Sami [2010a]. It requires that for any two realizations of signals of a subset of players,

they lead to di↵erent estimates for outcome ! = 1 given any belief about player i’s signal.

This condition allows other players to infer the signals of the subset of players whenever they

reveal their information truthfully.

While the distinguishability condition may be a nontrivial technical restriction, it al-

lows us to focus on interesting strategic decisions in the game play without encountering

degenerated cases.

3.3.3 Solution Concept and Players’ Strategies

We use the perfect Bayesian equilibrium (PBE), which is informally a subgame perfect refine-

ment of the Bayesian Nash equilibrium, as our solution concept. A PBE requires specifying

each player’s strategy given a realized signal at each stage of the game as well as the player’s

belief about the signals of players participating in all of the previous stages. The strategies

and the beliefs of the players form a PBE of the market game if and only if, for each player,

his strategy at every stage is optimal given the beliefs, and the beliefs are derived from the

strategies using Bayes’ rule whenever possible.

By properties of the logarithmic scoring rule, at a player’s last chance to participate in

the market, the player has the strictly dominant strategy of truthfully revealing his private

information. So at any PBE, all private information is fully incorporated into the market

estimate at the end of the market game. Thus, the focus of our analysis is on how quickly

information gets incorporated into the market estimate throughout the game. In the follow-

ing paragraphs, we distinguish between truthful and non-truthful strategies for a player in

terms of when the player’s private information is first revealed in the market game.
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We use the term truthful strategy (also called truthful betting) to refer to the strategy

where at a player’s first chance to participate in the market, the player changes the market

estimate to his posterior probability of outcome ! = 1 given his signal and his belief about

other players’ signals. The truthful strategy fully reveals a player’s private information as

early as possible.

In contrast to the truthful strategy, a player may choose to misreport his information and

manipulate the market estimate. For instance, a player can play a mixed strategy and reveal

a noisy version of his signal to the subsequent players in the game. Alternatively, a player may

try to withhold his private information from the other players by not changing the market

estimate at all. Such non-truthful strategies hurt information aggregation in the market by

causing the market estimate to contain inaccurate information at least temporarily.

3.4 The 3-Stage Market Game with Any Information

Structure

Before diving into the PBE analysis of the finite-stage market game, we describe some prelim-

inary analysis of the 3-stage market game with any information structure. In section 3.4.1,

we justify that, in order to describe a PBE of the 3-stage market game, it su�ces to describe

Alice’s strategy in the first stage and Bob’s belief in the second stage. This allows us to

greatly simplify our exposition in later analyses. Next, we prove a theorem in section 3.4.2,

which allows us to systematic identify candidate PBE strategies for the players. This theo-

rem gives us a useful method to make educated guesses about the possible PBE strategies

in order to tackle the PBE existence question and to construct a PBE if one exists for the

3-stage market game with a given prior distribution. Finally, in section 3.4.3, we describe

a consistency condition, which must be satisfied by a player’s strategy in any PBE of the

3-stage game.
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3.4.1 Describing PBE of the 3-Stage Market Game

We present a preliminary analysis of the 3-stage market game and introduce some notations

for our later analyses.

In the 3-stage game, Alice and Bob observe their realized signals sA and sB respectively

at the beginning of the market. In the first stage, Alice changes the market estimate for

outcome ! = 1 from the initial market estimate r0 to rA of her choice. In the second stage,

Bob observes Alice’s first-stage report rA and changes the market estimate to rB. In the

third stage, upon observing Bob’s second-stage report rB, Alice changes the market estimate

from rB to rf , and then the market closes.

Alice’s first-stage strategy is a mapping � : SA ! �([0, 1]) where �([0, 1]) is the set of

probability distributions over [0, 1]. For clarity of analysis and presentation, we assume that

the support of Alice’s first-stage strategy is finite. The results in this work however hold even

if the support of Alice’s first-stage strategy is infinite. Let �sA(rA) denote the probability

that Alice reports rA in the first stage after observing the signal sA according to the strategy

�.

In the second stage, when Bob observes Alice’s first-stage report rA, he forms a belief

about Alice’s signals. Bob’s belief specifies the likelihood that Alice received signal sA when

Alice reported rA and Bob received signal sB. Let µrA,sB(sA) denote the probability that

Bob’s belief assigns for Alice’s sA signal when Alice reported rA and Bob received signal

sB. µrA,sB(sA) is defined for any rA 2 [0, 1]. At any PBE, we need to describe Bob’s belief

both on and o↵ the equilibrium path. When rA is in the support of Alice’s first-stage PBE

strategy, the game is on the equilibrium path and µrA,sB(sA) is derived from Alice’s strategy

using Bayes’ rule according to the PBE definition. However, when rA is not in the support of

Alice’s equilibrium strategy, that is, the game is o↵ the equilibrium path, µrA,sB(sA) is still

important for a PBE because the belief needs to ensure that Alice does not find it profitable

to deviate from her PBE strategy. O↵ the equilibrium path, there are often more than one

set of Bob’s beliefs that can satisfy this requirement.
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Bob only participates once, in the second stage of this game. By properties of strictly

proper scoring rules, Bob has a strictly dominant strategy to report his posterior probability

estimate of the event truthfully, given his belief. Thus, at any PBE, Bob must be using

a pure strategy, which is fully determined by his belief, his signal, and Alice’s first-stage

report. Let xsB(rA) denote Bob’s optimal report given his signal sB and Alice’s first-stage

report rA. At any PBE, Bob’s optimal report xsB(rA) can be determined from his belief as

follows:

xsB(rA) =
X

sA

µrA,sB(sA)P(1|sA, sB), 8 sA 2 SA, sB 2 SB, rA 2 [0, 1].

In the third stage, Alice observes Bob’s report and may change the market estimate

again. At any PBE, knowing Bob’s PBE strategy, Alice’s belief on the equilibrium path can

be derived from Bob’s strategy using Bayes’ rule. This is Alice’s last stage of participation.

Thus, by properties of strictly proper scoring rules, Alice has a strictly dominant strategy

to report her probability estimate truthfully. Similar to Bob’s strategy, Alice’s third-stage

strategy must be a pure strategy and it is fully determined by her belief, her signal, and

Bob’s report. We note that Alice’s belief o↵ the equilibrium path in the third stage is not

important, because Bob has a dominant strategy in the second stage and will not deviate

from it no matter what belief Alice has.

The above analysis shows that, to describe a PBE of the 3-stage market game, it su�ces

to specify Alice’s strategy in the first stage and Bob’s belief in the second stage. The rest of

the strategic play is completely determined given them.

Moreover, for clarity in our analysis, we specify Bob’s strategy rather than Bob’s be-

lief at a PBE. We can easily derive a belief of Bob such that Bob’s strategy is opti-

mal given it, shown as follows. First, Bob’s strategy is valid if and only if xsB(rA) 2

[minsA P(1|sA, sB),maxsA P(1|sA, sB)] for any sB, because for any possible belief for Bob,

his posterior probability should always fall into this interval. When rA is in the support of

Alice’s PBE strategy, Bob’s belief is derived from Alice’s PBE strategy using Bayes’ rule.
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When rA is not in the support of Alice’s PBE strategy, the PBE definition requires that

Bob’s belief be derived from a possible strategy for Alice using Bayes’ rule. For such an rA

and for any sB, we know that minsA P(1|sA, sB)  xsB(rA)  maxsA P(1|sA, sB) holds and

one of the two inequalities must be strict due to the distinguishability assumption. For a

given sB, let s0A = argminsA P(1|sA, sB) and s00A = argmaxsA P(1|sA, sB). Then consider a

possible strategy satisfying �s0A(rA) = p, �s00A(rA) = 1� p and �sA(rA) = 0 for any other sA,

where p =
P(s00A|sB)(x�P(1|s00A,sB))

P(s0A|sB)(P(1|s0A,sB)�x)+P(s00A|sB)(x�P(1|s00A,sB))

. This strategy for Alice is valid, and thus

we can derive Bob’s o↵ the equilibrium path belief for rA from this strategy using Bayes’

rule.

3.4.2 Systematically Identify Candidate PBE Strategies

To tackle the PBE existence problem and construct a PBE if one exists, it is essential that

we make an educated guess of the players’ possible PBE strategies. Theorem 1 below allows

us to pinpoint a possible PBE strategy for Alice in the 3-stage game with any information

structure, by comparing Alice’s ex-ante expected total payo↵ (of both the first and the third

stages) when using di↵erent first-stage strategies assuming that Bob knows and conditions

on Alice’s strategy.

For Theorem 1 below, for any of Alice’s strategy �
1

, let ⇡A(�1, �1) be Alice’s ex-ante

expected payo↵ when Alice uses strategy �
1

in the first stage, Bob knows Alice’s first-stage

strategy �
1

and conditions his belief on this strategy. This means that, for any r in the

support of Alice’s first-stage strategy �
1

, Bob’s belief is derived from strategy �
1

by using

Bayes’ rule. For any other r, there is no restriction on Bob’s belief as long as it is valid.

In the proof of Theorem 1, we make an important distinction between a player’s ex-ante

and ex-interim expected payo↵. A player’s ex-ante expected payo↵ is his expected payo↵

without observing his signal, whereas his ex-interim expected payo↵ is his expected payo↵

given his signal.

Theorem 1. For the 3-stage market game, if two di↵erent first-stage strategies �
1

and �
2
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for Alice satisfy inequality (3.3), then strategy �
2

cannot be part of any PBE of this game.

⇡A(�1, �1) > ⇡A(�2, �2) (3.3)

Proof. We prove this by contradiction. Suppose that two di↵erent first-stage strategies �
1

and �
2

for Alice satisfy inequality (3.3), and Alice’s first-stage strategy �
2

is part of a PBE of

the 3-stage market game. Let µB denote Bob’s belief at this PBE. µB specifies a distribution

over Alice’s signals for every possible first-stage report r 2 [0, 1] and any of Bob’s signals

sB. Alice’s ex-ante expected payo↵ at this PBE is ⇡A(�2, �2). This proof holds for any valid

belief for Bob at this PBE.

Suppose that Alice deviates from this PBE to play the strategy �
1

in the first stage and

Bob has the same belief µB as before. Let ⇡A(�1, �2) denote Alice’s total ex-ante expected

payo↵ in the game at this deviation. The expression ⇡A(�1, �2) is well defined since Alice

knows Bob’s belief and strategy at the original PBE. Similarly, let ⇡B(�1, �2) denote Bob’s

ex-ante expected payo↵ in the second stage at this deviation.

At any PBE of this game, in the third stage, Alice can always infer Bob’s signal given

Bob’s report by the distinguishability condition. So Alice always changes the market estimate

to P(1|sA, sB) in the third stage given Alice’s signal sA and Bob’s signal sB. Thus, the total

expected payo↵ that Alice and Bob can get at any PBE of the 3-stage market game is

⇡AB =
X

sA,sB

⇢

P(1, sA, sB) log
P(1|sA, sB)

r0
+ P(0, sA, sB) log

P(0|sA, sB)
1� r0

�

which is fixed given the initial probability r0 and the prior distribution P . Note that the

above result holds not only at a PBE but whenever Bob reveals all of his information and

Alice knowing his strategy maximizes her expected payo↵. Therefore, by definition of ⇡AB,

we must have

⇡AB = ⇡A(�1, �2) + ⇡B(�1, �2), 8�1, �2 (3.4)
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Inequality (3.3) is satisfied by assumption, so we have

⇡A(�1, �1) > ⇡A(�2, �2)

)⇡AB � ⇡A(�1, �1) < ⇡AB � ⇡A(�2, �2) (3.5)

)⇡B(�1, �1) < ⇡B(�2, �2) (3.6)

where equation (3.5) is due to equation (3.4).

For a fixed first-stage strategy of Alice and for any belief of Bob, Bob’s ex-ante expected

payo↵ is maximized when his belief is derived from Alice’s first-stage strategy using Bayes’

rule. This can be proven as follows. When Bob’s belief is derived from Alice’s first-stage

strategy by using Bayes’ rule, then in the second stage, Bob changes the market estimate

to xsB(rA) when Alice reports rA in the first stage and Bob receives the sB signal. Recall

that by definition, xsB(rA) = P(1|rA, sB) =
P

sA
P(sA|rA, sB)P(1|sA, sB). In this case, Bob’s

expected payo↵ in the second stage is

X

sB ,rA

P(sB, rA)

⇢

xsB(rA) log
xsB(rA)

rA
+ (1� xsB(rA)) log

1� xsB(rA)

1� rA

�

. (3.7)

When Bob has another belief, let x̂ denote Bob’s optimal report with this belief. Then Bob’s

expected payo↵ in the second stage is

X

sB ,rA

P(sB, rA)

⇢

xsB(rA) log
x̂

rA
+ (1� xsB(rA)) log

1� x̂

1� rA

�

. (3.8)

The di↵erence in Bob’s ex-ante expected payo↵ for the two di↵erent beliefs for Bob is (3.7)

- (3.8):

X

sB ,rA

P(sB, rA)

⇢

xsB(rA) log
xsB(rA)

x̂
+ (1� xsB(rA)) log

1� xsB(rA)

1� x̂

�

which is nonnegative by properties of the relative entropy.

Therefore, for any two first-stage strategies �
1

and �
2

for Alice, we have shown that

⇡B(�1, �2)  ⇡B(�1, �1) (3.9)
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Combining inequalities (3.6) and (3.9), we have

⇡B(�1, �2) < ⇡B(�2, �2)

)⇡AB � ⇡A(�1, �2) < ⇡AB � ⇡A(�2, �2)

)⇡A(�1, �2) > ⇡A(�2, �2). (3.10)

According to inequality (3.10), if Alice uses the first-stage strategy �
2

at a PBE, then

she can improve her ex-ante expected payo↵ by deviating to using the strategy �
1

. Then

there must exist at least one realized signal for Alice, say sA, such that Alice’s ex-interim

expected payo↵ after receiving the sA signal is higher when she deviates to the strategy �
1

than when she follows the strategy �
2

. (Otherwise, if Alice’s ex-interim expected payo↵ for

every realized signal is lower when she deviates to using the strategy �
1

than when she follows

the strategy �
2

, then her ex-ante expected payo↵ must also be lower when she deviates to

using the strategy �
1

than when she follows the strategy �
2

, contradicting inequality (3.10).)

As a result, when Alice receives the sA signal, she can improve her ex-interim expected payo↵

by deviating to using the strategy �
1

and this contradicts with our assumption that Alice’s

first-stage strategy �
2

is part of a PBE of the 3-stage market game.

According to Theorem 1, to find Alice’s possible PBE strategies for the 3-stage market

game, it su�ces to compare Alice’s ex-ante expected payo↵s for all possible first-stage strate-

gies assuming Bob knows Alice’s strategy, and only the strategies maximizing Alice’s ex-ante

expected payo↵ can possible be Alice’s PBE strategy. This gives us a systematic way to iden-

tify possible PBE strategies without worrying about constructing Bob’s o↵-equilibrium path

beliefs.

3.4.3 The Consistency Condition

Our analyses of the 3-stage game frequently make use of a consistency condition described in

Theorem 2 by Chen et al. [2010b]. For completeness, we re-state this condition as a lemma
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below. The consistency condition requires that, at a PBE of the 3-stage game, for any rA in

the support of Alice’s first-stage strategy �, the posterior probability of outcome ! = 1 given

� and rA should be equal to rA. Intuitively, this requires that, Alice’s first-stage strategy

must not leave free payo↵ for Bob to claim in the second stage. If Alice’s first-stage strategy

does not satisfy the consistency condition, then Bob can get positive expected payo↵ simply

by changing the market estimate to a value satisfying the consistency condition, and Bob

can claim this positive expected payo↵ without having any private information about the

event being predicted. This is contrary to Alice’s goal of minimizing Bob’s expected payo↵

since the 3-stage market game is a constant-sum game in expectation at any PBE.

Lemma 1 (Consistency Condition for 3-Stage Market Game). At a PBE of the 3-stage

market game, if � is Alice’s first-stage strategy and r is in the support of strategy � (i.e.

9sA 2 SA, �sA(r) > 0), then � must satisfy the following consistency condition:

P(1|�, r) = r

3.5 PBE of the Finite-Stage I Game

We characterize all PBE of the finite-stage I game in this section. Our analysis begins

with the 3-stage I game. Alice participates twice in the game, so she may have incentives to

manipulate the market estimate in the first stage. We first identify a unique candidate PBE

strategy for Alice by showing that if a PBE exists for the 3-stage I game, then Alice’s first-

stage strategy must be changing the market estimate to the prior probability of the event.

This is equivalent to Alice delaying her participation until the third stage if the market

starts with the prior probability of the event. We refer to this strategy as Alice’s delaying

strategy for the 3-stage I game. Alice’s delaying strategy reveals absolutely no information

to Bob about her signal. Next, we explicitly construct a PBE of the 3-stage I game in which

Alice uses the delaying strategy in the first stage. These two results together imply that, the

delaying PBE is unique for this game, in the sense that Alice must use the delaying strategy
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in every PBE of this game, even though Bob’s belief can be di↵erent o↵ the equilibrium

path.

Given the delaying PBE of the 3-stage I game, we construct a family of PBE for the

finite-stage I game using backward induction. Suppose that the players in the finite-stage

I game are ordered by their last stages of participation. Then at every PBE of the finite-

stage I game, each player i withholds his private information until after player i� 1 finishes

participating in the game, and then player i may truthfully reveal his private information in

any of the subsequent stages in which he participates. In particular, there exists a particular

PBE in this family where each player does not reveal any private information until his last

stage of participation, and this is arguably the worst PBE of this game for the goal of

information aggregation.

3.5.1 Delaying PBE of 3-stage I Game

We argue below that the delaying strategy is the only candidate PBE strategy for Alice in

the 3-stage I game. Theorem 2 essentially proves that the delaying PBE of the 3-stage I

game is unique with respect to Alice’s strategy, if a PBE exists for this game. Part of the

proof of Theorem 2 uses the argument in the proof of Theorem 2 in Chen et al. [2010b].

Theorem 2. If the 3-stage I game has a PBE, then Alice’s strategy at the PBE must be the

delaying strategy, i.e. changing the market estimate to the prior probability of the event in

the first stage.

The proof of Theorem 2 is included in Appendix A.1.1.

Sketch. We first argue that if a PBE exists for the 3-stage I game, then Alice’s first-stage

strategy at this PBE must be a deterministic strategy. We show this by contradiction by

assuming that there are at least two points in the support of Alice’s first-stage PBE strategy.

Then we construct another first-stage strategy achieving a better expected payo↵ for Alice,

which means that the original strategy cannot be a PBE strategy by Theorem 1. By the
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consistency condition, if Alice’s first-stage strategy is deterministic, it must be the strategy

of changing the market estimate to the prior probability of the event.

While the delaying strategy is the only possible PBE strategy for the 3-stage I game,

we still don’t know whether a PBE exists. In order for a PBE to exist, there must exist a

belief of Bob to ensure that Alice does not find it profitable to deviate from the delaying

strategy to any other strategy. Identifying such a belief for Bob can be challenging because

essentially we need to specify what Bob will do upon observing every possible report of Alice

in [0, 1]. In Theorem 3, we give an explicit construction of a PBE of the 3-stage I game

in which Alice uses the delaying strategy in the first stage. At this PBE, Alice’s first-stage

strategy reveals no information to Bob about her private signal, and Bob’s belief makes this

delaying strategy the optimal choice for Alice.

Theorem 3. There exists a PBE of the 3-stage I game where Alice’s first-stage strategy is

�sA(P(1)) = 1, 8sA 2 SA

and Bob’s second-stage strategy is

xsB(rA) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

fsB(↵
min

sB
), rA 2 [0,↵min

sB
)

fsB(rA), rA 2 [↵min

sB
,↵max

sB
]

fsB(↵
max

sB
), rA 2 (↵max

sB
, 1]

, 8sB 2 SB

where

fsB(rA) =
P(1|sB)P(0)rA

P(1)P(0|sB) + (P(1|sB)� P(1))rA

�min

sB
=min

sA
P(1|sA, sB), �max

sB
= max

sA
P(1|sA, sB)

↵min

sB
=f�1

sB
(�min

sB
),↵max

sB
= f�1

sB
(�max

sB
)

The proof of Theorem 3 is included in Appendix A.1.2.

Sketch. We describe the first part of the proof below showing that Bob’s strategy is a valid
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PBE strategy.

First, Bob’s belief on the equilibrium path is derived from Alice’s first-stage strategy

using Bayes’ rule since xsB(P(1)) = P(1|sB). Moreover, for Bob’s strategy to be a valid PBE

strategy, it must satisfy xsB(rA) 2 [minsA P(1|sA, sB),maxsA P(1|sA, sB)], 8sB, rA 2 [0, 1]. To

show this, note that by definition, �min

sB
< �max

sB
, ↵min

sB
< ↵max

sB
, and fsB(rA) is monotonically

increasing in rA 2 [0, 1] since

dfsB(rA)

drA
=

P(1)(1� P(1))P(1|sB)(1� P(1|sB))
{P(1)P(0|sB) + (P(1|sB)� P(1))rA}2

> 0

Hence the domain of xsB(rA) is well-defined. In addition, we have

�min

sB
= fsB(↵

min

sB
)  xsB(rA)  fsB(↵

max

sB
) = �max

sB
, 8rA 2 [0, 1].

Thus, Bob’s strategy is valid. The rest of the proof then proves that Alice’s delaying strategy

is a best response to Bob’s strategy.

Based on Theorems 2 and 3 above, we have established both the existence and the

uniqueness (with respect to Alice’s first-stage strategy) of the PBE for the 3-stage I game.

3.5.2 A Family of PBE for the Finite-Stage I Game

We are ready to characterize the PBE of the finite-stage I game. By using backward induction

and the delaying PBE of the 3-stage I game, we characterize a family of PBE of the finite-

stage I game in Theorem 4. At any PBE in this family, players delay revealing their private

information as much as possible.

We first generalize the consistency condition for the 3-stage game to the finite-stage

game in Lemma 2. This consistency condition dictates that, for any stage k, the posterior

probability of ! = 1 given the participants’ strategies and reports in the first k stages must

be equal to the report of the participant in stage k at any PBE of this game.

Lemma 2 (Consistency Condition for Finite-Stage Market Game). At a PBE of the finite-
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stage I game, suppose that �k and rk are the strategy and the report for the participant of

stage k respectively, then for every k, the participants’ strategies and reports must satisfy

equation (3.11).

P(1|r1, . . . , rk, �1, . . . , �k) = rk (3.11)

The proof of Lemma 2 is included in Appendix A.1.3.

In Lemma 3 below, we analyze the tail of the finite-stage I game starting from the second-

to-last stage of participation for the last player to the last stage of the game. The theorem

shows that, in terms of strategic play, this portion of the finite-stage I game essentially

reduces to a 3-stage I game. Thus, at any PBE, the last player chooses to not participate

in the game in his second-to-last stage of participation. This key argument will be used

repeatedly in the proof of the PBE of the finite-stage I game.

For Lemma 3 and Theorem 4, let the m players of the finite-stage I game be ordered by

their last stages of participation. That is, for any 1  i  m, let ti denote player i’s last

stage of participation, such that ti < tj for any 1  i < j  m. Without loss of generality,

we assume that player m has more than one stages of participations.

Lemma 3. Let stage k be the second to last stage of participation for player m (k < tm). At

any PBE of the finite-stage I game, player m does not change the market estimate in stage

k.

The proof of Lemma 3 is included in Appendix A.1.4.

Finally, in Theorem 4, we prove the existence of a family of PBE of the finite-stage I

game.

Theorem 4. At any PBE of the finite-stage I game, the players use the following strategies:

• From stage 1 to stage t
1

� 1, player 1 uses any strategy that satisfies the consistency

condition. In stage t
1

, player 1 truthfully reveals his signal.
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• For any 2  i  m� 1, from stage 1 to stage ti�1

� 1, player i does not participate in

the game. From stage ti�1

+ 1 to stage ti � 1, player i uses any strategy that satisfies

the consistency condition. In stage ti, player i truthfully reveals his signal.

• From stage 1 to stage tm � 1, player m does not participate in the game. In stage tm,

player m truthfully reveals his signal.

The proof of Theorem 4 is included in Appendix A.1.5.

Sketch. We describe the argument for player m and m� 1 here.

By properties of LMSR, player m truthfully reveals his signal in stage tm, which is the

last stage of the game. If stage t⇤ denotes the second to last stage of participation for player

m, then the game from stage t⇤ to tm can be reduced to a 3-stage I game (where player m is

Alice and other players participating between t⇤ and tm are a composite Bob). By Lemma 3,

player m does not participate in stage t⇤. Now remove this stage and let t⇤ be the new second

to last stage of participation for player m, and the game from stage t⇤ to tm again reduces

to a 3-stage I game. Applying Lemma 3 again, we know that player m does not participate

in stage t⇤ either. Inferring recursively, player m does not participate in any stage from 1 to

tm � 1.

For player m � 1, he truthfully reveals his signal in stage tm�1

by properties of LMSR.

From stage tm�2

+ 1 to tm�1

� 1, player m � 1 is the only participant because players 1

to m � 2 already finished participating and player m does not participate by our earlier

argument. Thus, player m � 1 uses any strategy satisfying the consistency condition from

stage tm�2

+1 to tm�1

�1. We combine the stages from tm�2

+1 to tm�1

�1 (denoted t⇤⇤) as

the new last stage for player m� 1. Let t⇤ be the new second to last stage of participation

for player m� 1, and note that t⇤ < tm�2

. Again, the game from stage t⇤ to t⇤⇤ reduces to a

3-stage I game (where player m�1 is Alice). By Lemma 3, player m�1 does not participate

in stage t⇤. Inferring recursively, player m � 1 does not participate in any stage from 1 to

tm�2

� 1.
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To understand Theorem 4, consider dividing the finite-stage I game into m segments with

player i being the owner of the segment from stage ti�1

+ 1 to stage ti. At any PBE, each

player does not participate in any stage before his segment, uses a strategy satisfying the

consistency condition within his segment, and truthfully reveals his private signal at the last

stage of his segment.

Figure 3.1 illustrates a particular PBE of a finite-stage I game. The letters A, B, and C

denote the three players and their sequence of participation. A black letter means that the

player truthfully reveals his signal in that stage. If the letter is gray, then the player uses

a strategy satisfying the consistency condition. Note that the strategy of not changing the

market estimate satisfies the consistency condition. A white letter means that the player is

scheduled to participate but does not change the market estimate in that stage. The thick

vertical bars mark the boundaries of the players’ segments in the game.

Figure 3.1: A PBE of a Finite-Stage I Game with 3 players

The multiple PBE of the finite-stage I game di↵er by how early each player chooses to

truthfully reveal his signal within his segment of the game. For the purpose of information

aggregation, the best case is when every player chooses to truthfully reveal his signal in the

first stage of his own segment. However, there exists a PBE where every player waits until

the last stage of his segment to truthfully reveal his information, and this is arguably the

worst PBE for the goal of information aggregation.

Although our model assumes a pre-specified participation order, our results still provide

useful insights for the I game if the players endogenously choose when to participate in the

game. Consider the I game with n stages and m < n players where each player endogenously

chooses in which stage to participate in the game. Our results for the I game suggest that, at

any PBE all players will choose to delay their participation and no information is reveal in the

first n�m stages. The exact characterization of PBE would critically depend on how multiple
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trades submitted in the same stage are executed. This dependency is generally undesirable.

Our assumption of pre-specified participation order circumvents this dependency and we

believe our results still provide useful insights for players’ behavior in this setting.

3.5.3 Discussion

The delaying PBE for the I game is arguably the worst outcome for the purpose of information

aggregation since each player’s private information may be incorporated into the market at

his last chance to trade in the market. For our market game, closing the market early may

to solve this problem by ensuring that each player’s information is incorporated early in

the market, as long as each player gets to trade at least once in the market. However, in

practice, closing the market early may not solve this problem. First, for our model, we

make the simplifying assumption that all players receive their private information before the

market opens and they do not receive new information later on. In practice, players do receive

new information over time, and closing the market early may prevent these new information

from being incorporated into the market. Moreover, another simplifying assumption in our

model is that player’s participation order is exogenously determined. In practice, players

endogenously determine when to participate in the market. Thus, if we reduce the time the

market is open, then some players may not be able to participate in the market, and thus

their information does not get incorporated into the market forecast.

When comparing the PBE of the finite-stage I game with the truthful PBE of the finite-

stage CI game [Chen et al., 2010b], it is interesting to note how two di↵erent information

structures can induce equilibrium behavior at the opposite ends of the spectrum: The players

in the CI game race to reveal their private information as early as possible, whereas the

players in the I game delay as much as possible to reveal their private information.

This di↵erence is spiritually consistent with the concepts of complementarity and sub-

stitution of private signals defined by Chen et al. [2010b]. Consider the ex ante expected

payo↵s of players. In the I games, players’ private signals can be intuitively considered as
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complements. When the current market prediction is the prior probability, the sum of play-

ers’ expected payo↵s when each player reports a posterior probability conditioned only on

his own private signal is strictly less than the total expected payo↵ that can be earned by

reporting a posterior probability conditioned on all of the available private signals in any I

game. This means that, every player in the I game prefers to wait for other players to make

their reports first since observing more reports and thus inferring more signals improve the

player’s expected payo↵. In contrast, in the CI games, players’ private signals are substi-

tutes. For any current market prediction, the sum of players’ expected payo↵s when each

player reports a posterior probability conditioned only on his own private signal is strictly

greater than the total expected payo↵ that can be earned by reporting a posterior probability

conditioned on all of the available private signals. Thus, players prefer to race to capitalize

on their private information early in the game.

3.6 The 3-Stage D Game

The CI and I games admit two families of PBE that seem to lie at the two extremes of the

spectrum: players race to reveal information early in the CI game, but race to withhold

information in the I game. It is interesting to ask whether some instances of the D game

may give rise to one of these two types of equilibria too. Yet, it is challenging to perform

equilibrium analysis for the D game, because the dependency among the players’ signals

does not provide precise mathematical conditions that we can leverage.

Our goal in this section is moderate. We would like to explore a restricted 3-stage D

game and obtain insights on what the players’ PBE strategies may look like for this game

if a PBE exists. We do not prove the existence of a PBE for this class. Nevertheless, we

provide a su�cient condition for the prior distribution, which guarantees the existence of a

truthful PBE for the D game. We also provide an example distribution that satisfies this

condition.
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In this section, we consider the 3-stage D game where Alice’s private signal has only 2

realizations. For this special case, we use a
0

and a
1

to denote Alice’s two possible signals.

3.6.1 An Expression for Alice’s Ex-Interim Expected Payo↵

To characterize PBE of the 3-stage D game, one major challenge is to construct Bob’s o↵-

equilibrium-path belief, that is, Bob’s belief for any Alice’s report that is not in the support

of Alice’s first-stage PBE strategy. One easy way to construct Bob’s belief is to assume that

any Alice’s report r is always in the support of Alice’s first-stage PBE strategy. In other

words, we can construct Bob’s belief for any Alice’s report r as if his belief is always on the

equilibrium path. Given this assumption, as long as the consistency condition is satisfied,

Bob’s belief for any r is uniquely determined.

In what follows, we derive an expression for Alice’s ex-interim expected payo↵ for a

given signal ai and a particular first-stage report r (denoted uai(r), i = 0, 1) at any PBE of

the 3-stage market game. When deriving uai(r), we assume that Alice’s first-stage payo↵

satisfies the consistency condition, Alice and Bob know each other’s strategies and beliefs,

and mostly importantly Bob’s belief for any Alice’s report r is derived as if the belief is on

the equilibrium path for any given r. That is, for any Alice’s report r, we assume that the

report r is always in the support of Alice’s first-stage strategy, and we construct Bob’s belief

for r using Bayes’ rule accordingly. The expression of uai(r) is given below. The complete

derivation is included in Appendix A.2.1.

uai(r) =P(1|ai) log
r

P(1)
+ P(0|ai) log

1� r

1� P(1)

+
X

sB

⇢

P(1, sB|ai) log
P(1|ai, sB)
xsB(r)

+ P(0, sB|ai) log
P(0|ai, sB)
1� xsB(r)

�

(3.12)

where xsB(r) is

xsB(r) =
P(1, sB|a0)(P(1|a1)� r) + P(1, sB|a1)(r � P(1|a

0

))

P(sB|a0)(P(1|a1)� r) + P(sB|a1)(r � P(1|a
0

))
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This expression is useful for our following discussion in several ways. First, given uai(r),

we can easily calculate Alice’s ex-ante expected payo↵ for using a particular strategy and use

it to identify Alice’s candidate PBE strategies by using Theorem 1. Second, to construct a

PBE of the market game using a particular Alice’s first-stage strategy, we must check whether

uai(r) satisfies the requirements of a PBE for any report r in the support of Alice’s first-stage

strategy. For instance, if r
1

and r
2

are both in the support of Alice’s first-stage strategy for

Alice’s signal ai, then the PBE requirements specify that we must have uai(r1) = uai(r2).

Finally, to construct a PBE of the 3-stage D game, we must specify Bob’s o↵ equilibrium

path belief. One easy way to construct Bob’s belief is to treat every Alice’s report r as if

it is on the equilibrium path. Given this assumption and the consistency condition, Bob’s

belief for every possible Alice’s report r is uniquely determined. Given that Bob’s belief is

constructed in this way, we can use uai(r) to check whether a given Alice’s first-stage strategy

and Bob’s belief can form a PBE of the 3-stage D game.

3.6.2 Three Candidate PBE Strategies for Alice

We identify three candidate PBE strategies for Alice in the 3-stage D game. These three

strategies are the truthful strategy, the delaying strategy, and a mixed strategy in which

Alice makes a deterministic report r for one realized signal and she mixes between reporting

r and reporting her true posterior probability estimate for the other realized signal. The

proof of Theorem 5 is included in Appendix A.1.6.

Theorem 5. If there exists a PBE of the 3-stage D game, then Alice must play one of the

following three strategies at the PBE 2:

• the truthful strategy: �ai(P(1|ai)) = 1, i = 0, 1

2Technically, Alice’s PBE strategy could be of the form �ai(P(1|ai)) = 1 � p,�ai(r) =
p,�a1�i(P(1|a1�i)) = 1 � q,�a1�i(r) = q, for some p, q 2 [0, 1], r 2 [minai P(1|ai),maxai P(1|ai)]. How-
ever, if there exists a PBE of a 3-stage D game where Alice plays this mixed strategy, then there also exists
a truthful PBE for this game. So we include this strategy as a special case when the 3-stage D game has a
truthful PBE.
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• the delaying strategy: �ai(P(1)) = 1, i = 0, 1

• the mixed strategy:

�ai(P(1|ai)) = 1� p, �ai(r) = p, �a1�i
(r) = 1, (3.13)

where p = P(a1�i)(r�P(1|a1�i))

P(ai)(P(1|ai)�r)
and uai(P(1|ai)) = uai(r) is satisfied

for some r 2 (minai2SA
P(1|ai),P(1)) [ (P(1),maxai2SA

P(1|ai)), i = 0, 1.

3.6.3 A Su�cient Condition for the Truthful PBE

In this section, we show in Theorem 6 that a monotonicity condition is su�cient for the

existence of a truthful PBE of the 3-stage D game. This monotonicity condition requires

that, for a fixed i = 0, 1, Alice’s ex-interim expected payo↵ uai(r) is monotonically decreasing

as the value of r changes from P(1|ai) to P(1|a
1�i). The proof of Theorem 6 is included in

Appendix A.1.7.

Intuitively, to construct a truthful equilibrium, we need to construct Bob’s belief such

that Alice’s ex-interim expected payo↵ given Bob’s belief is maximized when she reports

truthfully (i.e. r = P(1|ai), 8i = 0, 1). We construct Bob’s belief for every Alice’s report r

by assuming that r is always in the support of Alice’s first-stage strategy. Then, a truthful

equilibrium exists if and only if uai(r) is maximized when r = P(1|ai), 8i = 0, 1 for any

r 2 [max(P(1|ai),P(1|a1�i)),min(P(1|ai),P(1|a1�i))]. The monotonicity condition described

in Theorem 6 is simply a stronger condition, which ensures that Alice’s ex-interim expected

payo↵ is maximized at her truthful report given either of her signals.

Theorem 6. If for any i = 0, 1, uai(r) is monotonically decreasing as the value of r changes

from P(1|ai) to P(1|a
1�i), then there exists a PBE of the 3-stage D game where Alice’s

first-stage strategy is

�ai(P(1|ai)) = 1, 8i = 0, 1
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and Bob’s second-stage strategy is

xsB(r) =
P(1, sB|a0)(P(1|a1)� r) + P(1, sB|a1)(r � P(1|a

0

))

P(sB|a0)(P(1|a1)� r) + P(sB|a1)(r � P(1|a
0

))
, 8sB 2 SB (3.14)

Next, we give an example of a D information structure satisfying the monotonicity con-

dition above. The example was found through exhaustive search of the space of the D

information structures with a reasonable discretization factor. Nevertheless, it was rela-

tively easy to identify the example because it was easy to check whether uai(r) satisfies the

monotonicity condition.

Example 1. Consider an instance of the 3-stage D game where the prior distribution P

is given by Table 3.1. For this example, Bob only has two possible realized signals b
0

and

b
1

. This prior distribution satisfies the monotonicity condition specified in Theorem 6. As r

increases from P(1|a
0

) to P(1|a
1

), ua0(r) decreases and ua1(r) increases.

! = 1 ! = 0
a
0

a
1

a
0

a
1

b
0

0.15 0.2 b
0

0.2 0.05
b
1

0.05 0.05 b
1

0.25 0.05

Table 3.1: An example prior distribution. Each cell gives the value of P(!, ai, bj) for the
realized outcome !, Alice’s signal ai and Bob’s signal bj.

3.7 Conclusion and Future Work

We analyze how the the participants’ knowledge of one another’s private information, also

called the information structure, a↵ects their strategic behavior when trading in a prediction

market. We model the logarithmic market scoring rule prediction market as an extensive-

form Bayesian game, and characterize perfect Bayesian equilibria of this market game for

di↵erent information structures. When the participants’ private information is uncondition-

ally independent (I game), we show that there exists a unique family of PBE for the market

game with a finite number of players and a finite number of stages. At any PBE in this
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family, assuming that the players are ordered by their last stages of participation, each player

does not participate in the game before the previous player’s last stage of participation. In

particular, there exists a PBE where every player waits until their last stage of participation

to truthfully reveal their information, and this is arguably the worst outcome for information

aggregation. An immediate future direction is to determine whether a PBE exists for the I

game with a finite number of players but an infinite number of stages.

We also study a restricted version of the market game with 2 players and 3 stages where

the players’ private information is neither conditionally independent nor unconditionally

independent (D game). Our result narrows down the possible PBE strategies to three simple

strategies if a PBE exists. We conjecture that, there exists a PBE of this restricted D game

where the first participant plays one of these three strategies. For future work, we are

interested in proving the existence of the PBE of the D game for any information structure,

characterizing su�cient and necessary conditions for each type of PBE to exist, and exploring

whether the PBE results extend to the game with a finite or an infinite number of stages.

Regarding assumptions of our market model, an interesting future direction is to analyze

the PBE of a di↵erent model of prediction markets where the participants endogenously

choose when to trade in the market, instead of following a pre-specified participation se-

quence. This model better captures how participants trades in practice markets and may

provide more insights on how information is aggregated in prediction markets in practice.

47



Chapter 4

Prediction Markets with Outside

Incentives

Prediction markets are powerful tools created to aggregate information from individuals

about uncertain events of interest. As a betting intermediary, a prediction market allows

traders to express their private information by wagering on event outcomes and rewards their

contributions based on the realized outcome. The reward scheme in a prediction market is

designed to o↵er incentives for traders to reveal their private information. For instance,

Hanson’s market scoring rule [Hanson, 2007a] incentivizes risk-neutral, myopic traders to

truthfully reveal their probabilistic estimates by ensuring that truthful betting maximizes

their expected payo↵s. Substantial empirical work has shown that prediction markets pro-

duce remarkably accurate forecasts [Berg et al., 2001, Wolfers and Zitzewitz, 2004, Forsythe

et al., 1992, 1999, Debnath et al., 2003, Chen and Plott, 2002].

In many real-world applications, the ultimate purpose to adopt prediction markets is to

inform decision making. If a forecast gives early warning signs for a suboptimal outcome,

companies may want to take actions to try to influence and improve the outcome. For

example, if the forecasted release date of a product is later than expected, the company may

want to assign more resources to the manufacturing of the product. If the box o�ce revenue
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for a movie is forecasted to be less than expected, the production company may decide to

increase its spending on advertising for the movie. In 2005 and 2006, GE Energy piloted what

was called Imagination Markets where employees traded securities on new technology ideas

and the ideas with the highest average security price during the last five days of the trading

period were awarded research funding [Lacomb et al., 2007]. Subsequently, the GE-wide

Imagination Market was launched in 2008. In these scenarios, little is understood of how the

decision making process a↵ects the incentives for the participants of the prediction market.

If a market participant stands to benefit from a particular decision outcome, then he/she

may have conflicting incentives from inside and outside of the market. Moreover, when

the potential outside incentive is relatively more attractive than the payo↵ from inside the

market, the participant may have strong incentives to strategically manipulate the market

probability and deceive other participants.

We use flu prevention as a specific motivating example. Suppose that in anticipation of

the upcoming flu season, the US Centers for Disease Control and Prevention (CDC) would

like to purchase an appropriate number of flu vaccines and distribute them before the flu

season strikes. To accomplish this, the CDC could run a prediction market to generate a

forecast of the flu activity level for the upcoming flu season, and decide on the number of flu

vaccines to purchase and distribute based on the market forecast. In this case, suppliers of

flu vaccines, such as pharmaceutical companies, may have conflicting incentives inside and

outside of the market. A pharmaceutical company can maximize its payo↵ within the market

by truthfully reporting its information in the market or increase its profit from selling flu

vaccines by driving up the final market probability. This outside incentive may cause the

pharmaceutical company to manipulate the market probability in order to mislead the CDC

about the expected flu activity level.

When participants have outside incentives to manipulate the market probability, it is

questionable whether information can be fully aggregated in the prediction market, leading

to an accurate forecast. In this work, we investigate information aggregation in predic-
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tion markets when such outside incentives exist. We characterize multiple perfect Bayesian

equilibria (PBE) of our game and try to identify a desirable equilibrium among them. In

particular, many of these equilibria are separating PBE, where the participant with the out-

side incentive makes a costly move in order to credibly reveal her private information and

information is fully aggregated at the end of the market. Our results are summarized in the

next section.

4.1 Our Results

We study a Bayesian model of a logarithmic market scoring rule (LMSR) [Hanson, 2007a]

prediction market with two participants. Following a predefined sequence, each participant

makes a single trade. The first participant has an outside incentive, which is certain and

common knowledge. Specifically, the first participant receives an additional payo↵ from out-

side of the market, which is a result of a decision made based on the final market probability

before the outcome of the event is realized. Due to the presence of this outside incentive, the

first participant may want to mislead the other participant in order to maximize her total

payo↵ from inside and outside of the market. Surprisingly, we show that there may exist a

separating PBE, where every participant changes the market probability to di↵erent values

when they receive di↵erent private information. In general, a separating equilibrium is desir-

able because all the private information gets incorporated into the final market probability.

For our model, the existence of a separating PBE requires that the prior distribution and

the outside incentive satisfy a particular condition and a separating PBE is achieved because

the first participant makes a costly move in order to gain trust of the other participant.

When a separating PBE exists, we characterize all pure strategy separating PBE of our

game. However, regardless of the existence of separating PBE, there also exist pooling PBE,

where the first participant changes the market probability to the same value after receiving

di↵erent private information. At a pooling PBE, information loss occurs because the first
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participant is unable to convince the other participant of her intention to be honest, even if

she intends to be honest. We characterize a set of pooling equilibria of our game in which

the behavior of the first participant varies from revealing most of her private information to

revealing nothing.

Although it is di�cult to conclude which PBE will be reached in practice, we show that,

under certain conditions, two separating PBE, denoted SE
1

and SE
2

, are more desirable

than many other PBE. By applying domination-based belief refinement, we show that in

every separating PBE satisfying the refinement, the first participant’s strategy is identical to

her strategy in SE
1

. Under certain conditions, this belief refinement also excludes a subset

of the pooling PBE of our game. Moreover, we establish that any separating PBE maxi-

mizes the total expected payo↵s of the participants, if the outside incentive is an increasing

convex function of the final market probability. In addition, we analyze the PBE from the

perspective of a particular participant. The expected payo↵ of the first participant who

has the outside incentive is maximized in the separating PBE SE
1

, among all separating

PBE of our game. Under certain conditions, the first participant also gets a larger expected

payo↵ in the separating PBE SE
1

compared to a set of pooling PBE of our game. For the

second participant, his expected payo↵ is maximized in the separating PBE SE
2

among all

separating PBE of our game. Such evidence suggests that the separating PBE SE
1

and SE
2

are more desirable than other equilibria of our game.

Finally, we examine more general settings. Our results of the basic model are extended

to other market scoring rules. When the existence of the outside incentive is uncertain, we

derive a negative result that there does not exist a separating PBE where information is

fully aggregated. When a separating PBE exists for our game, we discuss a mapping from a

subset of the separating PBE of our game to the set of separating PBE of Spence’s job market

signaling game [Spence, 1973]. This mapping provides nice intuitions for the existence of

this subset of separating PBE.
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4.2 Related Work

In a prediction market, participants may have incentives from inside or outside of the market

to manipulate the market probability. Our work analyzes the strategic behavior of market

participants due to outside incentives. In the literature, the work by Dimitrov and Sami

[2010b] is the closest to our own. They study a model of two market scoring rule prediction

markets for correlated events with two participants, Alice and Bob. Alice trades in the first

market, and then trades in the second market after Bob. When considering the first market,

Alice has an outside incentive because her trade in the first market can mislead Bob and she

can obtain a higher profit in the second market by correcting Bob’s mistake. In our model

with only one market, the first participant also has an outside incentive, but the incentive is a

payo↵ that monotonically increases with the final market probability. In addition, Dimitrov

and Sami [2010b] focus on deriving properties of the players’ equilibrium payo↵s, whereas

we explicitly characterize equilibria of our game and analyze the players’ payo↵s at these

equilibria.

Even if there is no outside incentive, a participant in a prediction market may still have

incentive from within the market to behave strategically. For instance, if a participant has

multiple opportunities to trade in a market scoring rule prediction market, he may choose to

withhold information in the earlier stages in order to make a larger profit later on, causing

information loss in the process. Chen et al. [2010a] and our work in Chapter 3 show that

the equilibria and information revelation in such settings depend on the structure of the

participants’ private information. Ostrovsky [2011] and Iyer et al. [2010b] focus on studying

information aggregation at any PBE of a prediction market instead of directly characterizing

the equilibria. Ostrovsky [2011] analyzes an infinite-stage, finite-player market game with

risk-neutral players. He characterized a condition under which the market price of a security

converges in probability to its expected value conditioned on all information at any PBE. Iyer

et al. [2010b] extend the setting of Ostrovsky [2011] to risk-averse players and characterized

the condition for full information aggregation in the limit at any PBE. In this work, to
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isolate the e↵ect of outside incentives, we focus on settings where participants do not have

incentives inside the market to manipulate the market probability.

Some recent studies consider incentives for participants to misreport their probability

estimates in di↵erent models of information elicitation and decision making. Shi et al.

[2009] consider a setting in which a principal elicits information about a future event while

participants can take hidden actions outside of the market to a↵ect the event outcome. They

characterize all proper scoring rules that incentivize participants to honestly report their

probability estimates but do not incentivize them to take undesirable actions. Othman

and Sandholm [2010] pair a scoring rule with a decision rule. In their model, a decision

maker needs to choose an action among a set of alternatives; he elicits from an expert the

probability of a future event conditioned on each action being taken; the decision maker then

deterministically selects an action based on the expert’s prediction. They find that for the

max decision rule that selects the action with the highest reported conditional probability for

the event, no scoring rule strictly incentivizes the expert to honestly report his conditional

probabilities. Chen and Kash [2011] and Chen et al. [2011] extend the model of Othman and

Sandholm to settings of stochastic decision rules with a single expert and decision markets

with multiple experts respectively and characterized all scoring rules that incentivize honest

reporting of conditional probabilities. The above three studies [Othman and Sandholm, 2010,

Chen and Kash, 2011, Chen et al., 2011] assume that experts do not have an inherent interest

in the decision and they derive utility only from the scoring rule payment. Boutilier [2012]

however considers the setting in which an expert has an inherent utility in the decision and

develop a set of compensation rules that when combined with the expert’s utility induces

proper scoring rules. Our work does not intend to design mechanisms to achieve good

incentive properties in the presence of outside incentives. Instead, we study the impact

of outside incentives on trader behavior and information aggregation in prediction markets

using standard mechanisms.

In this work, we model a participant’s outside incentive as a function of the final market
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price. This is to capture scenarios where the participant’s utility will be a↵ected by some

external decision, which will be made based on the final market price but prior to the

realization of the event outcome. In some other scenarios, however, a participant may simply

have preferences over event outcomes, i.e. the participant’s utility is state-dependent. For

example, a pharmaceutical company may make more profit when the flu activity level is

widespread than when it is sporadic. In such scenarios, the participant with state-dependent

utility, if risk averse, may trade in the prediction market for risk hedging and potentially

a↵ect the information aggregation in the market. We assume that all participants are risk

neutral and hence this work does not capture the risk hedging setting. If the participant

with state-dependent utility is risk neutral, her payo↵ inside the market is independent of

her utility outside of the market. The problem then reduces to market manipulation without

outside incentives studied by Chen et al. [2010a], us in Chapter 3, and Ostrovsky [2011].

There are some experimental and empirical studies on price manipulation in prediction

markets due to incentives from outside of the market. The studies by Hansen et al. [2004a]

and by Rhode and Strumpf [2004] analyze historical data of political election betting mar-

kets. Both studies observe that these markets are vulnerable to price manipulations because

media coverage of the market prices may influence the population’s voting behavior. For in-

stance, Hansen et al. [2004a] describe an email communication in which a party encouraged

its members to acquire contracts for the party in order to influence the voters’ behaviors

in the 1999 Berlin state elections, and it had temporary e↵ects on the contract price. Ma-

nipulations in these studies were attempts not to derive more profit within the market but

instead to influence the election outcome. These studies inspire us to theoretically study

price manipulation due to outside incentives.

In a similar spirit, Hanson et al. [2007] conducted a laboratory experiment to simulate an

asset market in which some participants have an incentive to manipulate the prices. In their

experiment, subjects receive di↵erent private information about the common value of an as-

set and they trade in a double auction mechanism. In their Manipulation treatment, half of
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the subjects receive an additional payo↵ based on the median transaction prices, so they (i.e.

manipulators) have an incentive to raise the prices regardless of their private information.

Hanson et al. [2007] observed that, although the manipulators attempted to raise the prices,

they did not a↵ect the information aggregation process and the price accuracy because the

non-manipulators accepted trades at lower prices to counteract these manipulation attempts.

This experiment closely resembles our setting because the incentive to manipulate is a payo↵

as a function of the market prices. However, there are two important di↵erences. First, the

additional payo↵ depends on the transaction prices throughout the entire trading period

whereas in our setting the additional payo↵ depends only on the final market price. Second,

in Hanson’s experiment, although the existence of manipulators is common knowledge, the

identities of these manipulators are not known. In our model, we assume that the manip-

ulators’ identities are common knowledge. These di↵erences may account for the di↵erent

results in the two settings where manipulations did not have significant e↵ect in Hanson’s

experiment whereas in our model there exist pooling equilibria where manipulations can

cause information loss. In particular, the separating equilibria in our setting may not be

achievable in Hanson’s experiment because the anonymous manipulators cannot establish

credibility with the other participants.

There are also experiments studying the e↵ects of price manipulations on the information

aggregation process in prediction markets without specifying the reasons for such manipula-

tions. Camerer [1998] tried to manipulate the price in a racetrack parimutuel betting market

by placing large bets. These attempts were unsuccessful and he conjectured the reason to

be that not all participants tried to make inferences from these bets. In their laboratory ex-

periment, Jian and Sami [2010] set up several market scoring rule prediction markets where

participants may have complementary or substitute information and the trading sequence

may or may not be structured. They found that previous theoretical predictions of strategic

behavior by Chen et al. [2010a] are confirmed when the trading sequence is structured. Both

studies suggest that whether manipulation can have a significant impact on price accuracy
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depends critically on the extent to which the participants know about other participants

and reason about other participants’ actions. In our setting, we assume that all information

is common knowledge except each participant’s private information, so manipulation can

have a significant impact on price accuracy because participants can make a great amount

of inference about each other and about the market price.

When separating PBE of our game exist, our game has a surprising connection to Spence’s

job market signaling game [Spence, 1973]. In the signaling game, there are two types of

workers applying for jobs. They have di↵erent productivity levels that are not observable

and they can choose to acquire education, the level of which is observable. Spence show that,

there exist separating PBE where the high productivity workers can use costly education

as a signal to the employers in order to distinguish themselves from the low productivity

workers. In our setting, we derive a similar result that at a separating PBE, one type of

the first participant takes a loss by misreporting her information as a signal to the second

participant in order to distinguish herself from her other type. We discuss this connection

in detail in Section 4.7.

4.3 The Market Game

4.3.1 The 2-Stage Market Game

In this work, we study the MSR market with two rational, risk-neutral participants Alice

and Bob. They receive private signals described by the random variables SA and SB with

realizations sA, sB 2 {H, T}1. Let P denote a joint prior probability distribution over ⌦, SA

and SB. We assume P is common knowledge and omit it in our notation for brevity.

1Our results can be easily extended to a more general setting in which Bob’s private signal has a finite
number n of realizations where n > 2. However, it is non-trivial to extend our results to the setting in which
Alice’s private signal has any finite number n of possible realizations. The reason is that our analysis relies
on finding an interval for each of Alice’s signals, where the interval represents the range of reports that do
not lead to a guaranteed loss for Alice when she receives this signal, and ranking all endpoints of all such
intervals. The number of possible rankings is exponential in n, making the analysis challenging.
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We define fsA,; = P(! = 1|SA = sA) and f;,sB = P(! = 1|SB = sB) to represent the

posterior probability for ! = 1 given Alice’s and Bob’s private signal respectively. Similarly,

fsA,sB = P(! = 1|SA = sA, SB = sB) represents the posterior probability for ! = 1 given

both signals. We assume that Alice’sH signal indicates a strictly higher probability for ! = 1

than Alice’s T signal, for any realized signal sB for Bob, i.e. fH,sB > fT,sB , 8sB 2 {H, T}.

In addition, we assume that without knowing Bob’s signal, Alice’s signal alone also predicts

a strictly higher probability for ! = 1 with the H signal than with the T signal and Alice’s

signal alone can not predict ! with certainty, i.e. 0 < fT,; < fH,; < 1.

In the context of our flu prediction example, we can interpret the realization ! = 1 as

the event that the flu is widespread and ! = 0 as the event that it is not. Then the two

private signals can be any information acquired by the participants about the flu activity,

such as the person’s own health condition.

In our basic model, the market game has two stages. The sequence of participation is

Alice and then Bob. Alice changes the market probability from r0 to rA in stage 1 and Bob,

observing Alice’s report rA in stage 1, changes the market probability from rA to rB in stage

2.

In addition to Alice and Bob’s payo↵s from within the market, Alice also has an outside

payo↵ Q(rB), which is a real-valued, non-decreasing function of the final market probability

rB. In the flu prediction example, this outside payo↵ may correspond to the pharmaceutical

company’s profit from selling flu vaccines. The outside payo↵ function Q(·) is common

knowledge.

Even though our described setting is simple, with two participants, two realized signals

for each participant, and two stages, our results of this basic model are applicable to more

general settings. For instance, Bob can represent a group of participants who only participate

after Alice and do not have the outside payo↵. Also, our results remain the same if another

group of participants come before Alice in the market as long as these participants do not

have the outside payo↵ and they only participate in the market before Alice’s stage of
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participation. We examine more general settings in Section 4.6.

4.3.2 Solution Concept and Players’ Strategies

Our solution concept is the perfect Bayesian equilibrium (PBE) [Fudenberg and Tirole, 1991],

which is a subgame-perfect refinement of Bayesian Nash equilibrium. Informally, a strategy-

belief pair is a PBE if the players’ strategies are optimal given their beliefs at any time in

the game and the players’ beliefs can be derived from other players’ strategies using Bayes’

rule whenever possible.

Alice’s first-stage strategy is a mapping � : {H, T} ! �([0, 1]), where �([0, 1]) is the set

of probability distributions over [0, 1]. When a strategy maps to a report with probability

1 for both signals, the strategy is a pure strategy; otherwise, it is a mixed strategy. We

use �sA(rA) to denote the probability for Alice to report rA after receiving the sA signal.

We further assume that the support of Alice’s strategy is finite2. If Alice does not have

an outside payo↵, her optimal equilibrium strategy facing the market scoring rule would be

to report fsA,; with probability 1 after receiving the sA signal, since she only participates

once. However, Alice has the outside payo↵ in our model. So she may find reporting other

values more profitable if by doing so she can a↵ect the final market probability in a favorable

direction.

In stage 2 of our game, Bob changes the market probability from rA to rB. We denote

Bob’s belief as a mapping µ : {H, T}⇥ [0, 1] ! �({H, T}), and we use µsB ,rA(sA) to denote

the probability that Bob assigns to Alice having received the sA signal given that she reported

rA and Bob’s signal is sB. Since Bob participates last and faces a strictly proper scoring rule

in our game, his strategy at any equilibrium is uniquely determined by Alice’s report rA, his

realized signal sB and his belief µ; he will report rB = µsB ,rA(H)fH,sB + µsB ,rA(T )fT,sB .

Thus, to describe a PBE of our game, it su�ces to specify Alice’s strategy and Bob’s belief

2This assumption is often used to avoid the technical di�culties that perfect Bayesian equilibrium has
for games with a continuum of strategies. See the work by Cho and Kreps [Cho and Kreps, 1987] for an
example.
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because Alice is the first participant in the market and Bob has a dominant strategy which

is uniquely determined by his belief. To show that Alice’s strategy and Bob’s belief form a

PBE of our game, we only need to show that Alice’s strategy is optimal given Bob’s belief

and Bob’s belief can be derived from Alice’s strategy using Bayes’ rule whenever possible.

In our PBE analysis, we use the notions of separating and pooling PBE, similar to the

solution concepts used by Spence [Spence, 1973]. These PBE notions mainly concern Alice’s

equilibrium strategy because Bob’s optimal PBE strategy is always a pure strategy. In

general, a PBE is separating if for any two types of each player, the intersection of the

supports of the strategies of these two types is an empty set. For our game, Alice has

two possible types, determined by her realized signal. A separating PBE of our game is

characterized by the fact that the supports of Alice’s strategies for the two signals do not

intersect with each other. At a separating PBE, information is fully aggregated since Bob

can accurately infer Alice’s signal from her report and always make the optimal report. In

contrast, a PBE is pooling if there exist at least two types of a particular player such that,

the intersection of the supports of the strategies of these two types is not empty. At a pooling

PBE of our game, the supports of Alice’s strategies have a nonempty intersection and Bob

may not be able to infer Alice’s signal from her report.

For our analysis on separating PBE, we focus on characterizing pure strategy separating

PBE. These pure strategy equilibria have succinct representations, and they provide clear

insights into the participants’ strategic behavior in our game.

4.4 Known Outside Incentive

In our basic model, it is certain and common knowledge that Alice has the outside payo↵.

If Alice reports truthfully in the market and Bob believes that she is being truthful, then

Alice’s outside payo↵ when she receives the H signal is larger than her outside payo↵ when

she receives the T signal. Due to the presence of the outside payo↵, Alice may want to
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mislead Bob by pretending to have the signal H when she actually has the unfavorable

signal T , in order to drive up the final market probability and gain a higher outside payo↵.

Bob recognizes this incentive, and in equilibrium should discount Alice’s report accordingly.

In an equilibrium of the market, Alice balances these two conflicting forces. Therefore, we

naturally expect information loss in equilibrium due to Alice’s manipulation.

However, from another perspective, Alice’s welfare is also hurt by her manipulation since

she incurs a loss in her outside payo↵ when having the favorable signal H due to Bob’s

discounting.

In the following analysis, we characterize (pure strategy) separating and pooling PBE of

our basic model. We emphasize on separating PBE because they achieve full information

aggregation at the end of the market. By analyzing Alice’s strategy space, we derive a

succinct condition that is necessary and su�cient for a separating PBE to exist for our

game. If this condition is satisfied, at any separating PBE of our game, Alice makes a costly

statement, in the form of a loss in her market scoring rule payo↵, in order to convince Bob that

she is committed to fully revealing her private signal, despite the incentive to manipulate.

If the condition is violated, there does not exist any separating PBE and information loss is

inevitable.

4.4.1 Truthful vs. Separating PBE

The ideal outcome of this game is a truthful PBE where each trader changes the market

probability to the posterior probability given all available information. A truthful PBE is

desirable because information is immediately revealed and fully aggregated. However, we

focus on separating PBE. The class of separating PBE corresponds exactly to the set of PBE

achieving full information aggregation, and the truthful PBE is a special case in this class.

Even when a truthful PBE does not exist, some separating PBE may still exist. We describe

an example of the nonexistence of truthful PBE below.
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At a truthful PBE, Alice’s strategy is

�H(fH,;) = 1, �T (fT,;) = 1, (4.1)

whereas at a (pure strategy) separating PBE, Alice’s strategy can be of the form

�H(p1) = 1, �T (p2) = 1. (4.2)

for any p
1

, p
2

2 [0, 1] and p
1

6= p
2

.

In our market model, Alice maximizes her expected market scoring rule payo↵ in the

first stage by reporting fsA,; after receiving the sA signal. If she reports rA instead, then she

incurs a loss in her expected payo↵. We use L(fsA,;, rA) to denote Alice’s expected loss in

market scoring rule payo↵ by reporting rA rather than fsA,; after receiving the sA signal as

follows:

L(fsA,;, rA) = fsA,; log
fsA,;

rA
+ (1� fsA,;) log

1� fsA,;

1� rA
, (4.3)

which is the Kullback-Leibler divergence DKL(fsA ||r) where fsA = (fsA,;, 1 � fsA,;) and

r = (rA, 1 � rA). The following proposition describes some useful properties of L(fsA,;, rA)

that will be used in our analysis in later sections.

Proposition 1. For any fsA,; 2 (0, 1), L(fsA,;, rA) is a strictly increasing function of rA and

has range [0,+1) in the region rA 2 [fsA,;, 1); it is a strictly decreasing function of rA and

has range [0,+1) in the region rA 2 (0, fsA,;]. For any rA 2 (0, 1), L(fsA,;, rA) is a strictly

decreasing function of fsA,; for fsA,; 2 [0, rA] and a strictly increasing function of fsA,; for

fsA,; 2 [rA, 1].

The proposition can be easily proven by analyzing the first-order derivatives of L(fsA,;, rA).

For completeness, we include the proof in Appendix B.1. Lemma 4 below gives a su�cient

condition on the prior distribution and outside payo↵ function for the nonexistence of the

truthful PBE.

61



Lemma 4. For any prior distribution P and outside payo↵ function Q(·), if inequality (4.4)

is satisfied, Alice’s truthful strategy given by (4.1) is not part of any PBE of this game.

L(fT,;, fH,;) < ESB
[Q(fH,SB

)�Q(fT,SB
) | SA = T ] (4.4)

Proof. We prove by contradiction. Suppose that inequality (4.4) is satisfied and there exists

a PBE of our game in which Alice uses her truthful strategy. At this PBE, Bob’s belief on

the equilibrium path must be derived from Alice’s strategy using Bayes’ rule, that is,

µsB ,fH,;(H) = 1, µsB ,fT,;(T ) = 1. (4.5)

Given Bob’s belief, Alice can compare her expected payo↵ of reporting fH,; with her

expected payo↵ of reporting fT,; after receiving the T signal. If Alice chooses to report fH,;

with probability 1 after receiving the T signal, then her expected gain in outside payo↵ is

ESB
[Q(fH,SB

)�Q(fT,SB
) | SA = T ] (RHS of inequality (4.4)) and her expected loss in market

scoring rule payo↵ is L(fT,;, fH,;) (LHS of inequality (4.4)). Because of (4.4), Alice has a

positive net gain in her total expected payo↵ if she reports fH,; instead of fT,; after receiving

the T signal. This contradicts the assumption that the truthful strategy is an equilibrium

strategy.

Intuitively, the RHS of inequality (4.4) computes Alice’s maximum possible gain in out-

side payo↵ when she has the T signal assuming Bob (incorrectly) believes that Alice received

the H signal. Thus, if the outside payo↵ increases rapidly with the final market probability,

Alice’s maximum potential gain in outside payo↵ can outweigh her loss inside the market

due to misreporting, which is given by the LHS of inequality (4.4).

In Appendix B.2, we present and discuss Example 2, which shows a prior distribution

and an outside payo↵ function for which inequality (4.4) is satisfied and thus the truthful

PBE does not exist. This is one of many examples where the truthful PBE does not exist.

When we discuss the nonexistence of any separating PBE in section 4.4.3, we will present

another pair of prior distribution and outside payo↵ function in Example 3 where a truthful
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PBE also fails to exist.

4.4.2 A Deeper Look into Alice’s Strategy Space

Alice’s strategy space is the interval [0, 1] as she is asked to report a probability for ! = 1.

Her equilibrium strategy critically depends on the relative attractiveness of her expected

market scoring rule payo↵ and her expected outside payo↵, which depends on the prior

distribution and the outside payo↵ function. In this section, we partition Alice’s strategy

space using some some key values in order to facilitate our equilibrium analysis.

First, to illustrate the intuition, we define the the key values in Alice’s strategy space

by partitioning Alice’s strategy space in the following way, illustrated in Figure 4.1. For

each signal sA, the blue regions contain values for Alice’s reports that are dominated by her

truthful reports, regardless of Bob’s strategy. The white regions contain values for Alice’s

reports that are not dominated by her truthful reports, for some strategy for Bob. This

partition shows that, given a particular realized signal, it only makes sense for Alice to

consider reporting values in the white regions. For Alice’s signal sA, we define YsA and Y�sA

to be the upper and lower bound values for the white regions respectively. These values

are well defined and uniquely determined given the prior joint distribution and the outside

payo↵ function.

Next, we formally define YsA and Y�sA . Given a prior distribution P and an outside

payo↵ function Q, for sA 2 {H, T}, we define YsA to be the unique value in [fsA,;, 1] satisfying

equation (4.6) and Y�sA to be the unique value in [0, fsA,;] satisfying equation (4.7):

L(fsA,;, YsA) =ESB
[Q(fH,SB

)�Q(fT,SB
) | sA], (4.6)

L(fsA,;, Y�sA) =ESB
[Q(fH,SB

)�Q(fT,SB
) | sA]. (4.7)

The RHS of the above two equations take expectations over all possible realizations of Bob’s

signal given Alice’s realized signal sA. Thus, the values of YsA and Y�sA depend only on

Alice’s realized signal sA and are independent of Bob’s realized signal.
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Figure 4.1: An illustration of YH and YT by partitioning Alice’s strategy space. The blue
regions contain Alice’s reports that are dominated by truthful reports. The white regions
contain Alice’s reports that are not dominated by truthful reports. YH and YT are the upper
bound values for the white regions.

Note that the RHS of equations (4.6) and (4.7) are nonnegative because fH,sB > fT,sB for

all sB and Q(·) is a non-decreasing function. By the properties of the loss function L
(

fsA,;, rA)

described in Proposition 1, YsA and Y�sA always exist and are well defined — given any pair

of prior distribution and outside payo↵ function, there always exist YsA 2 [fsA,;, 1) and

Y�sA 2 (0, fsA,;] such that equations (4.6) and (4.7) are satisfied. We note that YsA < 1 and

Y�sA > 0 because L(fsA,;, r) ! 1 as r ! 0 or r ! 1.

Intuitively, YsA and Y�sA are the maximum and minimum values that Alice might be

willing to report in order to convince Bob that she has the H signal, after receiving the

sA signal respectively. The RHS of equations (4.6) and (4.7) are Alice’s maximum possible

expected gain in outside payo↵ by reporting some value rA when she has the sA signal. This

maximum expected gain would be achieved if Bob had the belief that Alice has the H signal

when she reports rA and the T signal otherwise. So YsA and Y�sA are reports for Alice such

that her loss in market scoring rule payo↵ is exactly equal to her maximum and minimum

expected gain in outside payo↵ respectively. Thus, for any realized signal sA, Alice would

not report any value outside of the range [Y�sA , YsA ] because doing so is strictly dominated
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by reporting truthfully, regardless of Bob’s belief.

For each realized signal sA, Alice’s strategy space is partitioned into three distinct ranges,

[0, Y�sA ], (Y�sA , YsA), and [YsA , 1]. However, the partition of Alice’s entire strategy space

depends on the relative positions of YH , Y�H , YT , and Y�T , which in turn depend on the

prior distribution and the outside payo↵ function. In the proposition below, we state several

relationships of YH , Y�H , YT , Y�T , fH,;, and fT,; that hold for all prior distributions and

outside payo↵ functions.

Proposition 2. For all prior distributions and outside payo↵ functions, the following in-

equalities are satisfied:

YH � fH,; � Y�H , (4.8)

YT � fT,; � Y�T , (4.9)

YH � Y�T . (4.10)

Proof. (4.8) and (4.9) hold by definition of YsA and Y�sA . Because we assume fH,; > fT,;,

we have YH � fH,; > fT,; � Y�T . Thus, YH � Y�T .

The relationships between YH and YT , YT and Y�H , and Y�H and Y�T depend on the prior

distribution and the outside payo↵ function. Next, we prove Proposition 3 below, which is

useful for later analyses.

Proposition 3. L(fH,;, YT )  L(fH,;, Y�T ) and the equality holds only when YT = Y�T .

This proposition is a direct consequence of Proposition 1. We include the proof in Ap-

pendix B.3.

4.4.3 A Necessary and Su�cient Condition for Pure Strategy Sep-

arating PBE

If a separating PBE exists for our game, it must be the case that when Alice receives the H

signal, she can choose to report a particular value which convinces Bob that she is revealing

65



her H signal truthfully. We show that this is possible if and only if the condition YH � YT is

satisfied. When YH � YT , if Alice receives the T signal, reporting rA 2 [YT , YH ] is dominated

by reporting fT,;. (Alice may be indi↵erent between reporting YT and fT,;. Otherwise, the

domination is strict.) So by reporting a high enough value rA 2 [YT , YH ] after receiving

the H signal, Alice can credibly reveal to Bob that she has the H signal. However, when

YH < YT , this is not possible. We show below that YH � YT is necessary and su�cient for a

separating PBE to exist for this game.

Su�cient Condition

To show that YH � YT is a su�cient condition for a separating PBE to exist, we characterize

a particular separating PBE, denoted SE
1

when YH � YT . At this separating PBE, Alice’s

strategy � and Bob’s belief µ are given below:

SE
1

:
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>

>

>

>

>

>

>
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>
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<

>
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:

�H(max (YT , fH,;)) = 1, �T (fT,;) = 1

When Y�T < YT , µsB ,rA(H) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1, if rA 2 [YT , 1]

0, if rA 2 (Y�T , YT )

1, if rA 2 [0, Y�T ]

.

When Y�T = YT , µsB ,rA(H) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1, if rA 2 (YT , 1]

0, if rA = YT = Y�T

1, if rA 2 [0, Y�T )

.

(4.11)

The special case Y�T = YT only happens when Y�T = fT,; = YT , where SE1

is a truthful

betting PBE. Intuitively, when fH,; < YT , Alice is willing to incur a high enough cost by

reporting YT after receiving the H signal, to convince Bob that she has the H signal. Since

Bob can perfectly infer Alice’s signal by observing her report, he would report fsA,sB in stage

2 and information is fully aggregated. Alice lets Bob take a larger portion of the market

scoring rule payo↵ in exchange for a larger outside payo↵.
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In SE
1

, Bob’s belief says that if Alice makes a report that is too high to be consistent

with the T signal (rA > YT ), Bob believes that she received the H signal. This is reasonable

since Alice has no incentive to report a value that is greater than YT when she receives the

T signal by the definition of YT . Similarly, if Alice makes a report that is too low to be

consistent with the T signal (rA < Y�T ), Bob also believes that she received the H signal.

If Alice reports a value such that reporting this value after receiving the T signal is not

dominated by reporting fT,; (rA 2 (Y�T , YT )), then Bob believes that she received the T

signal.

Theorem 7. If YH � YT , SE1

described in (4.11) is a separating PBE of our game.

Proof. First, we show that if YH � YT , then Alice’s strategy is optimal given Bob’s belief.

When Alice receives the T signal, by definition of YT , Alice would not report any rA > YT ,

and furthermore she is indi↵erent between reporting YT and fT,;. By definition of Y�T , Alice

would not report any rA < Y�T , and she is indi↵erent between reporting Y�T and fT,;. Any

other report that is less than YT and greater than Y�T is dominated by a report of fT,; given

Bob’s belief. Therefore, it is optimal for Alice to report fT,; after receiving the T signal.

When Alice receives the H signal and Y�T < YT , given Bob’s belief, she maximizes her

expected outside payo↵ by reporting any rA 2 [0, Y�T ] [ [YT , 1]. Now we consider Alice’s

expected market scoring rule payo↵. By Proposition 3, if fH,; < YT , reporting any rA  Y�T

is strictly dominated by reporting YT and Alice maximizes her expected market scoring rule

payo↵ by reporting YT . Otherwise, if fH,; � YT , then Alice maximizes her expected market

scoring rule payo↵ by reporting fH,;. When Alice receives the H signal and Y�T = YT ,

it must be that fH,; > YT . Given Bob’s belief in this case, Alice maximizes her expected

market scoring rule payo↵ by reporting fH,;. Therefore, when Alice receives the H signal, it

is optimal for her to report max(YT , fH,;).

Moreover, we can show that Bob’s belief is consistent with Alice’s strategy by mechani-

cally applying Bayes’ rule (argument omitted). Thus, SE
1

is a PBE of this game.
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Necessary Condition

In Theorem 7, we characterized a separating PBE when YH � YT . In this part, we show

that if YH < YT , there no longer exists a separating PBE. Intuitively, when YH < YT , even if

Alice is willing to make a costly report of YH — which is the maximum value she would be

willing to report after receiving the H signal — she still cannot convince Bob that she will

report her T signal truthfully since her costly report is not su�cient to o↵set her incentive

to misreport when having the T signal.

We first prove two useful lemmas. Lemma 5 states that, at any separating PBE, after

receiving the T signal, Alice must report fT,; with probability 1. Lemma 6 says that at

any separating PBE, after receiving the H signal, Alice does not report any rA 2 (Y�T , YT ).

Then we show in Theorem 8 that YH � YT is a necessary condition for a separating PBE to

exist.

Lemma 5. In any separating PBE of our game, Alice must report fT,; with probability 1

after receiving the T signal.

Proof. Suppose that Alice reports rA 6= fT,; after receiving the T signal. At any separating

PBE, Bob’s belief must be µsB ,rA(H) = 0, and µsB ,fT,;(H) � 0 in order to be consistent with

Alice’s strategy. However, if Alice reports fT,; instead, she can strictly improve her market

scoring rule payo↵ and weakly improves her outside payo↵, which is a contradiction.

Note that Lemma 5 does not depend on the specific scoring rule that the market uses.

It holds for any MSR market using a strictly proper scoring rule. In fact, we will use this

lemma in Section 4.6 when extending our results to other MSR markets.

Lemma 6. In any separating PBE of our game, Alice does not report any rA 2 (Y�T , YT )

with positive probability after receiving the H signal.

Proof. We show this by contradiction. Suppose that at a separating PBE, Alice reports

rA 2 (Y�T , YT ) with positive probability after receiving the H signal. Since this PBE is
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separating, Bob’s belief must be that µsB ,rA(H) = 1 to be consistent with Alice’s strategy.

By Lemma 5, in any separating PBE, Alice must report fT,; after receiving the T signal and

Bob’s belief must be µsB ,fT,;(H) = 0. Thus, for rA 2 (Y�T , YT ), by definitions of YT and

Y�T , Alice would strictly prefer to report rA rather than fT,; after receiving the T signal,

which is a contradiction.

Theorem 8. If YH < YT , there does not exist a separating PBE of our game.

Proof. We prove this by contradiction. Suppose that YH < YT and there exists a separating

PBE of our game. At this separating PBE, suppose that Alice reports some rA 2 [0, 1] with

positive probability after receiving the H signal.

By definitions of YH and Y�H , we must have rA 2 [Y�H , YH ]. By Lemma 6, we know that

rA /2 (Y�T , YT ). Next, we show that YH < YT implies Y�H > Y�T .

By definitions of YH and Y�H , we have L(fH,;, Y�H) = L(fH,;, YH). By Proposition 1

and YH < YT , we have L(fH,;, YH) < L(fH,;, YT ). By Proposition 3, we have L(fH,;, YT ) 

L(fH,;, Y�T ). To summarize, we have the following:

L(fH,;, Y�H) = L(fH,;, YH) < L(fH,;, YT )  L(fH,;, Y�T ) ) Y�H > Y�T (4.12)

Thus, rA 2 [Y�H , YH ] and rA /2 (Y�T , YT ) can not hold simultaneously. We have a contra-

diction.

When is YH � YT satisfied?

Since YH � YT is a necessary and su�cient condition for a separating PBE to exist, it

is natural to ask when this condition is satisfied. The values of YH and YT , and whether

YH � YT is satisfied depend on the prior probability distribution P and the outside payo↵

function Q(·). When Alice’s realized signal is sA 2 {H, T}, YsA is the highest value that

she is willing to report if by doing so she can convince Bob that she has the H signal. The

higher the expected gain in outside payo↵ for Alice to convince Bob that she has the H signal

rather than the T signal, the higher the value of YsA . Below we first show that YH > YT is
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satisfied when the signals of Alice and Bob are independent. In Appendix B.4, we describe

Example 3 illustrating a scenario where YH < YT is satisfied.

Proposition 4. For any outside payo↵ function Q, if the signals of Alice and Bob, SA and

SB, are independent, i.e. P(sB|sA) = P(sB), 8sB, sA, then YH > YT is satisfied.

Proof. When the signals of Alice and Bob are independent, Alice’s expected maximum gain

in outside payo↵ is the same, regardless of her realized signal. If we use the loss function

as an intuitive distance measure from fsA,; (the truthful report) to YsA (the maximum value

that Alice is willing to report), then the amount of deviation from fsA,; to YsA is the same

for the two realized signals. The monotonicity properties of the loss function and fH,; > fT,;

then imply YH > YT . Note that this argument is independent of the outside payo↵ function

because this argument compares Alice’s strategy for both signals and the outside payo↵

function has identical e↵ects on both signals. We formalize this argument below.

By definitions of YH and YT and the independence of SA and SB, we have

L(fH,;, YH) = ESB
[Q(fH,SB

)�Q(fT,SB
)] = L(fT,;, YT ). (4.13)

By Proposition 1 and fT,; < fH,;  YH , we know

L(fT,;, YH) > L(fH,;, YH). (4.14)

Using (4.13) and (4.14), we can derive that

L(fT,;, YH) > L(fH,;, YH) = L(fT,;, YT ). (4.15)

Because YT � fT,; and YH > fT,;, applying Proposition 1 again, we get YH > YT .

The information structure with independent signals has been studied by Chen et al.

[2010a] and us in Chapter 3 in analyzing players’ equilibrium behavior in LMSR without

outside incentives. It is used to model scenarios where players obtain independent informa-

tion but the outcome of the predicted event is stochastically determined by their aggregated
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information. Examples include the prediction of whether a candidate will receive majority

vote and win an election, in which case players’ votes can be viewed as independent signals

and the outcome is determined by all votes.

4.4.4 Pure Strategy Separating PBE

In section 4.4.3, we described SE
1

, a particular pure strategy separating PBE of our game.

There are in fact multiple pure strategy separating PBE of our game when YH � YT . In this

section, we characterize all of them according to Alice’s equilibrium strategy 3.

By Lemma 5, at any separating PBE, Alice’s strategy must be of the following form:

�S
H(rA) = 1, �S

T (fT,;) = 1. (4.16)

for some rA 2 [0, 1]. In Lemma 7, we further narrow down the possible values of rA in Alice’s

strategy at any separating PBE.

Lemma 7. If YH � YT , at any separating PBE, Alice does not report any rA 2 [0, Y�H) [

(Y�T , YT ) [ (YH , 1] with positive probability after receiving the H signal.

Proof. By definitions of YH and Y�H , Alice does not report any rA < Y�H or rA > YH after

receiving the H signal. By Lemma 6, Alice does not report any rA 2 (Y�T , YT ) after receiving

the H signal.

Lemma 7 indicates that, at any separating PBE, it is only possible for Alice to report

rA 2 [max(Y�H , YT ), YH ] or, if Y�H  Y�T , rA 2 [Y�H , Y�T ] with positive probability after

receiving the H signal.

The next two theorems characterize all separating PBE of our game when YH � YT is

satisfied. Theorems 9 shows that for every rA 2 [max(Y�H , YT ), YH ] there is a separating

PBE where Alice reports rA after receiving the H signal. Given YH � YT , we may have

3There exist other separating PBE where Alice plays the same equilibrium strategies as in our charac-
terization but Bob has di↵erent beliefs o↵ the equilibrium path.
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either Y�H > Y�T or Y�H  Y�T . If Y�H  Y�T , we show in Theorem 10 that for every

rA 2 [Y�H , Y�T ], there exists a separating PBE at which Alice reports rA after receiving

the H signal. The proofs of these two theorems are provided in Appendices B.5 and B.6

respectively.

Theorem 9. If YH � YT , for every rA 2 [max(Y�H , YT ), YH ], there exists a pure strategy

separating PBE of our game in which Alice’s strategy is �S
H(rA) = 1, �S

T (fT,;) = 1.

Theorem 10. If YH � YT and Y�H  Y�T , for every rA 2 [Y�H , Y�T ], there exists a pure

strategy separating PBE in which Alice’s strategy is �S
H(rA) = 1, �S

T (fT,;) = 1.

4.4.5 Pooling PBE

Regardless of the existence of separating PBE, there may exist pooling PBE for our game

in which information is not fully aggregated at the end of the market. If fH,; < YT , there

always exists a pooling PBE in which Alice reports fH,; with probability 1 after receiving

the H signal. In general, if the interval (max(Y�H , Y�T ),min(YH , YT )) is nonempty, for every

rA 2 (max(Y�H , Y�T ),min(YH , YT ))\{fT,;}, if rA satisfies certain conditions, there exists a

pooling PBE of our game in which Alice reports rA with probability 1 after receiving the H

signal. However, it is possible that no pooling PBE exists for a particular prior distribution

and outside payo↵ function. We characterize a su�cient condition for pooling PBE to exist

for our game in this section.

For any k 2 (max(Y�H , Y�T ),min(YH , YT ))\{fT,;}, consider the following pair of Alice’s

strategy and Bob’s belief:

PE
1

(k) :
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>

>

>

>

>

<

>

>

>

>

>

>

:

�P
H(k) = 1, �P

T (k) = �(k), �P
T (fT,;) = 1� �(k)

µP
sB ,rA

(H) =

8

>

>

<

>

>

:

g(�(k), sB), if rA = k

0, if rA 2 [0, k) [ (k, 1]

(4.17)
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where

g(�(k), sB) =
P(SA = H|sB)

P(SA = H|sB) + P(SA = T |sB)�(k)
, (4.18)

and �(k) is defined to be the maximum value within [0, 1] such that the following inequality

is satisfied.

L(fT,;, k)  ESB
[Q(g(�(k), SB)fH,SB

+ (1� g(�(k), SB))fT,SB
)�Q(fT,SB

) | SA = T ]

(4.19)

Intuitively, �(k) represents the probability weight that Alice shifts from reporting fT,; to

reporting k after receiving the T signal. The choice of �(k) ensures that Alice’s expected

loss in her market scoring rule payo↵ by misreporting is less than or equal to the expected

potential gain in her outside payo↵. So if �(k) satisfies equation (4.19), then �(k) = 1.

Otherwise, �(k) is set to a value such that the LHS and RHS of equation (4.19) are equal.

It is easy to see that �(k) is well defined for every k 2 (max(Y�H , Y�T ),min(YH , YT ))\{fT,;}.

The RHS of inequality (4.19) is strictly monotonically decreasing in �(k). When �(k) = 0,

the RHS equals L(fT,;, YT ) and L(fT,;, Y�T ). Because Y�T < k < YT , we know that �(k) > 0.

By (4.17), Bob believes that Alice received the T signal if her report is not equal to k.

If Alice reports k and Bob receives sB signal, Bob believes that Alice received the H signal

with probability g(�(k), sB).

In Theorem 11, we show that PE
1

(k) is a pooling PBE if the following inequality is

satisfied:

L(fH,;, k)  ESB
[Q(g(�(k), SB)fH,SB

+(1�g(�(k), SB))fT,SB
)�Q(fT,SB

) | SA = H]. (4.20)

Inequality (4.20) ensures that when Alice receives the H signal, she is better o↵ reporting k

rather than reporting fH,; given Bob’s belief in PE
1

(k). When k = fH,;, inequality (4.20)

is automatically satisfied because the LHS of inequality (4.20) is 0 and the RHS of inequal-

ity (4.20) is positive. However, for other values of k, whether inequality (4.20) is satisfied

depends on the prior distribution and the outside payo↵ function. This means that, if
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fH,; < YT , which ensures the interval (max(Y�H , Y�T ),min(YH , YT )) is nonempty and con-

tains fH,;, then there always exists a pooling PBE of our game where Alice reports fH,; with

probability 1 after receiving the H signal.

Theorem 11. If (max(Y�H , Y�T ),min(YH , YT )) is nonempty, for any

k 2 (max(Y�H , Y�T ),min(YH , YT ))\{fT,;}, PE
1

(k) is a pooling PBE of our game if inequal-

ity (4.20) is satisfied.

Proof. We’ll first show that Alice’s strategy is optimal given Bob’s belief.

When Alice receives the H signal and k 6= fH,;, for rA 2 [0, 1]\{k}, it is optimal for

Alice to report fH,; since her outside payo↵ is constant and her market scoring rule payo↵

is maximized. By inequality (4.20), Alice weakly prefers reporting k than reporting fH,;.

Enforcing the consistency with Bob’s belief, we know that Alice’s optimal strategy must be

reporting k.When Alice receives the H signal and k = fH,;, it is also optimal for Alice to

report k because by doing so she maximizes both the expected market scoring rule payo↵

and the outside payo↵ given Bob’s belief.

When Alice receives the T signal, for rA 2 [0, 1]\{k}, Alice maximizes her total payo↵

by reporting fT,;. So the support of Alice’s equilibrium strategy after receiving the T signal

includes at most fT,; and k. By the definition of �(k), either Alice is indi↵erent between

reporting fT,; and k, or she may strictly prefer reporting k when �(k) = 1. Enforcing the

consistency of Bob’s belief, we know that Alice’s optimal strategy must be reporting k with

probability �(k) and reporting fT,; with probability 1� �(k).

Moreover, we can show that Bob’s belief is consistent with Alice’s strategy by mechani-

cally applying Bayes’ rule (argument omitted). Given the above arguments, Alice’s strategy

and Bob’s belief form a PBE of our game.

Babbling PBE

For Bob’s belief in PE
1

(k), it is possible that for some k, �(k) = 1. In this case, Alice’s

strategy and Bob’s belief become the following:
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BE
1

(k) :

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�B
H(k) = 1, �B

T (k) = 1

µB
sB ,rA

(H) =

8

>

>

<

>

>

:

P(SA = H|sB), if rA = k

0, if rA 2 [0, k) [ (k, 1]

(4.21)

This special case of the pooling PBE is often alluded to as a babbling PBE. At this

babbling PBE, if Alice reports k, then Bob believes that she received the H signal with

the prior probability P(sA = H|sB). Otherwise, if Alice reports any other value, then Bob

believes that she received the T signal for sure. This belief forces Alice to make a completely

uninformative report by always reporting k no matter what her realized signal is. This PBE

is undesirable since Alice does not reveal her private information.

4.5 Identifying Desirable PBE

The existence of multiple equilibria is a common problem to many dynamic games of in-

complete information. This is undesirable because there is no clear way to identify a single

equilibrium that the players are likely to adopt and hence it is di�cult to predict how the

game will be played in practice. In our setting, this problem arises because we have a great

deal of freedom in choosing beliefs o↵ the equilibrium path. A common way to address this

problem is to use some criteria to identify one or more equilibria to be more desirable than

others. An equilibrium is more desirable than other equilibria if it satisfies reasonable belief

refinements or optimizes certain desirable objectives.

In this section, we give evidence suggesting that two separating PBE SE
1

(defined in

equation (4.11)) and SE
2

(defined in equation (4.27)) are more desirable than many other

PBE of our game, according to several di↵erent objectives. First, in every separating PBE

that satisfies the domination-based belief refinement, Alice plays the same strategy as her

strategy in SE
1

. This refinement also excludes a subset of pooling PBE of our game under

certain conditions. With the goal of maximizing social welfare, we show that any separating

75



PBE maximizes the social welfare of our game among all PBE if Alice’s outside payo↵

function Q(·) is convex4. This shows that both SE
1

and SE
2

are more desirable than pooling

equilibria. Finally, we compare the multiple separating equilibria from the perspective of

a particular player. In terms of maximizing Alice’s total expected payo↵, the PBE SE
1

is

more desirable than all other separating PBE and many pooling PBE of our game. From

the perspective of Bob, the PBE SE
2

maximizes Bob’s total expected payo↵ among all

separating PBE of our game.

4.5.1 Domination-based Belief Refinement

There has been a large literature in economics devoted to identifying focal equilibria through

refinements. One simple PBE refinement, as discussed by Mas-Colell, Whinston and Green [Mas-

Colell et al., 1995], arises from the idea that reasonable beliefs should not assign positive

probability to a player taking an action that is strictly dominated for her. Formally, we

define this refinement for our game as follows:

Definition 2. [Domination-based belief refinement] If possible, at any PBE satisfying domination-

based belief refinement, Bob’s belief should satisfy µsB ,rA(✓) = 0 if reporting rA for Alice’s

type ✓ is strictly dominated by reporting r0A 2 [0, 1] where r0A 6= rA for any valid belief of Bob.

The qualification “if possible” covers the case that reporting rA for all of Alice’s types

is strictly dominated by reporting some other r0A for any valid belief for Bob. In this case,

if we apply the refinement to Bob’s belief, then Bob’s belief must set µsB ,rA(H) = 0 and

µsB ,rA(T ) = 0, which does not result in a valid belief for Bob. Therefore, in this case the

refinement would not apply and Bob’s belief is unrestricted when Alice reports such a rA.

Using Definition 2 we can put restrictions on Bob’s belief at any PBE.

4Situations with a convex Q(·) function arise, for example, when manufactures have increasing returns
to scale, which might be the case in our flu prediction example.
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Lemma 8. At any PBE satisfying the domination-based belief refinement, if YH � YT , then

Bob’s belief should satisfy µsB ,rA(T ) = 0 for any rA 2 (YT , YH ] \ [Y�H , YH ]. If Y�H  Y�T ,

then Bob’s belief should satisfy µsB ,rA(T ) = 0 for any rA 2 [Y�H , Y�T ).

Proof. By definition of YT and Y�T , reporting any rA > YT or rA < Y�T after receiving

the T signal is strictly dominated by reporting fT,; for Alice. By definition of YH and Y�H ,

reporting any rA > YH or rA < Y�H after receiving the H signal is strictly dominated by

reporting fH,; for Alice.

For any rA 2 [0,min{Y�H , Y�T}) [ (max(YT , YH), 1], Bob’s belief is unrestricted because

the domination-based belief refinement does not apply. By Definition 2, it is straightforward

to verify that Bob’s belief should satisfy µsB ,rA(T ) = 0 for any rA 2 (YT , YH ] \ [Y�H , YH ]

when YH � YT , and for any rA 2 [Y�H , Y�T ) when Y�H  Y�T .

Given this refinement on Bob’s belief at the PBE, we show below that at every separating

PBE of our game, Alice’s strategy must be the same as that in the separating PBE SE
1

5.

Proposition 5. At every separating PBE satisfying the domination-based belief refinement,

Alice’s strategy must be �H(max(fH,;, YT )) = 1, and �T (fT,;) = 1.

We provide the complete proof in Appendix B.7.

Sketch. By Theorem 9, for every rA 2 [max(Y�H , YT ), YH ], there exists a pure strategy

separating PBE in which Alice reports rA with probability 1 after receiving the H signal.

We show that Alice would not report rA 2 [max(Y�H , YT ), YH ]\max(fH,;, YT ) after receiving

the H signal at any PBE satisfying the domination-based belief refinement.

By Theorem 10, if YH � YT and Y�H  Y�T , for every rA 2 [Y�H , Y�T ], there exists a

pure strategy separating PBE in which Alice reports rA with probability 1 after receiving the

H signal. First, we show that Alice would not report rA 2 [Y�H , Y�T ) at any PBE satisfying

5Bob’s belief can be di↵erent from that in SE1.
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the domination-based belief refinement. Then we show that Alice also would not report Y�T

at any such PBE.

Finally, we show that SE
1

described in (4.11) satisfies the domination-based belief re-

finement.

If fH,; > YT , the domination-based refinement can also exclude all pooling PBE and

the unique PBE satisfying the refinement is the truthful PBE. We show below that, when

fH,; > YT , at every PBE of our game, Alice’s strategy is �H(fH,;) = 1, �T (fT,;) = 1, which

is Alice’s strategy in the separating PBE SE
1

.

Proposition 6. At every PBE of our game satisfying the domination-based refinement, if

fH,; > YT , then Alice’s strategy must be �H(fH,;) = 1 and �T (fT,;) = 1.

Proof. Since fH,; 2 (YT , YH ], then by Lemma 8, Bob’s belief must set µsB ,fH,;(T ) = 0. If

Alice receives the H signal, then her market scoring rule payo↵ is strictly maximized by

reporting fH,; and her outside payo↵ is weakly maximized by reporting fH,;. Therefore, it

is optimal for Alice to report fH,; after receiving the H signal.

If Alice receives the T signal, reporting fH,; is strictly dominated by reporting fT,; for

any valid belief for Bob because fH,; > YT . Therefore, Alice does not report fH,; after

receiving T signal, and any PBE of the game must be a separating PBE. By Proposition 5,

any separating PBE satisfying the refinement has Alice play the strategy �H(fH,;) = 1 and

�T (fT,;) = 1.

If fH,;  YT , applying the domination-based refinement does not exclude all pooling

PBE of this game. In the proposition below, we show that the domination-based refinement

excludes a subset of pooling PBE in which Alice reports a low enough value after receiving

the H signal. The proof of the proposition is provided in Appendix B.8.

Proposition 7. At every PBE of our game satisfying the domination-based refinement, if

fH,;  YT , then Alice does not report any rA  r after receiving the H signal where r is the

unique value in [0, fH,;] satisfying L(fH,;, r) = L(fH,;, YT ).
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4.5.2 Social Welfare

We analyze the social welfare achieved in the PBE of our game. In general, social welfare

refers to the total expected payo↵s of all players in the game. In our setting, the social

welfare of our game is defined to be the total ex-ante expected payo↵ of Alice and Bob

excluding any payo↵ for the market institution. Alice’s total expected payo↵ includes her

market scoring rule payo↵ and her outside payo↵.

Since all separating PBE fully aggregate information, they all result in the same (max-

imized) total ex-ante expected payo↵ inside the market – all that changes is how Alice and

Bob split this payo↵ – and the same outside payo↵ for Alice. If the outside payo↵ function

Q(·) is convex, we show in Lemma 9 that Alice’s expected outside payo↵ is also maximized in

any separating PBE of our game. Therefore, given a convex Q(·), social welfare is maximized

at any separating PBE. We prove this claim in Theorem 12.

Lemma 9. If Q(·) is convex, among all PBE of the game, Alice’s expected outside payo↵ is

maximized in any separating PBE.

Proof. Consider an arbitrary PBE of this game. Let V denote the union of the supports of

Alice’s strategy after receiving the H and the T signals at this PBE. Let uG
A denote Alice’s

expected outside payo↵ at this PBE and let uS
A denote Alice’s expected outside payo↵ at

any separating PBE. We’ll prove below that uG
A  uS

A. We simplify our notation by using
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P(SA, SB) to denote P(SA = sA, SB = sB).

uG
A =

X

v2V

(P(H,H)�H(v) + P(T,H)�T (v))

Q

✓

P(H,H)�H(v)

P(H,H)�H(v) + P(T,H)�T (v)
fHH +

P(T,H)�T (v)

P(H,H)�H(v) + P(T,H)�T (v)
fTH

◆

+ (P(H, T )�H(v) + P(T, T )�T (v))

Q

✓

P(H, T )�H(v)

P(H, T )�H(v) + P(T, T )�T (v)
fHT +

P(T, T )�T (v)

P(H, T )�H(v) + P(T, T )�T (v)
fTT

◆


X

v2V

(P(H,H)�H(v)Q(fHH) + P(H, T )�H(v)Q(fHT )

+ P(T,H)�T (v)Q(fTH) + P(T, T )�T (v)Q(fTT )) (4.22)

=P(H,H)Q(fHH) + P(H, T )Q(fHT ) + P(T,H)Q(fTH) + P(T, T )Q(fTT )

= uS
A

where inequality (4.22) was derived by applying the convexity of Q(·).

Theorem 12. If Q(·) is convex, among all PBE of the game, social welfare is maximized at

any separating PBE.

Proof. By definition, at any separating PBE, the total market scoring rule payo↵ is maxi-

mized since information is fully aggregated. By Lemma 9, any separating PBE maximizes

Alice’s expected outside payo↵ if Q(·) is convex. Therefore, any separating PBE maximizes

the social welfare.

4.5.3 Alice’s Total Expected Payo↵

In this section, we compare the multiple PBE of our game in terms of Alice’s total expected

payo↵. If Alice’s total expected payo↵ at a particular PBE is greater than her total expected

payo↵ in many other PBE of this game, it gives us confidence that she is likely to choose to

play this particular PBE in practice.

First, we compare Alice’s expected payo↵ in the multiple separating PBE of our game.
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We show in Theorem 13 that the separating PBE SE
1

maximizes Alice’s expected payo↵

among all separating PBE of this game. This is easy to see when fH,; � YT since the

separating PBE SE
1

is also the truthful PBE of this game. Otherwise, if fH,; < YT , YT is

the minimum deviation from fH,; that Alice can report in order to convince Bob that she

has the H signal.

Theorem 13. Among all pure strategy separating PBE of our game, Alice’s expected payo↵

is maximized in the pure strategy separating PBE SE
1

as stated in (4.11).

Proof. In all separating PBE, Alice’s expected outside payo↵ is the same.

By Lemma 5, in any separating PBE, Alice must report fT,; after receiving the T signal.

Therefore, Alice’s expected payo↵ after receiving the T signal is the same at any separating

PBE.

When fH,; � YT , according to Theorem 7, Alice reports fH,; after receiving the H signal

and this is the maximum expected payo↵ she could get after receiving the H signal.

When fH,; < YT , after receiving the H signal, Alice’s strategy in SE
1

is to report YT .

She is strictly worse o↵ reporting any value greater than YT after receiving the H signal in

any PBE. For rA < YT , if Y�H < Y�T , it is only possible for Alice to report rA 2 [Y�H , Y�T )

after receiving the H signal at any separating PBE. However, reporting rA 2 [Y�H , Y�T )

makes Alice strictly worse o↵ than reporting YT because

rA < Y�T ) L(fH,;, YT )  L(fH,;, Y�T ) < L(fH,;, rA). (4.23)

where the inequality L(fH,;, YT )  L(fH,;, Y�T ) is due to Proposition 3. Therefore, when

fH,;  YT , the separating PBE in which Alice reports YT maximizes Alice’s expected payo↵

after receiving the H signal.

Hence, the separating PBE SE
1

maximizes Alice’s expected payo↵ among all separating

PBE of our game.

Theorem 13 suggests that SE
1

is likely a desirable PBE of our game. In Theorems 14
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and 15, we compare Alice’s expected payo↵ in SE
1

with her expected payo↵ in the pool-

ing PBE of this game. Again, when fH,; � YT , SE1

is essentially the truthful PBE and

therefore Alice’s expected payo↵ is higher in SE
1

than in any pooling PBE for convex

Q(·). When fH,; < YT , the relationship is less clear. In Theorem 15, we show that, if

k 2 (max(Y�H , Y�T ), YT )\{fT,;} satisfies inequality (4.24), then Alice’s expected payo↵ in

SE
1

is greater than her expected payo↵ in the pooling PBE PE
1

(k).

Theorem 14. If Q(·) is convex, YH � YT and fH,; � YT , Alice’s expected payo↵ is maximized

in the pure strategy separating PBE SE
1

among all PBE of our game.

Proof. By Lemma 9, any separating PBE maximizes Alice’s expected outside payo↵ if Q(·)

is convex. When fH,; � YT , SE1

is the truthful PBE and strictly maximizes Alice’s expected

market scoring rule payo↵.

Theorem 15. If Q(·) is convex, YH � YT , and fH,; < YT , Alice’s expected payo↵ in the

pure strategy separating PBE SE
1

is greater than her expected payo↵ in PE
1

(k) for any

k 2 (max(Y�H , Y�T ), YT )\{fT,;} if k satisfies inequality (4.24) below.

P(sA = H)L(fH,;, YT )  P(sA = H)L(fH,;, k) + P(sA = T )�(k)L(fT,;, k). (4.24)

Proof. By Lemma 9, if Q(·) is convex, then any separating PBE maximizes Alice’s expected

outside payo↵.

Fix a particular k 2 (Y�T ,min{YH , YT}). Compared to Alice’s expected payo↵ when

using a truthful strategy, Alice’s expected payo↵ in SE
1

given in Theorem 7 is less by

P(sA = H)L(fH,;, YT ), and Alice’s payo↵ in PE
1

(k) is less by P(sA = H)L(fH,;, k)+P(sA =

T )�(k)L(fT,;, k). Therefore, if Alice’s expected payo↵ SE
1

is greater than or equal to

Alice’s expected payo↵ in PE
1

(k), then we must have P(sA = H)L(fH,;, YT )  P(sA =

H)L(fH,;, k) + P(sA = T )�(k)L(fT,;, k), which is stated in inequality (4.24).

Note that inequality (4.24) is automatically satisfied for any k  r where r is the unique
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value in [0, fH,;] satisfying L(fH,;, r) = L(fH,;, YT ) since

P(sA = H)L(fH,;, YT ) =P(sA = H)L(fH,;, r)  P(sA = H)L(fH,;, k) (4.25)

<P(sA = H)L(fH,;, k) + P(sA = T )�(k)L(fT,;, k). (4.26)

However, for k � r, whether k satisfies inequality (4.24) depends on the prior distribution

and the outside payo↵ function.

4.5.4 Bob’s Expected Payo↵

In this section, we compare all separating PBE of our game from Bob’s perspective. If

Bob’s expected payo↵ at a particular PBE is greater than his expected payo↵ in many

other PBE of this game, then Bob is more likely to choose to play this particular PBE in

practice. We show below that among all separating PBE of our game, Bob’s expected payo↵

is maximized in the separating PBE SE
2

in equation (4.27), which is the same as SE
2

(YH)

defined in equation (B.24) in Appendix B.5. We state SE
2

below for convenience. The proof

of Theorem 16 is included in Appendix B.9.

Theorem 16. Among all pure strategy separating PBE of our game, Bob’s expected payo↵

is maximized in the following pure strategy separating PBE SE
2

.

SE
2

:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�H(YH) = 1, �T (fT,;) = 1

µsB ,rA(H) =

8

>

>

<

>

>

:

1, if rA 2 [YH , 1]

0, if rA 2 [0, YH)

.

(4.27)

4.6 Extensions

We have developed our results for the basic setting, with LMSR, two players, two stages,

and binary signals for each player. In this section, we extend our separating PBE results to

other market scoring rules. We also consider an extension of our setting where the outside
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incentive is uncertain, but occurs with a fixed probability. We show that this uncertainty is

detrimental to information aggregation and there does not exist any separating PBE in this

setting.

4.6.1 Other Market Scoring Rules

For our basic model using LMSR, we characterize a necessary and su�cient condition for a

separating PBE to exist. In this section, we generalize this condition for other MSR markets

using strictly proper scoring rules. The main di�culty in this generalization is that, for

an arbitrary market scoring rule, YsA and Y�sA for sA 2 {H, T} may not be well defined,

whereas they are always well defined for LMSR because the loss function is not bounded

from above. As a result, when generalizing the condition, we need to take into account of

the cases when YsA and/or Y�sA are not well defined.

As defined in section 4.3.1, let s(!, r) denote a strictly proper scoring rule of a binary

random variable ⌦ where ! is the realization of ⌦ and r is the reported probability of ! = 1.

Then the loss function Ls(fsA,;, rA) for the strictly proper scoring rule s(!, r) can be defined

as follows:

Ls(fsA,;, rA) = fsA,;{s(1, fsA,;)� s(1, rA)}+ (1� fsA,;){s(0, fsA,;)� s(0, rA)} (4.28)

For a particular market scoring rule, a su�cient condition for a separating PBE to exist

can be expressed by the the following two inequalities.

Ls(fT,;, 1) �ESB
[Q(fH,SB

)�Q(fT,SB
) | SA = T ] (4.29)

Ls(fH,;,max(fH,;, YT )) ESB
[Q(fH,SB

)�Q(fT,SB
) | SA = H] (4.30)

If inequality (4.29) is satisfied, we know that YT is well defined. Then, if inequality (4.30)

is also satisfied, reporting max(fH,;, YT ) for Alice is not dominated by reporting fH,; after

receiving theH signal. So if both inequalities are satisfied, then there exists a separating PBE

where Alice reports max(fH,;, YT ) after receiving the H signal. Note that if inequality (4.29)
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is violated, then the quantity YT is not well defined, so inequality (4.30) is not a well defined

statement as well.

Similarly, another su�cient condition for a separating PBE is given by the following two

inequalities.

Ls(fT,;, 0) �ESB
[Q(fH,SB

)�Q(fT,SB
) | SA = T ] (4.31)

Ls(fH,;, Y�T ) ESB
[Q(fH,SB

)�Q(fT,SB
) | SA = H] (4.32)

Again, inequality (4.31) ensures that Y�T is well-defined. If inequality (4.32) is satisfied,

then there exists a belief for Bob such that for Alice, reporting Y�T is not dominated by

reporting fH,; after receiving the H signal. Therefore, these two inequalities ensure that

there exists a separating PBE where Alice reports Y�T after receiving the H signal.

We show below in Theorem 17 that satisfying at least one of these two pairs of inequalities

is necessary and su�cient for a separating PBE to exist for any market scoring rule.

Theorem 17. A separating PBE of our game exists if and only if at least one of the pair of

inequalities (4.29) and (4.30) and the pair of inequalities (4.31) and (4.32) is satisfied.

We include the complete proof in Appendix B.10.

4.6.2 Uncertain Outside Incentive

In our basic model, Alice’s outside incentive is certain and common knowledge. In this

section, however, we show that any uncertainty about Alice’s outside incentive could be

detrimental to information aggregation. Suppose that there is a fixed probability ↵ 2 (0, 1)

for Alice to have the outside payo↵. Even if the value of ↵ is common knowledge, information

loss in equilibrium is inevitable if Alice has a su�ciently large outside incentive. In particular,

when Alice has an outside payo↵ and has received the T signal, she can report fH,; to pretend

not to have the outside payo↵ and to have received the H signal. This results in these two

types pooling, so the overall equilibrium is, at best, semi-separating and there is information
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loss.

Theorem 18. Suppose that Alice has the outside payo↵ with a fixed probability ↵ 2 (0, 1),

which is common knowledge. If fH,; < YT , then there does not exist any PBE in which Alice’s

type with the H signal and no outside payo↵ separates from her type with the T signal and

the outside payo↵.

Proof. Proof by contradiction. Suppose that a separating PBE exists. At this separating

PBE, with probability (1 � ↵), Alice reports fH,; after receiving the H signal and reports

fT,; after receiving the T signal. To be consistent with Alice’s strategy, Bob’s belief on the

equilibrium path must be µsB ,fH,;(H) = 1 and µsB ,fT,;(H) = 0. Given this belief, however,

when Alice has the outside payo↵, she strictly prefers to report fH,; after receiving the T

signal since YT > fH,;, which is a contradiction.

4.7 Connection to Spence’s Job Market Signaling Game

In this section, we describe the connection between a subset of separating PBE of our game

and a set of separating PBE of Spence’s job market signaling game [Spence, 1973]. When

a separating PBE exists for our game, YH � YT holds and there exists a set of separating

PBE where Alice reports rA 2 [max(Y�H , YT ), YH ] after receiving H signal. If in addition

Y�H  Y�T also holds, then there also exists a set of separating PBE where Alice reports

rA 2 [Y�H , Y�T ] after receiving the H signal. In the following analysis, we consider a set of

separating PBE where Alice reports rA 2 [max(fH,;, YT ), YH ] after receiving the H signal,

which is a subset of the first set of separating PBE described above, and we map these

separating PBE to the separating PBE of the signaling game.

We first describe the setting of a signaling game using the notation of Mas-Colell, Whin-

ston, and Green [Mas-Colell et al., 1995]. In the signaling game, there are two types of

workers with productivities ✓H and ✓L, with ✓H > ✓L > 0, and these productivities are not

observable. Before entering the job market, each worker can get some amount of education,
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and the amount of education that a worker receives is observable. Getting education does

not a↵ect a worker’s productivity, but the high-productivity workers in the job market may

use education to distinguish them from the low-productivity workers. The cost of obtaining

education level e for a type ✓ worker is given by the twice continuously di↵erentiable function

c(✓, e), with c(✓, 0) = 0, @
@e
c(✓, e) > 0, @2

@e2
c(✓, e) > 0, c(✓H , e) < c(✓L, e), for all e > 0 and

@
@e
c(✓H , e) <

@
@e
c(✓H , e), 8e > 0. Both the cost and the marginal cost of education are lower

for workers with productivity ✓H . Each worker can choose to work at home or work for an

employer. Working at home earns the worker no wage. If the worker chooses to work for an

employer, then his wage depends on the employer’s belief about the worker’s productivity

based on the worker’s education level. If a type ✓ worker chooses education level e and

receives wage !, then his payo↵, denoted by u(!, e | ✓), is equal to his wage less the cost of

getting education, i.e. u(!, e | ✓) = ! � c(e, ✓).

In separating PBE of the signaling game, many education levels for the high productivity

worker are possible and the low productivity worker chooses no education. In particular, any

education level in some range [ẽ, e
1

] for the high productivity workers can be sustained at

a PBE of this game. Intuitively, the education level of the high productivity worker cannot

be below ẽ in a separating PBE because, if it were, the low productivity worker would find

it profitable and pretend to be of high productivity by choosing the same education level.

On the other hand, the education level of the high productivity worker cannot be above e
1

because, if it were, the high productivity worker would prefer to get no education instead,

even if this meant that he would be considered to be of low productivity.

Consider our setting when a separating PBE exists (i.e. YH � YT ), we can map elements

of our game to the signaling game. We can also map separating PBE of our game where

Alice reports rA 2 [max(fH,;, YT ), YH ] to the separating PBE of the signaling game. We

outline details of this mapping in Table 4.1.

Alice’s two types H and T in our setting correspond to the two types of workers with

productivities ✓H and ✓L. If Alice chooses to report a value rA > fH,;, she incurs a loss
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Spence’s Job Market Sig-
naling Game

Our Setting

✓H , high productivity worker H, Alice’s H type
✓L, low productivity worker T , Alice’s T type
e > 0, education level rA > fH,;, Alice’s report rA
c(✓, e), cost of education as a
function of the level e and the
worker type ✓

L(fsA,;, rA), loss function with
respect to report rA and type
sA

@
@e
c(✓, e) > 0, 8e > 0, cost of

education is increasing in edu-
cation level

@
@rA

L(fsA,;, rA) > 0, 8rA >
fH,;, loss is increasing in Al-
ice’s report

@2

@2e
c(✓, e) > 0, 8e > 0, cost is

convex in education level

@2

@r2A
L(fsA,;, rA) > 0, 8rA >

fH,;, loss is convex in Alice’s
report

c(✓H , e) < c(✓L, e), 8e > 0, cost
is lower for high productivity
worker

L(fH,;, rA) <
L(fT,;, rA), 8rA > fH,;,
loss is lower for Alice’s H type

@
@e
c(✓H , e) <

@
@e
c(✓L, e), 8e > 0,

marginal cost is lower for high
productivity worker

@
@rA

L(fH,;, rA) <
@
@rA

L(fT,;, rA), 8rA > fH,;,
marginal loss is lower for
Alice’s H type

e
1

, highest education level
for high productivity worker
among all separating PBE

YH , highest report for H type
among all separating PBE

ẽ, lowest education level for
high productivity worker
among all separating PBE

max(fH,;, YT ), lowest report
for H type among the subset
of separating PBE

Table 4.1: Comparison between our setting and Spence’s job market signaling game

in the market scoring rule payo↵ for either type. This loss is the cost of misreporting and

corresponds to the cost of getting education for either worker type in the signaling game.

Moreover, the loss function and the cost function have similar properties: they are increasing

and convex in education level/report and they are lower for the ✓H/H type. Also the marginal

loss and cost functions are lower for the ✓H/H type. As a result of these properties, in both

settings, there exists a range of possible values for the education level/report of the ✓H/H

type reports whereas the ✓L/T type chooses no education/does not misreport at separating

PBE.
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In the signaling game, the fundamental reason that education can serve as a signal is that

the marginal cost of education depends on a worker’s type. The marginal cost of education is

lower for a high-productivity worker
�

@
@e
c(✓H , e) <

@
@e
c(✓L, e)

�

. As a result, a ✓H type worker

may find it worthwhile to get some positive level of education e > 0 to raise her wage by

some positive amount whereas a type ✓L worker may not be willing to get the same level

of education in return for the same amount of wage increase. As a result, by getting an

education in the range [ẽ, e
1

], a high-productivity worker could distinguish themselves from

their low-ability counterparts. Analogously, in our setting, the fundamental reason that a

separating PBE where Alice reports rA 2 [max(fH,;, YT ), YH ] exists is that reporting a value

rA > fH,; has a marginally lower expected loss in market scoring rule payo↵ for Alice’s H

type than for Alice’s T type. Thus, Alice’s H type may be willing to report a value rA much

higher than fH,; in order to increase her outside payo↵ whereas Alice’s T type may not be

willing to report rA for the same amount of increase in her outside payo↵. Therefore, when

YH � YT , there exists a range of reports, [max(fH,;, YT ), YH ], such that Alice’s H type can

distinguish herself from Alice’s T type in our game.

Note that, if Y�H  Y�T holds in addition to YH � YT , it is also possible to map the

set of separating PBE where Alice reports rA 2 [Y�H , Y�T ] to the separating PBE of the

signaling game. The only caveat is that, instead of mapping education e directly to Alice’s

report rA, we need to map education e to the distance between Alice’s report rA and fH,;.

We omit the description of the mapping because it is nearly identical to Table 4.1. However,

many instances of our market game have separating PBE that cannot be mapped to the

separating PBE of the signaling game. For example, when YH > fH,; > YT > Y�H , the set

of separating PBE where Alice reports rA 2 [YT , fH,;) after receiving the H signal is left

unmapped. As a class of games, our market game in general has more equilibria than the

signaling game.
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4.8 Conclusion and Future Directions

We study the strategic play of prediction market participants when there exist outside incen-

tives for the participants to manipulate the market probability. The main high level insight

from our analysis is that conflicting incentives inside and outside of a prediction market do

not necessarily damage information aggregation in equilibrium. In particular, under cer-

tain conditions, there are equilibria in which full information aggregation can be achieved.

However, there are also many situations where information loss is inevitable.

Although we only consider a 2-player model, our results remain valid for a much more

general setting. Our results can be easily extended to a setting in which multiple participants

trade in the market after Alice and before the end of the market, as long as each participant

only trades once in the market. Moreover, if there are participants trading before Alice in

the market, our results can be extended to this setting if all of the private information of the

participants trading before Alice are completely revealed before Alice’s stage of participation.

An immediate future direction is to consider a more general setting when Alice’s signal

has more than 2 realizations. As suggested by our analysis, with more realized signals, Alice’s

equilibrium behavior could become much more complicated depending on how these realized

signals influence her payo↵s from inside and outside of the market. Another interesting future

direction is to consider outside payo↵ functions with other structures, such as threshold

functions or non-monotone functions.

More broadly, one important future direction is to better understand information aggre-

gation mechanisms in the context of decision making, and design mechanisms to minimize or

control potential loss in information aggregation and social welfare when there are conflicting

incentives within and outside of the mechanism.
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Chapter 5

An Experimental Evaluation of a Peer

Prediction Mechanism

Businesses and organizations often face the challenge of gathering accurate and informative

feedback or opinion from multiple individuals. Notably, community-based websites such as

Yelp, IMDb, Amazon, TripAdvisor, and Angie’s List that review products and services are

largely dependent on voluntary feedback contributed by their users. The proliferation of

online labor markets has also created an opportunity for outsourcing simple tasks, such as

classifying images and identifying o↵ensive content on the web, to a readily available online

workforce.

In all of these settings, there are some significant barriers in getting participants to hon-

estly reveal their information. First, it is often costly to formulate and share an honest

opinion—for example, when evaluating qualities of books or restaurants—whereas uninfor-

mative contributions require little or no e↵ort. More importantly, it may be di�cult or

impossible to verify individual contributions against an observable ground truth, because

either the information is inherently subjective or it is too costly to be verified.

These di�culties led to the development of peer predictionmechanisms, pioneered by Miller

et al. [2005]. To incentivize truthful reports, these mechanisms leverage the stochastic cor-
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relation of participants’ information and reward each participant by comparing the par-

ticipant’s report with those of his peers. Existing theory on peer prediction focuses on

designing such monetary rewards to induce a truthful Bayesian Nash equilibrium among all

participants—it is in a participant’s best interest to report his information truthfully if he

believes all other participants will also be truthful.

Despite the existence of the truthful equilibrium, peer prediction theory provides little

assurance that participants will adhere to it in practice. This is because peer prediction

mechanisms also induce uninformative equilibria where participants can coordinate to make

a set of reports that are independent of their information. Moreover, such uninformative

equilibria are unavoidable in general [Jurca and Faltings, 2009, Waggoner and Chen, 2013].

Although Miller et al. [2005] argue that the truthful equilibrium is likely focal due to limited

communication or ethical preferences of participants, there is generally little theoretical or

empirical support for this conjecture.

In this work, we aim to understand how participants will behave towards the peer predic-

tion mechanisms in the presence of multiple equilibria. Specifically, we address the following

question:

Will the participants play one of the multiple equilibria of the peer prediction
mechanisms? If they do, which equilibrium will they choose and why?

To tackle this question, we tested participants’ behavior towards the Jurca and Faltings

[2009] (JF) mechanism by engaging them in a multiplayer, real-time and repeated game

through a controlled online experiment on Amazon’s Mechanical Turk (MTurk) [Mason

and Suri, 2012]. We allow the participants to repeatedly interact with the JF mechanism,

revealing their behavioral dynamics over time. Our work is the first empirical evaluation

of participants’ behavior towards a peer prediction mechanism in terms of convergence to

game-theoretic equilibria.

In our particular experimental setting, we show that the truthful equilibrium is not focal

and that participants clearly favor the uninformative equilibria when paid by peer prediction.
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In contrast, a majority of the participants are consistently truthful when peer prediction is

not used. Specifically, for payment rules where the uninformative equilibria have higher

payo↵s, a majority of the players coordinated on an uninformative equilibrium. Moreover,

for payment rules where the symmetric uninformative equilibria do not exist or have less

payo↵ than the truthful equilibrium, we successfully deterred the players from choosing

the uninformative equilibria but still did not motivate truthful reports. Hence, our results

suggest that adopting peer prediction mechanisms may be harmful in scenarios where the

cost of being truthful is similar to that of acting strategically.

In answering our question about equilibrium play, we needed to infer the players’ intended

strategies, which are not directly observed in an experiment. This is a common challenge

in experimental studies of game-theoretic mechanisms. Researchers typically try to detect

equilibrium play by comparing the frequencies of players’ actions with equilibrium or other

strategies. In this work, we use the novel approach of a hidden Markov model (HMM)

to capture players’ strategies as latent variables. The HMM is ideal for game-theoretic

modeling because it allows us to infer strategies and equilibrium play from observed actions,

while allowing the strategies to evolve over time. Our analytical results show that there is

great potential in using probabilistic latent variable models to describe game-theoretic and

other experimental data.

5.1 Related Work

There have been considerable theoretical developments on peer prediction mechanisms. The

earlier mechanisms rely on a common prior assumption — the information structure, i.e. the

prior joint distribution of the participant’s signals and the event outcome, must be common

knowledge among the participants and known by the designer [Miller et al., 2005, Jurca and

Faltings, 2009, Zhang and Chen, 2014]. Miller et al. [2005] proposed the first peer predic-

tion method, which rewards each participant for whether his report is predictive of another
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participant’s report using a proper scoring rule. While the Miller et al. [2005] mechanism

induces the truthful equilibrium, it also has uninformative equilibria where all participants

make the same report and reveal no information. Jurca and Faltings [2009] generalized and

improved the Miller et al. [2005] mechanism to eliminate or hamper the undesirable sym-

metric uninformative equilibria by making each participant’s payment depend on multiple

other reports instead of one other report.

The common prior assumption is quite stringent, particularly since the mechanism needs

to know the common prior in order to determine the payments. Several subsequent mecha-

nisms relax this assumption — they either do not require this assumption at all [Witkowski

and Parkes, 2012b], or do not require the mechanism to know the common prior [Prelec,

2004, Witkowski and Parkes, 2012a, Radanovic and Faltings, 2013]. In particular, the

robust Bayesian truth serum (RBTS) [Witkowski and Parkes, 2012a] improved upon the

Bayesian truth serum (BTS) [Prelec, 2004] by being incentive compatible for small popula-

tions, and Radanovic and Faltings [2013] devised a mechanism similar to RBTS [Witkowski

and Parkes, 2012a] for non-binary signals.

Regarding the elicitability of private information without observable ground truth, Wag-

goner and Chen [2013] proved the impossibility result that any peer prediction mechanism

has at least one uninformative equilibrium where the participants’ reports are independent

of their private information. Intuitively, an uninformative equilibrium can be reached if the

participants play the same game as if they do not possess any private information. More-

over, Radanovic and Faltings [2013] gave several impossibility results regarding the design

of peer prediction mechanisms with di↵erent assumptions on the common prior distribution,

focusing on the case when the participants have conditionally independent and identically

distributed signals. Zhang and Chen [2014] proved that the information structures satis-

fying stochastic relevance is the maximal set of information structures that are truthfully

elicitable. Moreover, they generalized the Miller et al. [2005] mechanism for the maximal

truthfully elicitable set of information structures when the designer knows the information

94



structure, and they proposed a sequential mechanism for a slightly smaller set of information

structures when the designer does not know the information structure.

In recent work, Witkowski et al. [2013] and Dasgupta and Ghosh [2013] assume that

a participant can invest costly e↵ort, which improves the quality of his report, and they

proposed mechanisms to incentivize both truthfulness and high e↵orts. They consider binary

information elicitation tasks and assume that an agent could invest costly e↵ort to achieve a

certain quality or a probability of identifying the ground truth. By using negative payments

to penalize disagreement, Witkowski et al. [2013] designed an output-agreement mechanism

such that participants with quality above a threshold choose to participate and invest e↵ort

while those below do not participate. Dasgupta and Ghosh [2013] devised a mechanism

where exerting maximum e↵ort and truthful reporting is a Nash equilibrium with maximum

payo↵s to all participants. Their key contribution is a technique for penalizing low-e↵ort

agreement leading to the uninformative equilibria by using the presence of multiple tasks.

Very few experimental work has adopted peer prediction mechanisms. Among them, only

the work by John et al. [2012] aim to evaluate the incentives of a peer prediction mechanism,

specifically the Bayesian truth serum [Prelec, 2004]. This motivated us to experimentally

evaluate the incentives of other peer prediction mechanisms. John et al. [2012] asked psy-

chologists to report their engagements in questionable research practices in an anonymous

survey study, using BTS to incentivize truth telling. They showed that the self admission

rate was higher in the BTS group than in the control group.

Several experiments adopted but did not evaluate peer prediction mechanisms [Prelec and

Seung, 2006, Shaw et al., 2011, Gao et al., 2012]. Prelec and Seung [2006] demonstrated that

BTS can be used to infer the ground truth even if most participants’ subjective judgements

are wrong. Shaw et al. [2011] used the description of BTS as the contextual manipulation

for one financial incentive tested in their online experiment, but did not pay the workers

according to the mechanism. Gao et al. [2012] used the Witkowski and Parkes [2012b]

mechanism to score judges on their evaluations of the quality of short tourism ads.
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5.2 The Jurca and Faltings Mechanism

We describe the JF mechanism [Jurca and Faltings, 2009], which include the first peer

prediction mechanism [Miller et al., 2005] as a special case.

We are interested in an item for which some people have opinions or subjective infor-

mation, given by their private signals, and we aim to design monetary payments so that

participants will truthfully reveal their signals about the item. The item has a type ! 2 ⌦;

we focus on the binary case with |⌦| = 2. Among N � 3 participants providing their

opinions, participant i’s private opinion is a binary signal s 2 S, S = {s
1

, s
2

} that only he

observes.

The JF mechanism assumes that the relationship between the participants’ signals and

the type of the item is common knowledge. This assumption allows inference about the

likelihood of one participant’s signal given another participant’s signal. The participants’

signals are assumed to be conditionally independent given the type of the item. Specifically,

the type of the item is drawn by nature according to a probability distribution P(!),! 2 ⌦

where
P

!2⌦ P(!) = 1, and each participant’s signal s is independently drawn according to

the conditional probability distribution P(s | !), s 2 S,! 2 ⌦. Moreover, the mechanism

assumes that the prior P(!) and the conditional distribution P(s | !) are common knowledge

for all participants and the mechanism.

With their realized signals, each participant makes a report r 2 S to the mechanism.

The mechanism pays each participant according to the participant’s report r and nf reports

of his peers (1  nf  N � 1), denoted the participant’s reference reports. For example,

participant i’s reference report could be one other random participant’s report (nf = 1) or

all other participants’ reports (nf = N � 1). When nf = 1, we use rf to denote the single

reference report.

The payment rule of the JF mechanism is designed to induce a truthful Bayesian Nash

equilibrium among rational and risk-neutral participants: a participant maximizes his ex-

pected payment by truthfully reporting his private signal if he believes that all other par-

96



ticipants are reporting their signals truthfully. A payment rule that supports the truthful

equilibrium must satisfy the following linear constraints:

X

0mnf

P(m | si) (u(si,m)� u(s
3�i,m)) � 0, 8i = 1, 2

where u(r,m) (r 2 S, m 2 [1, nf ]) denotes a participant’s payment if he reports r and m out

of his nf reference reports are s
1

and P(m | s) denotes the probability that given a signal of

s 2 S, m out of nf signals are s
1

. We use this linear program with additional constraints to

derive payment rules in our experiment.

Although the JF mechanism supports the truthful equilibrium by design, it always in-

duces other uninformative pure strategy equilibria. Furthermore, the uninformative equilib-

ria may yield higher payo↵s than the truthful equilibrium, making it questionable whether

participants will choose the truthful equilibrium in practice. For example, for the payment

rule in Table 5.1a, for every s 2 S, it is an equilibrium for all participants to report s re-

gardless of their signals. These equilibria yield higher payo↵ (1.20 or 1.50) than the truthful

equilibrium (0.91). In general, when a participant’s payment depends only on one reference

report, Jurca and Faltings [2009] proved that at least one of the symmetric pure strategy

coordinating equilibria must yield higher payo↵ than the truthful equilibrium.

r = s
1

r = s
2

rf = s
1

1.50 0.30
rf = s

2

0.10 1.20

(a) Example 1.

r = s
1

r = s
2

m = 0 0.90 0.80
m = 1 0.10 1.50
m = 2 1.50 0.10
m = 3 0.80 0.90

(b) Example 2.

r = s
1

r = s
2

m = 0 0.10 0.15
m = 1 0.10 0.90
m = 2 1.50 0.15
m = 3 0.15 0.10

(c) Example 3.

Table 5.1: Payment rule examples. In (a), each cell gives a player’s payo↵ if he reports r
and his reference report is rf . In (b) and (c), each cell gives a player’s payo↵ if he reports r
and m out of the nf reference reports are s

1

.).

Fundamentally, the existence of such uninformative equilibria is unavoidable as partici-

pants’ reports are only compared with one another and not with the ground truth. Although

we cannot make truthful reporting the unique pure strategy equilibrium, it is possible to mod-
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ify the payment rule to remove the symmetric pure strategy coordinating equilibria entirely

or make them less desirable than the truthful equilibrium. Either can be achieved if we

have at least 4 participants and a participant’s payment depends on all other participants’

reports [Jurca and Faltings, 2009].

Table 5.1b shows a payment rule without any symmetric coordinating equilibrium. If all

participants make the same report, then any participant can improve his payo↵ from 0.80 to

0.90 by reporting the other signal. However, this payment rule has asymmetric coordinating

equilibria where 3 participants always report s
1

and the remaining participant always reports

s
2

(or vice versa). These asymmetric coordinating equilibria also reveal no information but

may be harder to reach if the participants cannot communicate with one another.

Alternatively, we could make the symmetric coordinating equilibria less desirable than

the truthful equilibrium (Table 5.1c). This is possible because a participant’s payment is

maximized when his report agrees with the majority but not all of his reference reports. At

either symmetric coordinating equilibrium, every participant gets 0.15, which is much less

than the expected payo↵ of 0.50 at the truthful equilibrium.

5.3 Experiment Design and Setup

Among all peer prediction mechanisms, we chose to test the binary version of the JF mech-

anism for the following reasons. Compared to the Miller et al. [2005] mechanism, Jurca

and Faltings [2009] generalized and improved the Miller et al. [2005] mechanism to eliminate

or hamper the undesirable symmetric uninformative equilibria. One of our main goals is

to test whether eliminating or hamming the uninformative equilibria will promote truthful

behavior. Moreover, compared to the later peer prediction mechanisms, it is relatively easier

for the participants to understand and to reason about the payment rule of the Jurca and

Faltings [2009] mechanism. First, the Jurca and Faltings [2009] mechanism only requires the

participant to choose a value in a small discrete report space. Most later peer prediction
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mechanisms require participants to report probabilities, so they need to choose a value in a

continuous real-valued report space. It is psychologically easier for the participants to reason

about discrete rather than continuous values. It is known that that people have systematic

bias when reasoning about probabilities. Also, the Jurca and Faltings [2009] mechanism does

not use any complicated mathematical formula whereas the later peer prediction mechanisms

use complicated mathematical formulae such as proper scoring rules. As a result, it is much

easier to make the payment rule of the Jurca and Faltings [2009] mechanism accessible to

the lay participant compared to the later peer prediction mechanisms.

We evaluated the JF mechanism in a repeated setting, although it was defined and an-

alyzed as a one-shot mechanism. In practice, it is natural to expect participants to learn

and adapt to the mechanism by providing their opinions for di↵erent products and services.

Hence, a repeated setting best captures the intended uses of peer prediction and the partic-

ipants’ learning dynamics. Such studies of one-shot games in a repeated setting are typical

in experimental economics [Shachat et al., 2012].

We conduct our experiment on MTurk. Peer prediction mechanisms are naturally suited

for online experiments, as their intended application is for web-based or impersonal settings.

Online participants enjoy greater anonymity and are not subject to the social norms typical of

real-world interaction. Additionally, online labor markets, such as MTurk, provide immediate

access to a large and diverse subject pool, which is not readily available through alternative

means. We recruited over 3000 unique participants in our experiment. Recent studies have

shown that online experiments are not only viable, but can be advantageous for large-scale

studies of behavior [Horton et al., 2011, Mason and Suri, 2012, Rand, 2012].

Trick or treat story In our experiment, we described the mechanism using a simple and

fun story about trick or treating on Halloween night:

A group of kids are trick or treating on Halloween night. There are two types of
houses, A and B, giving out two types of candies, M&M’s and gummy bears, in
di↵erent proportions. The kids randomly choose a house to go trick or treating.
The chosen house may be one of the two types with equal chance but the kids don’t
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know which type of house was chosen. Each kid secretly receives one randomly
selected candy from the chosen house. A clown shows up and asks each kid to
tell him the type of candy received, promising a payment in return. Each kid may
claim to have either type of candy to the clown. The clown collects reports from
all the kids, and then rewards each kid based on the kid’s claim and the other
kids’ claims according to a payment rule.

This story can be easily mapped to the setting of the JF mechanism. Each player is a

kid, the house is the type of the item, the candies are the signals and reports, and the clown

is the mechanism.

This story serves several purposes. First, it makes the mechanism accessible to partic-

ipants who may be unfamiliar with economic theory. Second, it satisfies the mechanism’s

common knowledge assumptions, which are required for their theoretical properties to hold.

The story also highlights the conditional independence of the signals given the type of the

item by emphasizing that the proportions of candies at each house remains the same regard-

less of the candies given out.

The story also explains that misreporting one’s private information is perfectly accept-

able. Although this is a common concept in game theory, it can be unintuitive for MTurk

workers since they often associate misbehavior with rejection or punishment. To counter this

bias, we stated that each player’s candy is obtained in secret and is not observed by anybody

else. We used the clown as a neutral character to represent the mechanism. The action of

“making a claim” is a neutral phrasing in lieu of words such as “lying” or “cheating” with

negative connotations. We also emphasized that each player can claim to have either type

of candy, and that the clown cannot verify whether the player’s claim matches the player’s

candy.

Setup Our experiment engaged the participants in a real-time, multiplayer, and repeated

game through MTurk. A fixed number of players are matched together and play a game

repeatedly for a fixed number of rounds. We use TurkServer [Mao et al., 2012], a framework

and API for real-time interaction between experiment participants, in our experiment.

We o↵er a $1.00 base payment for completing the task. Each player also receives a bonus
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payment equal to his average reward in the game (ranging from $0.10 to $1.50). We chose a

large bonus relative to the base payment to motivate workers to focus on their performance

in the game.

We controlled our subject pool in several ways. Each worker may participate only once

in the experiment, so that no worker has prior experience with the game. We also restricted

our tasks to US workers, for two reasons. Having US workers minimizes the likelihood of

connection issues since we require synchronous connections to a US-based server. Second,

controlling for geography avoids unexpected behavior if people from other regions have di↵er-

ent behavioral norms or a language barrier in understanding the instructions. Additionally,

we used common qualifications (> 95% HITs approved, > 100 HITs completed) to ensure

that workers are familiar with the MTurk system.

Task Users progress through the task in several sections. The first page describes some

general information and requires consent, followed by an 11-page tutorial consisting mainly

of pictures. The tutorial describes the trick or treat story and the game interface. After

the tutorial, the participant must pass a short quiz testing their understanding of the task.

Each participant has 3 attempts to pass the quiz with a score of at least 80%. If they

fail all 3 attempts, they are permanently blocked from our experiment. After passing the

quiz, participants wait in a virtual lobby for enough players to start a new game. When

enough players arrive, a ’READY’ button appears for each player, starting a new game when

enough players press this button; this ensures that all players are paying attention when the

experiment starts. We explain the game interface in the next section. After the game, the

participants are asked to describe the strategies and reasoning they used in a short exit

survey.

Interface The game interface (Figure 5.1) describes some general information such as the

number of rounds and the number of other players at the top, the steps of the current round

on the left, and the history of game play on the right. Players cannot communicate with one

another during the task, other than viewing reports from previous rounds.
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Figure 5.1: The Game Interface

When designing the table showing the history of play, we carefully considered how to

show the optimal amount of information. With an abundance of information, a participant

may become distracted or confused, and pay less attention to the task. However, with

insu�cient information, a participant may not be able to learn or improve his strategy by

observing other participants’ actions. After initial trials of our experiment, we ultimately

chose to display the other participants’ claims as an aggregate summary, which is a concise

yet still informative representation.

To control for position biases on the game interface, we randomize the row and column

order of the payment rule once for each participant and show this randomized table through-

out the task. We also randomize the order of questions on the quiz and the order of the

radio buttons for choosing claims.

Dealing with disconnections Due to the synchronicity of the experiment, disruptions

from connection issues are possible. To ensure that a game progresses smoothly when such
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T1 T2 T3 T4 T5
Number of players per game 3 3 4 4 1

Number of rounds 20 20 20 30 20
Number of games without expelled players 103 104 103 103 411

Table 5.2: Treatments

issues occur, we expel a participant from the game if he is disconnected for at least 1 minute

(a reasonable threshold since a typical game lasts 5 minutes). An expelled player cannot

reconnect to the game, and the server will choose truthful reports on behalf of the expelled

player. This ensures that other players experience the game as normal. Our analysis excludes

37 games with expelled players (4% of the games).

5.4 Treatments

We designed and conducted five treatments in sequence (Table 5.2). Because we had no a

priori prediction of players’ empirical behavior, we used the results of the earlier treatments

to design the later treatments. We allowed each participant to participate only once in any

treatment, and our quiz showed that participants have similar comprehension of the task in

all treatments.

For each game, we recruited a small number of players and allowed them to play for a

large number of rounds. Having a small number of players minimizes players’ waiting times

and potential connection issues, as well as making it easier for each player to reason about

other players’ actions. With a large number of rounds, we hoped to give players su�cient

time to explore and improve their strategies.

For all payment rules, we chose the maximum payment of 1.50 to make it more attractive

than the 1.00 base payment, and the minimum payment of 0.10 to prevent extreme behavior

resulting from attempting to avoid a payment of zero.

Let ⌦ = {A,B} denote the two types of houses and let S = {MM,GB} be the common

signal and report space. We use the MM (or GB) equilibrium to refer to the symmetric
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coordinating equilibrium where all players always report MM (or GB), and let xMMyGB

denote an asymmetric coordinating equilibrium for a (x + y)-player game where x players

always report MM and y players always report GB.

The prior A fixed prior is used for all treatments, as shown in equation (5.1).

P(A) = 0.5, P(MM | A) = 0.2, P(MM | B) = 0.7 (5.1)

This prior has the nice property that if one player receives a given signal, other players are

more likely to have received the same signal. This reasoning may motivate players to be

truthful if they believe other players are also truthful.

Treatment 1 For treatments 1 and 2, we used payment rules where each player has one

reference report, chosen randomly from all other reports. For treatment 1 (Table 5.3a), all

four values in the payment rule are distinct and neither report strictly dominates the other.

At the truthful equilibrium, every player obtains 0.91 in expectation. Moreover, both the

MM and GB equilibria yield higher payments than the truthful equilibrium. Every player

gets the maximum payment of 1.50 at the MM equilibrium, making it the highest-paying

choice among all equilibria.

r = MM r = GB
rf = MM 1.50 0.30
rf = GB 0.10 1.20

(a) Treatment 1 payment rule.

r = MM r = GB
rf = MM 1.50 0.10
rf = GB 0.10 1.50

(b) Treatment 2 payment rule.

Table 5.3: Payment rules of treatments 1 and 2. The cell at (r, rf ) gives a player’s payment
if the player reports r and his reference report is rf .

Treatment 2 For treatment 1, it’s easy to identify the MM equilibrium as having the

highest payment. Thus, in treatment 2, we modified the payment rule of treatment 1 to be

symmetric (Table 5.3b), such that the MM and GB equilibria have the same payments. We

hypothesized that such a payment rule may deter the players from reaching either the MM

or GB equilibrium, especially without direct communication.
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Treatment 3 For payment rules where each player has only one reference report, we

are inevitably limited in incentivizing truthful reporting because one of the MM and GB

equilibria will always yield higher payment than the truthful equilibrium [Jurca and Faltings,

2009]. To overcome this limitation we tested 4-player payment rules in treatments 3 and 4

where each player’s payment depends on all other players’ reports. We aim to either eliminate

the MM and GB equilibria altogether or make these equilibria yield worse payment than the

truthful equilibrium.

The payment rule for treatment 3 (Table 5.4a) does not have the MM and GB equilibria.

However, it does support the 3MM1GB and 1MM3GB equilibria and an equilibrium where

every player always reports the signal he did not receive. Compared to the truthful equi-

librium, the 3MM1GB or 1MM3GB equilibria seem more attractive. They give 3 players

the maximum payment of 1.50 and the remaining player 0.90, which is comparable to the

expected payment of 0.91 at the truthful equilibrium.

r = MM r = GB
nf = 0 0.90 0.80
nf = 1 0.10 1.50
nf = 2 1.50 0.10
nf = 3 0.80 0.90

(a) Treatment 3 payment rule.

r = MM r = GB
nf = 0 0.10 0.15
nf = 1 0.10 0.90
nf = 2 1.50 0.15
nf = 3 0.15 0.10

(b) Treatment 4 payment rule.

Table 5.4: Payment rules of treatments 3 and 4. The cell at (r, ff ) gives a player’s payment
if the player reports r and nf of his reference reports are MM .

Treatment 4 For treatment 4’s payment rule, the MM and GB equilibria pay very little,

as shown in Table 5.4b. At the either MM or GB equilibrium, a player obtains a small

payment of 0.15, which is close to the minimum payment of 0.10. In contrast, every player

receives 0.50 in expectation at the truthful equilibrium.

We chose this payment rule for two reasons. First, it is impossible to eliminate all of the

MM, GB, 3MM1GB and 1MM3GB equilibria for any such 4-player payment rule. Moreover,

by supporting the MM and GB equilibria instead of the 3MM1GB and 1MM3GB equilibria,
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it is possible to make the payments from the coordinating equilibria much less than those of

the truthful equilibrium.

Non Peer-Prediction Treatment For comparison, we would like to understand how

players behave when they are not paid by any peer prediction mechanism. In this treatment,

each player is paid 0.90 in every round, which is comparable to a player’s expected payment

at the truthful equilibrium in treatments 1 and 3. Also, each player plays the game alone,

without observing other players’ reports. We believe that this setting is closest to how such

a constant payment would be used in practice.

5.5 Results

We collected results on a fairly large scale, recruiting 3533 unique subjects over 65 days for

both the pilot and the actual experiment. In the pilot experiment, 705 workers passed the

quiz and 542 of them played a total of 181 games. In the actual experiment, 2031 workers

passed the quiz and and 1988 of them played a total of 861 games.

We received generally positive feedback about the design of our task, suggesting that

peer prediction mechanisms can be made accessible to lay participants. Many participants

remarked that the game was easy to understand, quick, smooth and enjoyable. 79% of

all workers who attempted the quiz eventually passed it, suggesting that the quiz was of

appropriate di�culty and the participants had adequate understanding of the mechanism.

5.5.1 Summary of Data

Figure 5.2 shows a summary of our experimental data: the percentage of players receiving

a particular signal and making a specified report for each round in each treatment. In

treatments 1 and 4, the percentage of players with GB signals and MM reports increases,

whereas in treatment 2, the percentage of players with MM signals and GB reports increases.

The total percentage of misreporting is smallest in treatment 5.
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(d) Treatment 4
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(e) Treatment 5

Figure 5.2: Percentage of players with the specified signal and report

T1 T2 T3 T4
Actual payo↵ 1.13 1.05 0.87 0.57

Expected payo↵ at truthful equilibrium 0.91 0.98 0.90 0.50

Table 5.5: Comparison of actual payo↵ with expected payo↵ at truthful equilibrium

Table 5.5 compares the players’ average payo↵s in the game with their expected payo↵

at the truthful equilibrium in treatments 1-4. Compared to a player’s expected payo↵ at

the truthful equilibrium, the players’ average payo↵ is higher in treatments 1, 2, and 4, and

lower in treatment 3.

5.5.2 Learning a Hidden Markov Model

Our main goal is to answer the following question:

Will the players reach one of the multiple equilibria of the game, and if so which
equilibrium will the players choose and why?
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While equilibrium concepts are defined based on players’ strategies, we only observe the

players’ signals and reports in our experiment. In fact, characterizing unobserved strategies

is a common challenge for experimentally testing game-theoretic predictions. A common

approach is to test whether a player’s actions are consistent with an equilibrium strategy, but

this heuristic assumes that a player’s actions are drawn from a stationary distribution [Selten

and Chmura, 2008]. Alternatively, one might directly elicit mixed strategies from players in

the form of a probability distribution over actions [Noussair and Willinger, 2011], but this

invasive elicitation method may significantly influence players’ behavior.

We use the hidden Markov model [Rabiner, 1989] to accurately capture the players’

strategies in repeated games. Widely used in speech recognition, natural language processing,

and computational biology, the HMM allows us to infer strategies from actions and analyze

how they evolve over time without fixing the strategies a priori. Recent work has adopted

similar probabilistic models to detect latent behavior in repeated games [Shachat et al., 2012,

Ansari et al., 2012].

We model the players’ behavior as follows. There are K latent states in the HMM. The

j-th state corresponds to the mixed strategy

(µj(MM,MM),µj(GB,MM))

where µj(s, r) = P(r | s) is the probability of reporting r when receiving signal s for

strategy j 2 {1, . . . , K}. Each player i 2 {1, . . . , N} chooses his starting strategy from the

distribution

⇡ = (⇡
1

, . . . , ⇡K)

where ⇡j is the probability that a player adopts strategy j in the first round. Players change

their strategies according a stochastic matrix A, with

A(j, j0) = Pr( i
t+1

= j0 |  i
t = j), 8j, j0 2 {1, . . . , K}
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Figure 5.3: The graphical model for each player i implied by the HMM.

where  i
t is player i’s strategy in round t and A(j, j0) is the probability that a player adopts

strategy j in round t and switches to strategy j0 in round t+ 1.

This HMM makes several assumptions about players’ behavior. A player only chooses

strategies among the K states of the HMM. Moreover, a player’s distribution over strategies

in round t + 1 is Markovian and depends only on her strategy in round t. Thus, each

player changes his strategy stochastically according to a fixed transition distribution, and

this may not capture the scenario when players change their strategies in response to their

peers’ actions. However, by considering each player independently, the HMM describes the

population as a whole instead of capturing the intentions of individual players. It is thus a

natural first step in studying the evolution of unobserved strategies.

Our experimental observations are pairs (sit, r
i
t), corresponding to player i’s signal sit and

report rit in round t. The HMM defines the following probability distribution over players’

reports based on their signals and model parameters:

Pr(r | s,⇡,µ,A) =
N
Y

i=1

 

T
Y

t=2

µ i
t
(sit, r

i
t)A( i

t�1

, i
t)

!

µ i
1
(si

1

, ri
1

) · ⇡( i
1

) (5.2)

As shown in Figure 5.3, this model di↵ers from the canonical HMM as both the observed

signal sit and the hidden state  i
t influence the observed action rit, but can be estimated

using the same methods. We maximize equation (5.2) over ⇡,µ, and A using the Baum-
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Welch Expectation-Maximization (EM) algorithm, obtaining maximum likelihood values of

the parameters. These parameters reveal the set of strategies, the initial and the long-run

distribution over strategies.

Robustness The likelihood function for the HMM is not log-concave and so the local

optimum found by the EM algorithm depends on the initial parameters. To get closer to

the global optimum, we ran the EM algorithm with 100, 000 restarts with random initial

parameters and chose the parameters with the highest log likelihood. Many of the restarts

produced equivalent “best” solutions. The equivalent solutions contain the same hidden

states and transition probabilities in di↵erent orders. Therefore, we feel confident that we

found solutions equivalent to the global optimum.

Model selection The number of states (strategies) K for the HMM may significantly

impact our equilibrium convergence analysis. As K increases, there is a diminishing return

on the increase in the log likelihood. A common criterion for model selection is the Bayesian

information criterion (BIC) [Schwarz, 1978]. For all treatments, we chose K = 4 in order to

maximize the BIC.

GB MM Truthful Mixed Mixed 2
Treatment 1 (0.13, 0.09) (1.00, 0.99) (0.99, 0.04) (0.82, 0.45)
Treatment 2 (0.01, 0.00) (0.99, 0.99) (0.96, 0.01) (0.60, 0.32)
Treatment 3 (0.02, 0.03) (0.87, 0.97) (0.97, 0.05) (0.54, 0.42)
Treatment 4 (0.96, 0.97) (0.96, 0.06) (0.73, 0.61) (0.34, 0.37)

Constant payment (0.02, 0.00) (0.98, 0.02) (0.16, 0.96) (0.68, 0.34)

Table 5.6: Each tuple gives the estimated strategy (µj(MM,MM), µj(GB,MM)). All numbers
are rounded to 2 decimal places.

Estimated HMM parameters The HMMs estimated for all treatments are described

in detail in Appendix C.1. The interpretations of the 4 states of each HMM are shown in

Table 5.6. The majority of the estimated strategies are close enough to one of the pure

strategies (MM, GB or truthful) and are therefore interpreted correspondingly. Notably,

these strategies emerged as a result of estimating our model on the data without a priori

restrictions. Every state in each estimated HMM has a large self-transition probability
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(� 0.9). This suggests that players rarely switch between strategies, and they play each

strategy for 10 rounds on average before switching to a di↵erent strategy.

When estimating each HMM, the number of strategies K a↵ects how the strategies

capture the players’ noisy behavior. When K increases, the pure strategies in the HMM

become less noisy and closer to their theoretical definitions. For instance, asK increases from

3 to 4, the truthful strategy in treatment 1 changes from (0.91, 0.22) to (0.99, 0.04). When

K is small, the strategies are less pure because they must incorporate players’ exploratory

behavior. As K increases, the pure strategies become less noisy because the noisy behavior

can be captured using additional strategies.

Equilibrium convergence using HMM analysis The set of strategies in each HMM

only describes the population in aggregate. To better understand the actions of each player,

we use the Viterbi [1967] algorithm to estimate the most likely sequence of strategies used

by each player over the multiple rounds of the game. Formally, for given parameters µ,⇡,

and A, the Viterbi algorithm computes

 i⇤ = ( i⇤
1

, . . . , i⇤
T ) = argmax

 i

 

T
Y

t=2

µ i
t
(sit, r

i
t)A( i
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!

µ i
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(si

1

, ri
1

) · ⇡( i
1

) (5.3)

Having a sequence of most likely strategies for each player allows us to characterize equi-

librium convergence for each game—here, we are referring to convergence to game-theoretic

equilibria and not to the stationary distribution of the Markov chain for the HMM. In the

following results, we use the values  i⇤, i 2 {1, . . . , N}, to describe strategies and equilibria

in games.

Treatment 1 Results Treatment 1’s results are shown in Figure 5.4. Strikingly, many

players adopted more profitable strategies and converged to the uninformative equilibria

during the game. In particular, they started with the truthful or mixed strategy but switched

to and stayed with the MM or GB strategy until the end (Figure 5.4a). The MM and GB

strategies are that are close to absorbing under the HMM interpretation.

Moreover, players particularly favored the MM equilibrium, which yields the highest
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payo↵. 1/3 of the players used the MM strategy throughout the game and another 1/3

of the players switched to playing the MM strategy during the game (Figure 5.4a). The

percentage of games playing the MM equilibrium increased dramatically from 8% to around

46%, whereas the total percentage of games playing the GB or truthful equilibria remained

less than 10% (Figure 5.4b).

Unsurprisingly, few players are truthful due to the high payo↵s of the MM and GB

equilibria. Around 15% of the players are truthful throughout the game, but only 5% of the

games converged to the truthful equilibrium by the end.

(a) Each row shows how a single player’s strat-
egy evolves over multiple rounds.

0 19
0

0.45

0.54

1

Round

P
e
rc

e
n
ta

g
e
 o

f 
g
a
m

e
s

 

 

MM

GB

Truthful

(b) Fraction of games matching an equilibrium
strategy profile in each round.

Figure 5.4: Treatment 1 Results.

Treatment 2 Results In treatment 2, we aimed to deter the players from choosing ei-

ther the MM or GB equilibrium by giving them the same payo↵ (Figure 5.5). This was

unsuccessful as 36% of the games converged to the GB equilibrium (Figure 5.5b).

Compared to treatment 1, this treatment is better at promoting truthful behavior in the

short term, but not in the long run. More players in this treatment adopted the truthful

strategy at the beginning—32% of the players in this treatment compared to 16% in treat-

ment 1 (Figures 5.4a and 5.5a). We hypothesize that this happened because it is harder to

coordinate on the GB equilibrium than to coordinate on the MM equilibrium in treatment 1.
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However, by the end of the game, less than 4% of the games in either treatment converged

to the truthful equilibrium (Figures 5.4b and 5.5b).

Interestingly, players clearly favored the GB equilibrium over the MM equilibrium al-

though they yield the same payo↵s. One reason for this seems to be a property of the prior:

the probability of the GB signal (55%) is higher than that of the MM signal. If players start

by being truthful, this property alone could naturally lead them to the GB equilibrium.

Indeed, we observe that nearly all players starting with the truthful strategy who switched,

changed to the GB rather than the MM strategy (Figure 5.5a). Moreover, players’ exit

survey answers revealed that they deliberately coordinated on the GB equilibrium once they

recognized that other players were more likely to receive the GB candy. These suggest that

players have a basic understanding of the prior and can use it to determine their strategies.

(a) Each row shows how a single player’s strat-
egy evolves over multiple rounds.
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Figure 5.5: Treatment 2 Results.

Treatment 3 Results In this treatment, we aimed to promote truthful behavior by elim-

inating the symmetric coordinating equilibria, although there still exist asymmetric coordi-

nating equilibria (Figure 5.6). As expected, it was empirically much more di�cult for players

to find and reach the asymmetric equilibria versus the symmetric equilibria. Less than 5%

of the games converged to an asymmetric equilibrium (Figure 5.6b) whereas more than 1/3
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of the games converged to a symmetric equilibrium in the first two treatments (Figures 5.4b

and 5.5b).

However, the increased di�culty of finding a coordinating equilibrium did not promote

truthful reporting. Not a single game converged to the truthful equilibrium (Figure 5.6b)

despite 20% of players being truthful over the entire game (Figure 5.6a).

The mixed strategy (0.54, 0.42) used by more than half of the players may capture the

players’ random exploration because they are unable to decide on a strategy for this complex

payment rule. Alternatively, this strategy is very close to the random strategy (0.50, 0.50),

which is part of a symmetric mixed strategy equilibrium, and 11% of games appear to reach

this mixed strategy equilibrium (Figure 5.6b).

(a) Each row shows how a single player’s strat-
egy evolves over multiple rounds.
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Figure 5.6: Treatment 3 Results.

Treatment 4 Results In this treatment, we made the MM and GB equilibria to have

very low payo↵s. Similar to treatment 3, this e↵ectively deterred the players from choosing

them (Figure 5.7). Less than 2% of the games reached the MM equilibrium and no game

reached the GB equilibrium (Figure 5.7b).

However, this did not promote truthful behavior. No game reached the truthful equi-

librium (Figure 5.7b) although 16% of the players were truthful during the entire game
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(Figure 5.7a).

Players strongly favored the MM strategy over the GB strategy, possibly because of the

higher payments in the MM column (Figure 5.4b). A large percentage (26%) of the players

adopted the MM strategy by the end of the game (Figure 5.7a). In contrast, they seemed to

not consider the GB strategy at all as none of the 4 estimated strategies (Table 5.6) is close

to the GB strategy (This is true even for K = 6).

(a) Fraction of games matching an equilibrium
strategy profile in each round.
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Figure 5.7: Treatment 4 Results.

5.5.3 Classifying Convergence to Pure Strategy Equilibria

In contrast to the HMM analysis, a simpler approach to detect equilibrium convergence

is to compare players’ reports with an equilibrium strategy. Using this simple approach,

described below, we classified the convergence of each game to pure strategy equilibria of

the JF mechanism. In Table 5.7, we show that the classification results using this simple

method and the HMM analysis are almost identical.

Informally, we characterize equilibrium convergence as follows. For round t, we assume

that a player’s report is consistent with a pure strategy if the report is observed with positive

probability given the strategy. A report may be consistent with more than one pure strategy.
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Then, we conclude that all players in a game converged to a particular equilibrium in round t

if t is the earliest round such that all players’ reports from round t to round T are consistent

with this equilibrium. Finally, if the players in a game converge to more than one equilibrium,

we pick the equilibrium where the convergence occurred the earliest.

Formally, consider the one-shot peer prediction game with N players and T rounds, and

a pure strategy equilibrium e 2 E of this game. Let  i(e) be player i’s strategy at this

equilibrium e, and let  i
t be player i’s strategy in round t that we infer from this analysis.

Given player i’s signal sit and report rit that we observed in round t, we conjecture that player

i is playing strategy  i(e) in round t if his report is observed with positive probability given

the strategy and his signal, that is

µ i
(e)(s

i
t, r

i
t) > 0 )  i

t =  i(e), 8i, t, e.

Note that a player’s report in each round may be consistent with multiple pure strategies.

Then we say that player i converged to equilibrium e at round

ti(e) = minimum value in {1, . . . , T} such that  i
t =  i(e), 8ti(e)  t  T,

and that the game converged to equilibrium e at round

t(e) = max
1iN

ti(e).

Players in a game may converge to di↵erent equilibria at di↵erent rounds. Hence, we

find the equilibrium for which the convergence occurred earliest in the game. The game con-

verged to the equilibrium e⇤ = argmin
e2E

t(e) at round t⇤ = min
e2E

t(e)). If convergence occurred

su�ciently early (t⇤  (T � 5)), we classify that the game converged to the equilibrium e⇤

at round t⇤. Otherwise, the game remains unclassified.
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Treatment 1 Treatment 2 Treatment 3 Treatment 4
HMM Simple HMM Simple HMM Simple HMM Simple

Truthful 4 5 4 7 0 0 0 0
GB 5 4 37 34 - - 0 0
MM 47 47 7 7 - - 2 1

3MM1GB - - - - 4 4 - -
1MM3GB - - - - 1 1 - -
Unclassified 47 47 56 56 98 98 101 102

Table 5.7: Classification of convergence to pure strategy equilibria using the simple method.
Each cell gives the number of games converging to the particular equilibrium in the specified
treatment. The symbol “-” means that the equilibrium does not exist for the payment rule
tested in the specified treatment.

5.5.4 Non Peer-Prediction Treatment

Remarkably, in the absence of peer prediction methods, this treatment was much more

successful in incentivizing truthful reports than all other treatments. 2/3 of the players

reported truthfully during the entire game (Figure 5.8), despite having no explicit incentive

to do so. We conjecture that the reason for these observations is that truthful reporting is the

easiest choice for players who are o↵ered a constant payment, since the cost of exploring and

adopting alternative strategies may be greater than that of being truthful in the design of

our trick or treat game. When peer prediction is used in the other treatments, it may prompt

and even motivate the players to explore non-truthful strategies, leading to the strategic play

observed. This implies that peer prediction mechanisms may be better suited for scenarios

where behaving truthfully is much more costly than acting strategically.

5.6 Experimental Challenges

In designing an online behavioral experiment to test an economic mechanism, we overcame

some unique challenges. We believe that awareness of these issues is important for future

experimental work.
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Figure 5.8: Non Peer-Prediction Treatment Results. Each row shows how a single player’s
strategy evolves over multiple rounds.

Coordinating simultaneous participation of multiple workers Our experiment re-

quires multiple unique workers to participate in each game simultaneously. This is unusual

for MTurk, where workers typically participate independently, without interaction, and com-

plete many similar tasks (HITs) at a time.

To coordinate the simultaneous participation of several workers, we built a virtual lobby,

where workers wait for enough others to start the game [Mason and Suri, 2012]. However,

simple posting such tasks on MTurk is not su�cient to ensure a smooth experience for the

workers and to collect high quality data. In our pilot experiment, workers experienced a

long wait in the lobby because they accepted our tasks at very di↵erent times. This resulted

in games with workers not paying attention or accidentally disconnecting from the server,

causing further frustration for other workers.

We solved this problem by mimicking the recruitment process for lab experiments. In

a separate recruitment task, we described our experiment and paid $0.10 for workers to

consent to being contacted. We invite the recruits via email to participate in our experiment

at specified times. Each time, we posted the tasks during a 30-minute window to encourage

the timely arrival of the participants and to minimize their waiting time. This recruitment

process worked extremely well: we completed the experiment significantly more quickly and
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collected higher quality data, compared to our pilot experiment. By establishing prior history

with a worker, we can compensate a worker for his time using a bonus payment if he could

not finish the experiment due to technical issues. Many of these features are now part of

the TurkServer [Mao et al., 2012] platform, and we encourage its use for deploying similar

experiments.

Ensuring attention and comprehension Using unique participants, we face the chal-

lenge of ensuring workers’ attention and comprehension with only a single interaction. Lab

experiments can easily ensure participants’ attention with location and time constraints. In

contrast, getting online workers’ full attention can be a luxury due to the distractions in

their environment. We addressed this issue in several ways. First, we went through several

design iterations to ensure that our task was clear, enjoyable and smooth. We also promised

a generous bonus payment contingent on workers’ performance in the task, motivating them

to pay attention. Finally, we used a built-in tutorial and quiz to ensure that workers have

adequate understanding of the task.

The MTurk meta-environment A platform such as MTurk is a small part of a much

bigger online environment. Workers constantly communicate through various forums 1, re-

view requesters on sites such as TurkOpticon2, and use third party services like TurkAlert to

monitor requester activities. These systems can significantly influence the results of online

experiments [Chandler et al., 2013].

While many such communities have policies to protect the integrity of research data,

workers may still unwittingly disclose details of our task that we do not want revealed, or

they may speculate and reach incorrect conclusions about the purpose of our experiment.

They may also share their confusion and frustration with other workers without notifying

the requester. The unique worker requirement also makes the task less attractive than other

1Popular sites include http://www.turkernation.com, http://www.reddit.com/r/mturk, http://

www.mturkforum.com, http://www.cloudmebaby.com, and http://www.mturkgrind.com.

2http://turkopticon.ucsd.edu
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tasks that allow repeated participation. Furthermore, a requester’s reputation on review

sites such as TurkOpticon can seriously influence his ability to recruit participants in the

future.

As a result, we carefully designed our task and conducted our experiments to provide

workers with a positive experience. We promptly responded to email communications from

workers at all times, especially during the time window when tasks were posted. We made

sure our payments compared fairly to market wages, and paid workers promptly upon task

completion. We also extensively monitored workers’ activities on the various online commu-

nities, advertising our presence to prevent intentional discussion of our task, and responding

quickly to workers’ questions. This also allowed us to recruit workers from the broader online

community. Despite only able to participate once, many workers left positive TurkOpticon

reviews for us and said that they would be happy to work on our tasks again.

5.7 Conclusion and Future Work

In our experimental setting, we did not observe truthful behavior when participants are

rewarded using the Jurca and Faltings [2009] mechanism. Players easily converged to the

uninformative equilibria, and hampering these equilibria did not induce truthful behavior.

In contrast, players are generally truthful in the absence of economic incentives.

This observation, however, may be due to several features of our setting. First, in our

setting, the costs of truthful reporting and behaving strategically. This property makes it

more likely for the participants to be truthful in the absence of economic incentives. From

this perspective, we are interested in the direction of evaluating peer prediction mechanisms

in a setting when truthful reporting is much more costly than behaving otherwise. Moreover,

in our experiment, we assign players to fixed groups and let them play the game repeatedly

with the same peers. This essentially tests the peer prediction as a repeated game. While

there is an equilibrium of the repeated game where every player in every round adopts his
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strategy at an equilibrium of the stage game (i.e. the one-shot peer prediction game), the

repeated game may have other equilibria where players’ behavior in each round is di↵erent

from their behavior at any equilibrium of the stage game. For future work, to alleviate the

repeated game e↵ects, we would like to test peer prediction by recruiting a large number

of players and randomly rematching the players for each round of the game. Finally,

we are also excited about exploring other social, psychological and economic techniques for

motivating truthful behavior. For instance, if we inform the participants of the existence of

the truthful equilibrium, the participants’ behavior may be very di↵erent than what we’ve

observed.

Our work shows the promise of evaluating game theoretic mechanisms through online be-

havioral experiments, especially for mechanisms inherently designed for an online or crowd-

sourced setting. Online infrastructures allow for conducting experiments at a much greater

scale, as we show in recruiting over 3000 participants for our experiment. In addition, our

results also motivate the general use of probabilistic models for analyzing game-theoretic

and other experimental data, demonstrating the potential of greatly improved explanatory

power of participants’ behavior over existing techniques.
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Chapter 6

Adaptive Polling for Information

Aggregation

Decision making often relies on collecting small pieces of relevant information from many

individuals and aggregating such information into a consensus to forecast some event of inter-

est. Such information elicitation and aggregation is especially challenging when the outcome

space of the event is large, due to the inherent di�culties in reasoning over and propagating

information through the large outcome space in a consistent and e�cient manner.

In recent years, online labor markets, such as Amazon Mechanical Turk (MTurk), have

become a burgeoning platform for human computation [Law and von Ahn, 2011]. MTurk

provides easy access to an ever-growing workforce that is readily available to solve complex

problems such as image labeling, translation, and speech-to-text transcriptions. One salient

feature of MTurk is that the tasks typically o↵er small monetary rewards (e.g. 10 cents) and

involve simple, one-shot interactions. This leads to a natural problem solving approach where

a complex problem is decomposed into many simple, manageable subtasks, such that each

worker can make a small, relatively independent contribution towards the overall solution.

The algorithm then takes care of integrating the solutions to the subtasks into a coherent

final solution to the entire problem.
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In this work, we examine whether we can leverage online labor markets’ easy access

to participants to e↵ectively solve the information elicitation and aggregation problem for

an event with an exponentially large outcome space. Our proposed algorithm, through

simple, one-shot interactions, adaptively collects many small pieces of potentially imprecise

information from a large number of participants recruited through an online labor market,

and integrates these information together into an accurate solution.

We consider a setting with n competing alternatives, each characterized by a hidden

strength parameter. Our goal is to produce accurate estimates of the alternatives’ strength

parameters in order to rank them. Participants have noisy information about the strengths

of the alternatives. We design an adaptive algorithm which produces probabilistic estimates

of the strength parameters based on collected pairwise comparison data. Moreover, our

adaptive algorithm uses an active learning approach to choose each pairwise comparison

question to myopically maximize the expected information gain from each participant. We

then evaluate our algorithm through an MTurk experiment for a set of alternatives for which

we know the underlying true ranking. Our experimental results show that the adaptive

method can gradually incorporate small pieces of collected information and improve the

estimates of the strength parameters over time. Compared with presenting a random pairwise

comparison question at each step, adaptive questioning has the advantage of reducing the

uncertainty of and increasing the accuracy of the estimates more quickly. Interestingly, this

is achieved by asking more pairwise comparison questions that are less likely to be answered

correctly.

6.1 Related Work

Many elaborate approaches have been developed for event forecasting. For example, predic-

tion markets [Wolfers and Zitzewitz, 2004] allow participants to wager on the outcomes of

uncertain events and make profits by improving market predictions. There have been sev-

123



eral attempts to design expressive prediction markets [Chen et al., 2008, Abernethy et al.,

2011, Xia and Pennock, 2011, Pennock and Xia, 2011], especially for forecasting an event

with a combinatorial outcome space (e.g. permutation of n alternatives). However, these

combinatorial prediction markets can be computationally intractable to operate, and it is

more complicated for humans to interact with the markets than participate in simpler elici-

tation mechanisms such as surveys. A study by Goel et al. [2010] showed that, for predicting

outcomes of binary sports events, the relative advantage of using prediction markets in-

stead of polls was very small. This suggests that methods requiring simple interactions with

participants may still provide accurate results for the purpose of eliciting and aggregating

information.

There is a rapidly evolving human computation literature on designing workflows for

solving complex problems using crowdsourcing platforms. The simpler approaches either

allow for participants to iteratively improve the solution, or to work on the same problems in

parallel [Little et al., 2009, 2010]. More complex workflows attempt to break a problem down

into small chunks so that the participants can make relatively independent contributions to

the final solution [Kittur et al., 2011, Liem et al., 2011, Noronha et al., 2011]. Our method can

be seen as a workflow that aggregates pairwise comparison results from many participants

using an adaptive algorithm, and integrates these results into an accurate total ordering of

the alternatives.

Our adaptive algorithm characterizes the participants’ noisy information on the strength

parameters using the Thurstone-Mosteller model [Thurstone, 1927, Mosteller, 1951], which is

a special case of the well known random utility model (RUM) [McFadden, 1974] in economics

with Gaussian noise. The Thurstone-Mosteller model has a long history in psychology,

econometrics, and statistics, and has been used in preference learning [Brochu et al., 2007,

Houlsby et al., 2011] and rating chess players [Elo, 1978]. In a recent work, Mao et al. [2013]

use voting rules to reconstruct an underlying ranking given noisy full rankings elicited from

human subjects. One of their voting rules is created using the Thurstone-Mosteller model.
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Carterette et al. [2008] demonstrate from an information retrieval perspective that pairwise

comparisons such as used in the Thurstone-Mosteller model are more natural and e↵ective

for human preference elicitation than absolute judgments. When the noise follows a Gumbel

distribution, the RUM model becomes the Plackett-Luce model [Plackett, 1975, Luce, 2005].

For pairwise comparison, the Plackett-Luce model reduces to the well known Bradley-Terry

model [Bradley and Terry, 1952]. We choose to use the Thurstone-Mosteller model because

of the tractability in model estimation when using Gaussian noise.

Our algorithm takes an active learning approach to choose the pair of alternatives to

query for each participant. Active learning allows us to generate more accurate estimates

with fewer pairwise comparisons and less cost. Interested readers can refer to Settles [2009]

for a comprehensive survey on active learning. An active learning algorithm may use one

of many strategies to evaluate the informativeness of the expected data and to choose the

next query. For instance, the algorithm can choose the query that would most change the

current model, that would most reduce the generalization error, or that would minimize the

variance [Settles, 2009]. We choose the next pair of alternatives to maximize the expected

change to our estimates — maximize the expected distance between the current and updated

estimated parameter distributions using the Kullback-Leibler divergence as the distance met-

ric. Alternatively, this could be interpreted as choosing the next query to maximize expected

information gain according to an information-theoretic metric. Glickman and Jensen [2005]

also used this metric to optimally find pairs for tournaments using the Bradley-Terry model.

Parallel to our work is a new research area called “learning to rank” in machine learning.

The goal of this area is to rank a list of items given full or partial orderings of the items. Our

work is closest to the work by Azari Soufiani et al. [2013b,a]. Azari Soufiani et al. [2013b]

assume that the participants’ preferences are generated by generalized random utility model

and they use adaptive elicitation according to classical criteria in Bayesian experimental

design. The Thurstone-Mosteller model that we use is a special case of generalized random

utility model. Our active learning approach is closely related to D-optimality, which is a well
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studied criterion in Bayesian experimental design. However, they elicit a full ranking from

each participant whereas we only elicit a pairwise comparison. The algorithm developed

by Azari Soufiani et al. [2013a] breaks the full rankings into pairwise comparisons, but they

did not use active learning for elicitation. Ailon [2011] developed an algorithm to rank some

items given pairwise comparisons, and the goal of the algorithm is to produce a ranking which

disagrees with as a few pairwise comparisons as possible. They also use active learning to

minimize the number of pairwise comparisons required. Long et al. [2010] developed an

active learning framework for ranking, but they produce the ranking by eliciting a score for

each item rather than pairwise comparisons.

6.2 Our Adaptive Method

We are interested in predicting the ranking of n competing alternatives, where the true

ranking is determined by hidden strength parameters si for each alternative. If si > sj,

alternative i is ranked higher than alternative j. Participants have noisy information on the

strength parameters.

Our method presents simple pairwise comparison questions to participants and elicits

information only on the presented pair of alternatives. Based on the data collected, we esti-

mate the strength parameters of all the alternatives. As it is costly to poll the participants,

we adaptively choose (in each iteration) the next pair of alternatives that can provide the

largest expected (myopic) improvement to the current estimation.

Let M be a n ⇥ n nonnegative matrix used to record the pairwise comparison results.

Mi,j denotes the number of times alternative i has been ranked higher than alternative j.

Let Mi,i = 0, 8i. Then, a high-level summary of our method with T iterations is presented

in Algorithm 1 below.

In Section 6.2.1, we introduce the Thurstone-Mosteller model adopted for modeling the

noisiness of the participants’ information. We discuss the method for estimating the strength
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Algorithm 1 Adaptive Information Polling and Aggregation

1. Initialize M to a nonnegative, invertible matrix, with value 0 on the diago-

nal.

2. t = 1.

while t  T do

3. Estimate the strength parameters based on M. We use the Thurstone-

Mosteller model to capture the noisiness of participants’ information and obtain the

maximum likelihood estimates of the strength parameters. See Sections 6.2.1 and 6.2.2

for details.

4. Select a pair of alternatives that maximizes the expected information gain

of the parameter estimation. See Section 6.2.3 for details.

5. Obtain the answer to the pairwise comparison question from an partici-

pant and update the matrix M.

6. t = t+ 1.

end while

parameters of alternatives in Section 6.2.2. Together, these two parts detail how step 3 of

Algorithm 1 is carried out. Finally, we explain step 4 of Algorithm 1 in Section 6.2.3.

6.2.1 Noisy Information Model

To model the noisiness of the participants’ information, we adopt the Thurstone-Mosteller

model or the Probit model with Gaussian noise. One may also adopt the Bradley-Terry

model, also called the Logit model, by setting P(ri > rj) to
1

1+esj�si
, the cdf of the logistic

distribution. The di↵erence between the two models is very slight, but the Gaussian distri-

bution of the Thurstone-Mosteller model is more tractable for the adaptive approach in our

algorithm.

Let s0 = (s0
1

, s0
2

, . . . , s0n) represent the absolute strength of the n alternatives. We model

a random participant’s perceived absolute strength of alternative i as a random variable:

r0i = s0i + ✏0i, where the noise term is Gaussian, ✏0i ⇠ N (0, �2) with unknown �2. Thus, the

probability for the participant to rank alternative i higher than alternative j is

P(r0i > r0j) = P(✏0j � ✏0i < s0i � s0j) = �

✓

s0i � s0jp
2�

◆

(6.1)
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where �(·) is the cumulative distribution function (cdf) of the standard Gaussian distribution

N (0, 1).

We note that the �2 term only a↵ects scaling. Furthermore, with a fixed number of

parameters n, only their di↵erences a↵ect the probabilities. Without loss of generality, let

si =
1p
2�

(s0i � s0k), (6.2)

and

ri =
1p
2�

(r0i � s0k), (6.3)

where k is an arbitrary reference alternative. We then have sk = 0, and ri = si + ✏i, where

✏i ⇠ N (0, 1/2). E↵ectively we only have n� 1 unknown parameters. The probability that a

participant ranks alternative i higher than alternative j can be written as

P(ri > rj) = �(si � sj). (6.4)

From now on, for simplicity, we will call s the strength parameters of the alternatives and r

the perceived strength of the alternatives.

6.2.2 Maximum Likelihood Estimation

Given the pairwise comparison results M, we will obtain the maximum likelihood estimates

of the strength parameters for the Thurstone-Mosteller model introduced above.

The log likelihood given M is

L(s|M) =
X

i,j

Mi,j log(�(si � sj)). (6.5)

The maximum likelihood estimators, ŝ, are the strength parameters that maximize the log

likelihood, i.e. ŝ 2 argmaxs L(s|M).

Let �(x) be the probability density function (pdf) of the standard Gaussian distribution:

�(x) = 1p
2⇡
e�

x2

2 . Note that �(x) is log-concave, that is, log �(x) is concave. According to

Bagnoli and Bergstrom [1989], the cdf of a log-concave and di↵erentiable pdf is also log-
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concave. This means that log�(x) is concave in x. Thus, the log likelihood function L(s|M)

in (6.5) is a concave function of s and we only need to consider the first order conditions to

solve the optimization problem.

The derivatives of L(s|M) are

@L(M|s)
@si

=
X

j

Mi,j
�(si � sj)

�(si � sj)
�
X

j

Mj,i
�(sj � si)

�(sj � si)

for all i. Hence, ŝ is the solution to the equation system @L(M|s)
@si

= 0, 8i. This does not have

a closed-form solution, but can be solved using numerical methods.

The maximum likelihood estimators ŝ asymptotically follow a multivariate Gaussian

distribution. The variance and covariance of ŝ can be estimated using the Hessian matrix of

the log likelihood evaluated at ŝ. The Hessian matrix has elements

@2L

@sj@si
= Mi,j

�(si � sj)

�(si � sj)

✓

si � sj +
�(si � sj)

�(si � sj)

◆

+Mj,i
�(sj � si)

�(sj � si)

✓

sj � si +
�(sj � si)

�(sj � si)

◆

for i 6= j, and
@2L

@s2i
= �

X

j:j 6=i

@2L

@sj@si

for all i. Let H(ŝ) be the Hessian matrix at s = ŝ. Then, the estimated covariance matrix

of ŝ is the inverse of negative H(ŝ), i.e.

⌃̂ = (�H(ŝ))�1.

Therefore, given M, our knowledge on s can be approximated by the multivariate Gaussian

distribution N (ŝ, ⌃̂).
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6.2.3 Adaptive Approach

At each iteration, the most valuable poll to present to a participant is on a pair of alternatives

that can best improve our current knowledge of the strength parameters.

Let Mc be the matrix of observations, ŝc be the estimation of s, and ⌃̂c be the estimated

covariance matrix of ŝc in the current round. Because ri = si + ✏i, where ✏i ⇠ N (0, 1/2) is

independent Gaussian noise, the predicted perceived strength of alternatives by a random

participant follows a multivariate Gaussian distribution: r̂c ⇠ N (ŝc, ⌃̂c+⌃✏), where ⌃✏ is the

covariance matrix of the ✏i and has value 1/2 on the diagonal and 0 everywhere else. Hence,

given a pair of alternatives i and j, the predicted probability that a random participant will

rank alternative i higher than alternative j is

p̂ci,j = P(r̂ci > r̂cj) = �

 

ŝci � ŝcj

1 + ⌃̂c(i, i) + ⌃̂c(j, j)� 2⌃̂c(i, j)

!

where ⌃̂c(i, j) is the element of ⌃̂c at row i and column j. This means that at each iteration,

for each pair of alternatives i and j, we can predict how likely a random participant will

rank i higher than j and similarly will rank j higher than i.

Suppose we present the pair of alternatives i and j to a participant. If the participant

ranks i higher than j, our matrix of observations will become Mij, which is identical to

Mc everywhere except Mij(i, j) = Mc(i, j) + 1. We denote the approximate distribution

obtained from the maximum likelihood estimation given Mij as N (ŝij , ⌃̂ij). Intuitively, if

N (ŝij , ⌃̂ij) is very di↵erent from our current estimation N (ŝc, ⌃̂c), the extra observation has

a large information value. Thus, we use the Kullback-Leibler divergence, also called relative

entropy, to measure the information value. The Kullback-Leibler divergence between the

two multivariate normal distributions is

D
KL

(N (ŝij , ⌃̂ij)kN (ŝc, ⌃̂c)) =
1

2

⇥

tr
⇣

(⌃̂c)�1⌃̂ij
⌘

(6.6)

+
�

ŝc � ŝij
�>

(⌃̂c)�1(ŝc � ŝij)� log

 

|⌃̂ij|
|⌃̂c|

!

� n
⇤

,
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where n is the dimension of the random vectors, which equals the number of alternatives, and

|⌃̂ij| is the determinant of ⌃̂ij. Similarly, if the participant ranks j higher than i, our matrix

of observations will become Mji, which is identical to Mc everywhere except Mji(j, i) =

Mc(j, i) + 1. The new approximate distribution becomes N (ŝji, ⌃̂ji). The Kullback-Leibler

divergence D
KL

(N (ŝji, ⌃̂ji)kN (ŝc, ⌃̂c)) can be calculated analogously to (6.6).

Putting all pieces together, for each pair of alternatives i and j, we can calculate the

expected information gain of polling an participant on the pair as

g(i, j) =p̂ci,jDKL

(N (ŝij , ⌃̂ij)kN (ŝc, ⌃̂c)) (6.7)

+ p̂cj,iDKL

(N (ŝji, ⌃̂ji)kN (ŝc, ⌃̂c)).

At each iteration, we pick the pair with the maximum expected information gain and present

it to another participant.

Figure 6.1: Two example pictures. The left picture has 342 dots, and the right one has 447
dots.

6.3 Experiment Design

We experimentally evaluate the e↵ectiveness of our method with participants recruited from

MTurk. In our experiment, each alternative was a picture containing a relatively large
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number of dots [Horton, 2010]. We generated 12 di↵erent pictures, each having 318, 335,

342, 344, 355, 381, 383, 399, 422, 447, 460, and 469 non-overlapping dots respectively. The

number of dots x in each picture was independently drawn according to a distribution such

that P(x) _ 1/x for x 2 [300, 500].Figure 6.1 presents two example pictures used in the

experiment. The goal was to use our method to estimate the relative number of dots in

these 12 pictures in order to correctly rank the pictures in decreasing number of dots. We

chose pictures with dots as the alternatives for our experiment for several reasons:

1. We know the correct ranking and can more objectively evaluate the proposed method.

2. The number of dots in each picture is large enough that counting is not an option for

participants, introducing uncertainty.

3. The di↵erences in number of dots across pictures vary and some pairs are more di�cult

to compare than others; for example, pictures in some adjacent pairs di↵er by only 2

dots, while those in some other adjacent pair are separated by 26 dots.

We ran our experiment on MTurk. For each HIT (Human Intelligence Task in MTurk’s

terminology), we presented a pair of pictures, randomly placing one on the left and the other

on the right, and asked a MTurk user (Turker) to choose the picture that contained more

dots. The base reward for completing a HIT was $0.05. If the Turker correctly selected the

picture with more dots, we provided another $0.05 as a bonus. Using our adaptive method,

we compute an estimate of the strength parameters which reflect the relative di↵erences

between the number of dots in the pictures, and decide which pair of pictures to present to

the next Turker.

The matrix M was initialized to have value 0 on the diagonal and 0.08 everywhere else.

This e↵ectively set our initial estimate of the strength parameters to be N (0,⌃0), where ⌃0

had value 1.64 on the diagonal and value 0.82 everywhere else. This can be interpreted as

our prior belief of the strength parameters without any information.
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We ran 6 trials of adaptive polling. For each trial, we recruited 100 participants assuming

that the budget is only enough for collecting 100 correct answers. To evaluate the advantage

of our adaptive approach, we ran another 6 trials (with 100 HITs in each trial) of the random

polling method, where the pair in each HIT was randomly selected. In our experiment, each

HIT was completed by a Turker with a unique ID. In other words, we interacted with each

participating Turker only once.

6.4 Results

The actual number of dots in each picture can be considered its absolute strength parameter

s0i, the value of which we know as the experimenter. However, in order to evaluate our

method, we need to establish a “gold standard” for the strength parameters relative to the

strength sk = 0 of a reference alternative k, as defined in equation (6.2). To transform

the absolute strength parameters into these “gold standard” strength parameters, we need

a good estimate of 1p
2�

according to equation (6.2), si = 1p
2�
(s0i � s0k). We run a Probit

regression [McCullagh and Nelder, 1989] on the 1200 pairwise comparison results collected

from all 12 trials. Specifically, let Y be 1 if the left picture is selected and 0 if the right

picture is selected. Let X be the number of dots in the left picture minus the number of

dots in the right picture. Then, P(Y = 1|X) = �(X�), where � = 1p
2�
, and we have 1200

observations for (X, Y ). The Probit regression gives us an estimate �̂ = 0.017. Multiplying

(s0i � s0k) by �̂, we obtain the “gold standard” strength parameters -0.41, -0.12, 0, 0.03, 0.22,

0.66, 0.7, 0.97, 1.36, 1.79, 2.01, and 2.16 for the 12 pictures. The picture with 342 dots

(the third lowest) is used as the reference picture and hence has a strength parameter of 0.

Since we only perform a linear transformation, a picture with more dots has a larger “gold

standard” strength parameter.

A fair concern with our model is whether the Thurstone-Mosteller model accurately cap-

tures the participants’ information in our setting. To evaluate this assumption, we compare
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Figure 6.2: Frequency of the left picture being selected in the 1200 pairwise comparisons
of all 12 trials. The x-axis represents the di↵erence in number of dots between the left
and right pictures (left � right). The observations are grouped into 7 buckets according to
the di↵erence in dots. Each bar represents the empirical frequency for the corresponding
bucket.The curve is �(0.017x).

the empirical frequencies of the Turkers’ responses with those predicted by the Thurstone-

Mosteller model. By equation (6.1), the probability for a participant to select picture i in a

pairwise comparison between pictures i and j is �
⇣

s0i�s0jp
2�

⌘

, and we estimated 1p
2�

= 0.017

using all the collected data. Thus, the Thurstone-Mosteller model predicts that the empirical

frequencies of the Turkers’ responses should closely follow the distribution �(0.017(s0i� s0j)).

Figure 6.2 plots the empirical frequency of the left picture being selected in our experiment

for seven brackets of di↵erences in dots between the left and right pictures. The empirical

frequency matches the cdf well, indicating that our setting does not significantly deviate from

the Thurstone-Mosteller model. We notice that Turkers have a slight bias toward selecting

the picture on the right, because when the di↵erence in number of dots is around 0, the

frequency of the left picture being selected is about 40%, in contrast to the 50% predicted

by the model.
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Figure 6.3: The dynamics of the estimated strength parameters for an adaptive polling trial.
The x-axis is the number of iterations. The y-axis is the value of the estimated strength
parameters. The rightmost part of the figure labels the value of the “gold standard” strength
parameter for each picture.

Next, we look into whether our method e↵ectively incorporates information over time.

Figure 6.3 shows the dynamics of the estimated strength parameters for one of the adaptive

polling trials. The figures for all adaptive and random polling trials (Figures D.1 and D.2)

are presented in Appendix D.

Since the strength parameter for the picture with 342 dots is set to 0, the estimates

are for the other 11 pictures. The lines are colored in grayscale such that the lightest color

corresponds to the picture with the most dots and the darkest line corresponds to the picture

with fewest dots. We can see that all pictures start with an estimated strength parameter of

0. As more pairwise comparisons are polled, the estimated strength parameters diverge. The

overall trend is that the estimated strength parameters of pictures with more dots increase

and those of pictures with less dots decrease, showing that information is aggregated into

the estimates over time. The right side of Figure 6.3 labels the value of the “gold standard”
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strength parameter for each picture. At the end of 100 iterations, the estimated strength

parameters are close to the gold standard strength parameters. The produced ranking is

generally correct, except that two adjacent pairs are flipped. A closer look reveals that these

two flipped pairs have the smallest di↵erence in dots among all adjacent pairs of the 11

pictures, with 381 and 383 dots and 344 and 355 dots respectively.
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Figure 6.4: The entropy of the estimated
distribution N (ŝ, ⌃̂)
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Figure 6.5: The log score — the loga-
rithm of the pdf of N (ŝ, ⌃̂) evaluated at
the “gold standard” strength parameters

Finally, we compare the performance of adaptive polling with that of random polling. In

addition to our collected data, we also run 100 trials of simulation for each method using

the “gold standard” strength parameters to understand what we should expect to see if our

model perfectly captures the noisiness of the setting and we know the strength parameters.

Figures 6.4, 6.5 and 6.6 present the results of the comparison of the performance of our

adaptive polling method versus the random polling method.

Intuitively, we expect the adaptive method to reduce the entropy of the estimated distri-

bution more quickly than the random method, since the adaptive method is optimized for

quickly reducing the uncertainty of the probabilistic estimates of the strength parameters.

In Figure 6.4, we show a plot of the entropy of the estimated distribution N (ŝ, ⌃̂), which is
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Figure 6.6: The fraction of the pairwise comparison questions that are correctly answered

calculated as log
q

(2⇡e)n|⌃̂| where |⌃̂| is the determinant of ⌃̂. This figure confirms that

the entropy of the estimated distribution indeed decreases faster for the adaptive polling

than for the random polling. The di↵erence in the entropy produced by the two methods is

statistically significant by two-tailed t-test (p = 0.01).

Next, Figure 6.5 presents a comparison of the log score of the estimated distributions

for the two methods. The log score is often used to measure the accuracy of a probabilistic

prediction, so it is a good indicator for how well our method performs in estimating the

strength parameters. Having a high log score means that our method produces accurate

estimates of the strength parameters. Given an estimated distribution N (ŝ, ⌃̂) and the

“gold standard” strength parameters s, the log score is the logarithm of the pdf of N (ŝ, ⌃̂)

evaluated at s. Figure 6.5 shows that the log scores for both adaptive and random polling

increase over time. The log scores for adaptive polling are higher but the variation is large.

The di↵erence in the log score produced by the two methods is statistically significant by

two-tailed t-test (p = 0.016).

Interestingly, according to Figure 6.6, the fraction of pairwise comparison questions that

are answered correctly is lower for adaptive polling than for the random polling, and the dif-
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ference is statistically significant by two-tailed t-test (p = 0.005). This observation suggests

that adaptive polling tends to ask relatively di�cult comparison questions. The answers to

these questions are more valuable for improving the estimates of the strength parameters,

even though the participants are less likely to answer them correctly. Moreover, since we

pay Turkers a bonus only for correct answers, this implies that the cost of adaptive polling is

lower than that of random polling. For our experiment, an average of 10% in bonus payment

is saved per trial by using adaptive polling instead of the random method.

6.5 Conclusion and Future Directions

In conclusion, we demonstrate that eliciting and aggregating information about the ranking

of n competing alternatives can be e↵ectively achieved by adaptively polling participants

recruited from an online labor market on simple pairwise comparison questions and gradually

incorporating the collected information into an overall prediction. Our adaptive polling

method is robust against the unpredictable noise in the participants’ information and it is

e↵ective in eliciting and aggregating information while requiring only simple interactions

with the participants. With the same number of participants per trial, our adaptive polling

method derives estimates with higher accuracy while requiring 10% less payments compared

to the random polling method.

As discussed in section 6.1, there are several di↵erent strategies in active learning to

evaluate how each query a↵ects the informativeness of the expected data. In our algorithm,

we choose each query that would most change the current estimates, and we interpret a

significant change to the current estimates as informational gain. However, the active learn-

ing literature suggests many other ways to choose the next query, i.e. choosing the next

query that would most reduce the uncertainty or the variance in our estimates. It would

be interesting to evaluate the e↵ects of adopting di↵erent active learning approaches on the

performance of our algorithm.
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The baseline method in our MTurk experiment chooses each pairwise comparison question

randomly among all possible such questions. This is the most naive way to choose the

questions. One can imagine choosing each question using some smarter method that is less

sophisticated than active learning. For example, we can choose the pairwise comparisons for

which we have least data or pairs of alternatives whose estimated strength parameters are

close. It would be interesting to see whether our adaptive algorithm could still outperform

these smarter baseline methods.

Although the Thurstone-Mosteller model suitably captures the noisiness of participants’

information in our experiments, it has some limitations. The model implicitly assumes that

participants are ex-ante equally informed and their mistakes are independent. These may

not hold in some settings where some participants are better informed than others and

mistakes of participants are correlated. In future work, we are interested in studying how

our approach performs in such settings and developing suitable methods for them.

Even though we only evaluated our method for a setting with a known underlying ranking

of the alternatives, our method can be easily adapted for settings when the underlying

ranking is unknown. In this case, it is crucial to decide on a suitable termination condition for

our algorithm. Since our model produces probabilistic estimates of the strength parameters,

we could, for instance, choose to stop the algorithm once a desired entropy of the estimated

distribution is reached. It is an interesting future direction to explore di↵erent termination

conditions for applying our algorithm to such settings.
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Chapter 7

Conclusion and Future Directions

The goal of this dissertation is to tackle the following research question:

How to generate an accurate estimate or prediction of an event of interest by
eliciting dispersed information from multiple individuals and aggregating these
information together?

I study three information elicitation and aggregation methods: prediction markets, peer

prediction mechanisms, and adaptive polling, using both theoretical and applied approaches.

In Chapters 3 and 4, we theoretically characterize the equilibrium behavior of the par-

ticipants when trading in market scoring rule prediction markets. Myopic participants in a

prediction market are incentivized to truthfully reveal their private information. However, if

a non-myopic market participant receives multiple payo↵s from inside and/or outside of the

market, then the participant may want to withhold or misreport his information early on

in order to maximize his total payo↵. We show that non-myopic participants’ equilibrium

behavior critically depends on the information structure (i.e. how the participants’ private

information relates to the event of interest) and the payo↵ structure of the prediction market.

In Chapter 3, when the non-myopic participants have multiple opportunities to trade and

receive multiple payo↵s in the market, we prove that the information structure determines

whether the participants reveal information early or late in the market at an equilibrium.

In Chapter 4, the non-myopic participants receive payo↵s from both inside and outside of
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the market. In this case, our results indicate that the information and the payo↵ structures

together determine whether all private information gets fully revealed inside the market.

In Chapters 5, we experimentally study participants’ behavior towards the Jurca and

Faltings [2009] peer prediction mechanism, in order to understand whether the participants

will play one of the multiple equilibria characterized in theory. In theory, the Jurca and

Faltings [2009] mechanism not only supports the truthful equilibrium, it also induces unin-

formative equilibria where participants reveal no information to the mechanism. Moreover,

the mechanism has not been evaluated in practice and its theory provides little support

that the participants will be truthful in practice. We conduct a controlled online experi-

ment to evaluate the Jurca and Faltings [2009] mechanism through a multi-player, real-time

and repeated game. In our experimental setting, we observed that the participants are not

truthful and they successfully coordinated on the uninformative equilibria. In contrast, the

participants are generally truthful in the absence of economic incentives.

One unifying theme in Chapters 3, 4 and 5 is understanding how strategic participants

behave when interacting with the mechanisms. The participants are assumed to be rational

and self-interested economic agents who seek to maximize their rewards from the mechanism.

When assuming that the participants are strategic, our ultimate goal is to design mecha-

nisms such that the participants will always truthfully reveal their private information as

soon as the information is available. However, for both prediction markets and peer predic-

tion mechanisms, we demonstrate that the participants may not be truthful in theoretical

or experimental settings. In prediction markets, the strategic participants may withhold

their information or delay revealing their information. For peer prediction mechanisms, the

participants may coordinate on uninformative equilibria which reveal no information to the

mechanism.

These undesirable strategic behavior of the participants inspires an immediate future

direction: designing new and improved mechanisms to have stronger theoretical guarantees

for truthfulness. For instance, can we design prediction markets to have better truthful-
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ness properties for non-myopic participants while still maintaining incentive compatibility

for myopic participants? Can we design new peer prediction mechanism such that the un-

informative equilibria are eliminated or the truthful equilibrium can be shown to be focal

with strong theoretical and empirical evidence? Several recent work has already proposed

peer prediction mechanisms with better theoretical properties.

For prediction markets and peer prediction mechanisms, we assume that the pieces of

information that the participants may potentially obtain are known in advance. We also

assume that each participant knows the several pieces of information he may obtain, the par-

ticipant already possesses one such piece of information, and he decides whether to truthfully

reveal his information or not. This model has several assumptions that seem unreasonable

in practice. It may be unreasonable to believe that the potential pieces of information are

fixed and known in advance. In practice, participants need to invest costly e↵ort to gather

useful information and to synthesize the information together. In the current model, a par-

ticipant may decide not report his information truthfully because making a di↵erent report

can improve his expected payo↵. However, when the participant needs to invest e↵ort to

gather information, he may be tempted to provide a report which requires as little e↵ort

as possible. This reason for misreporting may be more reasonable and is more likely to

occur in practice. Such arguments have inspired recent work to design and develop new peer

prediction mechanisms which incentivize the participants to invest in costly e↵ort to obtain

accurate information [Jens Witkowski, 2013, Dasgupta and Ghosh, 2013].

There are several future directions that aim to reconcile the gap between the theoretical

understanding and the practical evaluations of these mechanisms. For example, prediction

markets have been shown to produce remarkably accurate forecasts in practice. However, our

theoretical results show that the participants’ strategic behavior in the market may damage

the information aggregation process, which seemingly contradict the empirical observations.

Similarly, the literature on peer prediction mechanisms focuses only on designing these mech-

anisms to support the truthful equilibrium. However, our experimental results suggest that

142



participants may coordinate on the uninformative equilibria and reveal no information to

the mechanism. To address this gap between theory and practice, one future direction is to

evaluate these mechanisms in experimental or practical settings in order to understand the

extent to which the participants’ behavior deviate from our theoretical models. Knowing

the deviation, we could either develop better theoretical models to capture the market par-

ticipants’ behavior in practice or seek novel practical methods to motivate the participants

to be truthful.

In Chapter 6, we design an adaptive polling method for estimating the outcome of an

event without observable ground truth, which is the same problem we study in Chapter 5. In

contrast to prediction markets and peer prediction mechanisms, we make very di↵erent as-

sumptions about the participants’ behavior. We assume that each participant, when queried,

will truthfully reveal to us one partial and noisy piece of information about the latent ground

truth. Using a theoretical model to capture the noise in the participants’ information, the

adaptive polling method estimates the latent ground truth by aggregating these partial and

noisy pieces of information together and determines the piece of information to query from

the next participant in order to maximize the information gain. We apply our method to

the problem of ranking n competing alternatives, each characterized by a hidden strength

parameter. The method queries each participant for the result of a particular pairwise com-

parison. Through a MTurk experiment, we show that the adaptive polling method can

e↵ectively aggregate information over time and outperforms a naive method, which chooses

a random pairwise comparison question at each step.

The model of participants’ behavior used in Chapter 6 is very di↵erent from the model

used in Chapters 3, 4 and 5. Both models are motivated by practical scenarios. However, each

model only captures a particular aspect of the participants’ behavior and the aspect captured

may be more or less prominent depending on the particular setting considered. The model of

strategic participants used in Chapters 3, 4 and 5 is widely used in theoretical analyses but

so far seems to have little supporting evidence in practice. For instance, prediction markets
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are successful empirically but there are many theoretical results on how the participants’

strategic behavior damage the information aggregation process. This contrast suggests that

the theoretical models of the market participants may not accurately capture the market

participants’ behavior in practice. For peer prediction mechanisms, we obtained evidence of

participants’ strategic behavior in our highly controlled experimental settings, but we have

yet to verify whether these strategic behavior will be observed in more realistic scenarios.

In contrast, our results in Chapter 6 provide positive support for the “noisy information”

model of the participants. In particular, we show that our theoretical model accurately

captures the noise in the participants’ information compared to the ground truth. These

positive evidence, however, may be a result of the specific setting that we chose to evaluate

the adaptive polling method. In summary, both models make simplifying assumptions about

the participants’ behavior. Each model is a reasonable approximation of the participants’

behavior only for certain situations. In fact, a better model of the participants should contain

both the strategic and the noisy information aspects of their behavior, thus encompassing

the two current models as special cases. The challenge then is to find a suitable way to

combine the two models. For example, di↵erent aspects of the participants’ behavior may

be more prominent in di↵erent settings, so the combined model needs to be flexible enough

to allow the weights of the two aspects be adjusted for di↵erent situations.
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Appendix A

Appendix to Chapter 3

A.1 Omitted Proofs

A.1.1 Proof of Theorem 2

Proof. The technique used in this proof is analogous to that of Theorem 2 in Chen et al.

[2010b].

Let � be Alice’s first-stage strategy at a PBE of the 3-stage I game. By Lemma 1, �

must satisfy the consistency condition. At any PBE of the 3-stage I game, for a fixed prior

distribution and a fixed initial market probability, the total of Alice’s ex-ante expected payo↵

and Bob’s ex-ante expected payo↵ in the game is a constant. Therefore, Alice seeks to choose

a first-stage strategy in order to minimize Bob’s ex-ante expected payo↵. We will show that

� must dictate Alice to change the market probability to the prior probability regardless of

Alice’s realized signal.

We first argue that � must be a deterministic strategy, i.e. there exists a unique r 2 [0, 1]

such that �sA(r) = 1 for any realized signal sA for Alice. We prove this by contradiction.

Suppose that there exists a realized signal sA such that the support of strategy � for signal sA

has at least 2 points, r
1

, r
2

, and perhaps a set of other points R. Then we construct another

strategy �0 for Alice and show that Bob’s expected payo↵ when Alice uses the strategy �0 is
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less than his expected payo↵ when Alice uses the strategy �, assuming that Bob knows and

conditions on Alice’s first-stage strategy.

Let r
3

= r1+r2
2

be the midpoint of r
1

and r
2

. Let the new strategy �0 for Alice randomize

over r
1

, r
3

, and the same set of remaining points R. Under �0, the probability that Alice

receives signal sA and reports r
1

is P(r1)�P(r2)
P(r1)

P(sA, r1), and the probability that Alice receives

signal sA and reports r
3

is P(r2)
P(r1)

P(sA, r1)+P(sA, r2). Under strategy �0, Alice mixes between

reporting r
1

and r
3

with probability P(r
1

)�P(r
2

) and 2P(r
2

) respectively. For this strategy

�0, we can compute P(sA|r3) as follows.

P(sA|r3) =
P(sA, r3)

P(r
3

)
=

P(r2)
P(r1)

P(sA, r1) + P(sA, r2)

2P(r
2

)
=

1

2
P(sA|r1) +

1

2
P(sA|r2)

Note that xsB(r3) has the following relationship with xsB(r1) and xsB(r2) as shown below.

xsB(r3) =
X

sA

P(sA|r3)P(1|sA, sB) =
X

sA

✓

1

2
P(sA|r1) +

1

2
P(sA|r2)

◆

P(1|sA, sB)

=
xsB(r1) + xsB(r2)

2
(A.1)

Let ⇡B(�) denote Bob’s ex-ante expected payo↵ when Alice uses strategy � and Bob

knows and conditions on Alice using the strategy �. We derive the expression for ⇡B(�)
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below.

⇡

B(�) =P(r
1

)
X

sB

P(sB|r1)
⇢

xsB (r1) log
xsB (r1)

r

1

+ (1� xsB (r1)) log
1� xsB (r1)

1� r

1

�

+ P(r
2

)
X

sB

P(sB|r2)
⇢

xsB (r2) log
xsB (r2)

r

2

+ (1� xsB (r2)) log
1� xsB (r2)

1� r

2

�

+ remaining profit over R

=P(r
1

)
X

sB

P(sB)

(

xsB (r1) log
xsB (r1)

P

sB
xsB (r1)

+ (1� xsB (r1)) log
1� xsB (r1)

1�
P

sB
xsB (r1)

)

+ P(r
2

)
X

sB

P(sB)

(

xsB (r2) log
xsB (r2)

P

sB
xsB (r2)

+ (1� xsB (r2)) log
1� xsB (r2)

1�
P

sB
xsB (r2)

)

+ remaining profit over R

=(P(r
1

)� P(r
2

))
X

sB

P(sB)

(

xsB (r1) log
xsB (r1)

P

sB
xsB (r1)

+ (1� xsB (r1)) log
1� xsB (r1)

1�
P

sB
xsB (r1)

)

+ P(r
2

)
X

sB

P(sB)

(

xsB (r1) log
xsB (r1)

P

sB
xsB (r1)

+ (1� xsB (r1)) log
1� xsB (r1)

1�
P

sB
xsB (r1)

)

+ P(r
2

)
X

sB

P(sB)

(

xsB (r2) log
xsB (r2)

P

sB
xsB (r2)

+ (1� xsB (r2)) log
1� xsB (r2)

1�
P

sB
xsB (r2)

)

+ remaining profit over R

When Alice uses strategy �0, Bob’s ex-ante expected payo↵ ⇡B(�0) is less than his ex-ante

155



expected payo↵ ⇡B(�), as shown below.

⇡

B(�0) =(P(r
1

)� P(r
2

))
X

sB

P(sB)

(

xsB (r1) log
xsB (r1)

P

sB
xsB (r1)

+ (1� xsB (r1)) log
1� xsB (r1)

1�
P

sB
xsB (r1)

)

+ 2P(r
2

)
X

sB

P(sB)

(

xsB (r3) log
xsB (r3)

P

sB
xsB (r3)

+ (1� xsB (r3)) log
1� xsB (r3)

1�
P

sB
xsB (r3)

)

+ remaining profit over R

=(P(r
1

)� P(r
2

))
X

sB

P(sB)

(

xsB (r1) log
xsB (r1)

P

sB
xsB (r1)

+ (1� xsB (r1)) log
1� xsB (r1)

1�
P

sB
xsB (r1)

)

+ 2P(r
2

)
X

sB

P(sB)

8

<

:

xsB (r3) log
xsB

(r1)+xsB
(r2)

2

P

sB

xsB
(r1)+xsB

(r2)

2

+

✓

1� xsB (r1) + xsB (r2)

2

◆

log
1� xsB

(r1)+xsB
(r2)

2

1�
P

sB

xsB
(r1)+xsB

(r2)

2

9

=

;

+ remaining profit over R (A.2)

<(P(r
1

)� P(r
2

))
X

sB

P(sB)

(

xsB (r1) log
xsB (r1)

P

sB
xsB (r1)

+ (1� xsB (r1)) log
1� xsB (r1)

1�
P

sB
xsB (r1)

)

+ P(r
2

)
X

sB

P(sB)

(

xsB (r1) log
xsB (r1)

P

sB
xsB (r1)

+ (1� xsB (r1)) log
1� xsB (r1)

1�
P

sB
xsB (r1)

)

+ P(r
2

)
X

sB

P(sB)

(

xsB (r2) log
xsB (r2)

P

sB
xsB (r2)

+ (1� xsB (r2)) log
1� xsB (r2)

1�
P

sB
xsB (r2)

)

+ remaining profit over R (A.3)

=⇡

B(�)

where equation (A.2) follows from equation (A.1), and the inequality (A.3) follows from the

strict convexity of relative entropy when the signals satisfy the informativeness condition.

Therefore, for any Alice’s strategy � where for at least one realized signal the support of

the strategy has two or more points in its support (i.e. deterministic), there always exists a

strategy �0 such that ⇡B(�0) < �B(�). This means that, at any PBE of this game, Alice’s

first-stage strategy must have only one point in its support. Such a strategy for Alice does

not reveal any information to Bob. If Alice’s first-stage strategy is deterministic, we must

have �sA(r) = 1 for all sA 2 SA and for some r 2 [0, 1]. Then, by the consistency condition,
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the only point in the support of Alice’s strategy must be P(1), as shown below.

P(1|r, �) = r

)
P

sA
P(1|sA)�sA(r)P(sA)
P

sA
P(sA)�sA(r)

= r

)
P

sA
P(1|sA)P(sA)
P

sA
P(sA)

= r

)r =
X

sA

P(1|sA)P(sA) = P(1)

Therefore, at any PBE of the 3-stage I game, Alice’s strategy must be �sA(P(1)) =

1, 8sA.

A.1.2 Proof of Theorem 3

Proof. According to the theorem statement, Alice’s first-stage strategy is

�sA(P(1)) = 1, 8sA 2 SA

and Bob’s second-stage strategy is

xsB(rA) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

fsB(↵
min

sB
), rA 2 [0,↵min

sB
)

fsB(rA), rA 2 [↵min

sB
,↵max

sB
]

fsB(↵
max

sB
), rA 2 (↵max

sB
, 1]

, 8sB 2 SB

where

fsB(rA) =
P(1|sB)P(0)rA

P(1)P(0|sB) + (P(1|sB)� P(1))rA

�min

sB
=min

sA
P(1|sA, sB), �max

sB
= max

sA
P(1|sA, sB)

↵min

sB
=f�1

sB
(�min

sB
),↵max

sB
= f�1

sB
(�max

sB
)

To prove that Alice’s and Bob’s strategies form a PBE of the 3-stage I game, we need to
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show 2 things:

1. Bob’s strategy is valid. That is, 8sB, 8rA 2 [0, 1], xsB(rA) 2 [�min

sB
, �max

sB
];

2. Alice’s expected payo↵ usA(rA) after receiving any signal sA is uniquely maximized by

reporting rA = P(1) given Bob’s strategy.

1. We first show that Bob’s strategy is valid. First, fsB(rA) is monotonically increasing

in rA 2 [0, 1] since

dfsB(rA)

drA
=

P(1)(1� P(1))P(1|sB)(1� P(1|sB))
{P(1)P(0|sB) + (P(1|sB)� P(1))rA}2

> 0

Second, the domain of xsB(rA) is well-defined since

�min

sB
< �max

sB
) ↵min

sB
< ↵max

sB
.

Finally, Bob’s strategy is valid since

�min

sB
= fsB(↵

min

sB
)  xsB(rA)  fsB(↵

max

sB
) = �max

sB
, 8rA 2 [0, 1].

2. We now show that Alice’s expected payo↵ after receiving any signal sA is uniquely

maximized by reporting rA = P(1).

We divide the range [0, 1] of rA into 3 subsets and analyze the properties of usA(rA) on

these subsets.

(a) rA 2 [maxsB{↵min

sB
},minsB{↵max

sB
}];

(b) rA 2 [0,minsB{↵min

sB
}) [ (maxsB{↵max

sB
}, 1];

(c) rA 2 [minsB{↵min

sB
},maxsB{↵min

sB
}) [ (minsB{↵max

sB
},maxsB{↵max

sB
}];

These subsets are well-defined as long as maxsB{↵min

sB
}  minsB{↵max

sB
}, as proven
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below.

P(1|sB) =
X

sA

P(1|sA, sB)P(sA|sB) 
X

sA

�max

sB
P(sA|sB) = �max

sB
, 8sB 2 SB

P(1|sB) =
X

sA

P(1|sA, sB)P(sA|sB) �
X

sA

�min

sB
P(sA|sB) = �min

sB
, 8sB 2 SB

) �min

sB
 P(1|sB)  �max

sB
, 8sB 2 SB

) ↵min

sB
 P(1)  ↵max

sB
, 8sB 2 SB

) max
sB

{↵min

sB
}  P(1)  min

sB
{↵max

sB
}

(a) For any rA 2 [maxsB{↵min

sB
},minsB{↵max

sB
}], we show that Alice’s expected payo↵

after receiving any signal sA is uniquely maximized at rA = P(1). Alice’s expected

payo↵ after receiving the sA signal, denoted by usA(rA), is

usA(rA) =
X

sB

⇢

P(1, sB|sA)
✓

log
rA
r0

+ log
P(1|sA, sB)
xsB(rA)

◆

+P(0, sB|sA)
✓

log
1� rA
1� r0

+ log
P(0|sA, sB)
1� xsB(rA)

◆�

The first derivative of usA(rA) evaluated at rA = P(1) is zero, as shown below:

dusA(rA)

drA
=

P

sB
xsB(rA)P(sB)� rA

rA(1� rA)
) dusA(rA)

drA
|rA=P(1)

= 0 (A.4)

The second derivative of usA(rA) is negative since xsB(rA) 6= rA, 8j by the distin-

guishability condition, as shown below.

d2usA(rA)

dr2A
= �

P

sB
(xsB(rA)� rA)2P(sB)

r2A(1� rA)2
< 0 (A.5)

By equations (A.4) and (A.5), for all rA 2 [maxsB{↵min

sB
},minsB{↵max

sB
}], usA(rA)

is uniquely maximized at rA = P(1).

The above argument applies for any rA 2 (0, 1) as long as xsB(rA) = fsB(rA).

For the rest of the proof, we make use of the following inequality, derived using
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equation (A.4).

rA <
X

sB

P(sB)fsB(rA), 8rA 2 (0,P(1)) (A.6)

(b) Next, we show that usA(rA) is monotonically increasing for all

rA 2 [0,minsB{↵min

sB
}). We omit the symmetric argument showing that usA(rA) is

monotonically decreasing for all rA 2 (maxsB{↵max

sB
}, 1].

We define �min = minsA{P(1|sA)}. First, we note that �min 2 (0,P(1)) since

P(1) =
X

i

P(sA)P(1|sA) > min
sA

{P(1|sA)} = �min

We first prove that minsB{↵min

sB
}  �min. For contradiction, assume ↵min

sB
>

�min, 8j and let �min = P(1|at) for some at. Then we have

↵min

sB
> �min, 8j ) �min

sB
> fsB(�

min), 8j

)�min = P(1|at) =
X

sB

P(sB)P(1|at, sB) �
X

sB

P(sB)�
min

sB
>
X

sB

P(sB)fsB(�
min)

which contradicts inequality (A.6) for rA = �min.

For rA < minsB{↵min

sB
}, xsB(rA) is a constant for all j. Thus, usA(rA) is monoton-

ically increasing for rA 2 [0,minsB{↵min

sB
}). since the first derivative of usA(rA)

with respect to rA is positive, as shown below.

dusA(rA)

drA
=

P(1|sA)� rA
rA(1� rA)

� �min � rA
rA(1� rA)

�
minsB{↵min

sB
}� rA

rA(1� rA)
> 0

(c) Finally, we show that usA(rA) is monotonically increasing for all

rA 2 [minsB ↵
min

sB
,maxsB ↵

min

sB
). We omit the symmetric argument showing that

usA(rA) is monotonically decreasing for all rA 2 (minsB{↵max

sB
},maxsB{↵max

sB
}].

For the following argument, let sB,j be the j-th realized signal for Bob. Without

loss of generality, we assume that ↵min

sB,j
follows the increasing order, i.e. ↵min

sB,1
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...  ↵min

sB,nB
. For k 2 {0, . . . , nB � 2}, if rA 2 [↵min

sB,k
,↵min

sB,k+1
), then we have

xsB,j
(rA) =fsB,j

(rA), 8j = 0, . . . , k

xsB,j
(rA) =fsB,j

(↵min

sB,j
) = �min

sB,j
, 8j = k + 1, . . . , nB � 1

We show below that the first derivative of usA(rA) is positive.

dusA(rA)

drA
=
P(1|sA)� rA +

Pk
j=1

{P(sB)fsB(rA)� P(1, sB,j|sA)}
rA(1� rA)

=

Pn
j=k+1

P(1, sB,j|sA) +
Pk

j=1

P(sB,j)fsB,j
(rA)� rA

rA(1� rA)

=

Pn
j=k+1

�

P(1, sB,j|sA)� P(sB,j)fsB,j
(rA)

 

rA(1� rA)
(A.7)

+

Pk
j=1

P(sB,j)fsB,j
(rA)� rA

rA(1� rA)

>

Pn
j=k+1

n

P(1, sB,j|sA)� P(sB,j)�min

sB,j

o

rA(1� rA)
(A.8)

�
Pn

j=k+1

{P(1, sB,j|sA)� P(sB,j)P(1|sA, sB,j)}
rA(1� rA)

=0

where inequality (A.8) was derived by inequality (A.6). Hence, usA(rA) is mono-

tonically increasing for all rA 2 [0,minsB,j
{↵min

sB,j
}).

In conclusion, Bob’s strategy is valid and Alice’s expected payo↵ usA(r) is uniquely

maximized at rA = P(1). Therefore, the specified strategies for Alice and Bob form a PBE

of the 3-stage I game.

A.1.3 Proof of Lemma 2

Proof. At a PBE of the finite-stage I game, suppose that rk and �k are the report and

the strategy of the player in stage k, and suppose that for a particular k, the consistency
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condition given in equation (A.9) below is violated.

P(1|r1, . . . , rk, �1, . . . , �k) = rk (A.9)

Then we construct a perturbed strategy �̂k satisfying the consistency condition, and we

show that the player’s expected payo↵ by using the perturbed strategy �̂k is greater than

her expected payo↵ by using the original strategy �k.

To construct the perturbed strategy �̂k, we start by setting �̂k = �k. Let x 2 [0, 1] be

a point in the support of strategy �k such that the consistency condition fails for x, i.e.

P(! = 1|r1, ..., rk�1, x, �1, ..., �k) 6= x. Let x̂ = P(! = 1|r1, ..., rk�1, x, �1, ..., �k). Then,

whenever the strategy �k dictates that the player change the market probability to x, let

the strategy �̂k dictate that the player change the market probability to x̂. We repeat

this perturbation for each x in the support of strategy �k such that x 6= x̂. By using this

perturbation, the strategy �̂k satisfies the consistency condition.

Next, we show that the player’s expected payo↵ by using the perturbed strategy �̂k

is greater than her expected payo↵ by using her original strategy �k. Let xk and x̂k be

the random variables that correspond to the values that the player of stage k the market

probability to, and let x and x̂ be their realizations. Note that any x has a corresponding

value of x̂, so we may write expressions like
P

x x̂ in which x̂ is implicitly indexed by x.

The di↵erence between the player’s expected payo↵ by using strategy �̂k and �k is

X

z,r1,...,rk�1,x

P(z, r1, ..., rk�1, x)
�

log P(z|r1, ..., rk�1, x̂)� log x
�

=
X

r1,...,rk�1,x

P(r1, ..., rk�1, x)
X

z

P(z|r1, ..., rk�1, x) (log x̂� log x)

=
X

r1,...,rk�1,x

P(r1, ..., rk�1, x)
X

z

x̂ (log x̂� log x)

=
X

r1,...,rk�1,x

P(r1, ..., rk�1, x)D(p
(x̂k)

||p
(xk)

)

where p
(x̂k)

and p
(xk)

are the probability distributions of x̂k and xk respectively. D(p
(x̂k)

||p
(xk)

)
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is relative entropy, which is nonnegative and strictly positive when the two distributions are

not the same. Since �k does not satisfy the consistency condition, there is at least one x

such that P(x) > 0 and x̂ = x. Thus we have D(p
(x̂k)

||p
(xk)

) > 0, and this contradicts

our assumption that �k is an PBE strategy for the player of stage k of the finite-stage I

game.

A.1.4 Proof of Lemma 3

Proof. Recall that m is the last player of the game, and tm is the last stage of the game.

Also, stage k is the second to last stage of participation for player m (k < tm). Consider the

part of the finite-stage I game starting from stage k to stage tm. There must exist at least one

player j < m whose last stage of participation is between stage k and stage tm. We combine

the players participating after stage k and before stage tm as one composite player, and also

combine their signals to be one composite signal. Because all the signals are independent,

the signal of this composite player is also independent of the signal of player m. Therefore,

we can treat the part of the finite-stage I game from stage k to stage tm as a 3-stage I game

where player m is Alice and the composite player is Bob. By the distinguishability condition,

at every PBE, information is fully aggregated at the same of the finite-stage I game. Thus,

at any PBE of this 3-stage I game, the total expected payo↵ of players is constant given

the market estimate at the beginning of stage k and the prior distribution. Thus, player m

seeks to minimize the total expected payo↵ of the composite player. By Theorems 2 and 3,

there exists a PBE of this 3-stage I game. At any PBE of this game, in stage k, player m

changes the market probabilities to the prior probability of the event at the beginning of

stage k. Since player m is a Bayesian agent, he can condition his belief of the probability of

the event on the strategies and the reports of all participants in the previous stages. Thus,

at the beginning of stage k, player m believes the prior probabilities of the event to be

P(1|r1, . . . , rk�1, �1, . . . , �k�1).
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where r1, . . . , rk�1 and �1, . . . , �k�1 are the reports and the strategies of the participants in

the first k�1 stages. By Lemma 2, at any PBE, the strategies and reports of all participants

must satisfy the consistency condition. Thus, we must have

P(1|r1, . . . , rk�1, �1, . . . , �k�1) = rk�1.

Therefore, player m’s report rk�1 in stage k is equal to the market estimate immediately

before stage k. This means that player m does not change the market estimate in stage k of

the game at any PBE.

A.1.5 Proof of Theorem 4

Proof. First, we exclude degenerate cases by assuming that, if a player participates in any

number of consecutive stages in this game, then these stages are combined into one stage

for the player. This does not a↵ect the players’ strategic behaviors in this game because the

player’s total payo↵ in these consecutive stages only depends on the market estimate at the

beginning of the first stage in this sequence, the market estimate at the end of the last stage

in this sequence, and the realized outcome of the event.

By Lemma 2, at any PBE of this game, the strategy of each participant must satisfy the

consistency condition.

PBE Strategy of Player m

We first consider player m, who is also the last participant of the game. Stage tm must be

the last stage of the game. By properties of LMSR, player m truthfully reveals his realized

signal in stage tm.

Let t⇤ denote the second to last stage of participation for player m. Consider the game

starting from stage t⇤ to stage tm. By Lemma 3, player m does not change the market

probability in stage t⇤. Let t⇤ denote the new second to last stage of participation for player

m. Consider the game starting from stage t⇤ to stage tm. Player m does not participate in

any stage in between stages t⇤ and tm. By Lemma 3, player m does not change the market
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estimate in stage t⇤. Inferring recursively, we can show that, in any stage from stage 1 to

stage tm � 1 in which player m is scheduled to participate, player m does not change the

market estimate in any of these stages.

In summary, from stage 1 to stage tm � 1, player m does not participate in the game. In

stage tm, player m truthfully reveals his private signal.

PBE Strategy of Player i, 2  i  m� 1

Consider player m � 1. By properties of the LMSR, player m � 1 truthfully reveals his

signal in stage tm�1

.

From stage tm�2

+ 1 to tm�1

� 1, by previous argument, player m does not participate

in any of these stages. Also, by the way in which players are ordered, any player i where

i < m � 1 already finished their participation in the game by the end of stage tm�2

. Thus,

player m�1 is the only participant from stage tm�2

+1 to stage tm�1

�1 in this game. Thus,

for these stages, if player m� 1 is scheduled to participate, he may use any strategy as long

as the strategy satisfies the consistency condition.

Next, consider stage 1 to stage tm�2

. Since player m � 1 is the only participant from

stage tm�2

+1 to stage tm�1

� 1, we can combine these stages as stage t⇤⇤ and call it the new

last stage of participation for player m � 1. Let stage t⇤ be the new second to last stage of

participation for player m� 1. Note that we must have k < tm�2

. Consider the game from

stage t⇤ to stage t⇤⇤. By Lemma 3, player m � 1 does not change the market estimate in

stage t⇤. Inferring recursively, we can show that, for any stage before tm�2

in which player

m�1 is scheduled to participate, player m�1 does not participate in any stage in the game.

Using the same argument, we can summarize the strategy of player i, for any 2  i 

m� 1, as follows: From stage 1 to stage ti�1

� 1, player i does not participate in the game.

From stage ti�1

+1 to ti�1, player i uses any strategy that satisfies the consistency condition.

In stage ti, player i truthfully reveals his private information.

PBE Strategy of Player 1
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By properties of LMSR, player 1 truthfully reveals his signal in stage t
1

. By our arguments

above, from stage 1 to the stage t
1

� 1, none of the other players participates in any stage

of the game. Thus, player 1 is the only participant from stage 1 to stage t
1

� 1 and he may

use any strategy that satisfies the consistency condition.

A.1.6 Proof of Theorem 5

Proof. This proof has 3 main steps.

1. First, we study the function uai(r) for Alice’s ex-interim expected payo↵ at any PBE

of the 3-stage market game.

uai(r) =P(1|ai) log
r

P(1)
+ P(0|ai) log

1� r

1� P(1)

+
X

j

⇢

P(1, sB|ai) log
P(1|ai, sB)
xsB(r)

+ P(0, sB|ai) log
P(0|ai, sB)
1� xsB(r)

�

We prove that uai(r) has the following property: For any r 2 [mini P(1|ai),maxi P(1|ai)],
u0
ai
(r)

(P(1|ai)�r)
is independent of the value of ai.

2. Next, by using the above property of uai(r), we show that there does not exist a PBE

of the 3-stage D game where Alice’s strategy satisfies

9r
1

, r

2

2 [min
i

P(1|ai),max
i

P(1|ai)], r1 6= r

2

s.t. �ai(r1) > 0,�ai(r2) > 0, 8i = 0, 1

Intuitively, this means that the support of Alice’s PBE strategy at the 3-stage D game

cannot overlap at 2 or more points.

3. Finally, we show that if there exists a PBE of the 3-stage D game, Alice must play one

of the three specified strategies described at the PBE.

Step 1: The first derivative of uai(r) is

u0
ai
(r) =

P(1|ai)� r

r(1� r)
�
X

j

⇢

(P(1, sB|ai)� P(sB|ai)xsB(r))x
0
sB
(r)

xsB(r)(1� xsB(r))

�
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We would like to compare the expression of u0
ai
(r) for i = 0 and i = 1.

First, we show the expressions of xsB(r), 1�xsB(r), x
0
sB
(r) and P(1, sB|ai)�P(sB|ai)xsB(r)

as follows:

xsB (r) =
[P(1, a

0

|sB)P(a1)� P(1, a
1

|sB)P(a0)]r + [P(1, a
1

|sB)P(1, a0)� P(1, a
0

|sB)P(1, a1)]
[P(a

0

|sB)P(a1)� P(a
1

|sB)P(a0)]r + [P(a
1

|sB)P(1, a0)� P(a
0

|sB)P(1, a1)]

1� xsB (r) =
[P(0, a

0

|sB)P(a1)� P(0, a
1

|sB)P(a0)]r + [P(0, a
1

|sB)P(1, a0)� P(0, a
0

|sB)P(1, a1)]
[P(a

0

|sB)P(a1)� P(a
1

|sB)P(a0)]r + [P(a
1

|sB)P(1, a0)� P(a
0

|sB)P(1, a1)]

x

0
sB
(r) =

(P(1|a
0

, sB)� P(1|a
1

, sB))P(a0|sB)P(a1|sB)P(a0)P(a1)(P(1|a0)� P(1|a
1

))

[P(a
0

|sB)P(a1)� P(a
1

|sB)P(a0)]r + [P(a
1

|sB)P(1, a0)� P(a
0

|sB)P(1, a1)]2

P(1, sB|ai)� P(sB|ai)xsB (r)

=(P(1|ai)� r)
P(sB)P(a0|sB)P(a1|sB)(P(1|a0, sB)� P(1|a

1

, sB))

[P(a
0

|sB)P(a1)� P(a
1

|sB)P(a0)]r + [P(a
1

|sB)P(1, a0)� P(a
0

|sB)P(1, a1)]

Note that these expressions have common components in their denominators. To simplify

the expression of u0
ai
(r), let nu(f(x)) and de(f(x)) denote the numerator and the denomina-

tor of the function f(x) where f(x) is xsB(r), 1�xsB(r), x
0
sB
(r) or P(1, sB|ai)�P(sB|ai)xsB(r).

Notice that:

de(xsB(r)) = de(1� xsB(r)) = de(P(1, sB|ai)� P(sB|ai)xsB(r)), {de(xsB(r))}
2 = de(x0

sB
(r)).

Then the expression of u0
ai
(r) can be re-written as:

u

0
ai(r) = (P(1|ai)� r)

1

r(1� r)
�
X

j

8

>

<

>

:

(P(1, sB|ai)� P(sB|ai)xsB (r))
nu(x0

sB
(r))

de(x0
sB

(r))

nu(xsB
(r))

de(xsB
(r))

nu(1�xsB
(r))

de(1�xsB
(r))

9

>

=

>

;

= (P(1|ai)� r)

0

@

1

r(1� r)
�
X

j

⇢

(P(1, sB|ai)� P(sB|ai)xsB (r))nu(x0sB (r))
(P(1|ai)� r)nu(xsB (r))nu(1� xsB (r))

�

1

A

Note that the expressions of
(P(1,sB |ai)�P(sB |ai)xsB

(r))

(P(1|ai)�r)
, nu(x0

sB
(r)), nu(xsB(r)), and nu(1�

xsB(r)) do not depend on the value of ai. So
u0
ai
(r)

(P(1|ai)�r)
is not a function of ai and only a

function of r. Thus,
u0
a0

(r)

(P(1|a0)�r)
and

u0
a1

(r)

(P(1|a1)�r)
are the same function, and this function is

independent of the value of ai, for any r 2 [P(1|a
0

),P(1|a
1

)].
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Step 2: Next, we prove the statement by contradiction. If Alice’s PBE strategy in the

3-stage D game satisfies the specified condition, then by definition of a mixed strategy PBE,

the following necessary condition must be satisfied:

uai(r1) = uai(r2), 8i = 0, 1

In step 1, we showed that the expression of u0
ai
(r) can be written as follows:

u0
ai
(r) = (P(1|ai)� r) f(r), 8i = 0, 1

)
Z r

�1
u0
ai
(r0)dr0 = P(1|ai)

Z r

�1
f(r0)dr0 �

Z r

�1
r0f(r0)dr0, 8i = 0, 1 (A.10)

For convenience, we define g(r) and h(r) below:

g(r) =

Z r

�1
f(r0)dr0, h(r) =

Z r

�1
rf(r0)dr0

From equation (A.10), we have

uai(r) = P(1|ai)g(r)� h(r) + Ci, 8i = 0, 1

where Ci for i = 0, 1 is a constant.

By our assumption, we have

uai(r1) = uai(r2), 8i = 0, 1

)P(1|ai)g(r1)� h(r
1

) + Ci = P(1|ai)g(r2)� h(r
2

) + Ci, 8i = 0, 1

)P(1|ai) =
h(r

2

)� h(r
1

)

g(r
2

)� g(r
1

)
, 8i = 0, 1

)P(1|a
0

) = P(1|a
1

)

The above equation P(1|a
0

) = P(1|a
1

) contradicts with the distinguishability condition.

Therefore, the specified mixed strategy for Alice cannot be part of a PBE of the 3-stage D

game.
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Step 3: By the results of step 1 and 2, there are four types of strategies that can possibly

be PBE strategies for Alice in the 3-stage D game. We discuss these four types of strategies

separately:

1. The truthful strategy is a possible PBE strategy for Alice in the 3-stage D game, as

stated in the theorem.

2. The delaying strategy is a possible PBE strategy for Alice in the 3-stage D game, as

stated in the theorem.

3. The third type of strategy is the mixed strategy given by the equation below where

r 6= P(1).

�ai(P(1|ai)) = 1� p, �ai(r) = p, �a1�i
(r) = 1

where p = P(a1�i)(r�P(1|a1�i))

P(ai)(P(1|ai)�r)
and uai(P(1|ai)) = uai(r) is satisfied for some

r 2 (mini P(1|ai),P(1)) [ (P(1),maxi P(1|ai)), 8i = 0, 1.

For the above strategy to be a PBE strategy, the following necessary condition must

be satisfied.

uai(P(1|ai)) = uai(r
⇤),

where um(r) denotes Alice’s ex-ante expected payo↵ by using this mixed strategy

in the first stage of a PBE of the 3-stage D game and r⇤ = argmaxr um(r), r 2

(mini P(1|ai),P(1)) [ (P(1),maxi P(1|ai)).

We will show that

u0
m(r

⇤) = 0 ) uai(P(1|ai)) = uai(r
⇤)
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The expression of um(r) and its first derivative are as follows:

um(r) = P(ai)

✓

1� P(a
1�i)(r � P(1|a

1�i))

P(ai)(P(1|ai)� r)

◆

uai(P(1|ai))

+ P(ai)
P(a

1�i)(r � P(1|a
1�i))

P(ai)(P(1|ai)� r)
uai(r) + P(a

1�i)ua1�i
(r)

) u0
m(r) = P(a

1�i)(P(1|ai)� P(1|a
1�i))

uai(r)� uai(P(1|ai))
(P(1|ai)� r)2

By the distinguishability condition, we know that P(1|ai)� P(1|a
1�i) 6= 0. Therefore,

we have

u0
m(r) = 0 ) uai(r)� uai(P(1|ai)) = 0

4. The final type of strategy is the mixed strategy defined below:

9! r 2 (P(1|a
0

),P(1|a
1

)), p 2 (0, 1), q 2 (0, 1),

s.t. �a0(P(1|a0)) = 1� p, �a0(r) = p, �a1(r) = q, �a1(P(1|a1)) = 1� q (A.11)

For this mixed strategy, we observe that, if Alice uses this strategy in a PBE of the

3-stage D game, then there must also exist a PBE of where Alice uses the truthful

strategy in the first stage. So we include this mixed strategy as a special case when

the truthful PBE exists for this game.

A.1.7 Proof of Theorem 6

Proof. To show that Alice’s strategy and Bob’s strategy form a PBE of the 3-stage D game,

we need to prove 3 things below.

1. First, we show that Bob’s belief on the equilibrium path is derived from Alice’s strategy

using Bayes’ rule.

If Alice reports P(1|ai) in the first stage, then Bob’s belief should assign probability
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1 to Alice’s signal ai. Thus, Bob strategy must be to change the market probability

to P(1|ai, sB) in the second stage if he receives sB signal. By definition of xsB(r) in

equation (3.14), we can easily check that

xsB(P(1|ai)) = P(1|ai, sB)

This means that Bob’s belief satisfies this requirement.

2. Next, we show that Bob’s belief is valid,

i.e. xsB(r) 2 [minai P(1|ai, sB),maxai P(1|ai, sB)], 8sB.

First notice that xsB(r) is monotonic in r since the sign of xsB(r) does not depend on

the value of r.

x0
sB
(r) =

(P(1|a
0

, sB)� P(1|a
1

, sB))P(a0|sB)P(a1|sB)P(a0)P(a1)(P(1|a0)� P(1|a
1

))

[P(a
0

|sB)P(a1)� P(a
1

|sB)P(a0)]r + [P(a
1

|sB)P(1, a0)� P(a
0

|sB)P(1, a1)]2

Thus, xsB(r) achieves its maximum and minimum at r = P(1|ai). So we just need to

check the value of xsB(P(1|ai)) 2 [minai P(1|ai, sB),maxai P(1|ai, sB)], 8i = 0, 1. From

the argument above, we have xsB(P(1|ai)) = P(1|ai, sB) and it’s within the specified

range. Thus, Bob’s belief is valid.

3. Finally, we prove that given Bob’s strategy in the second stage, Alice maximizes her

total expected payo↵ by reporting P(1|ai) when she receives the ai signal. When Alice

receives the signal ai and reports r, her total expected payo↵ is given by uai(r). By our

assumption, uai(r) is monotonically decreasing as r changes from P(1|ai) to P(1|a
1�i).

Thus, when Alice receives the ai signal, her total expected payo↵ is uniquely maximized

by reporting P(1|ai).
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A.2 Omitted Derivations

A.2.1 Derivation for the expression of u
ai(r)

Let � be Alice’s first-stage strategy in any PBE of the 3-stage D game and let r be any

report in the support of �. Since � and r satisfy the consistency condition, we must have

P(1|r, �) = r

)P(1|a
0

)�a0(r)P(a0) + P(1|a
1

)�a1(r)P(a1)

P(a
0

)�a0(r) + P(a
1

)�a1(r)
= r

)�a0(r)P(a0)(P(1|a0)� r) = �a1(r)P(a1)(r � P(1|a
1

)) (A.12)

By the consistency condition, it’s easy to see that r 2 [minai{P(1|ai)},maxai{P(1|ai)}].

By equation (A.12), we have

�a0(r)P(a0)(P(1|a0)� r) + �a0(r)P(a1)(r � P(1|a
1

))

= �a0(r)P(a1)(r � P(1|a
1

)) + �a1(r)P(a1)(r � P(1|a
1

))

)�a0(r)(P(a0)(P(1|a0)� r) + P(a
1

)(r � P(1|a
1

)))

= (�a0(r) + �a1(r))P(a1)(r � P(1|a
1

))

) �a0(r)

�a0(r) + �a1(r)
=

P(a
1

)(r � P(1|a
1

))

P(a
0

)(P(1|a
0

)� r) + P(a
1

)(r � P(1|a
1

))
(A.13)

At any PBE, Bob’s belief on the equilibrium path is derived from Alice’s strategy by

using the Bayes’ rule. Since Alice only has 2 realized signals, it su�ces to specify µr,sB(a0)

since µr,sB(a1) = 1� µr,sB(a0). Bob’s belief can be derived as follows:

µr,sB(a0) =
P(a

0

, r|sB)
P(r|sB)

=
P(a

0

|sB)�a0(r)
P(a

0

|sB)�a0(r) + P(a
1

|sB)�a1(r)
(A.14)

Taking equation (A.13) and plugging into equation (A.14), we have

µr,sB (a0) =
P(a

0

|sB)P(a1)(r � P(1|a
1

))

(P(a
0

|sB)P(a1)� P(a
1

|sB)P(a0))r + (P(a
1

|sB)P(1, a0)� P(a
0

|sB)P(1, a1))
(A.15)
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At any PBE, Bob’s strategy xsB(r) is fully determined given Bob’s belief, Bob’s signal,

and Alice’s report, as follows:

xsB(r) = P(1|r, sB) = µr,sB(a0)P(1|a0, sB) + (1� µr,sB(a0))P(1|a1, sB) (A.16)

Plugging the expression of Bob’s belief (A.15) into the definition of Bob’s strategy (A.16),

we have

xsB(r) =
P(1, sB|a0)(P(1|a1)� r) + P(1, sB|a1)(r � P(1|a

0

))

P(sB|a0)(P(1|a1)� r) + P(sB|a1)(r � P(1|a
0

))

Finally, we can write down the expression of uai(r) as follows.

uai(r) =P(1|ai) log
r

P(1)
+ P(0|ai) log

1� r

1� P(1)

+
X

sB

⇢

P(1, sB|ai) log
P(1|ai, sB)
xsB(r)

+ P(0, sB|ai) log
P(0|ai, sB)
1� xsB(r)

�
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Appendix B

Appendix to Chapter 4

B.1 Proof of Proposition 1

Proof. The partial derivative of the loss function with respect to rA is

@

@rA
L(fai,;, rA) =

rA � fai,;
rA(1� rA)

. (B.1)

It is negative for rA < fai,;, zero for rA = fai,; and positive for rA > fai,;. Thus, the loss

function is strictly increasing for rA 2 [fai,;, 1) and strictly decreasing for rA 2 (0, fai,;]. In

addition, note that L(fai,;, rA) ! 1 as rA ! 0 or rA ! 1 for any fixed fai,;. Hence, the loss

function has the range [0,1) for both rA 2 [fai,;, 1) and rA 2 (0, fai,;].

The partial derivative of the loss function with respect to fai,; is

@

@fai,;
L(fai,;, rA) = log

✓

fai,;
1� fai,;

1� rA
rA

◆

. (B.2)

It equals zero when fai,; = rA, negative when fai,; < rA and positive when fai,; > rA.

Therefore, for a fixed rA 2 [0, 1], L(fai,;, rA) is strictly decreasing for fai,; 2 [0, rA] and

strictly increasing for fai,; 2 [rA, 1].
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B.2 Example 2

Example 2. Suppose the outside payo↵ function is Q(rB) = rB, and the prior distribution

is given by Table B.1.

⌦ = 1 ⌦ = 0
SA = H SA = T SA = H SA = T

SB = H 0.54 0.054 SB = H 0 0.006
SB = T 0.036 0 SB = T 0.324 0.04

Table B.1: An example prior distribution. Each cell gives the value of P(⌦, SA, SB) for the
corresponding realizations of ⌦, SA, and SB.

It is easy to compute fH,; = 0.64, fT,; = 0.54, fH,H = 1, fH,T = 0.1, fT,H = 0.9, and

fT,T = 0.

Alice’s expected loss in market scoring rule payo↵ when receiving the T signal but changing

the market probability to fH,; is

L(fT,;, fH,;) = fT,; log
fT,;
fH,;

+(1�fT,;) log
1� fT,;
1� fH,;

=

✓

0.54 log
0.54

0.64
+ 0.46 log

0.46

0.36

◆

⇡ 0.021.

(B.3)

Alice’s expected gain in outside payo↵ when receiving the T signal but convincing Bob that

she has the H signal is

ESB
[Q(fH,SB

)�Q(fT,SB
) | SA = T ]

=P(SB = H|SA = T )(fH,H � fT,H) + P(SB = T |SA = T )(fH,T � fT,T )

=0.6(1� 0.9) + 0.4(0.1� 0) (B.4)

=0.1. (B.5)

It is clear that L(fT,;, fH,;) < ESB
[Q(fH,SB

)�Q(fT,SB
) | SA = T ]. Thus, inequality (4.4) is

satisfied and a truthful PBE does not exist.

In addition to the above derivation, we note that even though a truthful PBE does not

exist for this example, a separating PBE does exist. The intuition behind this can be shown
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by calculating and comparing the quantities YH , YT , and fH,;, as illustrated below. We solve

for YT by solving the following equation:

L(fT,;, YT ) = ESB
[Q(fH,SB

)�Q(fT,SB
) | SA = T ] (B.6)

)0.54 log
0.54

YT

+ 0.46 log
0.46

1� YT

= 0.1 (B.7)

)YT ⇡ 0.747 (B.8)

Similarly, we solve for YH below:

L(fH,;, YH) = ESB
[Q(fH,SB

)�Q(fT,SB
) | SA = H] (B.9)

)0.64 log
0.64

YH

+ 0.36 log
0.36

1� YH

= 0.1 (B.10)

)YH ⇡ 0.827 (B.11)

The above calculations show that we have fH,; < YT < YH . Thus, a truthful PBE does not

exist because if Alice reports fH,; in the first stage, then Bob will believe that there is positive

probability that Alice actually received a T signal but is trying to pretend that she received a

H signal, since fH,; < YT . However, since YH > YT , a separating equilibrium exists because

Alice can establish credibility with Bob by reporting any value in [YT , YH ] in the first stage.

Lastly, note that this example illustrates a prior distribution for which the signals of

Alice and Bob are independent. In Proposition 4, we will prove that when Alice and Bob

have independent signals, YH > YT must be satisfied.

B.3 Proof of Proposition 3

Proof. If fH,; � YT � fT,; � Y�T , then it is easy to see that L(fH,;, YT )  L(fH,;, Y�T ) and

the equality holds only when YT = fT,; = Y�T . The remainder of the proof focuses on the

case when fH,; < YT .
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By definitions of YT and Y�T , we have

L(fT,;, YT ) = L(fT,;, Y�T ). (B.12)

By Proposition 1 and Y�T  fT,; < fH,;, we have

L(fT,;, Y�T ) < L(fH,;, Y�T ). (B.13)

By Proposition 1 and fT,; < fH,;  YT , we have

L(fH,;, YT ) < L(fT,;, YT ). (B.14)

Hence, we must have L(fH,;, YT ) < L(fH,;, Y�T ) due to equation (B.12) and inequali-

ties (B.13) and (B.14), as

L(fH,;, YT ) < L(fT,;, YT ) = L(fT,;, Y�T ) < L(fH,;, Y�T ). (B.15)

B.4 Example 3

Example 3. Consider the outside payo↵ function and the prior distribution in Table B.2.

We show below that there exists su�ciently small ✏ such that YH < YT .

⌦ = 1 ⌦ = 0
SA = H SA = T SA = H SA = T

SB = H ✏ ✏ SB = H 0 0.5� 2✏
SB = T ✏ 0 SB = T 0.5� 2✏ ✏

Table B.2: An example prior distribution with ✏ 2 (0, 0.25). Each cell gives the value of
P(⌦, SA, SB) for the corresponding realizations of ⌦, SA, and SB.

It is easy to compute fH,; = 4✏, fT,; = 2✏, fH,H = 1, fH,T = ✏
0.5�✏ , fT,H = ✏

0.5�✏ , and
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fT,T = 0. With this, we can calculate

L(fH,;, YH) =ESB
[Q(fH,SB

)�Q(fT,SB
) | SA = H]

=P(SB = H|SA = H)(fH,H � fT,H) + P(SB = T |SA = H)(fH,T � fT,T )

=(2✏)

✓

1� ✏

0.5� ✏

◆

+ (1� 2✏)

✓

✏

0.5� ✏
� 0

◆

.

As ✏ approaches 0, we have

lim
✏!0

L(fH,;, YH) = 0. (B.16)

Because lim✏!0

fH,; = lim✏!0

4✏ = 0, by definition of L(fH,;, YH), (B.16) implies that

lim
✏!0

YH = 0. (B.17)

Similarly, we have

L(fT,;, YT ) =ESB
[Q(fH,SB

)�Q(fT,SB
) | SA = T ]

=P(SB = H|SA = T )(fH,H � fT,H) + P(SB = T |SA = T )(fH,T � fT,T )

=(1� 2✏)

✓

1� ✏

0.5� ✏

◆

+ 2✏

✓

✏

0.5� ✏
� 0

◆

.

As ✏ approaches 0, we have

lim
✏!0

L(fT,;, YT ) = 1. (B.18)

Because lim✏!0

fT,; = lim✏!0

2✏ = 0, by definition of L(fT,;, YT ),

lim
✏!0

L(fT,;, YT ) = � log(1� lim
✏!0

YT ).

Given (B.18), we have

lim
✏!0

YT = 1� 1/e. (B.19)

Combining (B.17) and (B.19), we know that when ✏ is su�ciently small, YH < YT .

In addition to the above derivation, we describe some qualitative properties of the given

prior distribution, which may be helpful in highlighting the intuitions behind the YH < YT

condition. For this prior distribution, Alice is willing to report a higher value after receiving
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the T signal due to the combined e↵ect of two factors. First, note that when Alice has the T

signal, Bob is far more likely to have the H signal than the T signal for su�ciently small ✏.

This is shown by

lim
✏!0

P(SB = H|SA = T ) = lim
✏!0

(1� 2✏) = 1, (B.20)

lim
✏!0

P(SB = T |SA = T ) = lim
✏!0

2✏ = 0. (B.21)

Second, Alice’s maximum gain in outside payo↵ when she has the T signal but manages to

convince Bob that she has the H signal is much higher when Bob has the H signal than when

he has the T signal for su�ciently small ✏. When Bob has the H signal, the maximum gain

for Alice is

lim
✏!0

(fHH � fTH) = lim
✏!0

(1� ✏

0.5� ✏
) = 1, (B.22)

which is greater than the maximum gain for Alice when Bob has the T signal,

lim
✏!0

(fHT � fTT ) = lim
✏!0

(
✏

0.5� ✏
� 0) = 0. (B.23)

Thus, when Alice has the T signal, Bob is more likely to have the H signal, resulting in a

higher expected gain in outside payo↵ for Alice by convincing Bob that she has the H signal.

This intuitively explains why YT is high.

In Example 2, we describe a prior distribution and outside function and show that a

truthful PBE does not exist when fH,; < YT  YH . Note that guaranteeing fH,; < YT  YH

is not the only way for a truthful PBE to fail to exist. For instance, this example shows that,

when fH,;  YH < YT , a truthful PBE also fails to exist.

B.5 Proof of Theorem 9

Proof. If YT � fH,;, the interval [max(Y�H , YT ), YH ] can be written as [max(fH,;, YT ), YH ]

because Y�H  fH,;. If YT < fH,;, the interval [max(Y�H , YT ), YH ] can be split into two inter-
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vals [max(Y�H , YT ), fH,;) and [max(fH,;, YT ), YH ]. In the following, we first consider the case

rA 2 [max(fH,;, YT ), YH ]; then, for YT < fH,;, we consider the case rA 2 [max(Y�H , YT ), fH,;).

First, suppose that Alice reports rA 2 [max(fH,;, YT ), YH ] after receiving the H signal.

Fix a particular k 2 [max(fH,;, YT ), YH ]. We prove that the following pair of Alice’s strategy

and Bob’s belief forms a separating PBE of our game:

SE
2

(k) :

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�S
H(k) = 1, �S

T (fT,;) = 1

µS
sB ,rA

(H) =

8

>

>

<

>

>

:

1, if rA 2 [k, 1]

0, if rA 2 [0, k)

.

(B.24)

We’ll show that Alice’s strategy is optimal given Bob’s belief. If Alice receives the T

signal, she does not report any rA > YT by definition of YT . She may be indi↵erent between

reporting YT and fT,;. For any rA < YT , we have rA < k and Bob’s belief sets µS
sB ,rA

(H) = 0

for any rA < k. So for rA < YT , reporting rA = fT,; dominates reporting any other value.

Thus, it is optimal for Alice to report fT,; when having the T signal.

If Alice receives the H signal, according to the definitions of Y�H and YH , she would only

report values in [Y�H , YH ]. Given Bob’s belief, Alice would only report some rA 2 [k, YH ].

Because fH,;  k, Alice maximizes her expected market scoring rule payo↵ by reporting

rA = k for any rA 2 [k, YH ]. Therefore, it is optimal for Alice to report rA = k after

receiving the H signal.

We can show that Bob’s belief is consistent with Alice’s strategy by mechanically apply-

ing Bayes’ rule (argument omitted). Hence, for each k 2 [max(YT , fH,;), YH ], SE2

(k) is a

separating PBE of our game.

Next, we assume YT < fH,; and consider that Alice reports rA 2 [max(Y�H , YT ), fH,;)

after receiving the H signal. For every k 2 [max(Y�H , YT ), fH,;), we prove that the following
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pair of Alice’s strategy and Bob’s belief forms a separating PBE of our game:

SE
3

(k) :

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�S
H(k) = 1, �S

T (fT,;) = 1

µS
sB ,rA

(H) =

8

>

>

<

>

>

:

1, if rA = k

0, if rA 2 [0, k) [ (k, 1]

. (B.25)

We’ll show that Alice’s strategy is optimal given Bob’s belief. If Alice receives the T

signal, she does not report any rA > YT by definition of YT and is at best indi↵erent between

reporting YT and reporting fT,;. For any rA 2 [0, YT ), Bob’s belief sets µS
sB ,rA

(H) = 0 since

k � YT . For any rA 2 [0, YT ), Alice maximizes her expected market scoring rule payo↵ by

reporting rA = fT,;. Thus, it is optimal for Alice to report fT,; when having the T signal.

If Alice receives the H signal, for any rA 2 [0, 1]\{k}, Alice maximizes her expected

market scoring rule payo↵ by reporting fH,;. By definition, we know that Y�H  k < fH,;.

Given Bob’s belief

L(fH,;, k)  L(fH,;, Y�H) = ESB
[Q(fH,SB

)�Q(fT,SB
) | ai] (B.26)

By switching from reporting fH,; to reporting k, Alice’s expected gain in outside payo↵ is

greater than or equal to her loss in her expected market scoring rule payo↵. So she weakly

prefers reporting k to reporting fH,;. By enforcing the consistency with Bob’s belief, Alice’s

strategy must be to report k after receiving the H signal.

We can show that Bob’s belief is consistent with Alice’s strategy by mechanically applying

Bayes’ rule (argument omitted). Hence, if YT < fH,;, for each k 2 [max(Y�H , YT ), fH,;),

SE
3

(k) is a separating PBE of this game.
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B.6 Proof of Theorem 10

Proof. If Y�H  Y�T , for every k 2 [Y�H , Y�T ], we prove the following pair of Alice’s strategy

and Bob’s belief forms a separating PBE of our game:

SE
4

(k) :

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�S
H(k) = 1, �S

T (fT,;) = 1

µS
sB ,rA

(H) =

8

>

>

<

>

>

:

0, if rA 2 (k, 1]

1, if rA 2 [0, k]

.

(B.27)

We’ll show that Alice’s strategy is optimal given Bob’s belief. If Alice receives the T

signal, she does not report any rA < Y�T by definition of YT and is at best indi↵erent

between reporting Y�T and fT,;. For any rA > Y�T , because Bob’s belief sets µS
sB ,rA

(H) = 0,

reporting fT,; dominates reporting any other value in this range. Thus, it is optimal for

Alice to report fT,; when having the T signal.

If Alice receives the H signal, for any rA 2 (k, 1], Alice maximizes her expected market

scoring rule payo↵ by reporting rA = fH,;. For any rA 2 [Y�H , k], Alice maximizes her

expected market scoring rule payo↵ by reporting rA = k. By definition of Y�H , Alice is

better o↵ reporting k than reporting fH,; since

L(fH,;, k)  L(fH,;, Y�H) = ESB
[Q(fH,SB

)�Q(fT,SB
) | ai] (B.28)

Therefore, it is optimal for Alice to report k after receiving the H signal.

We can show that Bob’s belief is consistent with Alice’s strategy by mechanically applying

Bayes’ rule (argument omitted). Hence, if Y�H  Y�T , for every k 2 [Y�H , Y�T ], SE4

(k) is

a separating PBE.

B.7 Proof of Proposition 5

Proof. The existence of a separating PBE requires YH � YT by Theorem 8. By Lemma 5,

we have �T (fT,;) = 1 at any separating PBE.
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By Theorem 9, for every rA 2 [max(Y�H , YT ), YH ], there exists a pure strategy separating

PBE in which Alice reports rA with probability 1 after receiving the H signal. Now suppose

that Bob’s belief satisfies the domination-based refinement. Consider 2 cases.

(1) Assume that fH,; > YT . Then we must have fH,; 2 [max(Y�H , YT ), YH ]. By Lemma 8,

Bob’s belief must set µsB ,fH,;(T ) = 0. Thus, reporting fH,; is strictly optimal for Alice since

reporting fH,; strictly maximizes Alice’s expected market scoring rule payo↵ and weakly

maximizes Alice’s expected outside payo↵. Therefore, there are no longer pure strategy

separating PBE in which Alice reports rA 2 [max(Y�H , YT ), YH ]\{fH,;} after receiving the

H signal.

(2) Assume that fH,;  YT . Then we must have Y�H < YT , and the interval

[max(Y�H , YT ), YH ] can be reduced to [YT , YH ]. By Lemma 8, Bob’s belief must set

µsB ,rA(T ) = 0 for any rA 2 (YT , YH ]. If Alice receives the H signal, given Bob’s belief, Alice

would not report any rA 2 (YT , YH ] because there always exists a r0A 2 (YT , rA) such that

reporting r0A is strictly better than reporting rA for Alice. Therefore, there no longer exist

pure strategy separating PBE in which Alice reports rA 2 [max(Y�H , YT ), YH ]\{YT} after

receiving the H signal.

Hence, Alice would not report rA 2 [max(Y�H , YT ), YH ]\max(fH,;, YT ) after receiving the

H signal at any separating PBE satisfying the domination-based belief refinement.

By Theorem 10, if YH � YT and Y�H  Y�T , for every rA 2 [Y�H , Y�T ], there exists a

pure strategy separating PBE in which Alice reports rA with probability 1 after receiving the

H signal. By Lemma 8, Bob’s belief must set µsB ,rA(T ) = 0 for any rA 2 [Y�H , Y�T ). Then,

if Alice receives the H signal, given Bob’s belief, Alice would not report any rA 2 [Y�H , Y�T )

because there always exists a r0A 2 (rA, Y�T ) such that reporting r0A is strictly better than

reporting rA for Alice.

Also, Alice would not report Y�T after receiving the H signal for the following reasons.

We consider 2 cases. If fH,; � YT , then Alice’s market scoring rule payo↵ is strictly better

by reporting fH,; than reporting Y�T . Otherwise, if fH,; < YT , we know that Y�T < YT
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and hence, by Proposition 3, L(fH,;, Y�T ) < L(fH,;, YT ). Consider rA = YT + ✏ for a

small ✏ > 0 such that L(fH,;, Y�T ) > L(fH,;, rA). Such an ✏ must exist because as ✏ ! 0,

L(fH,;, rA) ! L(fH,;, YT ). Alice’s market scoring rule payo↵ is strictly better by reporting

rA than reporting Y�T . Given Bob’s belief, we know that µsB ,rA(T ) = 0 and µsB ,Y�T
(T ) � 0.

So Alice’s outside payo↵ is weakly better when reporting rA than reporting Y�T . Therefore,

reporting rA = YT + ✏ strictly dominates reporting Y�T .

Hence, there are no longer pure strategy separating PBE in which Alice reports rA 2

[Y�H , Y�T ] after receiving the H signal.

It remains to show that there exists a belief for Bob satisfying the refinement so that

Alice’s strategy �H(max(fH,;, YT )) = 1, �T (fT,;) = 1 and Bob’s belief form a PBE. It is

straightforward to verify that Bob’s belief in the PBE SE
1

described in (4.11) is such a

belief.

B.8 Proof of Proposition 7

Proof. Let r be the unique value in [0, fH,;] satisfying L(fH,;, r) = L(fH,;, YT ). Consider a

PBE satisfying the domination-based refinement. We will show that there exists an ✏ > 0

such that if Alice receives the H signal, then reporting any rA  r is strictly worse than

reporting YT + ✏.

By definition of r, we have that L(fH,;, rA) � L(fH,;, r) = L(fH,;, YT ), 8rA  r. We

consider 2 cases.

(1) rA < r: Choose any 0 < ✏ < r � rA, then we must have L(fH,;, rA) > L(fH,;, r �

✏) = L(fH,;, YT + ✏). Since the PBE satisfies the domination-based refinement, then Bob’s

belief must set µsB ,rA(T ) = 0, 8rA 2 (YT , YH ]. Alice’s expected outside payo↵ by reporting

YT + ✏ is weakly better than her expected outside payo↵ by reporting rA. Therefore, for any

✏ 2 (0, r � rA), Alice is strictly worse o↵ reporting any rA < r than reporting YT + ✏.

(2) rA = r: For any small ✏ > 0, we have that L(fH,;, r) < L(fH,;, YT + ✏). However as
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✏! 0, L(fH,;, YT + ✏)�L(fH,;, r) ! 0. Since r < fH,; < YT , if Alice reports r after receiving

H signal at any PBE, then Bob’s belief must set µsB ,r(T ) > 0. Since the PBE satisfies the

domination-based refinement, then Bob’s belief must set µsB ,YT+✏(T ) = 0, forany0 < ✏ 

YH�YT . Regardless of ✏, Alice’s expected outside payo↵ by reporting YT +✏ is strictly better

than her expected outside payo↵ by reporting r. However, as ✏ approaches 0, the di↵erence

between Alice’s expected market scoring rule payo↵ for these two reports goes to 0. Hence,

there must exist ✏ > 0 such that Alice’s total expected payo↵ by reporting r is strictly less

than her total expected payo↵ by reporting YT + ✏.

B.9 Proof of Theorem 16

Proof. We will show that among all pure strategy separating PBE of our game, Bob’s ex-

pected payo↵ is maximized in SE
2

(YH), defined in equation (B.24).

In all separating PBE, the sum of Alice and Bob’s expected payo↵s inside the market

is the same. Thus, the separating PBE that maximizes Bob’s payo↵ is also the separating

PBE that minimizes Alice’s payo↵.

By Lemma 5, in any separating PBE, Alice must report fT,; after receiving the T signal.

Therefore, Alice’s expected payo↵ after receiving the T signal is the same at any separating

PBE.

For any separating PBE, Alice may report r 2 [Y�H , YH ] after receiving the H signal.

In [Y�H , YH ], reporting YH or Y�H maximizes Alice’s loss in her market scoring rule payo↵

and thus minimizes Alice’s expected payo↵ after receiving the H signal. Reporting YH

corresponds to the separating PBE SE
2

(YH) and reporting Y�H corresponds to the separating

PBE SE
4

(Y�H).

If Y�H  Y�T , the separating PBE SE
4

(Y�H) exists, by the proof of Theorem 10 in

Appendix B.6. We know that Y�H  Y�T implies YH � YT by the proof of Theorem 8.

Thus, when the separating PBE SE
4

(Y�H) exists, the separating PBE SE
2

(YH) also exists
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and Alice’s total expected payo↵ at these two separating PBE are the same.

If Y�H > Y�T , the separating PBE SE
4

(Y�H) does not exist. However, if any separating

PBE exists, then we must have YH � YT , and the separating PBE SE
2

(YH) must exist.

Hence, the separating PBE SE
2

(YH) maximizes Bob’s expected payo↵ among all sepa-

rating PBE of our game.

B.10 Proof of Theorem 17

Proof. Su�cient condition

First, we show that satisfying at least one of the two pairs of inequalities is a su�cient

condition for a separating PBE to exist for our game.

If inequalities (4.29) and (4.30) are satisfied, we can show that SE
5

is a separating PBE

of our game.

SE
5

:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�S
H(max (YT , fH,;)) = 1, �S

T (fT,;) = 1

µS
sB ,rA

(H) =

8

>

>

<

>

>

:

1, if rA 2 [YT , 1]

0, if rA 2 [0, YT )

.

(B.29)

First, we show that Alice’s strategy is optimal given Bob’s belief. Since inequality (4.29)

is satisfied, YT is a well defined value in [fT,;, 1]. If fH,; < YT , then it is optimal for Alice

to report YT after receiving the H signal because her gain in outside payo↵ is greater than

her loss in the market scoring rule payo↵ by inequality (4.30). Otherwise, if fH,; � YT , then

it’s optimal for Alice to report fH,; after receiving the H signal. Therefore, Alice’s optimal

strategy after receiving the H signal is to report max (fH,;, YT ). When Alice receives the T

signal, Alice would not report any rA � YT by definition of YT . Any other report rA 2 [0, YT )

is dominated by a report of fT,; given Bob’s belief. Therefore, it is optimal for Alice to report

fT,; after receiving the T signal. Moreover, we can show that Bob’s belief is consistent with

Alice’s strategy by mechanically applying Bayes’ rule (argument omitted). Given the above

arguments, SE
5

is a separating PBE of this game.
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Similarly, if inequalities (4.31) and (4.32) are satisfied, then we can show that SE
6

is a

separating PBE of our game.

SE
6

:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�S
H(Y�T ) = 1, �S

T (fT,;) = 1

µS
sB ,rA

(H) =

8

>

>

<

>

>

:

0, if rA 2 (Y�T , 1]

1, if rA 2 [0, Y�T ]

.

(B.30)

First, we show that Alice’s strategy is optimal given Bob’s belief. Since inequality (4.31)

is satisfied, Y�T is well defined. If Alice receives the H signal, reporting any rA 2 [0, Y�T ]

gives her higher outside payo↵ than reporting any rA 2 (Y�T , 1]. For any rA 2 [0, Y�T ], her

outside payo↵ is fixed and reporting rA = Y�T maximizes her market scoring rule payo↵.

Therefore, it is optimal for Alice to report rA = Y�T after receiving the H signal. If Alice

receives the T signal, she does not report any rA < Y�T by definition of Y�T . Given Bob’s

belief, she is indi↵erent between reporting Y�T and fT,;. For any rA > Y�T , Bob’s belief sets

µS
sB ,rA

(H) = 0, so it is optimal for Alice to report fT,; to maximize her market scoring rule

payo↵. We can show that Bob’s belief is consistent with Alice’s strategy by mechanically

applying Bayes’ rule (argument omitted). Hence, SE
6

is a separating PBE of our game.

Necessary condition

Second, we show that, if there exists a separating PBE of our game, then at least one

of the two pairs of inequalities must be satisfied. We prove this by contradiction. Suppose

that there exists a separating PBE of our game but at least one of the two inequalities in

each of the two pairs of inequalities is violated.

Suppose that at least one of the inequalities (4.29) and (4.30) is violated. Then, we can

show that Alice does not report any value rA 2 [fT,;, 1] after receiving the H signal at any

separating PBE. We divide the argument for this into 2 cases.

(1) If inequality (4.29) is violated, we know that YT is not well defined. We show by

contradiction that Alice does not report any value in [fT,;, 1] after receiving the H signal.
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Suppose that at a separating PBE, Alice reports rA 2 [fT,;, 1] with positive probability after

receiving the H signal. Since this PBE is separating, Bob’s belief must be that µsB ,rA(H) = 1

to be consistent with Alice’s strategy. By Lemma 5, in any separating PBE, Bob’s belief

must be µsB ,fT,;(H) = 0 and Alice must report fT,; after receiving the T signal. Since

inequality (4.29) is violated, then we have that

Ls(fT,;, rA)  Ls(fT,;, 1) < ESB
[Q(fH,SB

)�Q(fT,SB
) | SA = T ], (B.31)

so Alice would strictly prefer to report rA rather than fT,; after receiving the T signal, which

is a contradiction.

(2) Otherwise, if inequality (4.29) is satisfied but inequality (4.30) is violated, then we

know that YT is well defined. If fH,; � YT , then inequality (4.30) is automatically satisfied,

so we must have that fH,; < YT and Ls(fH,;, YT ) > ESB
[Q(fH,SB

) � Q(fT,SB
) | SA = H].

Then Alice does not report any rA 2 [YT , 1] after receiving the H signal because doing so is

dominated by reporting fH,;. Next, we can show by contradiction that Alice does not report

any rA 2 [fT,;, YT ) after receiving the H signal at any separating PBE. Suppose that at any

separating PBE, Alice reports rA 2 [fT,;, YT ) with positive probability after receiving the H

signal. Since this PBE is separating, Bob’s belief must be that µsB ,rA(H) = 1 to be consistent

with Alice’s strategy. By Lemma 5, in any separating PBE, Alice must report fT,; after

receiving the T signal and Bob’s belief must be µsB ,fT,;(H) = 0. Thus, for rA 2 (Y�T , YT ),

by definitions of YT and Y�T , Alice would strictly prefer to report rA rather than fT,; after

receiving the T signal, which is a contradiction.

Hence, if at least one of the inequalities (4.29) and (4.30) is violated, then at any sepa-

rating PBE, Alice does not report any rA 2 [fT,;, 1] after receiving the H signal.

Similarly, we can show that, if at least one of the inequalities (4.31) and (4.32) is violated,

Alice does not report any value rA 2 [0, fT,;] after receiving the H signal at any separating

PBE. We again consider 2 cases:

(1) If inequality (4.31) is violated, we know that Y�T is not well defined. Then we can
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show that Alice does not report any value in [0, fT,;] after receiving the H signal. We prove

by contradiction. Suppose that at a separating PBE, Alice reports rA 2 [0, fT,;] with positive

probability after receiving the H signal. Since this PBE is separating, Bob’s belief must be

that µsB ,rA(H) = 1 to be consistent with Alice’s strategy. By Lemma 5, in any separating

PBE, Bob’s belief must be µsB ,fT,;(H) = 0 and Alice must report fT,; after receiving the T

signal. Since inequality (4.31) is violated, we have that

Ls(fT,;, rA)  Ls(fT,;, ;) < ESB
[Q(fH,SB

)�Q(fT,SB
) | SA = T ], (B.32)

so Alice would strictly prefer to report rA rather than fT,; after receiving the T signal, which

is a contradiction.

(2) Otherwise, if inequality (4.31) is satisfied but inequality (4.32) is violated, then we

know that Y�T is well defined. Also, we must have that Ls(fH,;, Y�T ) > ESB
[Q(fH,SB

) �

Q(fT,SB
) | SA = H]. Then Alice does not report any rA 2 [0, Y�T ] after receiving the H

signal because doing so is dominated by reporting fH,;. Next, We can show by contradiction

that at any separating PBE, Alice does not report any rA 2 (Y�T , fT,;] after receiving

the H signal. Suppose that at any separating PBE, Alice reports rA 2 (Y�T , fT,;] with

positive probability after receiving the H signal. Since this PBE is separating, Bob’s belief

must be that µsB ,rA(H) = 1 to be consistent with Alice’s strategy. By Lemma 5, in any

separating PBE, Alice must report fT,; after receiving the T signal and Bob’s belief must be

µsB ,fT,;(H) = 0. Thus, for rA 2 (Y�T , YT ), by definitions of YT and Y�T , Alice would strictly

prefer to report rA rather than fT,; after receiving the T signal, which is a contradiction.

Hence, if at least one of the inequalities (4.31) and (4.32) is violated, in any separating

PBE, Alice does not report any rA 2 [0, fT,;] after receiving the H signal.

Therefore, if at least one of the two inequalities in the two pairs of inequalities is violated,

then at any separating PBE, Alice does not report any rA 2 [0, 1] after receiving theH signal.

This contradicts our assumption that a separating PBE exists for our game.
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Appendix C

Appendix to Chapter 5

C.1 Estimated HMMs

i P(MM | MM) P(MM | GB) Pi

0 0.82 0.45 0.50
1 1.00 0.99 0.27
2 0.99 0.04 0.17
3 0.13 0.09 0.05

(a) States and initial probabilities.

j = 0 j = 1 j = 2 j = 3
i = 0 0.89 0.08 0.02 0.01
i = 1 0.01 0.99 0.00 0.00
i = 2 0.01 0.02 0.96 0.01
i = 3 0.02 0.00 0.00 0.97

(b) Transition probabilities.

Table C.1: Treatment 1 Estimated HMM (K = 4). P(MM | MM) is the probability of
reporting MM given a MM signal. P(MM | GB) is the probability of reporting MM given a
GB signal. Pi is the initial probability of state i. The cell at row i and column j gives the
transition probability from state i to state j.

i P(MM | MM) P(MM | GB) Pi

0 0.96 0.01 0.33
1 0.99 0.99 0.04
2 0.01 0.00 0.14
3 0.61 0.31 0.49

(a) States and initial probabilities.

j = 0 j = 1 j = 2 j = 3
i = 0 0.95 0.00 0.03 0.02
i = 1 0.01 0.99 0.00 0.00
i = 2 0.00 0.00 1.00 0.00
i = 3 0.02 0.02 0.05 0.91

(b) Transition probabilities.

Table C.2: Treatment 2 Estimated HMM (K = 4). P(MM | MM) is the probability of
reporting MM given a MM signal. P(MM | GB) is the probability of reporting MM given a
GB signal. Pi is the initial probability of state i. The cell at row i and column j gives the
transition probability from state i to state j.

190



i P(MM | MM) P(MM | GB) Pi

0 0.97 0.06 0.23
1 0.87 0.97 0.07
2 0.02 0.03 0.06
3 0.54 0.42 0.64

(a) States and initial probabilities.

j = 0 j = 1 j = 2 j = 3
i = 0 0.98 0.00 0.01 0.01
i = 1 0.00 0.97 0.01 0.02
i = 2 0.01 0.01 0.99 0.00
i = 3 0.00 0.01 0.01 0.97

(b) Transition probabilities.

Table C.3: Treatment 3 Estimated HMM (K = 4). P(MM | MM) is the probability of
reporting MM given a MM signal. P(MM | GB) is the probability of reporting MM given a
GB signal. Pi is the initial probability of state i. The cell at row i and column j gives the
transition probability from state i to state j.

i P(MM | MM) P(MM | GB) Pi

0 0.96 0.06 0.22
1 0.73 0.61 0.48
2 0.96 0.97 0.06
3 0.34 0.37 0.25

(a) States and initial probabilities.

j = 0 j = 1 j = 2 j = 3
i = 0 0.97 0.02 0.00 0.01
i = 1 0.01 0.97 0.03 0.00
i = 2 0.00 0.01 0.98 0.00
i = 3 0.01 0.02 0.01 0.97

(b) Transition probabilities.

Table C.4: Treatment 4 Estimated HMM (K = 4). P(MM | MM) is the probability of
reporting MM given a MM signal. P(MM | GB) is the probability of reporting MM given a
GB signal. Pi is the initial probability of state i. The cell at row i and column j gives the
transition probability from state i to state j.

i P(MM | MM) P(MM | GB) Pi

0 0.98 0.02 0.65
1 0.02 0.00 0.02
2 0.16 0.96 0.01
3 0.68 0.34 0.33

(a) States and initial probabilities.

j = 0 j = 1 j = 2 j = 3
i = 0 1.00 0.00 0.00 0.00
i = 1 0.01 0.99 0.01 0.00
i = 2 0.02 0.00 0.92 0.06
i = 3 0.01 0.00 0.01 0.98

(b) Transition probabilities.

Table C.5: Non-Peer Prediction Treatment Estimated HMM (K = 4). P(MM | MM) is the
probability of reporting MM given a MM signal. P(MM | GB) is the probability of reporting
MM given a GB signal. Pi is the initial probability of state i. The cell at row i and column
j gives the transition probability from state i to state j.

191



Appendix D

Appendix to Chapter 6
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(a) Adaptive polling trial 1
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(b) Adaptive polling trial 2
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(c) Adaptive polling trial 3
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(d) Adaptive polling trial 4
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(e) Adaptive polling trial 5
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(f) Adaptive polling trial 6

Figure D.1: The dynamics of the estimated strength parameters for adaptive polling trials
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(a) Random polling trial 1
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(b) Random polling trial 2
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(c) Random polling trial 3
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(d) Random polling trial 4
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(e) Random polling trial 5

0 20 40 60 80 100

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Iteration

Es
tim

at
ed

 S
tre

ng
th

"G
ol

d 
st

an
da

rd
" s

tre
ng

th
(f) Random polling trial 6

Figure D.2: The dynamics of the estimated strength parameters for random polling trials
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